高三数学总复习 立体几何2
- 格式:doc
- 大小:199.00 KB
- 文档页数:14
立体几何中的向量方法(二)——空间角与距离求解1.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为( )A .30°B .60°C .120°D .150°2.若平面α,β的法向量分别为a =(-1,2,4),b =(x ,-1,-2),并且α⊥β,则x 的值为( )A .10B .-10 C.12 D .-123.两平行平面α,β分别经过坐标原点O 和点A (2,1,1),且两平面的一个法向量n =(-1,0,1),则两平面间的距离是( )A.32B.22C. 3 D .3 2 4.已知平面α内有一个点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点P 中,在平面α内的是( )A .(1,-1,1) B.⎝ ⎛⎭⎪⎫1,3,32C.⎝ ⎛⎭⎪⎫1,-3,32D.⎝⎛⎭⎪⎫-1,3,325.如图K42-1,长方体ABCD -A 1B 1C 1D 1中,底面是边长为2的正方形,高为1,则异面直线AD 1和C 1D 所成角的余弦值是( )图K42-1 A.55 B .-55 C.15 D.256.在平行四边形ABCD 中,AB =AC =1,∠ACD =90°,将它沿对角线AC 折起,使AB 和CD 成60°角(如图K43-2),则B 、D 间的距离为( )图K42-2A.1 B.2 C. 2 D.2或 27.三棱锥的三条侧棱两两互相垂直,长度分别为6,4,4,则其顶点到底面的距离为( )A.143B.217 C.62211D.21738.在棱长为1的正方体ABCD-A1B1C1D1中,E、F分别为棱AA1、BB1的中点,G为棱A1B1上的一点,且A1G=λ(0≤λ≤1),则点G到平面D1EF的距离为( )A. 3B.22C.2λ3D.55图K42-39.如图K42-3,四棱锥P-ABCD中,底面ABCD是矩形,PD⊥平面ABCD,且PD=AD=1,AB=2,点E是AB上一点,当二面角P-EC-D的平面角为π4时,AE=( )A.1 B.12C.2- 2 D.2- 310.已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,E为OC的中点,且OA=1,OB=OC=2,则平面EAB与平面ABC夹角的余弦值是________.11.如图K42-4,已知四棱柱ABCD-A1B1C1D1中,底面ABCD是边长为a的正方形,侧棱AA1长为b,且AA1与A1B1,A1D1的夹角都是60°,则AC1的长等于________.K42-4图K42-512.如图K42-5,AO⊥平面α,BC⊥OB,BC与平面α的夹角为30°,AO=BO=BC=a,则AC=________.13.如图K42-6,正方体ABCD-A1B1C1D1的棱长为2,M,N分别是C1D1,CC1的中点,则直线B1N与平面BDM所成角的正弦值为________.图K42-614.(10分)如图K42-7,放置在水平面上的组合体由直三棱柱ABC-A1B1C1与正三棱锥B-ACD组成,其中,AB⊥BC.它的正视图、俯视图、侧视图的面积分别为22+1,22+1,1.(1)求直线CA1与平面ACD所成角的正弦值;(2)在线段AC1上是否存在点P,使B1P⊥平面ACD?若存在,确定点P的位置;若不存在,说明理由.图K42-715.(13分) 如图K42-8,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.(1)求证:AF∥平面BCE;(2)求证:平面BCE⊥平面CDE;(3)求直线BF和平面BCE所成角的正弦值.图K42-816.(12分如图K42-9,已知正三棱柱ABC-A1B1C1的各棱长都是4,E是BC的中点,动点F在侧棱CC上,且不与点C重合.1(1)当CF=1时,求证:EF⊥A1C;(2)设二面角C-AF-E的大小为θ,求tanθ的最小值.图K42-9。
高三数学复习专题目录专题一、数列与不等式数列(1)数列(2)专题二、三角函数三角函数(1)三角函数(2)专题三、立体几何立体几何(1)立体几何(2)专题一、数列与不等式一.基础知识梳理数列:1. 了解数列的概念和几种简单的表示方法(列表、图像、通项公式)2.了解数列是自变量为正整数的一类函数.3.了解递推公式是给出数列的一种方法,能据递推公式写出前几项,同时求出通项公式.4,理解等差、等比数列的概念,掌握等差数列的通项公式与前n项公式,并能解决简单实际问题.5.体会等差数列、等比数列与一次函数,指数函数,二次函数的关系.不等式:(必修部分)1.一元二次不等式^2+^ + c>0(cz>0)与相应的函数y = ax2+bx+c(a>0\相应的方程ax2+bx +c = 0(«〉。
)之间的关系2.一元二次不等式恒成立情况小结:J G >0 [a<0 ax2 + bx + c>0(a/0)恒成立 o。
,ax2 +bx + c <0(a/0)恒成立o。
3.二元一次不等式表示的平面区域:直线I: ax + by + c = 0把直角坐标平面分成了三个部分:(1)直线/上的点(x, y)的坐标满足ax +by+ c = 0(2)直线Z一侧的平面区域内的点(x, y)^^ax + by + oO(3)直线Z另一侧的平面区域内的点(x,y)满足ox + /<y + c<0所以,只需要在直线Z的某一侧的平面区域内,任取一特殊点(将,光),从ax0+by0+c值的正负,即可判断不等式表示的平面区域。
4.线性规划:如果两个变量x,y满足一组一次不等式,求这两个变量的一个线性函数的最大值或最小值,称这个线性函数为目标函数,称一次不等式组为约束条件,像这样的问题叫作二元线性规划问题.其中,满足约束条件的解(x,y)称为可行解,由所有可行解组成的集合称为可行域,使目标函数取得最大值和最小值的可行解称为这个问题的最优解.5.基本不等式:⑴如果"eR,那么/+〃 2 2沥,(当且仅当“=。
专题八 立体几何知识点1.空间几何体的三视图:正俯长对正,正左高平齐,左俯宽相等.2.空间几何体的侧面积、表面积、体积(1)直棱柱的侧面积S ch =侧.V Sh =柱体(2)正棱锥的周长为c ,斜高为h ',12S ch '=侧.13V Sh =锥体(3)正棱台的上、下底面的周长是c c ',,斜高是h ',1()2S c c h ''=+侧.1()3V S S S S h '=++台体 (4)圆柱母线的长为l ,底面半径为r ,2πS rl =侧,2πS r =底.圆柱的表面积222π2π2π()S S S rl r r r l =+=+=+侧底.2πV r h =圆柱(5)圆锥底面半径为r ,母线长为l,πS rl=侧,2πππ()S S S rl r r r l =+=+=+侧底.21π3V r h =圆锥(6)圆台的上、下底面半径分别为r r ',,母线长为l ,π()S r r l '=+侧.圆台的表面积2222π()πππ()S S S S r r l r r r r r l rl ''''=++=+++=+++侧上底下底.221π()3V r Rr R h =++圆台(7)球的表面积24πS R =.334R V π=3.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
(2)公理2:过不在一条直线上的三点,有且只有一个平面。
(3)公理3:如果两个不重合的平面有一个公共点,那么他们有且只有一条过该点的公共直线。
4. 直线与直线的位置关系(1)空间直线位置分三种:相交、平行、异面. (2)平行公理:平行于同一条直线的两条直线互相平行.(3)等角定理:如果一个角的两边和另一个角的两边分别平行那么这两个角相等或互补。
5. 直线与平面的位置关系.(1)空间直线与平面位置分三种:相交、平行、在平面内. (2)直线与平面平行判定定理:ααα////l l m m l ⇒⎪⎭⎪⎬⎫⊄⊂ (3)直线和平面平行性质定理:m l m l l ////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα(4)直线与平面垂直判定定理:αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥l AB AC A AB AC AB l ACl ,推论:如果两条直线同垂直于一个平面,那么这两条直线平行. (5)直线与平面垂直的性质定理:m l m l ⊥⇒⎭⎬⎫⊂⊥αα6. 平面与平面的位置关系:(1)空间两个平面的位置关系:相交、平行.ml αlmβαABC αlm αlγmβαllαβ(2)平面平行判定定理:βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交m l m l推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行. (3)两个平面平行的性质定理:m l m l ////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα αββα////l l ⇒⎭⎬⎫⊂(4)两个平面垂直性质判定:βαβα⊥⇒⎭⎬⎫⊂⊥l l(5)两个平面垂直性质定理:αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m , 7.空间距离,空间角(1)点到平面的距离的求解方法①直接求解法:从该点向平面引垂线,求垂线的长度 ②等体积代换法(2)空间角:①异面直线所成的角②直线和平面所成的角:直线和在平面的摄影所成的角 二面角例题1.(2008安徽文\理)已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖例2 .下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 ( )A .9πB .10π C .11π D .12π例3.如图,在四棱锥P-ABCD 中,PD⊥平面ABCD ,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900. (1)求证:PC⊥BC; (2)求点A 到平面PBC 的距离.例4.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,045ADC ∠=,1AD AC ==,O 为AC 中点,PO ⊥平面ABCD , 2PO =,M 为PD 中点.(Ⅰ)证明:PB //平面ACM(Ⅱ)证明:AD ⊥平面PAC ;(Ⅲ)求直线AM 与平面ABCD 所成角的正切值.DCABPMOmβαllβαlβαmP A B D C练习1.(2010浙江)(6)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 (A )若l m ⊥,m α⊂,则l α⊥ (B )若l α⊥,l m //,则m α⊥ (C )若l α//,m α⊂,则l m // (D )若l α//,m α//,则l m //2.(2010陕西文数) 8.若某空间几何体的三视图如图所示,则该几何体的体积是 [B](A )2 (B )1(C )23(D )133.若正方体的棱长为2,则以该正方体各个面的中心为顶点的凸多面体的体积为( )A.26B. 23C. 33D. 234.(湖北卷)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( ) A.38π B. 328πC. π28D. 332π 5.(2010全国卷)已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为(A ) 34 (B) 54(C)74(D) 346.设图1是某几何体的三视图,则该几何体的体积为A .429+πB .1836+πC .1229+πD .1829+π7.几何体的三视图如图所示,则这个几何体的直观图可以是8.已知正方体ABCD-A 1B 1C 1D 1中,E 为C 1D 1的中点,则异面直线AE 与BC 所成角的余弦值为 .9.(2011.上海)若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为 .10.如图,在四棱台111A B C D A B C D -中,1D D ⊥平面ABCD ,底面ABCD 是平行四边形,AB=2AD,11AD=A B ,BAD=∠60°(Ⅰ)证明:1AA BD ⊥; (Ⅱ)证明:11CC A BD ∥平面.11.如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP,AD的中点求证:(1)直线EF ‖平面PCD ;(2)平面BEF ⊥平面PAD正视图俯视图侧视图图1233FE ADPxyz NMABD C OP利用空间向量解立体几何一、用向量法解空间位置关系 1.平行关系线线平行⇔两线的方向向量平行线面平行⇔线的方向向量与面的法向量垂直 面面平行⇔两面的法向量平行 2.垂直关系线线垂直(共面与异面)⇔两线的方向向量垂直 线面垂直⇔线与面的法向量平行 面面垂直⇔两面的法向量垂直 三、用向量法解空间距离1.点点距离:点()111,,P x y z 与()222,,Q x y z 的距离为222212121()()()PQ x x y y z z =-+-+-2.点线距离:求点()00,P x y 到直线:l 0Ax By C ++=的距离:方法:在直线上取一点(),Q x y ,则向量PQ在法向量(),n A B =上的射影P Q n n⋅ =0022Ax By C A B+++即为点P 到l 的距离. 3.点面距离 :求点()00,P x y 到平面α的距离:方法:在平面α上去一点(),Q x y ,得向量PQ ,计算平面α的法向量n ,计算PQ在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角1.线线夹角(共面与异面)线线夹角⇔两线的方向向量的夹角或夹角的补角 2.线面夹角:求线面夹角的步骤:① 先求线的方向向量与面的法向量的夹角,若为锐角角即可,若为钝角,则取其补角;②再求其余角,即是线面的夹角. 3.面面夹角(二面角):若两面的法向量一进一出,则二面角等于两法向量的夹角;法向量同进同出,则二面角等于法向量的夹角的补角.1.(2009北京卷)如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB =且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.2.安徽卷(18)如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4ABC π∠=,OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点(Ⅰ)证明:直线MN OCD平面‖;(Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。
第八章 立体几何第二节 空间几何体的表面积与体积A 级·基础过关|固根基|1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( ) A .4π B .3π C .2πD .π解析:选C 由几何体的形成过程知,所得几何体为圆柱,底面半径为1,高为1,其侧面积S =2πrh =2π×1×1=2π.故选C.2.(2020届惠州市高三第二次调研)某几何体的三视图如图所示,其中正视图、侧视图均是由三角形与半圆构成的,俯视图由圆与内接三角形构成,则该几何体的体积为( )A.2π3+16 B.2π6+12 C.2π6+16D.2π3+12解析:选C 由三视图可知该几何体是一个半球上面有一个三棱锥,其体积V =13×12×1×1×1+12×4π3×⎝ ⎛⎭⎪⎫223=2π6+16,故选C. 3.《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B .4+2 2C .4+4 2D .4+6 2解析:选C 由三视图知,该几何体是直三棱柱ABC -A 1B 1C 1,其中AB =AA 1=2,BC =AC =2,∠ACB =90°,其直观图如图所示,侧面为三个矩形,故该“堑堵”的侧面积S =(2+22)×2=4+42,故选C.4.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A.500π3 cm 3B.866π3cm 3C.1 372π3 cm 3D.2 048π3cm 3解析:选A 设球的半径为R ,则由题意知,球被正方体上底面截得的圆的半径为4 cm ,球心到截面圆的距离为(R -2)cm ,则R 2=(R -2)2+42,解得R =5,所以球的体积为4π×533=500π3(cm 3).5.(2019届辽宁五校协作体联考)一个长方体被一平面截去一部分后,所剩几何体的三视图如图所示,则该几何体的体积为( )A .36B .48C .64D .72解析:选B由几何体的三视图可得,几何体如图所示,将几何体分割为两个三棱柱,所以该几何体的体积为12×3×4×4+12×3×4×4=48,故选B.6.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.解析:三棱锥D 1-EDF 的体积即为三棱锥F -DD 1E 的体积.因为E ,F 分别为AA 1,B 1C 上的点,所以在正方体ABCD -A 1B 1C 1D 1中,△EDD 1的面积为定值12,F 到平面AA 1D 1D 的距离为定值1,所以V D 1-EDF =V F -DD 1E =13×12×1=16.答案:167.(2019届福建市第一学期高三期末)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积为________.解析:如图,由题意知圆柱的中心O 为这个球的球心,于是,球的半径r =OB =OA 2+AB 2=12+(3)2=2.故这个球的表面积S =4πr 2=16π.答案:16π8.已知边长为2的等边三角形ABC ,D 为BC 的中点,沿AD 进行折叠,使折叠后的∠BDC=π2,则过A ,B ,C ,D 四点的球的表面积为________.解析:连接BC ,由题知几何体ABCD 为三棱锥,BD =CD =1,AD =3,BD⊥AD,CD⊥AD,BD⊥CD,将折叠后的图形补成一个长、宽、高分别是 3,1,1的长方体,其体对角线长即为外接球的直径,2R =1+1+3=5,故该三棱锥外接球的半径是R =52,其表面积为4πR 2=5π. 答案:5π9.现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A 1B 1C 1D 1,下部的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍,若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?解:由PO 1=2 m ,知O 1O =4PO 1=8 m .因为A 1B 1=AB =6 m ,所以正四棱锥P -A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3); 正四棱柱ABCD -A 1B 1C 1D 1的体积 V 柱=AB 2·O 1O =62×8=288(m 3),所以仓库的容积V =V 锥+V 柱=24+288=312(m 3). 故仓库的容积是312 m 3.10.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值. 解:(1)交线围成的正方形EHGF 如图所示.(2)如图,作EM⊥AB,垂足为M ,则AM =A 1E =4,EB 1=16-4=12,EM =AA 1=8. 因为四边形EHGF 为正方形,所以EH =EF =BC =10. 于是MH = EH 2-EM 2=6,则AH =10,HB =6. 故S 四边形A 1EHA =12×(4+10)×8=56,S 四边形EB 1BH =12×(12+6)×8=72.因为长方体被平面α分成两个高为10的直棱柱, 所以其体积的比值为97⎝ ⎛⎭⎪⎫79也正确. B 级·素养提升|练能力|11.已知一个简单几何体的三视图如图所示,则该几何体的体积为( )A .3π+6B .6π+6C .3π+12D .12解析:选A 由三视图还原几何体如图,该几何体为组合体,左半部分是四分之一圆锥,右半部分是三棱锥, 则其体积V =14×13×π×32×4+13×12×3×3×4=3π+6.故选A.12.体积为3的三棱锥P -ABC 的顶点都在球O 的球面上,PA⊥平面ABC ,PA =2,∠ABC=120°,则球O 的体积的最小值为( )A.773π B.2873π C.19193π D.76193π 解析:选B 设AB =c ,BC =a ,AC =b ,由题可得,3=13×S △ABC ×2,解得S △ABC =332,因为∠ABC=120°,S △ABC =332=12acsin 120°,所以ac =6,由余弦定理可得,b 2=a 2+c 2-2accos 120°=a 2+c2+ac≥2ac+ac =3ac =18,当且仅当a =c 时取等号,此时b min =32,设△ABC 外接圆的半径为r ,则b sin 120°=2r(b 最小,则外接圆半径最小),故3232=2r min ,所以r min =6,如图,设O 1为△ABC 外接圆的圆心,过O 作OD⊥PA,垂足为D ,R 为球O 的半径,连接O 1A ,O 1O ,OA ,OD ,PO ,设OO 1=h ,在Rt △OO 1A 中,R 2=r 2+OO 21=r 2+h 2,在Rt △OPD 中,R 2=r 2+(2-h)2,联立得h =1.当r min =6时,R 2min =6+1=7,R min =7,故球O 体积的最小值为43πR 3min =43π×(7)3=287π3,故选B. 13.榫卯是我国古代工匠极为精巧的发明,它是在两个构件上采用凹凸部分相结合的一种连接方式.我国的北京紫禁城、山西悬空寺、福建宁德的廊桥等建筑都用到了榫卯结构.图中网格纸上小正方形的边长为1,粗实线画出的是一种榫卯构件中榫的三视图,则其体积为________,表面积为________.解析:由三视图可知,榫卯构件中的榫由一个长方体和一个圆柱拼接而成,故其体积V=4×2×3+π×32×6=24+54π,表面积S=2×π×32+2×π×3×6+4×3×2+2×2×3=54π+36.答案:24+54π54π+3614.(2020届合肥调研)如图,已知三棱柱ABC-A1B1C1,M为棱AB上一点,BC1∥平面A1MC.(1)求证:AM=BM;(2)若△ABC是等边三角形,AB=AA1,∠A1AB=∠A1AC=60°,△A1MC的面积为42,求三棱柱ABC-A1B1C1的体积.解:(1)证明:如图,连接AC1交A1C于N,连接MN.∵BC1∥平面A1MC,BC1⊂平面ABC1,平面ABC1∩平面A1MC=MN,∴BC1∥MN.由三棱柱ABC-A1B1C1知,四边形ACC1A1为平行四边形,∴N为AC1的中点.∴M为AB的中点,即AM=BM.(2)连接A1B,∵△ABC是等边三角形,AB=AA1,∠A1AB=∠A1AC=60°,∴△ABC,△AA1B,△AA1C是全等的等边三角形,由(1)知,M为AB的中点,∴A1M⊥AB,CM⊥AB.∵A1M∩CM=M,∴AB⊥平面A1MC.设AB =2a ,则A 1M =CM =3a ,A 1C =2a ,∴△A 1MC 的面积为12·2a ·2a =2a 2=42,解得a =2,即AM =2,∴V 三棱锥A -A 1MC =13·S △A 1MC ·AM =823,从而V 三棱柱ABC -A 1B 1C 1=6·V 三棱锥A -A 1MC =16 2.。
高三二轮专题复习立体几何中截面问题重难考点归纳总结作空间几何体截面的常见方法:(1)直接连接法:有两点在几何体的同一个面上,连接该两点即为几何体与截面的交线,找截面就是找交线的过程;(2)作平行线法:过直线与直线外一点作截面,若直线所在的平面与点所在的平面平行,可以通过过点找直线的平行线找到几何体与截面的交线;(3) 作延长线找交点法:若直线相交但是立体图形中未体现,可通过作延长线的方法先找到交点,然后借助交点找到截面形成的交线;(4)辅助平面法:若三个点两两都不在一个侧面或者底面中,则在作截面时需要作一个辅助平面.考点一:截面形状的判断1.在立体几何中,用一个平面去截一个几何体得到的平面图形叫截面.平面以任意角度截正方体,所截得的截面图形不可能为() A .等腰梯形B .非矩形的平行四边形C .正五边形D .正六边形2.在立体几何中,用一个平面去截一个几何体得到的平面图形叫截面,如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点E 、F 分别是棱B 1B 、B 1C 中点,点G 是棱CC 1的中点,则过线段AG 且平行于平面A 1EF 的截面图形为( )A .矩形B .三角形C .正方形D .等腰梯形3.如图所示的几何体是由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个垂直于圆柱底面的平面去截这个组合体﹐则截面图形可能是______(填序号).4.(多选题)一个正方体内有一个内切球,用一个平面去截,所得截面图形可能是图中的( )A .AB .BC .CD .D5.在正方体中,M ,N ,Q 分别为棱AB ,的中点,过点M ,N ,Q 作该正方体的截面,则所得截面的形状是() A .三角形B .四边形C .五边形D .六边形考点二:求截面面积6.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为16的正方形,则该圆柱的表面积为() A . B . C . D . 7.已知球O 的表面积为,则过球Q 一条半径的中点,且与该半径垂直的截面圆的面积为___________. 8.已知圆锥的侧面积为,若其过轴的截面为正三角形,则该圆锥的母线的长为___________. 9.已知正四棱柱中、的交点为,AC 、BD 的交点为,连接,点为的中点.过点且与直线AB 平行的平面截这个正四棱柱所得截面面积的最小值和最大值分别为1,则正四棱柱的体积为______________.111-ABCD A B CD 111,B B C D 1O 2O 12O O 24π20π8π29π11A C 11B D 1O 2O 12O O O 12O O O 1111ABCD A B C D -10.已知正四棱柱中,,,则该四棱柱被过点,C ,E 的平面截得的截面面积为______. 11.已知圆锥的侧面积为20π,底面圆O 的直径为8,当过圆锥顶点的平面截该圆锥所得的截面面积最大时,则点O 到截面的距离为______________.12.在立体几何中,用一个平面去截一个几何体得到的平面图形叫截面. 如图,在棱长为1的正方体中,点分别是棱的中点,点是棱的中点,则过线段且平行于平面的截面的面积为A . B. C . D13.已知棱长为的正四面体,,,分别是棱,,的中点,则正四面体的外接球被三角形所在的平面截得的截面面积是( )A .B .C .D . 14.已知三棱锥的所有棱长均相等,四个顶点在球的球面上,平面经过棱,,的中点,若平面截三棱锥和球所得的截面面积分别为,,则( ) ABC .D . 15.已知正方体的长为2,直线平面,下列有关平面截此正方体所得截面的结论中,说法正确的序号为______.①截面形状一定是等边三角形:②截面形状可能为五边形;③截面面积的最大值为④存在唯一截面,使得正方体的体积被分成相等的两部分.16.已知某圆锥轴截面的顶角为,过圆锥顶点的平面截此圆锥所得截面面积的最大值为,则该圆锥的1111ABCD A B C D -1124BE BB ==143AB AA =1A 1111ABCD A B C D -,E F 111,B B B C G 1CC AG 1A EF 198894ABCD E F N AB AC AD ABCD EFN 73π83π103π163πA BCD -O αAB AC AD αA BCD -O 1S 2S 12S S =38π364π1111ABCD A B C D -1AC ⊥αα120 2底面半径为() ABC .D .17.在长方体中,已知,,分别为,的中点,则平面被三棱锥外接球截得的截面圆面积为___________.考点三:求截面周长18.如图,在正方体中,,为棱的中点,为棱的四等分点(靠近点),过点作该正方体的截面,则该截面的周长是___________.19.已知在棱长为6的正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别是棱C 1D 1,B 1C 1的中点,过A ,E ,F 三点作该正方体的截面,则截面的周长为________.20.正三棱柱ABC ﹣A 1B 1C 1中,所有棱长均为2,点E ,F 分别为棱BB 1,A 1C 1的中点,若过点A ,E ,F 作一截面,则截面的周长为( )1111ABCD A B C D -122AA AB AD ===E F 1BB 11D C 11A BCD 1C CEF -1111ABCD A B C D -4AB =E BC F 11A D 1D ,,A E FA .B .C .D .21.在三棱锥中,,截面与,都平行,则截面的周长等于( )A .B .C .D .无法确定考点四:截面最值问题22.已知三棱锥的四个顶点在球的球面上,,的正三角形,三棱锥的体积为,为的中点,则过点的平面截球所得截面面积的取值范围是( ) A . B . C . D . 23.正四面体ABCD 的棱长为4,E 为棱AB 的中点,过E 作此正四面体的外接球的截面,则该截面面积的取值范围是( ) A . B . C . D . 24.已知球O 是正三棱锥A -BCD (底面是正三角形,顶点在底面的射影为底面中心)的外接球,BC =3,AB =E 在线段BD 上,且BD =3BE .过点E 作球O 的截面,则所得截面面积的最小值是( ) A . B. C . D .25.如图,四边形为四面体的一个截面,若四边形为平行四边形,,,则四边形的周长的取值范围是___________.26.如图,设正三棱锥的侧棱长为,,分别是上的点,过作三棱锥的截面,则截面周长的最小值为________.+A BCD -AB CD a ==MNPQ AB CD MNPQ 2a 4a a P ABC -O PA PB PC ==ABC ∆P ABC -16Q BC Q O 13,24ππ⎡⎤⎢⎥⎣⎦12,23ππ⎡⎤⎢⎥⎣⎦13,44ππ⎡⎤⎢⎥⎣⎦12,43ππ⎡⎤⎢⎥⎣⎦[]46ππ,[]412ππ,[]4ππ,[]6ππ,2π3π4π5πEFGH ABCD EFGH 4AB =6CD =EFGH P ABC -240APB ∠=︒,E F ,BP CP ,,A E F AEF27.正三棱锥,点在棱上,且,已知点都在球的表面上,过点作球的截面,则截球所得截面面积的最小值为___________.考点五:有关截面的综合问题28.如图,在正方体中,点P 为线段上的动点(点与,不重合),则下列说法不正确的是( )A .B .三棱锥的体积为定值C .过,,三点作正方体的截面,截面图形为三角形或梯形D .DP 与平面所成角的正弦值最大为 29.(多选题)在棱长为2的正方体中,以下结论正确的有()A .三棱锥外接球的体积是B .当点在直线上运动时,的最小值是P ABC -AB ==E PA 3PE EA =P A B C 、、、O E O ααO 1111ABCD A B C D -11A C P 1A 1C BD CP ⊥C BPD -P C 1D 1111D C B A 131111ABCD A B C D -11B A DC -Q 1BC 1A Q QC +8+C .若棱,,的中点分别是,,,过,,三点作正方体的截面,则所得截面面积为D .若点是平面上到点和距离相等的点,则点的轨迹是直线30.(多选题)如图,正方体的棱长为1,P 为的中点,Q 为线段上的动点,过点A ,P ,Q 的平面截该正方体所得的截面多边形记为S ,则下列命题正确的是( )A .当时,S 为等腰梯形B .当时,S 与的交点R 满足C .当时,S 为六边形D .当时,S31.(多选题)在正方体中,,点E ,F 分别为,中点,点P 满足,,则( )A .当时,平面截正方体的截面面积为B .三棱锥体积为定值 AB 1AA 11CDEFG E F G M 1111D C B A D 1C M 11A D 1111ABCD A B C D -BC 1CC 12CQ =34CQ =11C D 113C R =314CQ <<1CQ =1111ABCD A B C D -2AB =AB BC 1AP AA λ= [0,1]λ∈1λ=PEF 941P ECC -C .当时,平面截正方体的截面形状为五边形D .存在点P ,二面角为45°10,3λ⎛⎤∈ ⎥⎝⎦PEF P EF A --Word 版见:高考高中资料无水印无广告word 群559164877详细解析1.C 【详解】画出截面图形如图:可以画出等腰梯形,故A 正确;在正方体中,作截面(如图所示)交,,,分别于点,,,,根据平面平行的性质定理可得四边形中,,且,故四边形是平行四边形,此四边形不一定是矩形,故B 正确;经过正方体的一个顶点去切就可得到五边形.但此时不可能是正五边形,故C 错误;正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,且可以画出正六边形,故D 正确. 故选:C1111ABCD A B C D EFGH 11C D 11A B AB CD E F G H EFGH //EF HG //EH FGEFGH高中数学教研群 QQ 群号929518278 精品资料每天更新2.D 【详解】取的中点,如图连接、、、,由题意得:,, 不在平面内,平面内,∴平面.不在平面内,平面内,∴平面.,平面,平面平面,过线段且平行于平面的截面图形为等腰梯形.故选:.3.①⑤【详解】由题意,当截面过旋转轴时,圆锥的轴截面为等腰三角形,此时①符合条件; 当截面不过旋转轴时,圆锥的轴截面为双曲线的一支,此时⑤符合条件, 综上可知截面的图形可能是①⑤.故答案为:①⑤4.AB 【详解】由组合体的结构特征可知:当截面过球与正方体切点时可知A 正确、C 错误;当截面过正方体的对角面时可知B 正确;此题是正方体的内切球,可知D 错误.故选:AB5.D 【详解】如图所示:分别为中点,M ,N ,Q 确定平面, 且,故,,故,同理可得,,,故截面为六边形.故选:D. BC H AH GH 1D G 1AD //GH EF 1//AH A F GH 1A EF EF ⊆1A EF ||GH 1A EF AH 1A EF 1A F ⊆1A EF ||AH 1A EF GH AH H = ,GH AH ⊆1AHGD ∴1//AHGD 1A EF AG AEF 1AHGDD ,,EF H 111,,AD DD B C αNH MQ ∥N α∈NH α⊂,Q H αα∈∈QH α⊂FQ α⊂EF α⊂EM α⊂6.B 【详解】根据题意,所得截面是边长为4的正方形,结合圆柱的特征,可知该圆柱的底面是半径为的圆,且高为4,所以其表面积.故选:B. 7.【详解】 设球的半径为,则,解得.设截面圆的半径为,由题知:, 所以截面圆的面积.故答案为: 8.【详解】 设圆锥的底面半径为r ,圆锥的母线为l ,又圆锥过轴的截面为正三角形,圆锥的侧面积为, ∴, ∴.故答案为:. 9.3【详解】设正四棱柱的底面边长为a ,高为h ,由题知当截面平行于平面时,截面面积最小;当截面为平面时,截面面积最大,2()22222424S =⨯+⨯⨯=πππ32ππR 248R ππ=R =r r ==232S ππ==32π2329π22,9l r rl ππ==23l =23ABCD 11A B CD因为过点且与直线AB 平行的平面截这个正四棱柱所得截面面积的最小值和最大值分别为1,所以, 于是正四棱柱的体积为.故答案为:3.10.由题意,正四棱柱中,,, 可得,在上取点,使得,连接,则有, 所以四边形是平行四边形,由勾股定理可得,所以所以, 所以四边形是平行四边形的面积为, 故答案为:O 21a ⎧=⎪⎨=⎪⎩13a h =⎧⎨=⎩1111ABCD A B C D -23a h =1111ABCD A B C D -1124BE BB ==143AB AA =1118,2AA BB CC BE ====1DD F 12D F =1,A F CF 11,//A F CE A F CE =1A ECF 11A E CE A C ====2221111cos 2A E CE A C A EC A E CE +-∠===⨯1sin A EC ∠=1A ECF 11sin A E EC A EC ⨯⨯∠==11设圆锥的底面圆的半径为r ,高为h ,母线长为l ,则,∴,h =3,由于h<r ,所以圆锥的轴截面为钝角三角形,所以过圆锥顶点的平面截该圆锥所得的截面为直角三角形时面积最大,如图,△SAB 为截面三角形,SO 为圆锥的高,设点O 到截面的距离为d ,则∴,即, ∴,即点O. 12.B 【详解】取BC 的中点H ,连接,4,20r rl ππ==5l =25,2SAB AB S == 14,2AOB OA OB S ===⨯= 1133SAB AOB S d S h ⋅=⋅ 12513323d ⨯⋅=d =,AH GH因为面AHGD1,面AHGD1,面AHGD1,同理,面AHGD1,又,则平面AHGD1∥平面A1EF,等腰梯形AHGD1,,故选B.13.D【详解】过点作平面的垂线,垂足为,交平面于点,设该四面体外接球球心为,连接,作图如下所示:因为四面体为正四面体,且面,故点为△的外心,则该四面体的球心一定在上,不妨设外接球球心为;因为分别为的中点,则//,//,又,且面,面,故平面//平面,故面,又为中点,故也为中点.因为正四面体的所有棱长为,故1,EF BC GH EF⊄GH⊂EF∴∥1A E∥1A E EF E⋂=98A BCD H EFN'O O,OB BHABCD AH⊥BCDH BCD AH O,,E F N,,AB AC AD EF BC FN CD,EF FN F BC CD C⋂=⋂= ,EF FN⊂EFN,BC CD⊂BCD EFN BCDAO'⊥EFN E AB'O AHABCD4243BH==则设该四面体的外接球半径为,即,则, 在△中,,即, 解得即外接球球心到平面, 设平面截外接球所得圆的半径为,则,解得,故截面圆的面积为.故选:D. 14.B 【详解】设平面截三棱锥所得正三角边长为a ,截面圆的半径为r ,则, 由正弦定理可得, ,故选:B15.④【详解】如图可知,截面形状可以是等边三角形、六边形、正六边形,∴①②明显错误;截面面积的最小值可以趋向于零,故③错误;当截面为正六边形时,截面过正方体的中心,此时正方体的体积被分成相等的两部分.故④正确.故答案为:④AH ===12O H AH ='=R OA OB R ==OH AH R R =-=Rt OHB 222OH BH OB +=222R R ⎫+=⎪⎪⎭R =OO R AO =-==''O EFN EFN r 222r +=2163r =163παA BCD -21S =sin 60a r ==︒22243πa S πr ∴==12S S =∴16.A 【详解】如图,由题可知,,又过圆锥顶点的平面截此圆锥所得截面面积的最大值为,∴,即, 在中,.故选:A. 17.【详解】 以点为原点建立空间直角坐标系如图所示:120APB ∠= 30ABP ∠= 22122l =2l =Rt POB cos302r l === 98πD依题意得:,,,则,,所以,则;设为中点,因为则,所以点为三棱锥外接球的球心,则设球心到平面的距离为,又因为为中点,所以点到平面的距离为,由于,所以故截面圆的半径为,所以截面圆面积为. 故答案为:18如图,取的中点,取上靠近点的三等分点,()0,2,0C ()1,2,1E ()0,1,2F ()1,0,1EC =-- ()111EF ,,=-- 1010EC EF ⋅=+-= EF EC ⊥O CF EF EC ⊥1EO OC FO C O ===O 1C CEF -12R CF ==O 11A BCD h O CF F 11A BCD 2h 111244h C D ==⨯=h =r ==98π98π11C D H 1CC 1C G连接,易证,则五边形为所求截面.因为,所以, 则, 故该截面的周长是.19.如图,延长EF ,A 1B 1,相交于点M ,连接AM ,交BB 1于点H ,延长FE ,A 1D1,相交于点N ,连接AN,交DD 1于点G ,连接FH,EG,可得截面为五边形AHFEG .因为ABCD-A 1B 1C 1D1是棱长为6的正方体,且E ,F 分别是棱C 1D 1,B 1C 1的中点,由中位线定理易得:EF =:AG =AH =EG =FH AH +HF +EF +EG +AG =故答案为:20.B 【详解】如图,在正三棱柱中,延长AF 与CC 1的延长线交于M ,连接EM 交B 1C 1于P ,连接FP ,则四边形AEPF 为所求截面.,,,,AE EG GH HF FA //,//AE HF AF EG AEGHF 4AB =111182,3,1,3BE CE C H D H A F D F CG =======143C G =103AE EG ==5,GH HF AF ===AE EG GH HF AF ++++=+111ABC A B C -过E 作EN 平行于BC 交CC 1于N ,则N 为线段CC 1的中点,由相似于可得MC 1=2,由相似于可得:, 在中,,则,在中,,则在中,,则在中,, 由余弦定理:,则故选:B.21.A 【详解】 设,因为平面,平面平面,平面,所以,同理可得,,,故四边形为平行四边形, 所以,. 因为,所以,, 1MFC MAC △1MPC △MEN 111242,2333PC PC B P =⇒==1Rt AA F 112,1AA A F ==AF ==Rt ABE △2,1AB BE ==AE ==1Rt B EP 1121,3B E B P ==PE ==1C FP 11141,,603C F C P FC P ==∠=︒2224413121cos 60339PF ⎛⎫=+-⨯⨯⨯︒= ⎪⎝⎭PF ==AM k CM=//AB MNPQ ABC MNPQ MN =AB ÌABC //MN AB //PQ AB //MQ CD //NP CD MNPQ 11MN PQ AB AB k ==+1MQ NP k CD CD k==+AB CD a ==1a MN PQ k ==+1ak MQ NP k==+所以四边形的周长为. 故选:A.22.A 【详解】设在底面上的射影为,因为,所以为的中心,由题可知,,由,解得 在正中,可得.从而直角在中解得. 进而可得,,,因此正三棱锥可看作正方体的一角, 正方体的外接球与三棱锥的外接球相同,正方体对角线的中点为球心. 记外接球半径为,则所以过的平面截球所得截面的面积最大为; 又为中点,由正方体结构特征可得 由球的结构特征可知,当垂直于过的截面时, MNPQ 2211a ak MN PQ MQ NP a k k ⎛⎫+++=+= ⎪++⎝⎭P ABC M PA PB PC ==M ABC ∆ABC S ∆1136P ABC ABC V PM S -∆=⨯⨯=PM =ABC ∆AM =ABC 1PA =PA PB ⊥PB PC ⊥PC PA ⊥P ABC -P ABC -O R R Q O 2max 34S R ππ==Q BC 1122OQ PA ==OQ Q截面圆半径最小为. 因此,过的平面截球所得截面的面积范围为. 故选:A.23.A 【详解】如图,将正四面体补为边长是ABCD 的外接球为正方体 的外接球,球心O在体对角线的中点,且球的半径;当OE 垂直于截面时,截面面积最小,截面圆的半径为面积为;当截面过球心O 时,截面面积最大,截面圆的半径为,面积为故选:A24.A【详解】解:如图,O 1是A 在底面的射影,由正弦定理得,△BCD 的外接圆半径r ==2min 12S r ππ==Q O 13,24ππ⎡⎤⎢⎥⎣⎦R =12r ==4π1r R =6π1031sin 602r =⨯=由勾股定理得棱锥的高AO 1;设球O 的半径为R ,则,解得,所以OO 1=1;在△BO 1E 中,由余弦定理得 所以O 1E =1;所以在△OEO 1中,OE;当截面垂直于OE. 故选:A25.【详解】解:四边形为平行四边形,;平面,平面, 平面;又平面,平面平面,,同理可得;设,, ,, ; 又,,, ,且; 四边形的周长为 ,;四边形周长的取值范围是.故答案为:26.将正三棱锥的三个侧面展开如图,由图可知,为使的周长最小,只需让四点共线即可,则当为与交点时,的周长最小,由题意,,∴,得的周长3==()223R R =-2R =2113211,O E =+-⨯==2π(8,12) EFGH //EH FG ∴EH ⊂/ ABD FG ⊂ABD //EH ∴ABD EH ⊂ ABC ABC ABD AB =//EH AB ∴//EF CD EH x =EF y =∴EH CE AB CA =EF AE CD AC =∴1EH EF CE AE AC AB CD CA AC AC+=+==4AB =Q 6CD =∴146x y +=614x y ⎛⎫∴=- ⎪⎝⎭04x <<∴EFGH 2()2[6(1)]4xl x y x =+=+-12x =-81212x ∴<-<∴EFGH (8,12)(8,12)AEF 1,,,A E F A ,E F 1AA ,BP CP AEF 140BPC CPA APB ∠=∠=∠=︒1120APA ∠=︒1AA ===AEF的最小值为故答案为:27.【详解】,,, 同理,故可把正三棱锥补成正方体(如图所示),其外接球即为球,直径为正方体的体对角线,故,设的中点为,连接,则.所以,当平面时,平面截球O 的截面面积最小,,故截面的面积为.故答案为:28.D 【详解】由题可知平面,所以,故A 正确; 由等体积法得为定值,故B 正确; 设的中点为,当时,如下图所示:3π4PA PC PB === AB AC BC ===222PA PC AC ∴+=2CPA π∴∠=2CPB BPA π∠=∠=O 2R =PA F OF OF =OF PA ⊥3OE ==OE ⊥αα=3π3πBD ⊥11ACC A BD CP ⊥113C BPD P BCD BCD V V S AA --==⋅⋅ 11A C M 1P MC ∈此时截面是三角形,当时,如下图所示:此时截面是梯形,故C 正确;选项D ,在正方体中,连接,则为在平面上的射影,则为与平面所成的角,设正方体的棱长为1,,则当取得最小值时,的值最大,即时,, 所以D 不正确. 故选:D.29.ACD 【详解】对于A :三棱锥的外接球即为正方体的外接球,因为正方体的外接球的直径即为正方体的体对角线,即所以外接球的体积是,故选项A 正确;1D QC 1PMA ∈1D QRC 1D P 1D P DP 1111D C B A 1D PD ∠DP 1111D C B A 1PD x =DP =1sin D PD ∠x 1sin D PD ∠111D P A C ⊥x 1sin D PD ∠11B A DC -1111ABCD A B C D -2R =R 34π3V =´=对于B :把沿翻折到与在同一个平面(如图所示),连接,则是的最小值,其中是边长为的等边三角形,是直角边为的等腰直角三角形,所以, 即故选项B 错误;对于C :分别取棱,,的中点,,,连接,,,,,,则易知过,,三点的截面是正六边形,1BCC 1BC 11A C B △1A C 1A C 1A Q QC +11A C B △1BCC 211A C A Q QC =+==1A Q QC +11A D 1CC BC H M N EF FH HG GM MN NE E F G EFHGMN所以截面面积为故选项C 正确;对于D :因为是平面上到点和距离相等的点,所以点的轨迹是平面与线段的垂直平分平面的交线,即点的轨迹是平面与平面的交线,所以点的轨迹是直线,即选项D 正确.故选:ACD.30.ABD 【详解】解:过点A ,P ,Q 的平面截正方体,当时,其截面形状为梯形如图1,特别地当时,截面形状为等腰梯形, 当时,其截面形状为五边形如图2. 若,则,所以. 当时,与重合,其截面形状为四边形如图3,此时,因为P 为的中点,且,所以为的中点,所以,同理,所以四边形为平行四边形,所以四边形为菱形,其面积为ABD 正确. 故选:ABD.31.BCD 【详解】A 选项中,当时,与重合,则截面为等腰梯形,其面积为,故A 选项错误; 1(62⨯=M 1111D C B A D 1C M 1111D C B A 1DC 11A BCD M 1111D C B A 11A BCD 11A D M 11A D 102CQ <≤12CQ =112CQ <<34CQ =1113C Q C R QC CM ==113C R =1CQ =Q 1C PQ AP =BC CP AD ∕∕Q MN PC AE ∕∕QE AP ∕∕APQE APQE 112AC PE ⋅==1λ=P 1A 92B 选项中,因为平面,故P 到平面的距离不变,故三棱锥体积为定值.故B 选项正确:C 选项中,当时,其截面刚好为五边形,时,截面为五边形;故C 选项正确;D 选项中,当点P 与重合时,其二面角正切值为,此时二面角大于45°, 所以存在点P ,二面角为45°,D 选项正确;故选:BCD .1//AA 1ECC 1ECC 1P ECC -13λ=103λ<<1A P EF A --。
阶段质量检测(二)制卷人:打自企; 成别使; 而都那。
审核人:众闪壹; 春壹阑; 各厅…… 日期:2022年二月八日。
一、选择题(本大题一一共12小题,每一小题5分,一共60分,在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的)1.如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,假设A 1B 1→=a ,A 1D →=b ,A 1A →=c ,那么以下向量中与B 1M →相等的向量是( )A .-12a +12b +cB.12a +12b +c C.12a -12b +cD .-12a -12b +c【答案】 A2.一个几何体的三视图如下图,那么这个几何体的外表积等于A .72B .66C .60D .30【解析】 根据题目所给的三视图可知该几何体为一直三棱柱,且底面是一直角三角形,两直角边分别为3,4,斜边为5,三棱柱高为5,所以外表积为S =3×4+3×5+4×5+5×5=72,所以答案为A.【答案】 A3.在以下图中,G、H、M、N分别是正三棱柱的顶点或者所在棱的中点,那么表示直线GH、MN是异面直线的图形有( )A.(1)(2) B.(1)(3)C.(2)(4) D.(3)(4)【解析】对于图(1),GH∥MN,对于图(2),GH与NM异面,对于图(3),GH与MN相交,对于图(4),GH与NM异面,应选C.【答案】 C4.假设正三棱锥的侧面都是直角三角形,那么侧面与底面所成二面角的余弦值是( )A.63B.33C.23D.13【答案】 B5.直线m⊥平面α,直线n⊂平面β,那么以下命题正确的选项是( ) A.假设α∥β,那么m⊥n B.假设α⊥β,那么m∥nC.假设m⊥n,那么α∥βD.假设n∥α,那么α∥β【解析】易知A选项由m⊥α,α∥β⇒m⊥β,n⊂β⇒m⊥n,故A选项命题正确.【答案】 A6.如图,四边形ABCD 的直观图是直角梯形A 1B 1C 1D 1,且A 1B 1=B 1C 1=2A 1D 1=2,那么四边形ABCD 的面积为( )A .3B .3 2C .6 2D .6【解析】 如图,取∠GB 1C 1=135°,过点A 1作A 1E ∥GB 1,易求得B 1E =2,A 1E =22,故以B 1C 1和B 1A 1为坐标轴建立直角坐标系,由直观图原那么,B ,C 与B 1,C 1重合,然后过点E 作B 1A 1的平行线,且使得AE =2A 1E =42,即得点A ,然后过A 作AD ∥BC 且使得AD =1,即四边形ABCD 上底和下底边长分别为1,2,高为42, 故其面积S =12(2+1)×42=6 2.【答案】 C7.中心角为34π,面积为B 的扇形围成一个圆锥,假设圆锥的外表积为A ,那么A :B 等于( )A .11∶8B .3∶8C .8∶3D .13∶8【解析】 设扇形半径为R ,那么B =12lR =12|α|·R 2=38πR 2,其中l 为扇形弧长,也为圆锥底面周长, 设圆锥底面圆半径为r ,2πr=|α|·R =34πR ,r =38R .S 圆=πr 2=964πR 2, 故A =B +S 圆=38πR 2+964πR 2=3364πR 2.∴A :B =3364πR 2:38πR 2=11:8.应选A. 【答案】 A8.m ,n 为不同的直线,α,β为不同的平面,以下四个命题中,正确的选项是( ) A .假设m ∥α,n ∥α,那么m ∥nB .假设m ⊂α,n ⊂α,且m ∥β,n ∥β,那么α∥βC .假设α⊥β,m ⊂α,那么m ⊥βD .假设α⊥β,m ⊥β,m ⊄α,那么m ∥α【解析】 A 错,平行于同一平面的两直线可平行、相交和异面;B 错,必须平面内有两条相交直线分别与平面平行,此时两平面才平行;C 错,两垂直平面内的任一直线与另一平面可平行、相交或者垂直;D 对,由空间想象易知命题正确. 【答案】 D9.如图边长为a 的等边三角形ABC 的中线AF 与中位线DE 交于点G ,△A ′DE 是△ADE 绕DE 旋转过程中的一个图形,那么以下命题中正确的选项是( )①动点A ′在平面ABC 上的射影在线段AF 上;②BC∥平面A′DE;③三棱锥A′-FED的体积有最大值.A.① B.①②C.①②③ D.②③【解析】①中由可得面A′FG⊥面ABC,∴点A′在面ABC上的射影在线段AF上.②BC∥DE,∴BC∥平面A′DE.③当面A′DE⊥面ABC时,三棱锥A′-FDE的体积到达最大.【答案】 C10.在正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,M、N分别是棱DD1、D1C1的中点,那么直线OM( )A.和AC、MN都垂直B.垂直于AC,但不垂直于MNC.垂直于MN,但不垂直于ACD.与AC、MN都不垂直【答案】 A11.用一些棱长是1 cm的小正方体码放成一个几何体,图1为其俯视图,图2为其主视图(或者正视图),假设这个几何体的体积为7 cm3,那么其左视图为( )【解析】 由这个几何体的体积为7 cm 3可知一共有7个小正方体.通过俯视图可以排除选项A 、D ,结合俯视图与主视图即可选出正确答案为C(假设左视图为D ,那么只需要6个小正方体即可).【答案】 C12.一个圆柱的正视图的周长为12,那么该圆柱的侧面积的最大值等于( )A.92π B .6π C .9πD .18π【解析】 圆柱的正视图是一个矩形,假设设圆柱的底面半径为r ,高为h ,那么依题意有4r +2r =12,且0<r <3.故其侧面积S =2πr h =2πr(6-2r)=4πr(3-r)≤4π·⎝ ⎛⎭⎪⎫322=9π,此时r =32,所以圆柱的侧面积的最大值等于9π.【答案】 C二、填空题(本大题一一共4小题,每一小题5分,一共20分,把答案填在题中横线上)13.OA 为球O 的半径,过OA 的中点M 且垂直于OA 的平面截球面得到圆M .假设圆M 的面积为3π,那么球O 的外表积等于________.【解析】 ∵圆M 的面积为3π,∴圆M 的半 径r =3,设球的半径为R ,由图可知,R 2=14R 2+3,∴34R 2=3,∴R 2=4.∴S 球=4πR 2=16π. 【答案】 16π14.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,那么该几何体的体积是________.【解析】 由可得几何体是底面半径为1,母线长为2的圆锥的一半,即半圆锥,易知其体积为12×13×π×12×3=36π. 【答案】36π. 15.a ,b ,c 是空间中互不重合的三条直线,下面给出五个命题: ①假设a ∥b ,b ∥c ,那么a ∥c ; ②假设a ⊥b ,b ⊥c ,那么a ∥c ;③假设a 与b 相交,b 与c 相交,那么a 与c 相交;④假设a ⊂平面α,b ⊂平面β,那么a ,b 一定是异面直线; ⑤假设a ,b 与c 成等角,那么a ∥b . 上述命题中正确的________(只填序号). 【解析】 由公理4知①正确;当a ⊥b ,b ⊥c 时,a 与c 可以相交、平行,也可以异面,故 ②不正确;当a 与b 相交,b 与c 相交时,a 与c 可以相交、平行,也可以异面,故③不正确;a ⊂α,b ⊂β,并不能说明a 与b “不同在任何一个平面内〞,故④不正确;当a ,b 与c 成等角时,a 与b 可以相交、平行,也可以异面,故⑤不正确. 【答案】 ①16.如图为一几何体的展开图,其中ABCD 是边长为6的正方形,SD =PD =6,CR =SC ,AQ =AP ,点S ,D ,A ,Q 及点P ,D ,C ,R 一共线,沿图中虚线将它们折叠起来,使P ,Q ,R ,S 四点重合,那么需要________个这样的几何体,可以拼成一个棱长为6的正方体.【解析】 由题意知,将该展开图沿虚线折叠起来以后,得到一个四棱锥P -ABCD (如图),其中PD ⊥平面ABCD ,因此该四棱锥的体积V =13×6×6×6=72,而棱长为6的正方体的体积V =6×6×6=216,故需要21672=3个这样的几何体,才能拼成一个棱长为6的正方体.【答案】 6三、解答题(本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤) 17.图1(10分)如图,在四棱锥P -ABCD 中,底面为正方形,PC 与底面ABCD 垂直(图1),图2为该四棱锥的正视图和侧视图,它们是腰长为6 cm 的全等的等腰直角三角形图2(1)根据图2所给的正视图、侧视图画出相应的俯视图,并求出该俯视图的面积.(2)图3中,E 为棱PB 上的点,F 为底面对角线AC 上的点,且BE EP =CF FA,求证:EF ∥平面PDA .图3【解析】 (1)该四棱锥的俯视图为内含对角线,边长为6 cm 的正方形,如图.其面积为36 cm 2.(2)连接BF 并延长交AD 于G ,连接PG , 那么在正方形ABCD 中,BF FG =CF FA.又CF FA =BE EP ,∴BF FG =BEEP,∴在△BGP 中,EF ∥PG . 又EF ⊄平面PDA ,PG ⊂平面PDA , ∴EF ∥平面PDA .18.(12分)如图,在四棱台ABCD -A 1B 1C 1D 1中,下底ABCD 是边长为2的正方形,上底A 1B 1C 1D 1是边长为1的正方形,侧棱DD 1⊥平面ABCD ,DD 1=2.(1)求证:B 1B ∥平面D 1AC ; (2)求证:平面D 1AC ⊥平面B 1BDD 1.【证明】 (1)设AC ∩BD =E ,连结D 1E ,∵平面ABCD∥平面A1B1C1D1.∴B1D1∥BE,∵B1D1=BE=2,∴四边形B1D1EB是平行四边形,所以B1B∥D1E.又因为B1B⊄平面D1AC,D1E⊂平面D1AC,所以B1B∥平面D1AC(2)证明:侧棱DD1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥DD1.∵下底ABCD是正方形,AC⊥BD.∵DD1与DB是平面B1BDD1内的两条相交直线,∴AC⊥平面B1BDD1∵AC⊂平面D1AC,∴平面D1AC⊥平面B1BDD1.19.(12分)如图,在正三棱柱ABC-A1B1C1中,AB=4,AA1=7,点D是BC的中点,点E在AC上,且DE⊥A1E.(1)证明:平面A1DE⊥平面ACC1A1;(2)求直线AD和平面A1DE所成角的正弦值.【解析】(1)证明:如下图,由正三棱柱ABC-A1B1C1的性质知AA1⊥平面ABC.又DE⊂平面ABC,所以DE⊥AA1.而DE⊥A1E.AA1∩A1E=A1,所以DE⊥平面ACC1A1.又DE⊂平面A1DE,故平面A 1DE ⊥平面ACC 1A 1. (2)如图所求,设O 是AC 的中点,以O 为原点建立空间直角坐标系,那么相关各点的坐标分别是A (2,0,0),A 1(2,0,7),D (-1,3,0),E (-1,0,0).易知A 1D →=(-3,3,-7),D E →=(0,-3,0),A D →=(-3,3,0).设n =(x ,y ,z )是平面A 1DE 的一个法向量,那么⎩⎪⎨⎪⎧ n ·D E →=-3y =0,n ·A 1D →=-3x +3y -7z =0.解得x =-73z ,y =0. 故可取n =(7,0,-3).于是cos n ,A D →=n ·A D →|n |·|AD →|=-374×23 =-218. 由此即知,直线AD 和平面A 1DE 所成角的正弦值为218. 20.(12分)某高速公路收费站入口处的平安标识墩如图(1)所示.墩的上半局部是正四棱锥P -EFGH ,下半局部是长方体ABCD -EFGH .图(2)、图(3)分别是该标识墩的正(主)视图和俯视图.(1)请画出该平安标识墩的侧(左)视图;(2)求该平安标识墩的体积;(3)证明:直线BD ⊥平面PEG .【解析】 (1)侧视图同正视图(略).(2)该平安标识墩的体积为V =V P -EFGH+V ABCD -EFGH =13×402×60+402×20 =32 000+32 000=64 000(cm 3).(3)证明:如图,连结EG 、HF 及BD ,EG 与 HF 相交于O 点,连结PO ,由正四棱锥的性质可知,PO ⊥平面EFGH ,∴PO ⊥HF .又∵EG ⊥HF ,∴HF ⊥平面PEG .又∵BD ∥HF ,∴BD ⊥平面PEG .21.(12分)四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1.E 为BC 的中点.(1)求异面直线NE 与AM 所成角的余弦值;(2)在线段AN 上是否存在点S ,使得ES ⊥平面AMN?(3)假设存在,求线段AS 的长;假设不存在,请说明理由.【解析】 (1)如图,以D 为坐标原点,建立空间直角坐标系D -xyz .依题意,易得D (0,0,0),A (1,0,0),M (0,0,1),C (0,1,0),B (1,1,0),N (1,1,1),E ⎝ ⎛⎭⎪⎫12,1,0. ∴NE →=⎝ ⎛⎭⎪⎫-12,0,-1, AM →=(-1,0,1).∵cos N E →,A M →=NE →·AM →|NE →|·|AM →|=-1252×2=-1010, ∴异面直线NE 与AM 所成角的余弦值为-1010. (2)假设在线段AN 上与存在点S .使得ES ⊥平面AMN .∵A N →=(0,1,1), 可设A S →=r AN →=(0,λ,λ),又E A →=(12,-1,0), ∴E S →=E A →+A B →=(12,λ-1,λ). 由ES ⊥平面AMN ,得⎩⎪⎨⎪⎧ E S →·A M →=0,E S →·A N →=0,即⎩⎪⎨⎪⎧ -12+λ=0,(λ-1)+λ=0.故λ=12, 此时A S →=⎝ ⎛⎭⎪⎫0,12,12,|A S →|=22. 经检验,当AS =22时. ES ⊥平面AMN .故线段AN 上存在点S ,使得ES ⊥平面AMN ,此时AS =22. 22.(12分)如图,M 、N 、P 分别是正方体ABCD -A 1B 1C 1D 1的棱AB 、BC 、DD 1上的点.(1)假设BM MA =BN NC,求证:无论点P 在D 1D 上如何挪动,总有BP ⊥MN ; (2)假设D 1P :PD =1∶2,且PB ⊥平面B 1MN ,求二面角M -B 1N -B 的余弦值;(3)棱DD 1上是否总存在这样的点P ,使得平面APC 1⊥平面ACC 1?证明你的结论.【解析】 (1)连接AC 、BD 、那么BD ⊥AC , ∵BM MA =BN NC,∴MN ∥AC ,∴BD ⊥MN .又∵DD 1⊥平面ABCD ,∴DD 1⊥MN ,∵BD ∩DD 1=D ,∴MN ⊥平面BDD 1.又P 无论在DD 1上如何挪动,总有BP ⊂平面BDD 1, ∴无论点P 在D 1D 上如何挪动,总有BP ⊥MN .(2)以D 为坐标原点,DA 、DC 、DD 1所在直线分别为x 轴,y 轴,z 轴,建立如下图的坐标系.设正方体的棱长为1,AM =NC =t ,那么M (1,t,0),N (t,1,0),B 1(1,1,1),P (0,0,23),B (1,1,0),A (1,0,0), ∵MB 1→=(0,1-t,1),B P →=⎝ ⎛⎭⎪⎫-1,-1,23. 又∵BP ⊥平面MNB 1,∴MB 1→·B P →=0,即t -1+23=0,∴t =13, ∴MB 1→=(0,23,1), M N →=(-23,23,0). 设平面MNB 1的法向量n =(x ,y ,z ), 由⎩⎪⎨⎪⎧ MB 1→·n =0M N →·n =0,得x =y ,z =-23y .令y =3,那么n =(3,3,-2). ∵AB ⊥平面BB 1N ,∴A B →是平面BB 1N 的一个法向量, A B →=(0,1,0).设二面角M -B 1N -B 的大小为θ, ∴cos〈n ,A B →〉 =|(3,3,-2)·(0,1,0)|22=32222. 那么二面角M -B 1N -B 的余弦值为32222. (3)存在点P ,且P 为DD 1的中点, 使得平面APC 1⊥平面ACC 1. 证明:∵BD ⊥AC ,BD ⊥CC 1, ∴BD ⊥平面ACC 1.取BD 1的中点E ,连PE ,那么PE ∥BD ,∴PE ⊥平面ACC 1.∵PE ⊂平面APC 1,∴平面APC 1⊥平面ACC 1.制卷人:打自企; 成别使; 而都那。
1、柱、錐、臺、球的結構特徵(1)棱柱:定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標準分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。
(2)棱錐定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體分類:以底面多邊形的邊數作為分類的標準分為三棱錐、四棱錐、五棱錐等表示:用各頂點字母,如五棱錐幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。
(3)棱臺:定義:用一個平行於棱錐底面的平面去截棱錐,截面和底面之間的部分分類:以底面多邊形的邊數作為分類的標準分為三棱態、四棱臺、五棱臺等表示:用各頂點字母,如五棱臺幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原棱錐的頂點(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。
(6)圓臺:定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。
(7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。
2、空間幾何體的三視圖定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)注:正視圖反映了物體上下、左右的位置關係,即反映了物體的高度和長度;俯視圖反映了物體左右、前後的位置關係,即反映了物體的長度和寬度;側視圖反映了物體上下、前後的位置關係,即反映了物體的高度和寬度。
高三数学二轮复习教学案——立体几何(2)班级__________姓名_____________学号_________【基础训练】1. 如图,正方体ABCD A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.2.三棱锥P -ABC 中,三条侧棱两两垂直,且长度都为1,点E 为BC 上一点,则截面PAE 面积的最小值为_____________.3、已知a 、b 、c 是三条不重合直线,α、β、γ是三个不重合的平面,下列命题:⑴a ∥c ,b ∥c ⇒a ∥b ;⑵a ∥γ,b ∥γ⇒a ∥b ;⑶c ∥α,c ∥β⇒α∥β;⑷γ∥α,β∥α⇒γ∥β;⑸a ∥c ,α∥c ⇒a ∥α;⑹a ∥γ,α∥γ⇒a ∥α。
其中正确的命题是 。
4、已知正方体ABCD -A'B'C'D',则该正方体的体积、四棱锥C'-ABCD 的体积以及该正方体的外接球的体积之比为 _________________.5.. 如图,四棱锥P -ABCD 的底面是边长为3的正方形,侧棱PA ⊥平面ABCD ,点E 在侧棱PC 上,且BE ⊥PC ,若6=BE ,则四棱锥P -ABCD 的体积为 _________ .6. 由曲线22x y =,2||=x 围成的图形绕y 轴旋转一周所得的旋转体的体积为1V ;满足422≤+y x ,1)1(22≥-+y x ,1)1(22≥++y x 的点组成的图形绕y 轴旋转一周所得的旋转体的体积为2V ,则1V :2V = .【典型例题】7. 已知三棱锥P —ABC 中,PC ⊥底面ABC ,AB=BC ,D 、F 分别为AC 、PC 的中点,DE ⊥AP 于E .(1)求证:AP ⊥平面BDE ;(2)求证:平面BDE ⊥平面BDF ;(3)若AE ∶EP=1∶2,求截面BEF 分三棱锥P —ABC 所成两部分的体积比.8. 如图,四棱锥P -ABCD 中,底面ABCD 是一个边长为2的正方形,PA⊥平面ABCD ,且24=PC .M 是PC 的中点,在DM 上有点G ,过G 和AP作平面交平面BDM 于GH .(1)求四棱锥P -ABCD 的体积;(2)求证:AP ∥GH .9. 如图,在棱长均为4的三棱柱111ABC A B C -中,D 、1D分别是BC 和11B C 的中点. (1)求证:11A D ∥平面1AB D ;(2)若平面ABC ⊥平面11BCC B ,160B BC ∠= ,求三棱锥1B ABC -的体积.10. 如图一简单几何体的一个面ABC 内接于圆O ,G ,H 分别是AE ,BC 的中点,AB 是圆O 的直径,四边形DCBE 为平行四边形,且DC ⊥平面ABC .(1)求证:GH //平面ACD ;(2)证明:平面ACD ⊥平面ADE ;(3)若AB =2,BC =1,23tan =∠EAB ,试求该几何体的体积V .。
高三数学总复习立体几何(2)——空间成角问题和距离问题一、空间成角问题空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的,因此求这些角的过程也是直线、平面的平行与垂直的重要应用.1. 异面直线成角的范围:异面直线成角重点是通过平移转化为平面角,最后成为解三角形问题:作异面直线成角的常用方法有:(1)直接平移;(2)中位线平移;(3)补体平移;异面直线成角问题的解题步骤:一作(图)二证(明)三指(角)四解(三角形)附:空间向量方法:设是直线a、b的方向向量,θ为直线a、b所成角大小2. 直线和平面所成角范围:斜线和平面所成角重点是通过在斜线上找一个不同于斜足的点做面的垂线,将其转化为平面角,最后成为解直角三角形问题;做斜线和平面成角的重点:定斜线上的点在平面上的垂足,其常用方法有:(1)利用面面垂直定垂足位置;(2)利用四面体顶点在底面上射影的特殊位置定垂足位置:如[1]四面体的侧棱相等顶点在底面上射影是底面三角形的外心;[2]四面体的侧棱和底面成角相等顶点在底面上射影是底面三角形的外心[3]四面体的顶点在底面上射影在底面三角形内部,且顶点到底面三角形三边距离相等顶点在底面上射影是底面三角形的内心;[4]四面体的顶点在底面上射影在底面三角形内部,且侧面和底面成角相等顶点在底面上射影是底面三角形的内心;[5]四面体的侧棱两两垂直顶点在底面上射影是底面三角形的垂心;[6]四面体的任意对棱垂直顶点在底面上射影是底面三角形的垂心;注意:斜线和平面成角是平面内任意直线和斜线所成角中最小的,且有三余弦关系斜线和平面所成角的解题步骤:一作(图)二证(明)三指(角)四解(三角形)附:空间向量方法:设直线a的方向向量,的法向量,θ为直线a与平面所成角大小3. 二面角成角范围:二面角的三要素:两个半平面一条棱;注意无棱二面角要先补棱;二面角成角问题的重点是将其转化为平面角,最后成为解三角形问题;做二面角的平面角的常用方法:(1)定义法:找棱上特殊点分别在两半平面内做棱的垂线;(2)三垂线定理法:重点找两半平面中一特殊点,定此点在另一面上的射影;(3)射影面积公式法为二面角平面角大小。
应用此法重点是定射影图形。
(4)作棱的垂面附:空间的向量方法:设的法向量,θ为两平面所成锐角二面角大小二、空间距离问题空间的距离问题,主要是求空间两点之间、点到直线、点到平面、两条异面直线之间(限于给出公垂线段的)、平面和它的平行直线、以及两个平行平面之间的距离。
求距离的一般方法和步骤是:一作----作出表示距离的线段;二证----证明它就是所要求的距离;三算----计算其值。
1. 点点距:转化为解三角形问题,用余弦定理或勾股定理;附:空间向量方法:2. 点线距:重点定垂足位置,转化为解直角三角形问题;一般可用三垂线定理帮助定垂足位置;附:空间向量方法:设直线a的方向向量,B为直线a上任一点,设,则点A到直线a的距离3. 点面距:重点定点在面上的射影的位置;常用做法:[1]直接做点在面上的射影,转化为线面垂直问题;[2]转化为另一点到面的距离;[3]转化为直线和平面的距离;[4]转化为平面和平面的距离;[5]转化为几何体的体积问题,用等积法(重点三棱锥,换底换顶点)附:空间向量方法:设B为平面上任意一点,的法向量,则点A到平面的距离4. 线面距:转化为点面距或面面距;5. 面面距:转化为点面距或线面距;综上:重点是点面距6. 异面直线间距离要求:(1)图中存在公垂线的,指出谁是,求出;(2)图中不存在公垂线的,转化为线面距或面面距;本周例题例1如图,三棱锥D-ABC中,平面ABD、平面ABC均为等腰直角三角形,∠ABC=∠BAD=90°,其腰BC=a,且二面角D-AB-C=60°(1)求异面直线DA与BC所成的角;(2)求异面直线BD与AC所成的角;(3)求D到BC的距离;(4)求异面直线BD与AC的距离。
解析:(详细过程)(1)在平面ABC内作AE∥BC,从而得∠DAE=60°∴DA与BC成60°角(2)过B作BF∥AC,交EA延长线于F,则∠DBF为BD与AC所成的角由△DAF易得AF=a,DA=a,∠DAF=120°△DBF中,∴异面直线BD与AC成角(3)∵BA⊥平面ADE ∴平面DAE⊥平面ABC故取AE中点M,则有DM⊥平面ABC;取BC中点N,由MN⊥BC,根据三垂线定理,DN⊥BC∴DN是D到BC的距离在△DMN中,(4)AC∥BF ∴AC∥平面BDF又∴AC与BD的距离即AC到平面BDF的距离由即异面直线BD与AC的距离为评注:三棱锥的等体积变换求高,也是求点到面距离的常用方法。
例2如图,在底面是直角梯形的四棱锥S-ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,(Ⅰ)求四棱锥S-ABCD的体积;(Ⅱ)求面SCD与面SBA所成的二面角的正切值。
解:(Ⅰ)直角梯形ABCD的面积是∴四棱锥S-ABCD的体积是(Ⅱ)解法一:延长BA、CD相交于点E,连结SE,则SE是所求二面角的棱。
∵AD∥BC,BC=2AD∴EA=AB=SA,∴SE⊥SB∵SA⊥面ABCD,∴面SEB⊥面EBC,EB是交线,又BC⊥EB,∴BC⊥面SEB,故SB是CS在面SEB上的射影,∴CS⊥SE,所以∠BSC是所求二面角的平面角。
解法二:同解法1得棱SE,∵SA⊥面ABCD,∴SA⊥CB,∵CB⊥AB,∴CB⊥面SEB。
作BF⊥SE于F,连结CF。
∴CF⊥SE∴∠BFC是所求二面角的平面角,解法三:同解法1得棱SE,∵DA∥BC,BC⊥AB,∴DA⊥AB,∴SA⊥面ABCD,∵SA⊥DA∴DA⊥面SEB。
作AF⊥SE于F,连结DF∴DF⊥SE,∴∠AFD是所求二面角的平面角,解法四:∵SA⊥面ABCD,CB⊥AB,∴CB⊥面SAB,∵DA∥CB,∴DA⊥面SAB。
∴△SAB是△SDC在面SAB内的射影三角形。
作DG⊥BC于G,DG=AB=1,,连AC,,设所求二面角的大小为.例3. 已知PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点。
(1)求证:MN⊥AB;(2)设平面PDC与平面ABCD所成的二面角为锐角θ,问能否确定θ使直线MN是异面直线AB与PC的公垂线?若能,求出相应θ的值;若不能,说明理由。
解:(1)∵PA⊥矩形ABCD,BC⊥AB,∴PB⊥BC,PA⊥AC即△PBC和△PAC都是以PC为斜边的直角三角形,,又M为AB的中点∴MN⊥AB.(2)∵AD⊥CD,PD⊥CD,∴∠PDA为所求二面角的平面角,即∠PDA=θ,设AB=a,PA=b,AD=d,则设PM=CM则由N为PC的中点∴MN⊥PC由(1)可知MN⊥AB,∴MN为PC与AB的公垂线,这时PA=AD,∴θ=45°例4在棱长为a的正方形ABCD-A'B'C'D'中,点M是BC'的中点,(1)求点M到直线AC的距离;(2)求点M到平面AD'C的距离;(3)求直线BC'到平面AD'C的距离。
解:(1)解法1:在平面CC'B'B内作MN⊥BC于N,∵面CC'B'B⊥平面ABCD,∴MN⊥平面ABCD,在Rt△ABC内作NT⊥AC于T,连MT,则MT⊥AC,所在MT即点M到直线AC的距离,∵Rt△ABC∽Rt△NTC在Rt△MNT中,解法2:连AB',AC,B'C,则由正方体知M为B'C中点,取AC中点O,连B'O则B'O⊥AC,且在△B'OC中,∵M为B'C中点,作MT∥B'O交AC于,则MT⊥AC,∴MT为点M到直线AC的距离且(2)解法1:连B'D',B'A,B'C,则,且M为B’C的中点,作B'O⊥平面AD'C,∵正方体,∴△AD'C为边长为的正三角形,又∵B'D'=B'A=B'C,∴O为△AD'C的中心,连OC,则在Rt△B'OC内作MS∥B'O交OC于S,∴MS⊥平面AD'C。
∴MS即为点M到平面AD'C的距离。
又∵M为B'C中点,而解法2:∵BC'∥AD',∴BC'∥平面AD'C,∴点M到平面AD'C距离即点C'到平面AD'C距离连D'C,DC'交于O,∵正方体,∴OD=OC'∴C'到平面AD'C的距离即点D到平面AD'C的距离。
连B'D交平面AD'C于T,∵正方体,B'D⊥AD',B'D⊥AC,∴B'D⊥平面AD'C∴DT即点D到平面AD'C的距离,∵DA=DD'=DC,∴T为△AD'C中心,其它同解法1,有解法3:如图及解法2,知点M到平面AD'C的距离,即点D到平面AD'C的距离,设为h,则由体积共有:∵正方体棱长为a,解法4:∵连A'C',A'B,BC',则由正方体知平面A'C'B∥平面AD'C,又M∈平面A'C'B,∴点M到平面AD'C的距离即平面A'C'B与平面AD'C间的距离,连B'D,可证B'D⊥平面AD'C于S,B'D⊥平面A'C'B于T,且由解法2知,D到平面AD'C距离同理B'到平面A'C'B距离为又ST即平面AD'C与平面A'C'B的距离,(3)直线BC'到平面AD'C的距离即点M到平面AD'C的距离,其各解法同(2)的各解法。
例5:如图,在斜三棱柱ABC-A1B1C1中,∠A1AB=∠A1AC,AB=AC,A1A=A1B=a,侧面B1BCC1与底面ABC所成的二面角为120°,E、F分别是棱B1C1、A1A的中点(Ⅰ)求A1A与底面ABC所成的角(Ⅱ)证明A1E∥平面B1FC(Ⅲ)求经过A1、A、B、C四点的球的体积解:(Ⅰ)过A1作A1H⊥平面ABC,垂足为H,连结AH,并延长交BC于G,于是∠A1AH为A1A与底面ABC所成的角。