高三数学-南京市、盐城市2015届高三年级第二次模拟考试数学试题
- 格式:doc
- 大小:1.02 MB
- 文档页数:21
2015年江苏省大联考高三文科二模数学试卷一、填空题(共14小题;共70分)1. 设集合,,则 ______.2. 函数在点处的切线方程为______.3. 已知,,则 ______.4. 设与垂直,则 ______.5. 在正三角形中,,是上一点,且,则 ______.6. 设函数的最小值为,则实数的取值范围是______.7. 已知函数的一部分图象如图所示,如果,,,则______, ______.8. 若四边形满足:,,则该四边形的形状是______.9. 设的内角,,所对的边长分别为,,,且,,则边长______.10. 已知非零向量,的夹角为,且满足,则的最大值为______.11. 若函数,又,,且的最小值为,则函数在上零点的个数为______.12. 已知各角的对应边分别为,,,且满足,则角的取值范围是______.13. 已知函数,函数,若存在,对任意都有成立,则实数的取值范围是______.14. 已知的三边,,和其面积满足,则 ______.二、解答题(共6小题;共78分)15. 已知两个集合,,:实数为小于的正整数,:“”是“”的必要不充分条件.(1)若是真命题,求;(2)若且为真命题,求的值.16. 已知向量,,函数的最小正周期为.(1)求的值;(2)设的三边,,满足,且边所对的角为,若关于的方程有两个不同的实数解,求实数的取值范围.17. 已知在中,,,分别为角,,所对的边,的面积,且.(1)求的最大值;(2)当最大时,若,求角和.18. 在平行四边形中,是的中点,交于点,,,,的夹角为.(1)若,求的值;(2)当点在平行四边形的边和上运动时,求的取值范围.19. 已知函数,.(1)若对任意,都有成立,求的取值范围;(2)若先将的图象上每个点纵坐标不变,横坐标变为原来的倍,然后再向左平移个单位得到函数的图象,求函数在区间内的所有零点之和.20. 已知函数,为正常数.(1)若,且,求函数的单调增区间;(2)若,且对任意,,都有,求的取值范围.答案第一部分1.2.3.4.5.6.7. ;8. 菱形9.10.11.12.13.14.第二部分15. (1)由为真命题,得,,则集合.又当,时,,所以.当时,,所以.(2)因为且为真命题,所以为真命题,为真命题,即“”是“”的必要不充分条件,所以集合是集合的真子集,所以且,,解得:或.16. (1)因为,,所以所以,所以.(2)因为,且边所对的角为,所以由余弦定理得:,所以,所以,由,得到,由函数的图象知,要有两个不同的实数解,需,解得:.17. (1)由题意可得,所以,由余弦定理可得,所以,所以所以当时,取最大值(2)由(1)当最大时,,又因为,所以,所以,整理可得,所以,又,所以,.18. (1)如图所示,中,是的中点,交于点,所以,又,所以.,,代入,可得所以解得,.所以.(2)如图所示,建立直角坐标系.,,,,.所以,,.①当点位于边上时,设.则所以,因为,所以.所以的取值范围是.②当点位于边上时,设.所以所以.因为,所以.所以的取值范围是.综上①②可知:的取值范围是.19. (1)由三角函数公式化简可得若对任意,都有成立,则只需即可.因为,所以,所以当,即时,有最小值,故.(2)依题意可得,由得,由图可知在上有个零点:,,,,,.,,,所以所有零点和为.20. (1),因为,令,得,或,所以函数的单调增区间为,.(2)因为,所以,所以,设,依题意,在上是减函数,当时,,,令,得:对恒成立,设,则,因为,所以,所以在上递增,则当时,有最大值为,所以.当时,,,令,得:,设,则,所以在上是增函数,所以,所以.综上所述,.。
江苏省南京市2015届高考全真模拟数学试题注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。
本卷满分160分,考试时间为120分钟。
考试结束后,请将本卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。
作答必须用0.5毫米黑色墨水的签字笔。
请注意字体工整,笔迹清楚。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
6.请保持答题卡卡面清洁,不要折叠、破损。
一、填空题:本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.1、复数1i1i 2等于___ ★ ___ 2、函数sin(2)6π=-y x 的最小正周期为___ ★ ___ 3、已知集合⎭⎬⎫⎩⎨⎧-==24x x y x A ,(]a B ,∞-=,若A B ⊆,则实数a 的取值范围是___ ★ ___4、为了保证信息安全传输必须使用加密方式,有一种方式其加密、解密原理如下: 明文 密文 密文 明文已知加密为2-=xa y (x 为明文、y 为密文),如果明文“3”通过加密后得到密文为“6”, 再发送,接受方通过解密得到明文“3”,若接受方接到密文为“14”,则原发的明文 是___ ★ ___5、为了在运行下面的程序之后得到输出y =25,键盘输入x 应该是___ ★ ___ Input xIf x<0 theny=(x+1)*(x+1) Elsey=(x-1)*(x-1)End ifPrint y End6、已知向量 1),θ=a ,(1 cos ),θ=b ,则⋅a b 的最大值为___ ★ ___7、在区间[-π,π]内随机取两个数分别记为a ,b ,则使得函数22()2π=+-+f x x ax b 有零点的概率为___ ★ ___解密 加密 发送8、若函数123+++=mx x x y 是R 上的单调函数,则实数m 的取值范围是___ ★ ___ 9、设0)()(0,,),1(log )(223≥+≥++++=b f a f b a b a x x x x f 是则对任意实数的___ ★ ___条件。
2015年江苏省高三数学一模试题及答案南京市、盐城市2015届高三年级第一次模拟考试数学试题(总分160分,考试时间120分钟)一、填空题:本大题共 14小题,每小题5分,计70分. 1 •设集合 M —2,0,x?,集合 N —0,1,若 N M ,则 x=▲.a +i2•若复数z(其中i 为虚数单位)的实部与虚部相等,则实数 a =▲ ___ .i3•在一次射箭比赛中,某运动员5次射箭的环数依次是 9,10,9,7,10,则该组数据的方差是▲ ____ .甲、乙两位同学下棋,若甲获胜的概率为 0.2 ,甲、乙下和棋的概率为 0.5,则乙获胜的概率为 2 2 2 2若双曲线x -y =a (a 0)的右焦点与抛物线 y =4x 的焦点重合,则(x 0,0)成中心对称,X 。
• [0,],则 x 0 二 ______ ▲2X 2 + y 2且log 2 x log 2 y = 1,贝U 的最小值为 ▲ x —y111.设向量a =(sin2pcosF , b= (cos=1),贝U 'a //b ”是“an”成立的 ▲ 条件(选填 充2分不必要”、必要不充分”、充要”、既不充分也不必要”)• 12.在平面直角坐标系 xOy 中,设直线y =-X ■ 2与圆x 2 y^ r 2(r 0)交于A, B 两点,O 为坐标原4. 5.6. 运行如图所示的程序后,输出的结果为7. 2x -y 冬0若变量x, y 满足<x -2y +3色0,贝V 2川的最大值为 ______ ▲x _0若一个圆锥的底面半径为 1,侧面积是底面积的2倍,则该圆锥的体积为 若函数f (X) =sin(「x •—)(「• 0)图象的两条相邻的对称轴之间的距离为6;i — 1 ;S — 0 ;While i v 8 ;i — i + 3 ;S — 2, i + S ■ End While [Print S 第6题图—,且该函数图象关于点2JI10 .若实数x, y 满足x y 0 ,5 3点,若圆上一点c满足OC =7OA+1O B,贝y r =▲.4 413 .已知f (x)是定义在[一2 ,上的奇函数,当( 0 ,时,f(x > x2 ,1函数g(x) =x 「2x • m .如果对于-洛•二[-2,2], 他二[-2,2],使得 g(x 2)二 f (x 1),则实数 m 的取值 范围是 ▲ __________ .14•已知数列 心?满足3!=-1,a 2 a i,i -昂|=2n (n ・N *),若数列QnJ 单调递减,数列订2・,单调递增,则数列 a / 的通项公式为a n =▲.6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,并把答案写 xOy 中,设锐角〉的始边与x 轴的非负半轴重合,终边与单位圆交于点 卩(为,%),将射线0P 绕坐标原点0按逆时针方向旋转后与单位圆交于点2(1) 求函数f G )的值域;(2) 设. ABC 的角代B,C 所对的边分别为a,b,c ,若 f(C) — 2,且 a= .2, c =1,求 b .16.(本小题满分14分)如图,在正方体 ABCD-ABC 1D 中,0, E 分别为BD,AB 的中点. (1) 求证:0E // 平面 BCGB ; (2) 求证:平面BQC _平面RDE .二、解答题(本大题共 在答题纸的指定区域内) 15.在平面直角坐标系QX M ).记 fC)* y ?.第16题图。
2015届高三模拟考试试卷(南京盐城)数 学(满分160分,考试时间120分钟)2014.5 参考公式:样本数据x 1,x 2,…,x n 的方差s 2=(x i -x -)2,其中x -=.一、 填空题:本大题共14小题,每小题5分,共70分.1. 记函数f(x)=3-x 的定义域为A ,函数g(x)=lg(x -1)的定义域为B ,则A ∩B =____________.2. 已知复数z 满足(z +1)i =3+5i ,其中i 为虚数单位,则|z|=____________.3. 某算法的伪代码如图所示,若输出y 的值为3,则输入x 的值为____________.Read x If x ≤0 Then y ←x +2 Else y ←log 2x End If Print y(第3题)4. 上图是7位评委给某作品打出的分数的茎叶图,那么这组数据的方差是____________.5. 已知函数f(x)=2sin (ωx +φ)(ω>0)的部分图象如图所示,则ω=____________ .(第5题)6. 在一个盒子中有分别标有数字1,2,3,4,5的5张卡片,现从中一次取出2张卡片,则取到的卡片上的数字之积为偶数的概率是__________.7. 在平面直角坐标系xOy 中,已知OA →=(3,-1),OB →=(0,2).若OC →·AB →=0,AC →=λOB →,则实数λ的值为__________.8. 已知m 、n 是两条不同的直线,α、β是两个不同的平面. ① 若m α,m ⊥β,则α⊥β; ② 若m α,α∩β=n ,α⊥β,则m ⊥n ; ③ 若m α,n β,α∥β,则m ∥n; ④ 若m ∥α,m β,α∩β=n ,则m ∥n. 上述命题中为真命题的是________.(填序号)9. 如图,在△ABC 中,∠B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,则AB 的长为____________.(第9题)10. 记定义在R 上的函数y =f(x)的导函数为f′(x).如果存在x 0∈[a ,b],使得f(b)-f(a)=f′(x 0)(b -a)成立,则称x 0为函数f(x)在区间[a ,b]上的“中值点”,那么函数f(x)=x 3-3x 在区间[-2,2]上“中值点”的个数为______________.11. 在平面直角坐标系xOy 中,点F 是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,过F作双曲线C 的一条渐近线的垂线,垂足为A ,延长FA 与另一条渐近线交于点B.若FB →=2FA →,则双曲线的离心率为____________.12. 在平面直角坐标系xOy 中,已知圆C :x 2+y 2-(6-2m)x -4my +5m 2-6m =0,直线l 经过点(1,0).若对任意的实数m ,直线l 被圆C 截得的弦长为定值,则直线l 的方程为____________.13. 已知数列{a n }的通项公式为a n =-n +p ,数列{b n }的通项公式为b n =2n -5.设c n =⎩⎪⎨⎪⎧a n ,a n ≤b n ,b n ,a n >b n ,若在数列{c n }中,c 8>c n (n ∈N *,n ≠8),则实数p 的取值范围是__________. 14. 设点P 是曲线y =x 2上的一个动点,曲线y =x 2在点P 处的切线为l ,过点P 且与直线l 垂直的直线与曲线y =x 2的另一交点为Q ,则PQ 的最小值为____________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)已知α、β∈(0,π),且tan α=2,cos β=-7210.(1) 求cos2α的值; (2) 求2α-β的值.如图,在正三棱柱ABCA 1B 1C 1中,A 1A =2AC ,D 、E 、F 分别为线段AC 、A 1A 、C 1B 的中点.(1) 求证:EF ∥平面ABC ; (2) 求证:C 1E ⊥平面BDE.17. (本小题满分14分)已知函数f(x)=12m(x -1)2-2x +3+lnx ,m ∈R .(1) 当m =0时,求函数f(x)的单调增区间;(2) 当m >0时,若曲线y =f(x)在点P(1,1)处的切线l 与曲线y =f(x)有且只有一个公共点,求实数m 的值.将一张长8 cm、宽6 cm的长方形的纸片沿着一条直线折叠,折痕(线段)将纸片分成两部分,面积分别为S1 cm2、S2 cm2,其中S1≤S2.记折痕长为l cm.(1) 若l=4,求S1的最大值;(2) 若S1∶S2=1∶2,求l的取值范围.在平面直角坐标系xOy 中,椭圆C :x 2m +y 28-m=1.(1) 若椭圆C 的焦点在x 轴上,求实数m 的取值范围; (2) 若m =6,① P 是椭圆C 上的动点,M 点的坐标为(1,0),求PM 的最小值及对应的点P 的坐标; ② 过椭圆C 的右焦点F 作与坐标轴不垂直的直线,交椭圆C 于A 、B 两点,线段AB的垂直平分线l 交x 轴于点N ,求证ABFN是定值,并求出这个定值.记等差数列{a n }的前n 项和为S n .(1) 求证:数列⎩⎨⎧⎭⎬⎫S n n 是等差数列;(2) 若a 1=1,且对任意正整数n 、k(n >k),都有S n +k +S n -k =2S n 成立,求数列{a n }的通项公式;(3) 记b n =aa n (a >0),求证:b 1+b 2+…+b n n ≤b 1+b n2.2013届高三模拟考试试卷(七)数学附加题(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修41:几何证明选讲)如图,PA 、PB 是圆O 的切线,切点分别为A 、B ,线段OP 交圆O 于点C.若PA =12,PC =6,求AB 的长.B. (选修42:矩阵与变换)已知矩阵M =⎣⎢⎡⎦⎥⎤1 a b 1对应的变换将点A(1,1)变为A′(0,2),将曲线C :xy =1变为曲线C′.(1) 求实数a 、b 的值; (2) 求曲线C′的方程.C. (选修44:坐标系与参数方程)已知圆C 的极坐标方程为ρ=4cos ⎝ ⎛⎭⎪⎫θ-π6,点M 的极坐标为⎝ ⎛⎭⎪⎫6,π6,直线l 过点M ,且与圆C 相切,求l 的极坐标方程.D. (选修45:不等式选讲) 解不等式x|x -4|-3<0.【必做题】 第22、23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在三棱锥PABC 中,已知PA ⊥平面ABC ,△ABC 是边长为2的正三角形,D 、E 分别为PB 、PC 的中点.(1) 若PA =2,求直线AE 与PB 所成角的余弦值; (2) 若平面ADE ⊥平面PBC ,求PA 的长.23.如图,一颗棋子从三棱柱的一个顶点沿棱移到相邻的另一个顶点的概率均为13.刚开始时,棋子在上底面点A 处,若移了n 次后,棋子落在上底面顶点的概率记为p n .(1) 求p 1、p 2的值;(2) 求证:14p i -1>n 2n +1.2013届高三模拟考试试卷(七)(南京、盐城)数学参考答案及评分标准1. (1,3]2. 53. 84.127 5. 23 6. 710 7. 2 8. ①④ 9. 56210. 2 11. 2 12. 2x +y -2=0 13. (12,17) 14. 33215. 解:(1) 方法一: 因为tan α=2,所以sin αcos α=2,即sin α=2cos α.(2分)又sin 2α+cos 2α=1,解得sin 2α=45,cos 2=15.(4分)所以cos2α=cos 2α-sin 2α=-35.(6分)方法二:因为cos2α=cos 2α-sin 2α(2分) =cos 2α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1,(4分) 又tan α=2,所以cos2α=1-2222+1=-35.(6分)(2) 方法一: 因为α∈(0,π),且tan α=2,所以α∈⎝ ⎛⎭⎪⎫0,π2.又cos2α=-35<0,故2α∈⎝ ⎛⎭⎪⎫π2,π,sin2α=45.(8分)由cos β=-7210,β∈(0,π),得sin β=210,β∈⎝ ⎛⎭⎪⎫π2,π.(10分)所以sin (2α-β)=sin2αcos β-cos2αsin β=45×⎝⎛⎭⎫-7210-⎝⎛⎭⎫-35×210=-22.(12分)又2α-β∈⎝ ⎛⎭⎪⎫-π2,π2,所以2α-β=-π4.(14分)方法二:因为α∈(0,π),且tan α=2,所以α∈⎝ ⎛⎭⎪⎫0,π2,tan2α=2tan α1-tan 2α=-43.从而2α∈⎝ ⎛⎭⎪⎫π2,π.(8分)由cos β=-7210,β∈(0,π),得sin β=210,β∈⎝ ⎛⎭⎪⎫π2,π,因为tan β=-17,(10分)所以tan (2α-β)=tan2α-tan β1+tan2αtan β=-43+171+⎝⎛⎭⎫-43×⎝⎛⎭⎫-17=-1.(12分)又2α-β∈⎝ ⎛⎭⎪⎫-π2,π2,所以2α-β=-π4.(14分)16. 证明:(1) 如图,取BC 的中点G ,连结AG ,FG .因为F 为C 1B 的中点,所以FG 綊12C 1C.在三棱柱ABCA 1B 1C 1中,A 1A 綊C 1C ,且E 为A 1A 的中点,所以FG 綊EA. 所以四边形AEFG 是平行四边形. 所以EF ∥AG.(4分)因为EF 平面ABC ,AG 平面ABC ,所以EF ∥平面ABC.(6分)(2) 因为在正三棱柱ABCA 1B 1C 1中,A 1A ⊥平面ABC ,BD 平面ABC ,所以A 1A ⊥BD.因为D 为AC 的中点,BA =BC ,所以BD ⊥AC.因为A 1A ∩AC =A ,A 1A 平面A 1ACC 1,AC平面A 1ACC 1,所以BD ⊥平面A 1ACC 1.因为C 1E平面A 1ACC 1,所以BD ⊥C 1E.(9分)根据题意,可得EB =C 1E =62AB ,C 1B =3AB ,所以EB 2+C 1E 2=C 1B 2.从而∠C 1EB =90°,即C 1E ⊥EB.(12分)因为BD ∩EB =B ,BD 平面BDE ,EB 平面BDE , 所以C 1E ⊥平面BDE.(14分)17. 解:(1) 由题意知,f(x)=-2x +3+lnx ,所以f′(x)=-2+1x =-2x +1x(x >0).(2分)由f′(x)>0,得x ∈⎝⎛⎭⎫0,12. 所以函数f(x)的单调增区间为⎝⎛⎭⎫0,12.(4分) (2) 由f′(x)=mx -m -2+1x,得f′(1)=-1,所以曲线y =f(x)在点P(1,1)处的切线l 的方程为y =-x +2.(6分) 由题意得,关于x 的方程f(x)=-x +2有且只有一个解,即关于x 的方程12m(x -1)2-x +1+lnx =0有且只有一个解.令g(x)=12m(x -1)2-x +1+lnx(x >0).则g′(x)=m(x -1)-1+1x =mx 2-(m +1)x +1x =(x -1)(mx -1)x(x >0).(8分)① 当0<m <1时,由g′(x)>0得0<x <1或x >1m ,由g′(x)<0得1<x <1m ,所以函数g(x)在(0,1)上为增函数,在⎝⎛⎭⎫1,1m 上为减函数,在⎝⎛⎭⎫1m ,+∞上为增函数. 又g(1)=0,且当x →∞时,g(x)→∞,此时曲线y =g(x)与x 轴有两个交点. 故0<m <1不合题意.(10分)② 当m =1时,g ′(x)≥0,g(x)在(0,+∞)上为增函数,且g(1)=0,故m =1符合题意.③ 当m >1时,由g′(x)>0得0<x <1m 或x >1,由g′(x)<0得1m<x <1,所以函数g(x)在⎝⎛⎭⎫0,1m 上为增函数,在⎝⎛⎭⎫1m ,1上为减函数,在(1,+∞)上为增函数. 又g(1)=0,且当x →0时,g(x)→-∞,此时曲线y =g(x)与x 轴有两个交点. 故m >1不合题意.综上所述,实数m 的值为m =1.(14分)18. 解:如图所示,不妨设纸片为长方形ABCD ,AB =8 cm ,AD =6 cm ,其中点A 在面积为S 1的部分内.折痕有下列三种情形:① 折痕的端点M ,N 分别在边AB ,AD 上; ② 折痕的端点M ,N 分别在边AB ,CD 上; ③ 折痕的端点M ,N 分别在边AD ,BC 上.(1) 在情形②、③中MN ≥6,故当l =4时,折痕必定是情形①. 设AM =x cm ,AN =y cm ,则x 2+y 2=16.(2分) 因为x 2+y 2≥2xy ,当且仅当x =y 时取等号,所以S 1=12xy ≤4,当且仅当x =y =22时取等号.即S 1的最大值为4.(5分)(2) 由题意知,长方形的面积为S =6×8=48.因为S 1∶S 2=1∶2,S 1≤S 2,所以S 1=16,S 2=32.当折痕是情形①时,设AM =x cm ,AN =y cm ,则12xy =16,即y =32x.由⎩⎪⎨⎪⎧0≤x ≤8,0≤32x ≤6,得163≤x ≤8.所以l =x 2+y 2=x 2+322x 2,163≤x ≤8.(8分)设f(x)=x 2+322x2,x >0,则f ′(x)=2x -2×322x 3=2(x 2+32)(x +42)(x -42)x 3,x >0.故x 163 ⎝⎛⎭⎫163,42 4 2 (42,8) 8 f ′(x) -0 +f(x)64496480所以f(x)的取值范围为[64,80],从而l 的范围是[8,45];(11分)当折痕是情形②时,设AM =x cm ,DN =y cm ,则12(x +y)×6=16,即y =163-x.由⎩⎪⎨⎪⎧0≤x ≤8,0≤163-x ≤8,得0≤x ≤163.所以l =62+(x -y )2=62+4⎝⎛⎭⎫x -832,0≤x ≤163.所以l 的范围为⎣⎡⎦⎤6,21453;(13分)当折痕是情形③时,设BN =x cm ,AM =y cm ,则12(x +y)×8=16,即y =4-x.由⎩⎪⎨⎪⎧0≤x ≤6,0≤4-x ≤6,得0≤x ≤4. 所以l =82+(x -y )2=82+4(x -2)2,0≤x ≤4.所以l 的取值范围为[8,45].综上,l 的取值范围为[6,45].(16分)19. 解:(1) 由题意得,m >8-m >0,解得4<m <8. 即实数m 的取值范围是(4,8).(2分)(2) 因为m =6,所以椭圆C 的方程为x 26+y 22=1.① 设点P 坐标为(x ,y),则x 26+y22=1.因为点M 的坐标为(1,0),所以PM 2=(x -1)2+y 2=x 2-2x +1+2-x 23=2x 23-2x +3=23⎝⎛⎭⎫x -322+32,x ∈[-6,6].(4分) 所以当x =32时,PM 的最小值为62,此时对应的点P 坐标为⎝⎛⎭⎫32,±52.(6分)② 由a 2=6,b 2=2,得c 2=4,即c =2,从而椭圆C 的右焦点F 的坐标为(2,0),右准线方程为x =3,离心率e =63.设A(x 1,y 1),B(x 2,y 2),AB 的中点H(x 0,y 0),则 x 216+y 212=1,x 226+y 222=1, 所以x 21-x 226+y 21-y 222=0,即k AB =y 1-y 2x 1-x 2=-x 03y 0.(9分)令k =k AB ,则线段AB 的垂直平分线l 的方程为y -y 0=-1k(x -x 0).令y =0,则x N =ky 0+x 0=23x 0.因为F(2,0),所以FN =|x N -2|=23|x 0-3|.(12分)因为AB =AF +BF =e(3-x 1)+e(3-x 2)=263|x 0-3|.故AB FN =263×32= 6. 即ABFN为定值 6.(16分) 20. 解:(1) 设等差数列{a n }的公差为d ,则S n =na 1+n (n -1)2d ,从而S nn =a 1+n -12 d.所以当n ≥2时,S n n -S n -1n -1=⎝ ⎛⎭⎪⎫a 1+n -12d -⎝ ⎛⎭⎪⎫a 1+n -22d =d 2. 即数列⎩⎨⎧⎭⎬⎫S n n 是等差数列.(2分)(2) 因为对任意正整数n ,k(n >k),都有S n +1+S n -k =2S n 成立,所以S n +1+S n -1=2S n ,即数列{S n }是等差数列.(4分)设数列{S n }的公差为d 1,则S n =S 1+(n -1)d 1=1+(n -1)d 1, 所以S n =[1+(n -1)d 1]2,所以当n ≥2时,a n =S n -S n -1=[1+(n -1)d 1]2-[1+(n -2)d 1]2=2d 21n -3d 21+2d 1, 因为{a n }是等差数列,所以a 2-a 1=a 3-a 2,即(4d 21-3d 21+2d 1)-1=(6d 21-3d 21+2d 1)-(4d 21-3d 21+2d 1), 所以d 1=1,即a n =2n -1.又当a n =2n -1时,S n =n 2,S n +k +S n -k =2S n 对任意正整数n ,k(n >k)都成立, 因此a n =2n -1.(7分)(3) 设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d ,b n =aa n ,所以b nb n -1=aa n -a n -1=a d ,即数列{b n }是公比大于0,首项大于0的等比数列.(9分) 记公比为q(q >0),以下证明:b 1+b n ≥b p +b k ,其中p ,k 为正整数,且p +k =1+n.因为(b 1+b n )-(b p +b k )=b 1+b 1q n -1-b 1q p -1-b 1q k -1=b 1(q p -1-1)(q k -1-1). 当q >1时,因为y =q x 为增函数,p -1≥0,k -1≥0,所以q p -1-1≥0,q k -1-1≥0,所以b 1+b n ≥b p +b k . 当q =1时,b 1+b n =b p +b k .当0<q <1时,因为y =q x 为减函数,p -1≥0,k -1≥0,所以q p -1-1≤0,q k -1-1≤0,所以b 1+b n ≥b p +b k .综上,b 1+b n ≥b p +b k ,其中p ,k 为正整数,且p +k =1+n.(14分) 所以n(b 1+b n )=(b 1+b n )+(b 1+b n )+…+(b 1+b n ) ≥(b 1+b n )+(b 2+b n -1)+(b 3+b n -2)+…+(b n +b 1) =(b 1+b 2+…+b n )+(b n +b n -1+…+b 1), 即b 1+b 2+…+b n n ≤b 1+b n 2.(16分)2013届高三模拟考试试卷(七)(南京、盐城)数学附加题参考答案及评分标准21. A. 选修41:几何证明选讲解:如图,延长PO 交圆O 于D ,连结AO 、BO.AB 交OP 于点E. 因为PA 与圆O 相切, 所以PA 2=PC·PD.设圆O 的半径为R ,因为PA =12,PC =6, 所以122=6(2R +6),解得R =9.(4分)因为PA 、PB 与圆O 均相切,所以PA =PB.又OA =OB ,所以OP 是线段AB 的垂直平分线.(7分) 即AB ⊥OP ,且AB =2AE.在Rt △OAP 中,AE =OA·PA OP =365.所以AB =725.(10分)B. 选修42:矩阵与变换解:(1) 由题知,⎣⎢⎡⎦⎥⎤1 a b 1⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤02,即⎩⎪⎨⎪⎧1+a =0,b +1=2, 解得⎩⎪⎨⎪⎧a =-1,b =1.(4分)(2) 设P′(x ,y)是曲线C′上任意一点,P ′由曲线C 上的点P(x 0,y 0)经矩阵M 所表示的变换得到,所以⎣⎢⎡⎦⎥⎤1 -11 1⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,即⎩⎪⎨⎪⎧x 0-y 0=x ,x 0+y 0=y ,解得⎩⎪⎨⎪⎧x 0=y +x 2,y 0=y -x 2.(7分) 因为x 0y 0=1,所以y +x 2·y -x 2=1,即y 24-x 24=1.即曲线C′的方程为y 24-x24=1.(10分)C. 曲线44:坐标系与参数方程解:以极点为原点,极轴为x 轴正半轴建立平面直角坐标系, 则圆C 的直角坐标方程为(x -3)2+(y -1)2=4, 点M 的直角坐标为(33,3).(3分) 当直线l 的斜率不存在时,不合题意. 设直线l 的方程为y -3=k(x -33),由圆心C(3,1)到直线l 的距离等于半径2. 故|23k -2|k 2+1=2.(6分)解得k =0或k = 3.所以所求的直线l 的直角坐标方程为y =3或3x -y -6=0.(8分)所以所求直线l 的极坐标方程为ρsin θ=3或ρsin ⎝ ⎛⎭⎪⎫π3-θ=3.(10分)D. 选修45:不等式选讲解:原不等式等价于⎩⎪⎨⎪⎧x ≥4,x 2-4x -3<0,或⎩⎪⎨⎪⎧x <4,-x 2+4x -3<0.(5分)解得⎩⎪⎨⎪⎧x ≥4,2-7<x <2+7,或⎩⎪⎨⎪⎧x <4,x <1或x >3.即4≤x <2+7或3<x <4或x <1.综上,原不等式的解集为{x|x <1或3<x <2+7}.(10分)22. 解:(1) 如图,取AC 的中点F ,连结BF ,则BF ⊥AC.以A 为坐标原点,过A 且与FB 平行的直线为x 轴,AC 为y 轴,AP 为z 轴,建立空间直角坐标系.则A(0,0,0),B(3,1,0),C(0,2,0),P(0,0,2),E(0,1,1)从而PB →=(3,1,-2),AE →=(0,1,1). 设直线AE 与PB 所成角为θ,则cos θ=|PB →·AE →|PB →|×|AE →||=14.即直线AE 与PB 所成角的余弦值为14.(4分)(2) 设PA 的长为a ,则P(0,0,a),从而PB →=(3,1,-a),PC →=(0,2,-a). 设平面PBC 的法向量为n 1=(x ,y ,z),则n 1·PB →=0,n 1·PC →=0,所以3x +y -az =0,2y -az =0.令z =2,则y =a ,x =33a.所以n 1=⎝⎛⎭⎫33a ,a ,2是平面PBC 的一个法向量.因为D 、E 分别为PB 、PC 的中点,所以D ⎝⎛⎭⎫32,12,a2,E ⎝⎛⎭⎫0,1,a 2, 则AD →=⎝⎛⎭⎫32,12,a 2,AE →=⎝⎛⎭⎫0,1,a 2. 设平面ADE 的法向量为n 2=(x ,y ,z),则n 2·AD →=0,n 2·AE →=0.所以32x +12y +a 2z =0,y +a2z =0.令z =2,则y =-a ,x =-33a. 所以n 2=⎝⎛⎭⎫-33a ,-a ,2是平面ADE 的一个法向量.(8分) 因为平面ADE ⊥平面PBC ,所以n 1⊥n 2,即n 1·n 2=⎝⎛⎭⎫33a ,a ,2·⎝⎛⎭⎫-33a ,-a ,2=-13a 2-a 2+4=0,解得a =3,即PA 的长为 3.(10分)23. 解:(1) p 1=23,p 2=23×23+13×⎝⎛⎭⎫1-23=59.(2分) (2) 证明:因为移了n 次后棋子落在上底面顶点的概率为p n ,故落在下底面顶点的概率为1-p n .于是移了n +1次后棋子落在上底面顶点的概率为p n +1=23p n +13(1-p n )=13p n +13.(4分)从而p n +1-12=13⎝⎛⎭⎫p n -12. 所以数列⎩⎨⎧⎭⎬⎫p n -12是等比数列,其首项为16,公比为13.所以p n -12=16×⎝⎛⎭⎫13n -1,即p n =12+12×13n .(6分)用数学归纳法证明:① 当n =1时,左式=14×23-1=35,右式=12,因为35>12,所以不等式成立.当n =2时,左式=14×23-1+14×59-1=7855,右式=43,因为7855>43,所以不等式成立.② 假设n =k(k ≥2)时,不等式成立,即14p i -1>k 2k +1.则n =k +1时,左式=14p i -1+14p k +1-1>k 2k +1+14⎝ ⎛⎭⎪⎫12+12×13k +1-1=k 2k +1+3k +13k +1+2.要证k 2k +1+3k +13k +1+2≥(k +1)2k +2,只要证3k +13k +1+2≥(k +1)2k +2-k 2k +1,只要证3k +13k +1+2≥k 2+3k +1k 2+3k +2,只要证23k +1≤1k 2+3k +1, 只要证3k +1≥2k 2+6k +2. 因为k ≥2,所以3k +1=3(1+2)k ≥3(1+2k +4C 2k )=6k 2+3=2k 2+6k +2+2k(2k -3)+1>2k 2+6k +2,所以k 2k +1+3k +13k +1+2≥(k +1)2k +2.即n =k +1时,不等式也成立.由①②可知,不等式14p i -1>n 2n +1对任意的n ∈N *都成立.(10分)。
2015年江苏高考数学模拟试卷(一)第Ⅰ卷 (必做题 分值160分)苏州市高中数学学科基地 苏州市高中数学命题研究与评价中心一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知全集{|0}U x x =∈>R ,集合{}2A x x =∈R ≥,则U A ð ▲ . 2.如图所示,在复平面内,点A 对应的复数为z ,则z 2的模为 ▲ . 3.抛物线22y x =-的焦点坐标是 ▲ .4.已知直线1:(2)10l ax a y +++=,2:20l ax y -+=.则“3-=a ”是“1l ∥2l ”的 ▲ 条件. 5.当向量(1,1)==-a c ,(1,0)=b 时,执行如图所示的程序框图,输出的i 值为 ▲ .6.为了解某年级女生五十米短跑情况,从该年级中随机抽取8名女生进行五十米跑测试,她们的测试成绩(单位:秒)的茎叶图(以整数部分为茎,小数部分为叶)如图所示.由此可估计该年级女生五十米跑成绩及格(及格成绩为9.4秒)的概率为 ▲ .7.定义在R 上的偶函数()f x x a x b =-+-(其中a b 、为常数)的最小值为2,则22=a b + ▲ .8.设不等式组2201010x y x y x y --⎧⎪+-⎨⎪-+⎩≤≥≥表示的平面区域为D ,()P x y ,是区域D 上任意一点,则2x y --的最小值是 ▲ .9.已知球与棱长均为2的三棱锥各条棱都相切,则该球的表面积为 ▲ . 10.已知)2,0(,1010)4cos(πθπθ∈=+,则sin(2)3πθ-= ▲ . 11.已知22:1O x y +=e ,若直线2y kx =+上总存在点P ,使得过点P 的O e 的两条切线互相垂直,则实数k 的取值范围是 ▲ .12.已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为1F ,2F ,P 为双曲线右支上的任意一点,若7 88 6 1 8 9 1 5 7 8A 1-2Oyx212||||PF PF 的最小值为8a ,则双曲线离心率的取值范围是 ▲ .13.已知等差数列{}n a 的公差d 不为0,等比数列{}n b 的公比q 是小于1的正有理数.若1a d =,21b d =,且222123123a a ab b b ++++是正整数,则q 等于 ▲ . 14.在等腰三角形ABC 中,AB AC =,D 在线段AC 上,AD kAC =(k 为常数,且10<<k ),lBD =为定长,则ABC ∆的面积最大值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)函数π()cos(π)(0)2f x x ϕϕ=+<<的部分图象如图所示. (1)写出ϕ及图中0x 的值;(2)求()f x 在区间11[,]23-上的最大值和最小值.16.(本小题满分14分)如图所示,在三棱柱111ABC A B C -中, 11AA B B 为正方形,11BB C C 是菱形,平面11AA B B ⊥平面11BB C C . (1)求证://BC 平面11AB C ; (2)求证:1B C ⊥1AC ;(3)设点,,,E F H G 分别是111111,,,B C AA A B B C 的中点,试判断,,,E F H G 四点是否共面,并说明理由.CBC 1B 1A 1A如图,两座建筑物CD AB ,的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9cm 和15cm ,从建筑物AB 的顶部A 看建筑物CD 的视角︒=∠45CAD . (1)求BC 的长度;(2)在线段BC 上取一点(P 点P 与点C B ,不重合),从点P 看这两座建筑物的视角分别为,,βα=∠=∠DPC APB 问点P 在何处时,βα+最小?18.(本小题满分16分)已知椭圆E :22221(0)x y a b a b+=>>且过点P .右焦点为F ,点N (2,0). (1)求椭圆E 的方程;(2)设动弦AB 与x 轴垂直,求证:直线AF 与直线BN 的交点M 仍在椭圆E 上.ABDCPβ α已知函数e ()xf x x=.(1)若曲线()y f x =在点00(,())x f x 处的切线方程为0ax y -=,求0x 的值; (2)当0x >时,求证:()f x x >;(3)设函数()()F x f x bx =-,其中b 为实常数,试讨论函数()F x 的零点个数,并证明你的结论.20.(本小题满分16分)数列{}n a 的前n 项和为n S ,且满足11a =,122n n a a p +=+(p 为常数,1,2,3,n =L ). (1)若312S =,求n S ;(2)若数列{}n a 是等比数列,求实数p 的值. (3)是否存在实数p ,使得数列1{}na 满足:可以从中取出无限多项并按原来的先后次序排成一个等差数列?若存在,求出所有满足条件的p 的值;若不存在,说明理由.第II 卷 (附加题 分值40分)21.【选做题】在A ,B ,C ,D 四小题中只能选做两题......,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,P 是O e 外一点,PD 为切线,割线PEF 经过圆心O ,若12PF =,43PD =,求EFD ∠的度数.B .选修4—2:矩阵与变换将曲线y =2sin4x 经矩阵M 变换后的曲线方程为y =sin x ,求变换矩阵M 的逆矩阵.C .选修4—4:坐标系与参数方程以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l 的参数方程为⎩⎨⎧=+=ααsin cos 1t y t x (t 为参数,πα<<0),曲线C 的极坐标方程为θθρcos 4sin 2=.(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A 、B 两点,当α变化时,求AB 的最小值.D .选修4—5:不等式选讲已知0a b >,且1a b +=,求证:212122a b +++≤.【必做题】第22题,第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,已知三棱柱ABC —A 1B 1C 1的侧棱与底面垂直,AA 1=AB =AC =1,AB ⊥AC ,M 、N 分别是CC 1、BC 的中点,点P 在直线A 1B 1上,且满足111B A P A λ=(∈λR ). (1)证明:PN ⊥AM ;(2)若平面PMN 与平面ABC 所成的角为45°,试确定点P 的位置.23.(本小题满分10分)已知数列{a n }满足:1*1122,1()n a n a a a a n -+=-=+∈N . (1)若1a =-,求数列{a n }的通项公式;(2)若3a =,试证明:对*n ∀∈N ,a n 是4的倍数.2015年江苏高考数学模拟试卷(一)第Ⅰ卷 参考答案与解析一、填空题:本大题共14小题,每小题5分,共70分.1.{|02}x x ∈<<R 2.5 3. 1(,0)2- 4.充分不必要 5.2 6.0.625 7.28.3- 9.2π 10.410- 11. (,1][1,)-∞-+∞U 12.(]1,3 13.12 14.)1(222k l -. 解析:2.2225z i z z =-+==, 4.1230l l a a ⇒=-=∥或,7.由题意()f x x a x b =-+-为偶函数,故0a b +=,又()f x 的最小值为2,所以2a b -=,所以221a b ==10.4cos(2)sin 225πθθ+=-=-,3cos()0,cos245πθθ+>∴=Q,故sin(2)3πθ-12.设2PF x =,2448a x a a x++≥,所以2x a c a =-≥,所以13e <≤13.2222221232222212349141a a a d d d b b b d d q d q q q ++++==++++++,令214=1t q q ++,t 为正整数,所以214+1=0q q t +-,解得q =8t 时,12q =14.如图,以B 为原点,BD 为x 轴建立直角坐标系xBy .设A (x ,y ),y >0.因AD =kAC =kAB ,故AD 2=k 2AB 2,于是(x -l )2+y 2=k 2(x 2+y 2).所以,22222(1)21k x lx l y k --+-=-=2222222(1)()111l k l k x k k k ---+---≤2222(1)k l k -,于是,max21kly k =-,2max 2()2(1)ABD kl S k ∆=-,2max max 21()()2(1)ABC ABD l S S k k ∆∆==-. 二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤. 15.解:(1)ϕ的值是π6.0x 的值是53. (2)由(1)可知:π()cos(π)3f x x =+.因为 11[,]23x ∈-,所以 ππππ362x -+≤≤. 所以 当ππ03x +=,即13x =-时,()f x 取得最大值1;当πππ62x +=,即13x =时,()f x 取得最小值0.16.证明:(1)在菱形11BB C C 中,BC ∥11B C .因为 BC Ë平面11AB C ,11B C Ì平面11AB C , 所以 //BC 平面11AB C .(2)连接1BC .在正方形11ABB A 中,1AB BB ^. 因为 平面11AA B B ⊥平面11BB C C ,平面11AA B B I 平面111BB C C BB =,AB Ì平面11ABB A , 所以 AB ^平面11BB C C .因为 1B C Ì平面11BB C C , 所以 1AB B C ^. 在菱形11BB C C 中,11BC B C ^.因为 1BC Ì平面1ABC ,AB Ì平面1ABC ,1BC AB B I =,所以 1B C ^平面1ABC . 因为 1AC Ì平面1ABC , 所以 1B C ⊥1AC . (3),,,E F H G 四点不共面. 理由如下:因为 ,E G 分别是111,B C B C 的中点, 所以 GE ∥1CC . 同理可证:GH ∥11C A .因为 GE Ì平面EHG ,GH Ì平面EHG ,GE GH G I =,1CC Ì平面11AAC C ,11A C Ì平面11AAC C ,所以 平面EHG ∥平面11AAC C . 因为 F ∈平面11AAC C ,所以 F ∉平面EHG ,即,,,E F H G 四点不共面.17.解:(1)作AE ⊥CD ,垂足为E ,则9CE =,6DE =,设BC x =,则tan tan tan tan()1tan tan CAE DAECAD CAE DAE CAE DAE ∠∠∠=∠∠=-∠⨯∠++961961x x x x==-⋅+, 化简得215540x x --=,解之得,18x =或3x =-(舍) 答:BC 的长度为18m .(2)设BP t =,则18(018)CP t t =-<<,CBC 1B 1A 1AH GFECBC 1B 1A 1A2291516266(27)18tan()9151813518135118t t t t t t t t t tαβ-===-----⋅-++++++.设227()18135tf t t t =--++,222542723()(18135)t t f t t t -⨯'=-++,令()0f t '=,因为018t <<,得27t =,当27)t ∈时,()0f t '<,()f t 是减函数;当27,18)t ∈时,()0f t '>,()f t 是增函数,所以,当27t =时,()f t 取得最小值,即tan()αβ+取得最小值,因为2181350t t --<+恒成立,所以()0f t <,所以tan()0αβ<+,(,)2αβπ∈π+, 因为tan y x =在(,)2ππ上是增函数,所以当27t =时,αβ+取得最小值. 答:当BP为27)m 时,αβ+取得最小值. 18.(1)解:因为2e =,所以a =,b =c , 即椭圆E 的方程可以设为222212x y b b+=.将点P 的坐标代入得:213144b =+=, 所以,椭圆E 的方程为2212x y +=. (2)证明:右焦点为F (1,0),设00(,)A x y ,由题意得00(,)B x y -.所以直线AF 的方程为:00(1)1y y x x =--, ① 直线BN 的方程为:00(2)2y y x x -=--, ② ①、 ②联立得,0000(1)(2)12y y x x x x --=---, 即003423x x x -=-,在代入②得,000034(1)123y x y x x -=---,即0023y y x =-.所以点M 的坐标为000034(,)2323x y x x ---.又因为2222220000200034(34)21()()2223232(23)M M x y x y x y x x x --++=+=--- ③将22012x y =-代入③得,2222202000222000(34)2(1)824182(23)2122(23)2(23)2(23)M M x x x x x x y x x x -+--+-+====---. 所以点M 在椭圆E 上.19.(1)解:2e e '()x xx f x x-=. 因为切线0ax y -=过原点(0,0), 所以 00000200e e e x x x x x x x -=,解得:02x =. (2)证明:设2()e ()(0)xf xg x x x x ==>,则24e (2)'()x x x g x x -=. 令24e (2)'()0x x x g x x -==,解得2x =. x 在(0,)+∞上变化时,'(),()g x g x 的变化情况如下表所以 当2x =时,()g x 取得最小值2e4. 所以 当0x >时,2e ()14g x ?,即()f x x >.(3)解:()0F x =等价于()0f x bx -=,等价于20xe b x-=.注意0x ≠.令2()x e H x b x =-,所以3(2)()(0)x e x H x x x -'=≠. (I )当0b ≤时, ()0H x >,所以()H x 无零点,即F(x)定义域内无零点.(II )当0b >时,(i )当0x <时,()0H x '>,()H x 单调递增;因为()H x 在(,0)-∞上单调递增,而11(H be b b -=-=⋅,又1>,所以(0H <.又因为1(n H nbe b b -=-=⋅,其中n N *∈,取13n b ⎡⎤=+⎢⎥⎣⎦,1b ⎡⎤⎢⎥⎣⎦表示1b的整数部分.所以1e <<,3n >,由此(0H >. 由零点存在定理知,()H x 在(,0)-∞上存在唯一零点. (ii )当02x <<时,()0H x '<,()H x 单调递减; 当2x >时,()0H x '>,()H x 单调递增.所以当2x =时,()H x 有极小值也是最小值,2(2)4e H b =-. ①当2(2)04e H b =->,即204e b <<时,()H x 在(0,)+∞上不存在零点; ②当2(2)04e H b =-=,即24e b =时,()H x 在(0,)+∞上存在惟一零点2;………12分 ③当2(2)04e H b =-<,即24e b >时,由1>有(1)0H b b =-=->,而(2)0H <,所以()H x 在(0,2)上存在惟一零点;又因为23b >,223224(2)44b b e e b H b b b b -=-=. 令31()2th t e t =-,其中22t b =>,23()2t h t e t '=-,()3t h t e t ''=-,()3t h t e '''=-, 所以2()30h t e '''>->,因此()h t ''在(2,)+∞上单调递增,从而2()(2)60h t h e ''>=->, 所以()h t '在(2,)+∞上单调递增,因此2()(2)60h t h e ''>=->, 故()h t 在(2,)+∞上单调递增,所以2()(2)40h t h e >=->.由上得(2)0H b >,由零点存在定理知,()H x 在(2,2)b 上存在惟一零点,即在(2,)+∞上存在唯一零点.综上所述:当0b ≤时,函数F(x)的零点个数为0;当2e 04b <<时,函数F(x)的零点个数为1;当2e 4b =时,函数F(x)的零点个数为2;当2e 4b >时,函数F(x)的零点个数为3.20.解:(1)因为 11a =,122n n a a p +=+,所以 21222a a p p =+=+,322222a a p p =+=+. 因为 312S =,所以 22226324p p p ++++=+=,即6p =. 所以 13(1,2,3,)n n a a n +-==L .所以 数列{}n a 是以1为首项,3为公差的等差数列.所以 2(1)31322n n n n nS n --=⨯+⨯=. (2)若数列{}n a 是等比数列,则2213a a a =.由(1)可得:2(1)1(1)2p p +=⨯+.解得:0p =. 当0p =时,由122n n a a p +=+得:11n n a a +===L . 显然,数列{}n a 是以1为首项,1为公比的等比数列. 所以 0p =.(3)当0p =时,由(2)知:1(1,2,3,)n a n ==L .所以11(1,2,3,)nn a ==L ,即数列1{}n a 就是一个无穷等差数列.所以 当0p =时,可以得到满足题意的等差数列. 当0p ≠时,因为 11a =,122n n a a p +=+,即12n n pa a +-=, 所以 数列{}n a 是以1为首项,2p为公差的等差数列. 所以 122n p p a n =+-. 下面用反证法证明:当0p ≠时,数列1{}na 中不能取出无限多项并按原来次序排列而成等差数列.假设存在00p ≠,从数列1{}na 中可以取得满足题意的无穷等差数列,不妨记为{}nb . 设数列{}n b 的公差为d .①当00p >时,0(1,2,3,)n a n >=L . 所以 数列{}n b 是各项均为正数的递减数列. 所以 0d <.因为 1(1)(1,2,3,)n b b n d n =+-=L , 所以 当11b n d >-时,111(1)(11)0n bb b n d b d d=+-<+--=,这与0n b >矛盾. ②当00p <时,令001022p pn +-<,解得:021n p >-.所以 当021n p >-时,0n a <恒成立. 所以 数列{}n b 必然是各项均为负数的递增数列. 所以 0d >.因为 1(1)(1,2,3,)n b b n d n =+-=L , 所以 当11b n d >-时,111(1)(11)0n bb b n d b d d=+->+--=,这与0n b <矛盾. 综上所述,0p =是唯一满足条件的p 的值.第II 卷 参考答案与解析21、【选做题】在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分. A .选修4—1:几何证明选讲 解:连结DO ,Q PD 为切线,PEF 为割线,∴2PD PE PF =⋅,又Q PD =12PF =,∴24PD PE PF==,∴8EF PF PE =-=,4EO =,Q PD 为切线,D 为切点,∴OD PD ⊥在Rt PDO V 中,4OD =,8PO PE EO =+=,∴30DPO ∠=o ,60DOP ∠=o ,Q OD OF =,∴1302EFD DOP ∠=∠=o . B .选修4—2:矩阵与变换解:由条件知点(x ,y)在矩阵M 作用下变换为点⎝⎛⎭⎫4x ,y 2,即M ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤4x y 2, 所以M =⎣⎢⎢⎡⎦⎥⎥⎤40012,设M -1=⎣⎢⎡⎦⎥⎤a b c d ,于是有MM -1=⎣⎢⎢⎡⎦⎥⎥⎤40012 ⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1001, 所以⎩⎪⎨⎪⎧4a =14b =0c 2=0d 2=1,解得⎩⎪⎨⎪⎧a =14b =0c =0d =2,所以M 的逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤14002. C .选修4—4:坐标系与参数方程解:(1)由θθρcos 4sin 2=,得θρθρcos 4)sin (2=所以曲线C 的直角坐标方程为x y 42=.(2)将直线l 的参数方程代入x y 42=,得04cos 4sin 22=--ααt t .设A 、B 两点对应的参数分别为1t 、2t ,则=+21t t αα2sin cos 4,=21t t α2sin 4-, ∴=-+=-=21221214)(t t t t t t AB αααα2242sin 4sin 16sin cos 16=+,当2πα=时,AB 的最小值为4.D .选修4—5:不等式选讲解:()()()22221212121118a b a b +++++++=≤,∴212122a b +++≤.【必做题】第22题、第23题,每题10分,共计20分.22.解:(1)证明:如图,以AB ,AC ,AA 1分别为x ,y ,z 轴,建立空间直角坐标系A -xyz .则P (λ,0,1),N (12,12,0),M (0,1,12),从而PN u u u r =(12-λ,12,-1),AM u u u u r =(0,1,12),PN AM ⋅u u u r u u u u r =(12-λ)×0+12×1-1×12=0,所以PN ⊥AM ;(2)平面ABC 的一个法向量为n =1AA u u u r=(0,0,1).设平面PMN 的一个法向量为m =(x ,y ,z ),由(1)得MP u u u r =(λ,-1,12).由⎪⎪⎩⎪⎪⎨⎧=+-=+--⎪⎩⎪⎨⎧=⋅=⋅.021,021)21(,0,0z y x z y x MP m NP m λλ得 解得))1(2,12,3(,3.3)1(2,312λλλλ-+==⎪⎪⎩⎪⎪⎨⎧-=+=m x x z x y 得令. ∵平面PMN 与平面ABC 所成的二面角为45°,∴|cos 〈m ,n 〉|=|m ·n |m |·|n ||=|2(1-λ)|9+(2λ+1)2+4(1-λ)2=22,解得λ=-12.故点P 在B 1A 1的延长线上,且|A 1P |=12.23.解:(1)当1a =-时,1114,(1)1n a n a a -+=-=-+.令1n n b a =-,则115,(1)n b n b b +=-=-. 因15b =-为奇数,n b 也是奇数且只能为1-, 所以,5,1,1,2,n n b n -=⎧=⎨-≥⎩即4,1,0, 2.n n a n -=⎧=⎨≥⎩(2)当3a =时,1114,31n a n a a -+==+.下面利用数学归纳法来证明:a n 是4的倍数. 当1n =时,1441a ==⨯,命题成立;设当*()n k k =∈N 时,命题成立,则存在t ∈N *,使得4k a t =,1414(1)1313127(41)1k a t t k a ---+∴=+=+=⋅-+27(41)14(277)m m =⋅++=+,其中,4(1)14544434(1)4(1)4(1)44C 4(1)C 4C 4t t r r t r t t t t m --------=-⋅++-⋅+-⋅L L ,m ∴∈Z ,∴当1n k =+时,命题成立.∴由数学归纳法原理知命题对*n ∀∈N 成立.2015年江苏高考数学模拟试卷(二)第Ⅰ卷 (必做题 分值160分)苏州市高中数学学科基地 苏州市高中数学命题研究与评价中心一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.函数2()log (21)f x x =-的定义域为 ▲ . 2.若复数iia ++2是实数(i 为虚数单位),则实数a 的值是 ▲ . 3.在大小相同的4个小球中,2个是红球,2个是白球,若从中随机抽取2个球,则所抽取的球中至少有一个红球的概率是 ▲ . 4.若()1cos 33πα-= ,则()sin 26πα-= ▲ . 5.如图所示的流程图,若输入x 的值为 5.5-,则输出的结果c = ▲ .6.已知实数x y ,满足约束条件 13230x x y x y ⎧⎪+⎨⎪--⎩≥≤≤ 若z ax y =+取得最小值时的最优解有无数个,则a = ▲ .7.给出下列命题:其中,所有真命题的序号为 ▲ .(1)若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;(2)若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; (3)若两条平行直线中的一条垂直于直线m ,那么另一条直线也与直线m 垂直;(4)若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中正确的是 ▲ .8.设斜率为22的直线l 与椭圆22221(0)x y a b a b+=>>交于不同的两点P 、Q ,若点P 、Q 在x 轴上的射影恰好为椭圆的两个焦点,则该椭圆的离心率为 ▲ .9.已知等比数列{}n a 各项都是正数,且42324,4a a a -==,则{}n a 前10项的和为 ▲ .10.在ABC ∆中,角A B C ,,所对的边分别是2222a b c a b c +=,,,,则角C 的取值范围是 ▲ . 11.如图,函数()()2sin (0,)2f x x πωϕωϕπ=+>≤≤的部分图象,其中A B ,分别是图中的最高点和最低点,且5AB =,那么ωϕ+的值为 ▲ . 12.若141m x x+-≥对任意的)1,0(∈x 恒成立,则m 的取值范围为 ▲ . 13.若正实数a ,b ,c 满足2223108a ab b c +-=,且a>b ,若不等式5a +6b ≥kc 恒成立,则实数k 的最大值为 ▲ .14.设三角形ABC 的内角A 、B 、C 所对边a 、b 、c 成等比数列,则sin cos tan sin cos tan A A CB B C++的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知向量a =sin θ)与b =(1,cos θ)互相平行,其中θ∈(0,2π). (1)求sin θ和cos θ的值;(2)求f (x )=sin(2x +θ)的最小正周期和单调增区间.16.(本小题满分14分)如图,四棱锥的底面ABCD 是平行四边形,PA ⊥平面ABCD ,M 是AD 中点,N 是PC 中点, (1)求证://MN 面PAB ;(2)若面PMC ⊥面PAD ,求证:CM AD ⊥.BDA O BM C DEF N xy如图,某小区有一矩形地块OABC ,其中2=OC ,3=OA (单位百米).已知OEF 是一个游泳池,计划在地块OABC 内修一条与池边EF 相切于点M 的直路l (宽度不计),交线段OC 于点D ,交线段OA 于点N .现以点O 为坐标原点,线段OC 所在直线为x 轴,建立平面直角坐标系,若池边EF 满足函数()2202y x x =-+剟的图象.若点M 到y 轴距离记为t . (1)当32=t 时,求直路l 所在的直线方程; (2)当t 为何值时,地块OABC 在直路l 不含泳池那侧的面积取到最大,并求出最大值.18.(本小题满分16分)已知椭圆E 的中心在原点,焦点在x 2e =﹒ (1)求椭圆E 的方程;(2)过点()1,0作斜率为k 的直线l 交点B 是点A 关于x 求出定点坐标﹒在数列{a n }中,1n a n=(n ∈N *).从数列{a n }中选出k (k ≥3)项并按原顺序组成的新数列记为{b n },并称{b n }为数列{a n }的k 项之列.例如数列11112358,,,为{a n }的一个4项子列. (1)试写出数列{a n }的一个3项子列,并使其为等差数列;(2)如果{b n }为数列{a n }的一个5项子列,且{b n }为等差数列,证明:{b n }的公差d 满足108d -<< ; (3)如果{c n }为数列{a n }的一个m (m ≥3)项子列,且{c n }为等比数列,证明:c 1+c 2+c 3+……+c m ≤2-112m -.20.(本小题满分16分)已知函数xm x x x f --=ln )(. (1)若,2=m 求)(x f 的最值; (2)讨论)(x f 的单调性;(3)已知B A ,是)(x f 图像上的二个不同的极值点,设直线AB 的斜率为k . 求证: 1->k第II 卷 (附加题 分值40分)21.【选做题】在A ,B ,C ,D 四小题中只能选做两题......,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,已知AB 是⊙O 的直径,AC 是⊙O 的弦,BAC ∠的平分线AD 交⊙O 于D ,过点D 作DE AC ⊥交AC 的延长线于点E ,OE 交AD 于点F .若35AC AB =,求FDAF的值.B .选修4—2:矩阵与变换已知矩阵⎥⎦⎤⎢⎣⎡=21c b M 有特征值11-=λ及对应的一个特征向量111⎡⎤=⎢⎥-⎣⎦e . (1)求矩阵M ;(2)求曲线148522=++y xy x 在M 的作用下的新曲线方程.C .选修4—4:坐标系与参数方程以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cos θ,求直线l 被圆C 截得的弦长.D .选修4—5:不等式选讲已知222+=x y ,且x y ≠,求()()2211++-x y x y 的最小值.ABCDEFO【必做题】第22题,第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,已知三棱锥ABC O -的侧棱OC OB OA ,,两两垂直,且2,1===OC OB OA ,E 是OC 的中点. (1)求异面直线BE 与AC 所成角的余弦值; (2)求二面角C BE A --的正弦值.23.(本小题满分10分)设整数3n ≥,集合{1,2,,},,P n A B =L 是P 的两个非空子集.记n a 为所有满足A 中的最大数小于B 中的最小数的集合对(,)A B 的个数. (1)求3a ; (2)求n a .AECBO2015年江苏高考数学模拟试卷(二)第Ⅰ卷 参考答案与解析一、填空题:本大题共14小题,每小题5分,共70分.1.1(,)2+∞ 2.2 3.564.79- 5.1 6.-12 7.()1、()3、()4 89.1023 10.(0,]3π11.76π 12.1m ≥ 13. 14.解析:1.只要解不等式210x ->3.任意取两个球的种数有6种,取出两个都是白色的有2种, 116P =-6.直线y =-ax +z 与可行域(三角形)下边界x -2y -3=0重合时z 最小,a=-128.设点P 、Q 在x 轴上的射影分别为焦点F 1、F 2,|PF 1|=2c (其中c 为|OF 1|的长),从而|PF 2,所以2a =|PF 1|+|PF 2|=,得e . 9.由条件得11,2a q ==,则101023S =10.2222221cos 2442a b c a b ab C ab ab ab +-+===≥,又因为(0,)C π∈,得C ∈(0,]3π11. 23,6,2T T πω===得3πω=,又当0x =时,(0)1f =,得56πϕ=12.由题意可知0>m ,)1)(11(11x x x mx x m x -+-+=-+1111x mx m m x x-=+++++-≥∴14m ++,∴1m ≥13.由已知,2(4)(32)a b a b c +-=,40,320a b a b +>->,562(4)(32)a b a b a b +=++-≥min 56()a bk c+=≤14.sin cos tan sin cos tan A A C B B C ++=sin cos cos sin sin cos cos sin A C A C B C B C ++=sin()sin()A C B C ++=sin()sin()B A ππ--=sin sin B A =ba设a 、b 、c 的公比为q ,则b =aq ,c =aq 2,又 a 、b 、c 能构成三角形的三边,所以有222a aq aq aq aq a a aq aq ⎧+>⎪+>⎨⎪+>⎩,解得15151551q q q q R⎧-+<<⎪⎪⎪+-⎪<->⎨⎪∈⎪⎪⎪⎩或,即5151q -+<<. 二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤. 15.解:(1)因为向量a 与b 平行,则sin θ=3cos θ,tan θ=3,又θ∈(0,2π), 所以θ=3π,所以sin θ=32,cos θ=12;(2)由f (x )=sin(2x +θ)=sin(2)3x π+,得最小正周期T π=,由22k ππ-≤23x π+≤22k ππ+,k Z ∈,解得512k ππ-≤x ≤12k ππ+,k Z ∈, 所以f (x )的单调增区间为5[,],1212k k k Z ππππ-+∈. 16.证明:(1)取PB 中点E ,连EA ,EN ,PBC ∆中,//EN BC 且12EN BC =, 又12AM AD =,//AD BC ,AD BC =得//EN =AM ,四边形ENMA 是平行四边形, 得//MN AE ,MN ⊄面PAB ,AE ⊂面PAB ,//MN ∴面PAB(2)过点A 作PM 的垂线,垂足为H ,Q 面PMC ⊥面PAD ,面PMC I 面PAD PM =,AH PM ⊥,AH ⊂面PADAH ∴⊥面PMC ,CM ⊂面PMC ,AH ∴⊥CMQ PA ⊥平面ABCD ,CM ⊂平面ABCD ,∴PA ⊥CM Q PA AH A =I ,PA 、AH ⊂面PAD ,CM ⊥面PAD ,AD ⊂Q 面PAD ,CM AD ∴⊥17.解:(1)由题意得()214,39M, 又因为2y x '=-,所以直线l 的斜率34-=k ,故直线l 的方程为()1442933y x -=--, 即92234+-=x y . (2)由(1)易知)(2)2(:2t x t t y l --=--,即222++-=t tx y .令0=y 得()122x t t=+,令0x =得22y t =+.由题意()2122,223t tt ⎧+⎪⎨⎪+⎩≤≤解得221t -≤≤. ()()2112222ODN S t t t ∆∴=⋅++()31444t t t=++.令()()31444g t t t t=++,则()()42222143443444t t g t t t t +-'=+-=()()2222324t t t +-=. 当6t =时,()60g '=;当()622,t ∈-时,()60g '<;∴所求面积的最大值为86918.解:(1)设椭圆E 的方程为22221x ya b +=,由已知得:2122a c c a⎧-=⎪⎨=⎪⎩21a c ⎧=⎪∴⎨=⎪⎩ 2221b a c ∴=-= ,∴椭圆E 的方程为2212x y += (2)设()11,A x y ,()11,B x y -,则11x ≠,直线AP :11(1)1y y x x =--,与椭圆方程2222x y +=联立, 得()1222111234340x x y x x x -++-=,得113423P x x x -=-,点P 在直线AP 上,则1123P y y x =-,直线BP 方程:1111()(2)y y y x x x +=---,化简得:11(2)(2)y y x x =---,则直线BP 过定点(2,0)19.解:(1)3项子列111,,236;(答案不唯一)(2)由题意,知1≥b 1>b 2>b 3>b 4>b 5>0,所以d =b 2-b 1<0.若b 1=1,若{b n }为{a n }的一个5项子列,得b 2≤12,所以d =b 2-b 1≤12-1=-12,又b 5=b 1+4d ,b 5>0,所以4d =b 5-b 1=b 5-1>-1,即d >-14,与d ≤-12矛盾,所以b 1≠1. 所以b 1≤12,因为b 5=b 1+4d ,b 5>0,所以4d =b 5-b 1≥b 5-12>-12,即d >-18, 所以108d -<<.(3)由题意,设{c n }的公比为q ,则:c 1+c 2+c 3+……+c m =c 1(1+q +q 2+……+q m -1),因为{c n }为{a n }的一个m 项子项,所以q 为正有理数,且q <1,c 1=1a≤1(a ∈N *), 设q =(,*KK L N L∈,且K ,L 互质,L ≥2), 当K =1时,因为q =1L ≤12,所以c 1+c 2+c 3+……+c m =c 1(1+q +q 2+……+q m -1)≤ 1+12+21()2+……+11()2m -=2-112m -; 当K ≠1时,因为c m =c 1qm -1=111m m K a L--⨯是{a n }的项,且K 、L 互质,所以a =K m -1×M (M ∈N*) 所以c 1+c 2+c 3+……+c m =c 1(1+q +q 2+……+q m -1)=1232111111()m m m m M K K L K L L----++++L 因为L ≥2,M ∈N *,所以c 1+c 2+c 3+……+c m ≤1+12+21()2+……+11()2m -=2-112m -; 综上,c 1+c 2+c 3+……+c m ≤2-112m -.20.解:(1)当2=m 时, 222(2)(2)(1)()0x x x x f x x x-----+'===,∴2=x ∴)(x f 在()2,0上单调递增,在()+∞,2上单调递减 ∴32ln )2()(max -==f x f(2)2221()()1m x x m f x x x x---'=-+= )0(>x i: 104m ∆-≤时,即≤时()0f x '≤,∴)(x f 在()+∞,0上单调递减.ii: ()0f x '=时24111m x +-=,24112mx ++=① 当041<<-m 时, 210x x << ∴)(x f 在⎪⎪⎭⎫⎝⎛+-2411,0m上单调递减,在1122⎛⎫ ⎪ ⎪⎝⎭,上单调递增,在⎪⎪⎭⎫⎝⎛+∞++,2411m 上单调递减. ② 当0m ≥时, 210x x <<∴)(x f 在⎪⎪⎭⎫ ⎝⎛++2411,0m 上单调递增,在⎪⎪⎭⎫⎝⎛+∞++,2411m 上单调递减. (3)设)(,(),(,(2211x f x B x f x A则21,x x 是方程02=--m x x 的二个根,且m x x -=⋅21,1021<<<x x∴212221112121)(ln ln )()(x x x m x x x m x x x x x f x f k ------=--=2121211ln ln x x m x x x x ⋅+---=2ln ln 2121---=x x x x令)10(ln )(<<-=x xx x g ,∴ 11()10xg x x x-'=-=>,∴)(x g 在()1,0上单调递增 Θ1021<<<x x ,∴ )()(21x g x g <即2211ln ln x x x x -<-∴2121ln ln x x x x -<-,∴ 1ln ln 2121>--x x x x∴ 1->k第II 卷 参考答案与解析21、【选做题】在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分. A .选修4—1:几何证明选讲解:连接OD ,BC ,设BC 交OD 于点M .因为OA=OD ,所以∠OAD=∠ODA ;又因为∠OAD=∠DAE ,所以∠ODA=∠DAE 所以OD//AE ;又 因为AC ⊥BC ,且DE ⊥AC ,所以BC//DE . 所以四边形CMDE 为平行四边形,所以CE=MD 由35AC AB =,设AC=3x ,AB=5x ,则OM=32x ,又OD=52x , 所以MD=52x -32x =x ,所以AE=AC+CE=4x ,因为OD//AE ,所以FD AF =48552AE x OD x ==.B .选修4—2:矩阵与变换 解:(1)由已知⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡111121c b ,即12,11=--=-c b , ∴3,2==c b ,所以⎥⎦⎤⎢⎣⎡=2331M ; (2)设曲线上任一点),(y x P ,P 在M 作用下对应点),(11'y x P ,则⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡y x y x 232111 即⎩⎨⎧+=+=y x y y x x 23211,解之得⎪⎪⎩⎪⎪⎨⎧-=-=4321111y x y x y x ,代入148522=++y xy x 得22121=+y x ,即曲线148522=++y xy x 在M 的作用下的新曲线的方程是222=+y x . C .选修4—4:坐标系与参数方程解:直线l 的参数方程⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数)化为直角坐标方程是y =x -4,圆C 的极坐标方程ρ=4cos θ化为直角坐标方程是x 2+y 2-4x =0. 圆C 的圆心(2,0)到直线x -y -4=0的距离为d =22=2.又圆C 的半径r =2, 因此直线l 被圆C 截得的弦长为2r 2-d 2=22.D .选修4—5:不等式选讲解:222x y +=Q ,()()224x y x y ∴++-= ,()()()2222114()()x y x y x y x y ⎛⎫++-+ ⎪+-⎝⎭Q≥,22111()()x y x y ∴++-≥, 当且仅当0x y ==,或0x ,y ==时2211()()x y x y ++-的最小值是1. 【必做题】第22题、第23题,每题10分,共计20分.22.解:(1)以O 为原点,分别以OB ,OC ,OA 为x ,y ,z 轴,建立直角坐标系A (0,0,1),B (2,0,0),C (0,2,0),E (0,1,0)(2,1,0),(0,2,1)EB AC =-=-u u u r u u u r 2cos ,5EB AC ∴<>=-u u u r u u u r异面直线BE 与AC 所成角的余弦值为25. (2)(2,0,1),(0,1,1)AB AE =-=-u u u r u u u r,设平面ABE 的法向量为1(,,)x y z =n ,则由11,AB AE ⊥⊥n n u u u r u u u r ,得120(1,2,2)0x z y z -=⎧=⎨-=⎩n 取平面BEC 的法向量为2(0,0,1)=n122cos ,3∴<>=n n , 二面角C BE A --. 23.解:(1)当n =3时,P ={1,2,3 },其非空子集为:{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}, 则所有满足题意的集合对(A ,B )为:({1},{2}),({1},{3}),({2},{3}), ({1},{2,3}),({1,2},{3})共5对,所以a 35=;(2)设A 中的最大数为k ,其中11k n -≤≤,整数n ≥3,则A 中必含元素k ,另元素1,2,…,k 1-可在A 中,故A 的个数为:0111111C C C 2k k k k k -----++⋅⋅⋅+=, B 中必不含元素1,2,…,k ,另元素k +1,k +2,…,n 可在B 中,但不能都不在B 中,故B 的个数为:12C C C 21n k n kn k n k n k -----++⋅⋅⋅+=-, 从而集合对(A ,B )的个数为()1221k n k --⋅-=1122n k ---, 所以a n ()11111111222(1)2(2)2112n n n k n n k n n ------=-=-=-⋅-=-⋅+-∑.2015年江苏高考数学模拟试卷(三)第Ⅰ卷 (必做题 分值160分)苏州市高中数学学科基地 苏州市高中数学命题研究与评价中心一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合A ={1,2,3,4,5},集合B ={x |x <a },其中a Z ∈,若A I B={1,2},则a = ▲ . 2.若复数(1+i )z =3-4i (i 为虚数单位),则复数z 的模| z | = ▲ .3.右图是七位评委打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差为 ▲ .4.右边是一个算法的伪代码,若输入x 的值为1,则输出的x 的值是 ▲ .5.有三张大小形状都相同的卡片,它们的正反面分别写有1和2、3和4、5和6,现将它们随机放在桌面上,则三张卡片上显示的数字之和大于10的概率是 ▲ .6.已知{}n a 为等差数列,其前n 项和为n S ,若371517233a a a a ++-=,则17S = ▲ .7.已知正四棱锥的底面边长是2,这个正四棱锥的侧面积为16,则该正四棱锥的体积为 ▲ .8.设()αβ∈0π,,,且5sin()13αβ+=, 1tan 22α=.则cos β的值为 ▲ . 9.已知x ,y 满足约束条件1,3,23,x x y y x ⎧⎪+⎨⎪-⎩≥≤≥则z =2x +y 的最小值为 ▲ .10.若2x ∀<,不等式()2620x a x a +-+≥恒成立,则实数a 的取值范围是 ▲ .11.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别是12,F F ,A 为椭圆上一点,120AF AF ⋅=u u u r u u u u r ,2AF 与y轴交与点M ,若254F M MA =u u u u u r u u u r,则椭圆离心率的值为 ▲ .12.已知二次函数232()(16)16f x ax a x a =+--(0a >)的图象与x 轴交于,A B 两点,则线段AB 长度的最小值 ▲ .13.如图,在正△ABC 中,点G 为边BC 上的中点,线段AB ,AC 上的动点D ,E分别满足AD AB λ=u u u r u u u r ,(12)AE AC λ=-u u u r u u u r()λ∈R ,设DE 中点为F ,记()FG R BCλ=u u u r u u u r ,则()R λ的取值范围为 ▲ . 14.设二次函数2()(21)2(0)f x ax b x a a =++--≠在区间[3,4]上至少有一个零点,则22a b +的最小值Read xIf x >3 then x ←x -3 Else x ←3-x EndIf Print x为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)三角形ABC 中,角A 、B 、C 所对边分别为a ,b ,c ,且222a cb ac +=+. (1)若cosA =13,求sinC 的值;(2)若b =7,a =3c ,求三角形ABC 的面积.16.(本小题满分14分)如图,已知四棱锥P ABCD -中,PA AD ⊥,底面ABCD 是菱形,45ABC ∠=︒, E 、F 分别是棱BC 、P A 上的点,EF //平面PCD ,PAE PAD ⊥平面平面. (1)求证:EF BC ⊥;(2)若AF FP λ=,求实数λ的值.如图,有一景区的平面图是一半圆形,其中AB 长为2km ,C 、D 两点在半圆弧上,满足BC =CD .设COB θ∠=.(1)现要在景区内铺设一条观光道路,由线段AB 、BC 、CD 和DA 组成,则当θ为何值时,观光道路的总长l 最长,并求l 的最大值.(2)若要在景区内种植鲜花,其中在AOD ∆和BOC ∆内种满鲜花,在扇形COD 内种一半面积的鲜花,则当θ为何值时,鲜花种植面积S 最大.18.(本小题满分16分)如图,设A 、B 分别为椭圆E :()222210x y a b a b+=>>的左、右顶点,P 是椭圆E 上不同于A 、B 的一动点,点F 是椭圆E 的右焦点,直线l 是椭圆E 的右准线.若直线AP 与直线:x a =和l 分别相交于C 、Q 两点,FQ 与直线BC 交于M . (1)求:BM MC 的值;(2)若椭圆E的离心率为2,直线PM 的方程为80x +-=,求椭圆E 的方程.已知数列{n a }、{n b }满足:1121141n n n n n b a a b b a +=+==-,,.(1)求1234,,,b b b b ;(2)证明:11n b ⎧⎫⎨⎬-⎩⎭是等差数列,并求数列{}n b 的通项公式;(3)设1223341...n n n S a a a a a a a a +=++++,求实数a 为何值时4n n aS b <恒成立.20.(本小题满分16分)已知函数()f x 满足2(2)()f x f x +=,当(02)x ∈,x ∈(0,2)时,1()ln ()2f x x ax a =+<-,当42x ∈--(,)时,()f x 的最大值为 - 4.(1)求实数a 的值; (2)设b ≠0,函数31()3g x bx bx =-,12x ∈(,).若对任意112x ∈(,),总存在212x ∈(,),使()()120f x g x -=,求实数b 的取值范围.第II 卷 (附加题 分值40分)21.【选做题】在A ,B ,C ,D 四小题中只能选做两题......,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,P A 是圆O 的切线,切点为A ,PO 交圆O 于B ,C 两点,P A =3,PB =1,求∠ABC 的大小.B .选修4—2:矩阵与变换已知矩阵A =⎣⎢⎡⎦⎥⎤3 3c d ,若矩阵A 属于特征值6的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,属于特征值1的一个特征向量为α2=⎣⎢⎡⎦⎥⎤3-2.求矩阵A 和A 的逆矩阵.C .选修4—4:坐标系与参数方程已知直线l :cos sin x t y t αα⎧⎨⎩=+m =(t 为参数)恒经过椭圆C :⎩⎨⎧==ϕϕsin 3cos 5y x (ϕ为参数)的右焦点F . (1)求m 的值;(2)设直线l 与椭圆C 交于A ,B 两点,求|F A|·|FB|的最大值与最小值.D .选修4—5:不等式选讲已知实数a ,b ,c ,d 满足a +b +c +d =1,2a 2+3b 2+6c 2+d 2=25,求实数d 的取值范围.OCBPA【必做题】第22题,第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,正方体ABCD -A 1B 1C 1 D 1的所有棱长都为1,M 、N 分别为线段BD 和B 1C 上的两个动点.(1)求线段MN 长的最小值;(2)当线段MN 长最小时,求二面角B -MN -C 的大小.23.(本小题满分10分)设函数()213213x f x x ex x -=--()x ∈R . (1)求函数()y f x =的单调区间;(2)当()1,x ∈+∞时,用数学归纳法证明:*n ∀∈N ,1!nx x en ->.C 1AA2015年江苏高考数学模拟试卷(三)第Ⅰ卷 参考答案与解析一、填空题:本大题共14小题,每小题5分,共70分. 1.3 2.5223.1.04 4.2 5. 12 6. 10.2 7.3154 8.1665- 9.1 10. 2a ≥ 11.1012.12 13.17,2⎡⎤⎢⎥⎣⎦14.1100 解析:2.由|(1+i )z | =|3-4i |和|(1+i )z | =|1+i ||z | 可知|z |=522. 3.由题意知,只要求83,84,84,85,86的方差,得到2222221.40.40.40.6 1.6 1.045s ++++==.4.1<3,故x =3-1=2.5.1+3+5=9,1+3+6=10,1+4+5=10,1+4+6=11,2+3+5=10,2+3+6=11,2+4+5=11,2+4+6=12共8种其中和大于10的有4种,故概率为4182=. 6.由条件得953a =,故1791710.2S a ==9.作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x +y 过交点A 时,z 取最小值,由1,23,x y x =⎧⎨=-⎩得1,1,x y =⎧⎨=-⎩∴z min =2-1=1.11.设(0,)M m ,(,)A x y ,因为254F M MA =u u u u u r u u u r ,所以5(,)(,)4c m x y m -=-,解得49,55x c y m =-=,又因为120AF AF ⋅=u u u r u u u u r ,所以999(,)(,)05555c m c m ---=,解得229c m =,因为点A 在椭圆22221x y a b+=上,所以2222168112525c m a b +=,即222216912525c c a b +=,又即42241650250c a c a -+=,从而421650250e e -+=,解得10e =. 12.因式分解可得2()()(16)f x x a ax =-+,于是,A B 两点的坐标分别是216(,0),(,0)a a-,于是线段AB 的长度等于216a a +.记216()F a a a=+,322162(8)'()2a F a a a a -=-=,于是()F a 在(0,2)上单调递减,在(2,)+∞上单调递增,从而()F a 的最小值就是216(2)2122F =+=. 13.()12FG EC DB =+u u u r u u u r u u u r ,不妨设三角形边长为1,则12(1)2FG AC AB λλ=+-u u u r u u u r u u u r 231λ+=,又由。
南京市、盐城市2023届高三年级第二次模拟考试数学2023.3第Ⅰ卷(选择题共60分)一、选择题;本大题共8小题,每小题5分,共40分.1.设,2k M x x k ⎧⎫==∈⎨⎬⎩⎭Z ,1,2N x x k k ⎧⎫==+∈⎨⎬⎩⎭Z ,则A.M NÞ B.N MÞ C.M N= D.M N ⋂=∅2.若()()()()1R f x x x x a a =++∈为奇函数,则a 的值为A.-1B.0C.1D.-1或13某种品牌手机的电池使用寿命X (单位:年)服从正态分布()()24,0N σσ>,且使用寿命不少于2年的概率为0.9,则该品牌手机电池至少使用6年的概率为A.0.9B.0.7C.0.3D.0.14.已知函数()()()sin 20f x x ϕϕπ=+<<的图象关于直线6x π=对称,则ϕ的值为A.12π B.6π C.3π D.23π5.三星堆古遗址作为“长江文明之源",被誉为人类最伟大的考古发现之一.3号坑发现的神树纹玉琮,为今人研究古蜀社会中神树的意义提供了重要依据.玉琮是古人用于祭祀的礼器,有学者认为其外方内圆的构造,契合了古代“天圆地方”观念,是天地合一的体现,如图,假定某玉琮形状对称,由一个空心圆柱及正方体构成,且圆柱的外侧面内切于正方体的侧面,圆柱的高为12cm ,圆柱底面外圆周和正方体的各个顶点均在球O 上,则球O 的表面积为A.272cmπ B.2162cmπ C.2216cmπ D.2288cmπ6.设等比数列{}n a 的前n 项和为n S .已知1122n n S S +=+,*N n ∈,则6S =A.312B.16C.30D.6327.已知椭圆E :()222210x y a b a b+=>>的两条弦AB ,CD 相交于点P (点P 在第一象限),且AB x ⊥轴,CD y⊥轴.若:::1:3:1:5PA PB PC PD =,则椭圆E 的离心率为A.5B.5C.5D.58.设,a b ∈R ,462baa=-,562abb=-,则A.1a b<< B.0b a<< C.0b a<< D.1b a <<二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,请把答案填涂在答题卡相应位置上.全部选对得5分,部分选对得2分,不选或有错选的得0分.9.新能源汽车包括纯电动汽车、增程式电动汽车、混合动力汽车、燃料电池电动汽车、氢发动机汽车等.我国的新能源汽车发展开始于21世纪初,近年来发展迅速,连续8年产销量位居世界第一.下面两图分别是2017年至2022年我国新能源汽车年产量和占比(占我国汽车年总产盘的比例)情况,则A.2017~2022年我国新能源汽车年产量逐年增加B.2017~2022年我国新能源汽车年产量的极差为626.4万辆C.2022年我国汽车年总产量超过2700万辆D.2019年我国汽车年总产量低于2018年我国汽车年总产量10.已知z 为复数,设z ,z ,i z 在复平面上对应的点分别为A ,B ,C ,其中O 为坐标原点,则A.OA OB =B.OA OC ⊥C.AC BC= D.OB AC∥ 11.已知点()1,0A -,()1,0B ,点P 为圆C :2268170x y x y +--+=上的动点,则A.PAB △面积的最小值为8-B.AP 的最小值为C.PAB ∠的最大值为512πD.AB AP ⋅的最大值为8+12.已知()cos 4cos3f θθθ=+,且1θ,2θ,3θ是()f θ在()0,π内的三个不同零点,则A.{}123,,7πθθθ∈ B.123θθθπ++=C.1231cos cos cos 8θθθ=-D.1231cos cos cos 2θθθ++=三、填空题:本大题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置上.13.编号为1,23,4的四位同学,分别就座于编号为1,2,3,4的四个座位上,每位座位恰好坐一位同学,则恰有两位同学编号和座位编号一致的坐法种数为___________.14.已知向量a ,b 满足2a = ,3b = ,0a b ⋅= .设2c b a =-,则cos ,a c = ___________.15.已知抛物线24y x =的焦点为F ,点Р是其准线上一点,过点P 作PF 的垂线,交y 轴于点A ,线段AF 交抛物线于点B .若PB 平行于x 轴,则AF 的长度为____________.16.直线x t =与曲线1C :()e R xy ax a =-+∈及曲线2C :exy ax -=+分别交于点A ,B .曲线1C 在A 处的切线为1l ,曲线2C 在B 处的切线为2l .若1l ,2l 相交于点C ,则ABC △面积的最小值为____________.四、解答题;本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤.17.(本小题满分10分)在数列{}n a 中,若()*1123n n a a a a a d n N+=⋅⋅-∈⋅,则称数列{}na 为“泛等差数列”,常数d 称为“D 差”.已知数列{}n a 是一个“泛等差数列”,数列{}n b 满足22212123n n n a a a a a a a b =⋅++⋅⋅⋅⋅-⋅+.(1)若数列{}n a 的“泛差”1d =,且1a ,2a ,3a 成等差数列,求1a ﹔(2)若数列{}n a 的“泛差”1d =-,且112a =,求数列{}n b 的通项n b .18.(本小题满分12分)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,()2sin cos c b A A =-.(1)若sin 10sin B C =,求sin A 的值;(2)在下列条件中选择一个,判断ABC △是否存在,加果在在,求h 的最小值;如果不存在,说明理由.①ABC △的面积1S =+;②bc =③222a b c +=.如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,ABC △和ACD △均为正三角形,4AC =,BE =.(1)在线段AC 上是否存在点F ,使得BF ∥平面ADE ?说明理由;(2)求平面CDE 与平面ABC 所成的锐二面角的正切值.20.(本小题满分12分)人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球t 乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为12(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整。
【学科网学易大联考】2015年第二次全国大联考【江苏版】一、填空题(每题5分,满分70分,将答案填在答题纸上)1.已知复数z =201532i i-(i 是虚数单位),则复数z 所对应的点位于复平面的第 象限. 2.已知全集U=N ,集合{}10A x x =->,则=A C U .3.若样本321,,a a a 的方差是2,则样本12322015,22015,22015a a a +++的方差是 .4.已知双曲线22221y x a b-=的一个焦点与圆x 2+y 2-10x =05,则该双曲线的准线方程为 .5.已知实数x ∈[3,9],执行如右图所示的流程图,则输出的x 不小于55的概率为 .6.若S n 为等差数列{a n }的前n 项和,S 9=-36,S 13=-104,则a 5与a 7的等比中项为 . 7.定义在R 上的奇函数()f x ,对任意x ∈R 都有(2)()f x f x +=-,当(02)x ∈,时,()4x f x =, 则(2015)f = .8. 一个三棱柱恰好可放入一个正四棱柱的容体中,底面如图所示,其中三棱柱的底面AEF 是一个直角三角形,∠AEF = 90︒,AE = 2,EF = 1,三棱柱的高与正四棱柱的高均为1,则此正四棱柱的体积为 .开始 结束Yn ←1输入x 输出xn ←n +1 x ←2x +1n ≤3 N(第8题)FEDCBA9.已知函数y =sin ωx (ω>0)在区间[0,2π]上为增函数,且图象关于点(3π,0)对称,则ω的取值集合为 ..10.已知直线y =ax +3与圆22280x y x ++-=相交于A ,B 两点,点00(,)P x y 在直线y =2x 上,且P A =PB ,则0x的取值范围为 . 11. 已知函数20151()sin 201521xf x x =++在[]2015,2015-上的最大值分别为,M m ,则M m += .12.在ABC ∆中,2AC BC ⋅=且两中线AD 与BE 互相垂直,求ABC ∆面积的最大值 . 13.设P (x ,y)为函数22y x =+(x >图象上一动点,记353712x y x y m x y +-+-=+--,则当m 最小时,点 P的坐标为 .14.设椭圆和双曲线有公共焦点12F F ,,两曲线的一个公共点为P ,且123F PF π∠=,记12e e ,分别为椭圆和双曲线的离心率,则1211e e +的最大值为 . 二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题满分14分)如图,在xoy 平面上,点)0,1(A ,点B 在单位圆上,θ=∠AOB (πθ<<0) (I) 若点)54,53(-B ,求)42tan(πθ+的值;(II)若OC OB OA =+,四边形OACB 的面积用θS 表示,求OC OA S ⋅+θ的取值范围.16.(本小题满分14分)如图,长方体1111ABCD A B C D -中,底面1111A B C D 是正方形,E 是棱1AA 上任意一点,F 是CD 的中点. (I) 证明:BD 1EC ⊥; (II)若AF ∥平面C 1DE ,求1AEA A的值. D 1C 1B 1A 1FEDCBA17.(本小题满分14分)下图是一块平行四边形园地 ABCD ,经测量,AB = 20 m ,BC = 10 m , ∠ABC = 120 °.拟过线段 AB 上一点 E 设计一条直路 EF (点 F 在四边形 ABCD 的边上,不计路的宽度),将该园地分为面积之比为 3:1 的左、右两部分分别种植不同花卉.设 EB = x ,EF = y (单位:m ). (Ⅰ)当点 F 与点 C 重合时,试确定点 E 的位置;(Ⅱ)求 y 关于 x 的函数关系式;(Ⅲ)请确定点 E ,F 的位置,使直路 EF 长度最短.18.(本小题满分16分)如图,在平面直角坐标系 xOy 中,A ,B 是圆 O :221x y +=与 x 轴的两个交点(点 B 在点 A 右侧),点(2,0)Q -, x 轴上方的动点 P 使直线 PA ,PQ ,PB 的斜率存在且依次成等差数列. (I) 求证:动点 P 的横坐标为定值;(II )设直线 PA ,PB 与圆 O 的另一个交点分别为 S ,T ,求证:点 Q ,S ,T 三点共线.19.(本小题满分16分)设二次函数2()f x ax bx c =++的导函数为().f x '(Ⅰ)若 a = 1,c = 2 ,且在平面直角坐标系 xOy 中,直线 y =()f x '恰与抛物线 y = f (x ) 相切,求 b 的值;(II )若 ,()()x R f x f x '∀∈≥恒成立,(ⅰ)求证: c ≥a > 0 ;(ⅱ)求222b ac +的最大值.20.(本小题满分16分)已知数列{}n a 的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列,数列{}n a 前n 项和为n S ,且满足5459342,S a a a a a =+=+.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若12m m m a a a ++=,求正整数m 的值; (Ⅲ)是否存在正整数m ,使得221mm S S -恰好为数列{}n a 中的一项?若存在,求出所有满足条件的m 值,若不存在,说明理由.数学Ⅱ 附加题部分【理】21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题.......,并在相应的答题区域内作答.............若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. 【选做题】(在A 、B 、C 、D 四小题中只能选做2题) A .【选修4—1几何证明选讲】(本小题满分10分)如图,在△ABC 中,CM 是∠ACB 的平分线,△AMC 的外接圆O 交BC 于点N . 若AB =2AC , 求证:BN =2AM .B .【选修4—2:矩阵与变换】(本小题满分10分)已知曲线C ,在矩阵M 1002⎡⎤=⎢⎥⎣⎦对应的变换作用下得到曲线1C ,1C 在矩阵N 0110-⎡⎤=⎢⎥⎣⎦对应的变换作用下得到曲线2218C y x =:,求曲线C 的方程.C.【选修4—4:坐标系与参数方程】(本小题满分10分)已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合.曲线C 的极坐标方程为22312sin ρθ=+,直线l的参数方程为,1x y t ⎧=⎪⎨=+⎪⎩(t 为参数,t ∈R ).试在曲线C 上求一点M ,使它到直线l 的距离最大.D .【选修4—5:不等式选讲】(本小题满分10分)求函数:y =最大值.【必做题】(第22题、第23题,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤) 22.(本小题满分10分)学校足球队进行罚点球训练,队员在一轮训练中最多可罚4次,并规定,一旦命中该队员即停止此轮练习,否则一直罚到第4次为止. 已知一选手罚点球的命中率为0.8,求一轮练习中,该选手的实际罚球次数X 的分布列,并求X 的数学期望. 23. (本小题满分10分)已知多项式5431111()52330f n n n n n =++-.(Ⅰ)求(1)f -及(2)f 的值;(Ⅱ)试探求对一切整数n ,()f n 是否一定是整数?并证明你的结论.MC NBO ·A。
南京市、盐城市2015届高三年级第一次模拟考试一、填空题:本大题共14小题,每小题5分,计70分.1.设集合{}2,0,M x =,集合{}0,1N =,若N M ⊆,则x = ▲ . 答案:1 2.若复数a iz i+=(其中为虚数单位)的实部与虚部相等,则实数a = ▲ . 答案:-13.在一次射箭比赛中,某运动员5次射箭的环数依次是9,10,9,7,10,则该组数据的方差是 ▲ . 答案:654.甲、乙两位同学下棋,若甲获胜的概率为0.2,甲、乙下和棋的概率为0.5,则乙获胜的概率为 ▲ . 答案:0.3解读:为了体现新的《考试说明》,此题选择了互斥事件,选材于课本中的习题。
5.若双曲线222(0)x y a a -=>的右焦点与抛物线24y x =的焦点重合,则a = ▲ .答案:26.运行如图所示的程序后,输出的结果为 ▲ . 答案:42解读:此题的答案容易错为22。
7.若变量,x y 满足202300x y x y x -≤⎧⎪-+≥⎨⎪≥⎩,则2x y+的最大值为 ▲ .答案:88.若一个圆锥的底面半径为,侧面积是底面积的2倍,则该圆锥的体积为 ▲ .9.若函数()sin()(0)6f x x πωω=+>图象的两条相邻的对称轴之间的距离为2π,且该函数图象关于点0(,0)x 成中心对称,0[0,]2x π∈,则0x = ▲ .答案:512π2i 第6题图10.若实数,x y 满足0x y >>,且22log log 1x y +=,则22x y x y+-的最小值为 ▲ .答案:411.设向量(sin 2,cos )θθ=a ,(cos ,1)θ=b ,则“//a b ”是“1tan 2θ=”成立的 ▲ 条件 (选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”) . 答案:必要不充分12.在平面直角坐标系xOy 中,设直线2y x =-+与圆222(0)x y r r +=>交于,A B 两点,O 为坐标原点,若圆上一点C 满足5344OC OA OB =+,则r = ▲ .13.已知()f x 是定义在[2,2]-上的奇函数,当(0,2]x ∈时,()21xf x =-,函数2()2g x x x m =-+. 如果对于1[2,2]x ∀∈-,2[2,2]x ∃∈-,使得21()()g x f x =,则实数m 的取值范围是 ▲ .答案:[5,2]--14.已知数列{}n a 满足11a =-,21a a >,*1||2()n n n a a n N +-=∈,若数列{}21n a -单调递减,数列{}2n a 单调递增,则数列{}n a 的通项公式为n a = ▲ .答案:(2)13n --( 说明:本答案也可以写成21,321,3n nn n ⎧--⎪⎪⎨-⎪⎪⎩为奇数为偶数)二、解答题:15.在平面直角坐标系xOy 中,设锐角α的始边与x 轴的非负半轴重合,终边与单位圆交于点11(,)P x y ,将射线OP 绕坐标原点O 按逆时针方向旋转2π后与单位圆交于点22(,)Q x y . 记12()f y y α=+. (1)求函数()f α的值域;(2)设ABC ∆的角,,A B C 所对的边分别为,,a b c ,若()f C =a =1c =,求b .解:(1)由题意,得12sin ,sin()cos 2y y πααα==+=, ………4分所以()sin cos )4f παααα=+=+, ………………6分因为(0,)2πα∈,所以3(,)444πππα+∈,故()f α∈. ……………8分 (2)因为()sin()4f C C π=+=(0,)2C π∈,所以4C π=,……10分第15题图第17题图在ABC ∆中,由余弦定理得2222cos c a b ab C =+-,即2122b =+-, 解得1b =. ………………14分(说明:第(2)小题用正弦定理处理的,类似给分)16.(本小题满分14分)如图,在正方体1111ABCD A B C D -中,,O E 分别为1,B D AB 的中点. (1)求证://OE 平面11BCC B ; (2)求证:平面1B DC ⊥平面1B DE . 证明(1):连接1BC ,设11BC B C F =,连接OF , ………2分因为O ,F 分别是1B D 与1B C 的中点,所以//OF DC ,且12OFDC =,又E 为AB 中点,所以//EB DC ,且12EB DC =, 从而//,OF EB OF EB =,即四边形OEBF 是平行四边形, 所以//OE BF , ……………6分 又OE ⊄面11BCC B ,BF ⊂面11BCC B ,所以//OE 面11BCC B . ……………8分 (2)因为DC ⊥面11BCC B ,1BC ⊂面11BCC B ,所以1BC DC ⊥, ………… 10分 又11BC B C ⊥,且1,DC B C ⊂面1B DC ,1DC B C C =,所以1BC ⊥面1B DC ,…………12分而1//BC OE ,所以OE ⊥面1B DC ,又OE ⊂面1B DE , 所以面1B DC ⊥面1B DE . ………14分17.在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的右准线方程为4x =,右顶点为A ,上顶点为B ,右焦点为F ,斜率为的直线经过点A ,且点F (1)求椭圆C 的标准方程;(2)将直线绕点A 旋转,它与椭圆C 相交于另一点P ,当,,B F 三点共线时,试确定直线的斜率. 解:(1)由题意知,直线的方程为2()y x a =-,即220x y a --=, ……………2分∴右焦点F =,1a c ∴-=, ……………4分 又椭圆C 的右准线为4x =,即24a c =,所以24a c =,将此代入上式解得2,1a c ==,23b ∴=,BACD B 1A 1C 1D 1 EF OBACDB 1A 1 C 1 D 1 E第16题图O B ACD B 1A 1C 1D 1E第16题图∴椭圆C 的方程为22143x y +=; ……………6分 (2)由(1)知B ,(1,0)F , ∴直线BF的方程为1)y x =-, ………8分联立方程组221)143y x x y ⎧=-⎪⎨+=⎪⎩,解得85x y ⎧=⎪⎪⎨⎪=⎪⎩或0x y =⎧⎪⎨=⎪⎩,即8(,55P -,………12分∴直线的斜率0(5825k -==-. ………14分 其他方法:方法二: 由(1)知B ,(1,0)F , ∴直线BF的方程为1)y x =-,由题(2,0)A ,显然直线的斜率存在,设直线的方程为(2)y k x =-,联立方程组1)(2)y x y k x ⎧=-⎪⎨=-⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩,代入椭圆解得:k =或k =,又由题意知,0y =>得0k >或k <所以k =方法三:由题(2,0)A ,显然直线的斜率存在,设直线的方程为(2)y k x =-,联立方程组22(2)143y k x x y =-⎧⎪⎨+=⎪⎩,得()2222431616120k x k x k +-+-=,221643A P k x x k +=+, 所以2222168624343P k k x k k -=-=++,21243P ky k -=+,当,,B F P 三点共线时有,BP BF k k =,即22212438643kk k k -+=-+,解得2k =或2k =-,又由题意知,0y =>得0k >或k <2k =.18.某地拟模仿图甲建造一座大型体育馆,其设计方案侧面的外轮廓线如图乙所示:曲线AB 是以点E 为圆心的圆的一部分,其中(0,)E t (025t <≤,单位:米);曲线BC 是抛物线250(0)y ax a =-+>的一部分;CD AD ⊥,且CD 恰好等于圆E的半径. 假定拟建体育馆的高50OB =米.(1)若要求30CD =米,AD =a 的值;(2)若要求体育馆侧面的最大宽度DF 不超过75米,求a 的取值范围; (3)若125a =,求AD 的最大值.(参考公式:若()f x =()f x '=)解:(1)因为5030CD t =-=,解得20t =. …………… 2分此时圆222:(20)30E x y +-=,令0y =,得AO =所以OD AD AO =-==,将点C 代入250(0)y ax a =-+>中,解得149a =. ……… 4分(2)因为圆E 的半径为50t -,所以50CD t =-,在250y ax =-+中令50y t =-,得OD =则由题意知5075FD t =-+≤对(0,25]t ∈恒成立, ……… 8分≤=25t =取最小值10,10,解得1100a ≥. ………… 10分(3)当125a =时,OD =又圆E 的方程为222()(50)x y t t +-=-,令0y =,得x =±所以AO =,从而()25)AD f t t ==<≤, ………… 12分又因为()5(f t '==()0f t '=,得5t =, 14分 当(0,5)t ∈时,f ',f 单调递增;当时,()0f t '<,()f t 单调递减,从而当5t =时,()f t 取最大值为答:当5t =米时,AD 的最大值为. …………16分 (说明:本题还可以运用三角换元,或线性规划等方法解决,类似给分)19.设数列{}n a 是各项均为正数的等比数列,其前n 项和为n S ,若1564a a =,5348S S -=.(1)求数列{}n a 的通项公式;(2)对于正整数,,k m l (k m l <<),求证:“1m k =+且3l k =+”是“5,,k m l a a a 这三项经适当排序后能构成等差数列”成立的充要条件;(3)设数列{}n b 满足:对任意的正整数n ,都有121321n n n n a b a b a b a b --++++13246n n +=⋅--,且集合*|,n n b M n n N a λ⎧⎫=≥∈⎨⎬⎩⎭中有且仅有3个元素,试求λ的取值范围. 解:(1)数列{}n a 是各项均为正数的等比数列,∴215364a a a ==,38a ∴=,又5348S S -=,2458848a a q q ∴+=+=,2q ∴=,3822n n n a -∴=⋅=; ………… 4分(2)(ⅰ)必要性:设5,,k m l a a a 这三项经适当排序后能构成等差数列,①若25k m l a a a ⋅=+,则10222k m l ⋅=+,1022m k l k --∴=+,11522m k l k ----∴=+,1121,24m k l k ----⎧=⎪∴⎨=⎪⎩ 13m k l k =+⎧∴⎨=+⎩. ………… 6分②若25m k l a a a =+,则22522m k l ⋅=⋅+,1225m k l k +--∴-=,左边为偶数,等式不成立, ③若25l k m a a a =+,同理也不成立,综合①②③,得1,3m k l k =+=+,所以必要性成立. …………8分 (ⅱ)充分性:设1m k =+,3l k =+,则5,,k m l a a a 这三项为135,,k k k a a a ++,即5,2,8k k k a a a ,调整顺序后易知2,5,8k k k a a a 成等差数列,所以充分性也成立. 综合(ⅰ)(ⅱ),原命题成立. …………10分 (3)因为11213213246n n n n n a b a b a b a b n +--++++=⋅--,即123112122223246n n n n n b b b b n +--++++=⋅--,(*)∴当2n ≥时,1231123122223242n n n n n b b b b n ----++++=⋅--,(**)则(**)式两边同乘以2,得2341123122223284n n n n n b b b b n +---++++=⋅--,(***)∴(*)-(***),得242n b n =-,即21(2)n b n n =-≥,又当1n =时,21232102b =⋅-=,即11b =,适合21(2)n b n n =-≥,21n b n ∴=-.………14分212n n n b n a -∴=,111212352222n n n n nn n b b n n n a a ------∴-=-=, 2n ∴=时,110n n n n b b a a --->,即2121b b a a >;3n ∴≥时,110n n n n b b a a ---<,此时n n b a ⎧⎫⎨⎬⎩⎭单调递减, 又1112b a =,2234b a =,3358b a =,44716b a =,71162λ∴<≤. ……………16分 20.已知函数()xf x e =,()g x mx n =+.(1)设()()()h x f x g x =-.① 若函数()h x 在0x =处的切线过点(1,0),求m n +的值;② 当0n =时,若函数()h x 在(1,)-+∞上没有零点,求m 的取值范围;(2)设函数1()()()nx r x f x g x =+,且4(0)n m m =>,求证:当0x ≥时,()1r x ≥. 解:(1)由题意,得()(()())()x xh x f x g x e mx n e m '''=-=--=-,所以函数()h x 在0x =处的切线斜率1k m =-, ……………2分又(0)1h n =-,所以函数()h x 在0x =处的切线方程(1)(1)y n m x --=-,将点(1,0)代入,得2m n +=. ……………4分(2)方法一:当0n =,可得()()xxh x e mx e m ''=-=-,因为1x >-,所以1xe e>, ①当1m e≤时,()0xh x e m '=->,函数()h x 在(1,)-+∞上单调递增,而(0)1h =, 所以只需1(1)0h m e -=+≥,解得1m e ≥-,从而11m e e-≤≤. ……………6分②当1m e>时,由()0xh x e m '=-=,解得ln (1,)x m =∈-+∞,当(1,ln )x m ∈-时,()0h x '<,()h x 单调递减;当(ln ,)x m ∈+∞时,()0h x '>,()h x 单调递增. 所以函数()h x 在(1,)-+∞上有最小值为(ln )ln h m m m m =-,令ln 0m m m ->,解得m e <,所以1m e e<<.综上所述,1[,)m e e ∈-. ……………10分方法二:当0n =,xe mx = ①当0x =时,显然不成立;②当1x >-且0x ≠时,x e m x =,令xe y x=,则()221xx x e x e x e y x x --'==,当10x -<<时,0y '<,函数x e y x =单调递减,01x <<时,0y '<,函数x e y x =单调递减,当1x >时,0y '>,函数xe y x=单调递增,又11x e y =-=-,1x y e ==,由题意知1[,)m e e∈-.(3)由题意,1114()()()4x x n xnx x m r x n f x g x e e x x m=+=+=+++, 而14()14x xr x e x =+≥+等价于(34)40x e x x -++≥, 令()(34)4xF x e x x =-++, ……………12分则(0)0F =,且()(31)1xF x e x '=-+,(0)0F '=,令()()G x F x '=,则()(32)xG x e x '=+,因0x ≥, 所以()0G x '>, (14)分所以导数()F x '在[0,)+∞上单调递增,于是()(0)0F x F ''≥=,从而函数()F x 在[0,)+∞上单调递增,即()(0)0F x F ≥=. ……………16分附加题答案21. A 、(选修4—1:几何证明选讲)如图,已知点P 为Rt ABC ∆的斜边AB 的延长线上一点,且PC 与Rt ABC ∆的外接圆相切,过点C 作AB 的垂线,垂足为D ,若18PA =,6PC =,求线段CD 的长. 解:由切割线定理,得2PC PA PB =⋅,解得2PB =,所以16AB =,即Rt ABC ∆的外接圆半径8r =,……5分 记Rt ABC ∆外接圆的圆心为O ,连OC ,则OC PC ⊥,在Rt POC ∆中,由面积法得OC PC PO CD ⋅=⋅,解得245CD =. ………………10分B 、(选修4—2:矩阵与变换)求直线10x y --=在矩阵22M -⎥=⎥⎥⎦的变换下所得曲线的方程. 解:设(,)P x y 是所求曲线上的任一点,它在已知直线上的对应点为(,)Q x y '',则2222x y x x y y ''-=⎪''+=⎩,解得()2()2x x y y y x ⎧'=+⎪⎪⎨⎪'=-⎪⎩, ………………5分代入10x y ''--=))10x y y x +---=,化简可得所求曲线方程为2x =. (10)分 C 、(选修4—4:坐标系与参数方程)在极坐标系中,求圆2cos ρθ=的圆心到直线2sin()13πρθ+=的距离.解:将圆2cos ρθ=化为普通方程为2220x y x +-=,圆心为(1,0), ………………4分又2sin()13πρθ+=,即12(sin )122ρθθ+=,10y +-=, ………………8分CAB D P第21-A 题图故所求的圆心到直线的距离d =………………10分D 、解不等式124x x ++-<.解:当1x <-时,不等式化为124x x --+-<,解得312x -<<-; ………………3分 当12x -≤≤时,不等式化为124x x ++-<,解得12x -≤≤; ………………6分当2x >时,不等式化为124x x ++-<,解得522x <<; ………………9分所以原不等式的解集为35(,)22-. (10)分 22.(本小题满分10分)如图,在直三棱柱111ABC A B C -中,AB AC ⊥,3AB =,4AC =,动点P 满足1(0)CP CC λλ=>,当12λ=时,1AB BP ⊥. (1)求棱1CC 的长;(2)若二面角1B AB P --的大小为3π,求λ的值. 解:(1)以点A 为坐标原点,1,,AB AC AA 分别为,,x y z 轴,建立空间直角坐标系,设1CC m =,则1(3,0,)B m ,(3,0,0)B ,(0,4,)P m λ,所以1(3,0,)AB m =,(3,4,)PB m λ=--,(3,0,0)AB =, ………………2分当12λ=时,有11(3,0,)(3,4,)02AB PB m m ⋅=⋅--=解得m =即棱1CC的长为 ………………4分(2)设平面PAB 的一个法向量为1(,,)n x y z =,则由1100AB n PB n ⎧⋅=⎪⎨⋅=⎪⎩,得30340x x y z =⎧⎪⎨--=⎪⎩,即040x y z =⎧⎪⎨+=⎪⎩,令1z =,则4y =-,所以平面PAB的一个法向量为1(0,,1)4n =-,………………6分 又平面1ABB 与y 轴垂直,所以平面1ABB 的一个法向量为2(0,1,0)n =,因二面角1B AB P --的平面角的大小为3π, CABPB 1C 1A 1第22题图所以121cos ,2n n ==0λ>,解得λ=. ………………10分 23.设集合{*1,2,3,,(,2)S n n N n =∈≥,,A B 是S 的两个非空子集,且满足集合A 中的最大数小于集合B 中的最小数,记满足条件的集合对(,)A B 的个数为n P . (1)求23,P P 的值;(2)求n P 的表达式.解:(1)当2n =时,即{}1,2S =,此时{}1A =,{}2B =,所以21P =, ………………2分当3n =时,即{}1,2,3S =,若{}1A =,则{}2B =,或{}3B =,或{}2,3B =;若{}2A =或{}1,2A =,则{}3B =;所以35P =. ………………4分 (2)当集合A 中的最大元素为“k ”时,集合A 的其余元素可在1,2,,1k -中任取若干个(包含不取),所以集合A 共有0121111112k k k k k k C C C C ------++++=种情况, ………………6分 此时,集合B 的元素只能在1,2,,k k n ++中任取若干个(至少取1个),所以集合B 共有12321n k n kn k n k n k n k C C C C ------++++=-种情况, 所以,当集合A 中的最大元素为“k ”时, 集合对(,)A B 共有1112(21)22k n k n k -----=- 对, ………………8分 当k 依次取1,2,3,,1n -时,可分别得到集合对(,)A B 的个数,求和可得101221(1)2(2222)(2)21n n n n P n n ---=-⋅-++++=-⋅+. (10)分。
南京市、盐城市2015届高三年级第一次模拟考试一、填空题:本大题共14小题,每小题5分,计70分.1.设集合{}2,0,M x =,集合{}0,1N =,若N M ⊆,则x = ▲ . 答案:1 2.若复数a iz i+=(其中为虚数单位)的实部与虚部相等,则实数a = ▲ . 答案:-13.在一次射箭比赛中,某运动员5次射箭的环数依次是9,10,9,7,10,则该组数据的方差是 ▲ . 答案:654.甲、乙两位同学下棋,若甲获胜的概率为0.2,甲、乙下和棋的概率为0.5,则乙获胜的概率为 ▲ . 答案:0.3解读:为了体现新的《考试说明》,此题选择了互斥事件,选材于课本中的习题。
5.若双曲线222(0)x y a a -=>的右焦点与抛物线24y x =的焦点重合,则a = ▲ .答案:26.运行如图所示的程序后,输出的结果为 ▲ . 答案:42解读:此题的答案容易错为22。
7.若变量,x y 满足202300x y x y x -≤⎧⎪-+≥⎨⎪≥⎩,则2x y+的最大值为 ▲ .答案:88.若一个圆锥的底面半径为,侧面积是底面积的2倍,则该圆锥的体积为 ▲ .9.若函数()sin()(0)6f x x πωω=+>图象的两条相邻的对称轴之间的距离为2π,且该函数图象关于点0(,0)x 成中心对称,0[0,]2x π∈,则0x = ▲ .答案:512π10.若实数,x y 满足0x y >>,且22log log 1x y +=,则22x y x y+-的最小值为 ▲ .答案:411.设向量(sin 2,cos )θθ=a ,(cos ,1)θ=b ,则“//a b ”是“1tan 2θ=”成立的 ▲ 条件 (选2i 第6题图填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”) . 答案:必要不充分12.在平面直角坐标系xOy 中,设直线2y x =-+与圆222(0)x y r r +=>交于,A B 两点,O 为坐标原点,若圆上一点C 满足5344OC OA OB =+,则r = ▲ .13.已知()f x 是定义在[2,2]-上的奇函数,当(0,2]x ∈时,()21xf x =-,函数2()2g x x x m =-+. 如果对于1[2,2]x ∀∈-,2[2,2]x ∃∈-,使得21()()g x f x =,则实数m 的取值范围是 ▲ .答案:[5,2]--14.已知数列{}n a 满足11a =-,21a a >,*1||2()n n n a a n N +-=∈,若数列{}21n a -单调递减,数列{}2n a 单调递增,则数列{}n a 的通项公式为n a = ▲ .答案:(2)13n --( 说明:本答案也可以写成21,321,3n nn n ⎧--⎪⎪⎨-⎪⎪⎩为奇数为偶数)二、解答题:15.在平面直角坐标系xOy 中,设锐角α的始边与x 轴的非负半轴重合,终边与单位圆交于点11(,)P x y ,将射线OP 绕坐标原点O 按逆时针方向旋转2π后与单位圆交于点22(,)Q x y . 记12()f y y α=+. (1)求函数()f α的值域;(2)设ABC ∆的角,,A B C 所对的边分别为,,a b c ,若()f C =a =1c =,求b .解:(1)由题意,得12sin ,sin()cos 2y y πααα==+=, ………4分所以()sin cos )4f παααα=+=+, ………………6分因为(0,)2πα∈,所以3(,)444πππα+∈,故()f α∈. ……………8分(2)因为()sin()4f C C π=+=(0,)2C π∈,所以4C π=,……10分在ABC ∆中,由余弦定理得2222cos c a b ab C =+-,即212b =+-, 解得1b =. ………………14分(说明:第(2)小题用正弦定理处理的,类似给分)16.(本小题满分14分)如图,在正方体1111ABCD A B C D -中,,O E 分别为1,B D AB 的中点. (1)求证://OE 平面11BCC B ; (2)求证:平面1B DC ⊥平面1B DE . 证明(1):连接1BC ,设11BC B C F =,连接OF , ………2分B 1 A 1C 1D 1第15题图BA CDB 1A 1 C 1 D 1 EO第17题图因为O ,F 分别是1B D 与1B C 的中点,所以//OF DC ,且12OF DC =, 又E 为AB 中点,所以//EB DC ,且12EB DC =, 从而//,OF EB OF EB =,即四边形OEBF 是平行四边形, 所以//OE BF , ……………6分 又OE ⊄面11BCC B ,BF ⊂面11BCC B ,所以//OE 面11BCC B . ……………8分 (2)因为DC ⊥面11BCC B ,1BC ⊂面11BCC B ,所以1BC DC ⊥, ………… 10分 又11BC B C ⊥,且1,DC B C ⊂面1B DC ,1DC B C C =,所以1BC ⊥面1B DC ,…………12分而1//BC OE ,所以OE ⊥面1B DC ,又OE ⊂面1B DE , 所以面1B DC ⊥面1B DE . ………14分17.在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的右准线方程为4x =,右顶点为A ,上顶点为B ,右焦点为F ,斜率为的直线经过点A ,且点F.(1)求椭圆C 的标准方程;(2)将直线绕点A 旋转,它与椭圆C 相交于另一点P ,当,,B F 三点共线时,试确定直线的斜率. 解:(1)由题意知,直线的方程为2()y x a =-,即220x y a --=, ……………2分∴右焦点F=,1a c ∴-=, ……………4分 又椭圆C 的右准线为4x =,即24a c =,所以24a c =,将此代入上式解得2,1a c ==,23b ∴=,∴椭圆C 的方程为22143x y +=; ……………6分 (2)由(1)知B ,(1,0)F , ∴直线BF的方程为1)y x =-, ………8分联立方程组221)143y x x y ⎧=-⎪⎨+=⎪⎩,解得855x y ⎧=⎪⎪⎨⎪=⎪⎩或0x y =⎧⎪⎨=⎪⎩,即8(,5P ,………12分∴直线的斜率0(58225k -==-. ………14分 其他方法:方法二: 由(1)知B ,(1,0)F , ∴直线BF的方程为1)y x =-,由题(2,0)A ,显B ACD B 1A 1C 1D 1E第16题图然直线的斜率存在,设直线的方程为(2)y k x =-,联立方程组3(1)(2)y x y k x ⎧=--⎪⎨=-⎪⎩,解得23333k x k ky k ⎧+=⎪+⎪⎨-⎪=⎪+⎩,代入椭圆解得:332k =或32k =-,又由题意知,303ky k -=>+得0k >或3k <-,所以332k =. 方法三:由题(2,0)A ,显然直线的斜率存在,设直线的方程为(2)y k x =-,联立方程组22(2)143y k x x y =-⎧⎪⎨+=⎪⎩,得()2222431616120k x k x k +-+-=,221643A P k x x k +=+, 所以2222168624343P k k x k k -=-=++,21243P ky k -=+,当,,B F P 三点共线时有,BP BF k k =, 即22212334386143kk k k ---+=-+,解得332k =或32k =-,又由题意知,303k y k -=>+得0k >或3k <-,所以332k =.18.某地拟模仿图甲建造一座大型体育馆,其设计方案侧面的外轮廓线如图乙所示:曲线AB 是以点E 为圆心的圆的一部分,其中(0,)E t (025t <≤,单位:米);曲线BC 是抛物线250(0)y ax a =-+>的一部分;CD AD ⊥,且CD 恰好等于圆E 的半径. 假定拟建体育馆的高50OB =米.(1)若要求30CD =米,AD =245米,求与a 的值;(2)若要求体育馆侧面的最大宽度DF 不超过75米,求a 的取值范围;(3)若125a =,求AD 的最大值.(参考公式:若()f x a x =-,则1()2f x a x'=--)解:(1)因为5030CD t =-=,解得20t =. …………… 2分此时圆222:(20)30E x y +-=,令0y =,得105AO =,所以245105145OD AD AO =-=-=,将点(145,30)C 代入250(0)y ax a =-+>中,解得149a =. ……… 4分 (2)因为圆E 的半径为50t -,所以50CD t =-,在250y ax =-+中令50y t =-,得t OD a=, 则由题意知5075tFD t a=-+≤对(0,25]t ∈恒成立, ……… 8分 第18题-甲 xy O A BCD 第18题-乙E · F≤=25t =取最小值10,10≤,解得1100a ≥. ………… 10分 (3)当125a =时,OD =又圆E 的方程为222()(50)x y t t +-=-,令0y =,得x =±所以AO =从而()25)AD f t t ==<≤, ………… 12分又因为()5(f t '==,令()0f t '=,得5t =, 14分 当(0,5)t ∈时,f ,单调递增;当时,()0f t '<,()f t 单调递减,从而当5t = 时,()f t 取最大值为答:当5t =米时,AD 的最大值为米. …………16分 (说明:本题还可以运用三角换元,或线性规划等方法解决,类似给分)19.设数列{}n a 是各项均为正数的等比数列,其前n 项和为n S ,若1564a a =,5348S S -=.(1)求数列{}n a 的通项公式;(2)对于正整数,,k m l (k m l <<),求证:“1m k =+且3l k =+”是“5,,k m l a a a 这三项经适当排序后能构成等差数列”成立的充要条件;(3)设数列{}n b 满足:对任意的正整数n ,都有121321n n n n a b a b a b a b --++++13246n n +=⋅--,且集合*|,n n b M n n N a λ⎧⎫=≥∈⎨⎬⎩⎭中有且仅有3个元素,试求λ的取值范围. 解:(1)数列{}n a 是各项均为正数的等比数列,∴215364a a a ==,38a ∴=,又5348S S -=,2458848a a q q ∴+=+=,2q ∴=,3822n n n a -∴=⋅=; ………… 4分(2)(ⅰ)必要性:设5,,k m l a a a 这三项经适当排序后能构成等差数列,①若25k m l a a a ⋅=+,则10222k m l ⋅=+,1022m k l k --∴=+,11522m k l k ----∴=+,1121,24m k l k ----⎧=⎪∴⎨=⎪⎩13m k l k =+⎧∴⎨=+⎩. ………… 6分②若25m k l a a a =+,则22522m k l ⋅=⋅+,1225m k l k +--∴-=,左边为偶数,等式不成立,③若25l k m a a a =+,同理也不成立,综合①②③,得1,3m k l k =+=+,所以必要性成立. …………8分 (ⅱ)充分性:设1m k =+,3l k =+,则5,,k m l a a a 这三项为135,,k k k a a a ++,即5,2,8k k k a a a ,调整顺序后易知2,5,8k k k a a a 成等差数列, 所以充分性也成立. 综合(ⅰ)(ⅱ),原命题成立. …………10分 (3)因为11213213246n n n n n a b a b a b a b n +--++++=⋅--, 即123112122223246n n n n n b b b b n +--++++=⋅--,(*)∴当2n ≥时,1231123122223242n n n n n b b b b n ----++++=⋅--,(**)则(**)式两边同乘以2,得2341123122223284n n n n n b b b b n +---++++=⋅--,(***)∴(*)-(***),得242n b n =-,即21(2)n b n n =-≥,又当1n =时,21232102b =⋅-=,即11b =,适合21(2)n b n n =-≥,21n b n ∴=-.………14分212n n n b n a -∴=,111212352222n n n n nn n b b n n n a a ------∴-=-=, 2n ∴=时,110n n n n b b a a --->,即2121b b a a >;3n ∴≥时,110n n n n b b a a ---<,此时n n b a ⎧⎫⎨⎬⎩⎭单调递减, 又1112b a =,2234b a =,3358b a =,44716b a =,71162λ∴<≤. ……………16分 20.已知函数()xf x e =,()g x mx n =+.(1)设()()()h x f x g x =-.① 若函数()h x 在0x =处的切线过点(1,0),求m n +的值;② 当0n =时,若函数()h x 在(1,)-+∞上没有零点,求m 的取值范围;(2)设函数1()()()nx r x f x g x =+,且4(0)n m m =>,求证:当0x ≥时,()1r x ≥. 解:(1)由题意,得()(()())()x xh x f x g x e mx n e m '''=-=--=-,所以函数()h x 在0x =处的切线斜率1k m =-, ……………2分 又(0)1h n =-,所以函数()h x 在0x =处的切线方程(1)(1)y n m x --=-, 将点(1,0)代入,得2m n +=. ……………4分(2)方法一:当0n =,可得()()x xh x e mx e m ''=-=-,因为1x >-,所以1x e e>,①当1m e≤时,()0xh x e m '=->,函数()h x 在(1,)-+∞上单调递增,而(0)1h =,所以只需1(1)0h m e -=+≥,解得1m e ≥-,从而11m e e-≤≤. ……………6分②当1m e>时,由()0xh x e m '=-=,解得ln (1,)x m =∈-+∞,当(1,ln )x m ∈-时,()0h x '<,()h x 单调递减;当(ln ,)x m ∈+∞时,()0h x '>,()h x 单调递增. 所以函数()h x 在(1,)-+∞上有最小值为(ln )ln h m m m m =-,令ln 0m m m ->,解得m e <,所以1m e e<<.综上所述,1[,)m e e∈-. (10)分方法二:当0n =,x e mx = ①当0x =时,显然不成立;②当1x >-且0x ≠时,x e m x =,令x e y x=,则()221xx x e x e x e y x x --'==,当10x -<<时,0y '<,函数x e y x =单调递减,01x <<时,0y '<,函数x e y x =单调递减,当1x >时,0y '>,函数xe y x=单调递增,又11x e y =-=-,1x y e ==,由题意知1[,)m e e∈-.(3)由题意,1114()()()4x x n xnx x m r x n f x g x e e x x m=+=+=+++, 而14()14x xr x e x =+≥+等价于(34)40x e x x -++≥,令()(34)4xF x e x x =-++, ……………12分则(0)0F =,且()(31)1xF x e x '=-+,(0)0F '=,令()()G x F x '=,则()(32)xG x e x '=+,因0x ≥, 所以()0G x '>, (14)分所以导数()F x '在[0,)+∞上单调递增,于是()(0)0F x F ''≥=,从而函数()F x 在[0,)+∞上单调递增,即()(0)0F x F ≥=. ……………16分附加题答案21. A 、(选修4—1:几何证明选讲)如图,已知点P 为Rt ABC ∆的斜边AB 的延长线上一点,且PC 与Rt ABC ∆的外接圆相切,过点C 作AB 的垂线,垂足为D ,若18PA =,6PC =,求线段CD 的长. 解:由切割线定理,得2PC PA PB =⋅,解得2PB =,所以16AB =,即Rt ABC ∆的外接圆半径8r =,……5分 记Rt ABC ∆外接圆的圆心为O ,连OC ,则OC PC ⊥,在Rt POC ∆中,由面积法得OC PC PO CD ⋅=⋅,解得245CD =. ………………10分B 、(选修4—2:矩阵与变换)求直线10x y --=在矩阵22M -⎥=⎥⎥⎣⎦的变换下所得曲线的方程. 解:设(,)P x y 是所求曲线上的任一点,它在已知直线上的对应点为(,)Q x y '',则22x y xx y y ''=⎪''+=⎪⎩,解得)()2x x y y y x ⎧'=+⎪⎪⎨⎪'=-⎪⎩, ………………5分 代入10x y ''--=中,得())1022x y y x +---=,化简可得所求曲线方程为2x =. (10)分 C 、(选修4—4:坐标系与参数方程)CAB D P第21-A 题图在极坐标系中,求圆2cos ρθ=的圆心到直线2sin()13πρθ+=的距离.解:将圆2cos ρθ=化为普通方程为2220x y x +-=,圆心为(1,0), ………………4分又2sin()13πρθ+=,即12(sin )12ρθθ+=,10y +-=, ………………8分故所求的圆心到直线的距离12d =. ………………10分D 、解不等式124x x ++-<.解:当1x <-时,不等式化为124x x --+-<,解得312x -<<-; ..................3分 当12x -≤≤时,不等式化为124x x ++-<,解得12x -≤≤; (6)分当2x >时,不等式化为124x x ++-<,解得522x <<; ………………9分 所以原不等式的解集为35(,)22-. ………………10分 22.(本小题满分10分)如图,在直三棱柱111ABC A B C -中,AB AC ⊥,3AB =,4AC =,动点P 满足1(0)CP CC λλ=>,当12λ=时,1AB BP ⊥. (1)求棱1CC 的长;(2)若二面角1B AB P --的大小为3π,求λ的值. 解:(1)以点A 为坐标原点,1,,AB AC AA 分别为,,x y z 轴,建立空间直角坐标系,设1CC m =,则1(3,0,)B m ,(3,0,0)B ,(0,4,)P m λ,所以1(3,0,)AB m =,(3,4,)PB m λ=--,(3,0,0)AB =, ………………2分当12λ=时,有11(3,0,)(3,4,)02AB PB m m ⋅=⋅--=解得m =1CC的长为 (4)分(2)设平面PAB 的一个法向量为1(,,)n x y z =,则由1100AB n PB n ⎧⋅=⎪⎨⋅=⎪⎩,得30340x x y z =⎧⎪⎨--=⎪⎩,即040x y z =⎧⎪⎨+=⎪⎩,令1z =,则4y =-,所以平面PAB的一个法向量为1(0,,1)4n =-,………………6分 又平面1ABB 与y 轴垂直,所以平面1ABB 的一个法向量为2(0,1,0)n =,CABPB 1C 1A 1第22题图因二面角1B AB P --的平面角的大小为3π,所以121cos ,2n n ==0λ>,解得λ= ………………10分23.设集合{*1,2,3,,(,2)S n n N n =∈≥,,A B 是S 的两个非空子集,且满足集合A 中的最大数小于集合B 中的最小数,记满足条件的集合对(,)A B 的个数为n P . (1)求23,P P 的值;(2)求n P 的表达式.解:(1)当2n =时,即{}1,2S =,此时{}1A =,{}2B =,所以21P =, ………………2分当3n =时,即{}1,2,3S =,若{}1A =,则{}2B =,或{}3B =,或{}2,3B =;若{}2A =或{}1,2A =,则{}3B =;所以35P =. ………………4分 (2)当集合A 中的最大元素为“k ”时,集合A 的其余元素可在1,2,,1k -中任取若干个(包含不取),所以集合A 共有0121111112k k k k k k C C C C ------++++=种情况, ………………6分 此时,集合B 的元素只能在1,2,,k k n ++中任取若干个(至少取1个),所以集合B 共有12321n k n kn k n k n k n k C C C C ------++++=-种情况, 所以,当集合A 中的最大元素为“k ”时, 集合对(,)A B 共有1112(21)22k n k n k -----=- 对, ………………8分当k 依次取1,2,3,,1n -时,可分别得到集合对(,)A B 的个数,求和可得101221(1)2(2222)(2)21n n n n P n n ---=-⋅-++++=-⋅+. (10)分。
一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应.....位置上.... 1.函数()sin cos f x x x =⋅的最小正周期为 . 【答案】π考点:1.三角函数的周期;2.已知复数(2)(13)z i i =-+,其中i 是虚数单位,则复数z 在复平面上对应的点位于第 象限. 【答案】一考点:1.复数的运算;2.复数的几何表示;3.右图是一个算法流程图,如果输入x 的值是14,则输出的S 的值是 .【答案】-2(第3题图)【解析】试题分析:x =14时,114>不成立,所以21log 24S ==-;考点:1.算法流程图;2.判断结构;4.某工厂为了了解一批产品的净重(单位:克)情况,从中随机抽测了100件产品的净重,所得数据均在区间中,其频率分布直方图如图所示,则在抽测的100件产品中,净重在区间[100,104)上的产品件数是 .【答案】55考点:1.频率分布直方图;5.袋中有大小、质地相同的红、黑球各一个,现有放回地随机摸取3次,每次摸取一个球,若摸出红球,得2分,摸出黑球,得1分,则3次摸球所得总分至少是4分的概率是 . 【答案】78(第4题图)(克)考点:1.古典概型;2.互斥事件与对立事件;6.如图,在平面四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE BA BD λμ=+(,R λμ∈),则λμ+= .【答案】34考点:1.平面向量的运算;2.平面向量基本定理; 7.已知平面α,β,直线,m n .给出下列命题:① 若m α ,,n m n β ,则αβ ; ② 若αβ ,,m n αβ ,则m n ; ③ 若,,m n m n αβ⊥⊥⊥,则αβ⊥; ④ 若αβ⊥,,m n αβ⊥⊥,则m n ⊥. 其中是真命题的是 .(填写所有真命题的序号). 【答案】③④考点:1.线面、面面平行的判定与性质;2.线面、面面平行的判定与性质;8.如图,在ABC ∆中,D 是BC 上的一点.已知60B ∠=︒,2,AD AC ===,则AB = .ADCBE O(第6题图)【解析】试题分析:在ADC ∆中,222cos 2AD CD AC ADC AD AC +-∠==⋅⋅所以34ADC π∠=,4ADB π∠=.在ABD ∆中,sin sin AB AD ADB ABD=∠∠,则AB ==考点:1.余弦定理;2.正弦定理;9.在平面直角坐标系xOy 中,已知抛物线C :24x y =的焦点为F,定点A .若射线FA 与抛物线C 相交于点M ,与抛物线C 的准线相交于点N ,则FM :MN 的值是 .【答案】13考点:1.抛物线的定义;2.抛物线的几何性质;3.直线的方程; 10.记等差数列{}n a 的前n 项和为n S .已知12a =,且数列也为等差数列,则13a的值为 . 【答案】50考点:1.等差数列的概念;2.等差数列的通项公式、求和公式;11.已知函数1()||1x f x x +=+,x R ∈,则不等式2(2)(34)f x x f x -<-的解集是 .ABCD(第8题图)【答案】(1,2) 【解析】试题分析:1()||11,0,21,0,x f x x x x +=+≥⎧⎪=⎨--<⎪⎩,()f x 在区间(,0]-∞上为单调增函数,所以不等式2(2)(34)f x x f x -<-等价于2220234x x x x x ⎧-<⎪⎨-<-⎪⎩,解得(1,2)x ∈;考点:1.分段函数;2.函数的单调性;12.在平面直角坐标系xOy 中,已知⊙C :22(1)5x y +-=,A 为⊙C 与x 轴负半轴的交点,过A 作⊙C 的弦AB ,记线段AB 的中点为M . 若OA = OM ,则直线AB 的斜率为 . 【答案】2考点:1.圆的方程;2.直线与圆的位置关系;3.直线的斜率;13.已知,αβ均为锐角,且sin cos()sin ααββ+=,则tan α的最大值是 .考点:1.三角函数的和、差角公式;2.同角三角函数的关系式;3.基本不等式的应用; 14.已知函数22,0()(1)1,0x x x f x f x x ⎧+≤=⎨-+>⎩,当[0,100]x ∈时,关于x 的方程1()5f x x =-的所有解的和为 . 【答案】10000【解析】试题分析:22(0,1],1(1,2(1)0],()(1)(11)x f x f x x x x x +-+∈-∈-=-=-=,此时1()5f x x =-两解的和为1;2(1,2],1(0,1],()(1)1(11)x f x f x x x ∈-∈=-+=+-,此时1()5f x x =-两解的和为3;……考点:1.函数的周期性;2.分段函数;3.等差数列的求和公式;4.归纳推理;二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证明过程或演算步骤.15.在ABC ∆中,角A 、B 、C 的对边分别为,,a b c .已知3cos 5C =.(1)若92CB CA ⋅=,求ABC ∆的面积;(2)设向量(2sin 2B x = ,(cos ,cos )2B y B = ,且x y∥,求sin()B A -的值.【答案】(1)3;(2因为cos B ≠0,所以tan B 因为B 为三角形的内角,所以B =3π.所以A +C =23π,所以A =23π-C .所以sin(B -A )=sin(3π-A )=sin(C -3π)=12sin C-cos C =12×45×35=.考点:1.向量的数量积;2.向量共线的坐标表示;3.正弦函数的和、差角公式;16.如图,在四棱锥P -ABCD 中,12AD CD AB ==,AB DC ∥,AD CD ⊥,PC ABCD ⊥平面.(1)求证:BC ⊥平面PAC ;(2)若M 为线段PA 的中点,且过C D M ,,三点的平面与PB 交于点N ,求PN :PB 的值.【答案】(1)详见解析;(2)12;在△ABC 中,由余弦定理得BCAC 2+BC 2=AB 2.所以BC ⊥AC . 因为PC ⊥平面ABCD ,BC ⊂平面ABCD ,所以BC ⊥PC . 因为PC ⊂平面PAC ,AC ⊂平面PAC ,PC ∩AC =C ,(第16题图)PABCDM考点:1.线面垂直的判定与性质;2.线面平行的判定与性质;17.右图为某仓库一侧墙面的示意图,其下部是矩形ABCD,上部是圆弧AB,该圆弧所在的圆心为O,为了调节仓库内的湿度和温度,现要在墙面上开一个矩形的通风窗EFGH(其中E,F在圆弧AB上,G,H在弦AB上).过O作OP AB⊥,交AB于M,交EF于N,交圆弧AB于P,已知10, 6.5==(单位:m),记通风窗EFGH的面积为S(单位:2OP MPm)(1)按下列要求建立函数关系式:(i)设(rad)∠=,将S表示成θ的函数;POFθ(ii)设(m)=,将S表示成x的函数;MN x(2)试问通风窗的高度MN为多少时,通风窗EFGH的面积S最大?【答案】(1)详见解析;(2)4.5;令f (θ)=sin θ(20cos θ-7),则f ′(θ)=cos θ(20cos θ-7)+sin θ(-20sin θ)=40cos 2θ-7cos θ-20.由f ′(θ)=40cos 2θ-7cos θ-20=0,解得cos θ=45,或cos θ=-58.因为0<θ<θ0,所以cos θ>cos θ0,所以cos θ=45. 设cos α=4,且α为锐角,E BGAN DM CF OHP(第17题图)即MN =x =4.5m 时,通风窗的面积最大.考点:1.将实际问题转化为数学问题;2.利用导数求函数的最值;18.如图,在平面直角坐标系xOy 中,椭圆E :22221(0)y x a b a b+=>>,直线l :12y x =与椭圆E 相交于A ,B两点,AB =C ,D 是椭圆E 上异于A ,B 两点,且直线AC ,BD 相交于点M ,直线AD ,BC 相交于点N . (1)求a ,b 的值;(2)求证:直线MN 的斜率为定值.【答案】(1)ab(2)详见解析;试题解析:(1)因为e =c a ,所以c 2=12a 2,即a 2-b 2=12a 2,所以a 2=2b 2.故椭圆方程为222x b +22y b=1.由题意,不妨设点A 在第一象限,点B 在第三象限.所以k CB =-112k .即直线MN 的斜率为定值-1.②当CA ,CB ,DA ,DB 中,有直线的斜率不存在时, 根据题设要求,至多有一条直线斜率不存在, 故不妨设直线CA 的斜率不存在,从而C (2,-1). 仍然设DA 的斜率为k 2,由①知k DB =-212k .设点C的坐标为(x1,y1),则2·x1=211212(442)12k kk--+,从而x1=2112144221k kk--+.即直线MN的斜率为定值-1.②当CA,CB,DA,DB中,有直线的斜率不存在时,根据题设要求,至多有一条直线斜率不存在,考点:1.椭圆的离心率;2.曲线的交点;3.直线的方程;19.已知函数(2)()1lnk xf x x-=+-,其中k为常数.(1)若0k=,求曲线()y f x=在点(1,(1))f处的切线方程;(2)若5k=,求证:()f x有且仅有两个零点;(3)若k为整数,且当2x>时,()0f x>恒成立,求k的最大值. 【答案】(1)x-y=0;(2)详见解析;(3)4;又f (1)=1,所以曲线y=f(x)在点 (1,f(1))处的切线方程y-1=x-1,即x-y=0.(2)当k=5时,f(x)=ln x+10x-4.设v (x )=x -2ln x -4,则v ' (x )=2x x-.当x ∈(2,+∞)时,v '(x )>0,所以v (x )在(2,+∞)为增函数. 因为v (8)=8-2ln8-4=4-2ln8<0,v (9)=5-2ln9>0, 所以存在x 0∈(8,9),v (x 0)=0,即x 0-2ln x 0-4=0.所以f (x )在(2,+∞)上单调递增. 而f (2)=1+ln2>0成立,所以满足要求. ②当2k >2,即k >1时,当x ∈(2,2k )时,f ′(x )<0, f (x )单调递减,当x ∈(2k ,+∞),f ′(x )>0,f (x )单调递增.考点:1.导数的几何意义;2.函数与方程;3.用导数研究函数的性质;20.给定一个数列{}n a ,在这个数列里,任取m (3,)m m *≥∈N 项,并且不改变它们在数列{}n a 中的先后次序,得到的数列{}n a 的一个m 阶子数列.已知数列{}n a 的通项公式为1n a n a=+(,)n a *∈N 为常数,等差数列2a ,3a ,6a 是数列{}n a 的一个3阶子数列. (1)求a 的值;(2)等差数列12,,,m b b b 是{}n a 的一个m (3,)m m *≥∈N 阶子数列,且11b k=(,,2)k k k *∈≥N 为常数,求证:1m k ≤+;(3)等比数列12,,,m c c c 是{}n a 的一个m (3,)m m *≥∈N 阶子数列,求证:121122m m c c c -+++≤- . 【答案】(1)0;(2)详见解析;(3)详见解析;试题解析:(1)因为a 2,a 3,a 6成等差数列,所以a 2-a 3=a 3-a 6. 又因为a 2=12a +,a 3=13a +, a 6=16a +,代入得1-1=1-1,解得a =0. (2)设等差数列b 1,b 2,…,b m 的公差为d . 因为b 1=1k ,所以b 2≤11k +,从而d=b2-b1≤ 11k+-1k=-1.因为c2≤11t+,所以q=21cc≤1tt+.从而c n=c1q n-1≤1t ()11ntt-+(1≤n≤m,n∈N*).所以c1+c2+…+c m≤1t +1t()1tt+1+1t()1tt+2+…+1t()1tt+1m-=1tt+考点:1.等差数列的通项公式;2.等比数列的通项、求和公式;3.推理与证明;南京市、盐城市2015届高三年级第二次模拟考试数学附加题21.选做题A.选修4-1:几何证明选讲如图,过点A的圆与BC切于点D,且与AB、AC分别交于点E、F.已知AD为∠BAC的平分线,求证:EF∥BC.【答案】详见解析考点:1.弦切角;2.圆周角;B.选修4-2:矩阵与变换已知矩阵302a⎡⎤=⎢⎥⎣⎦A,A的逆矩阵11031b-⎡⎤⎢⎥=⎢⎥⎣⎦A.(1)求a,b的值;(2)求A的特征值.【答案】(1)a=1,b=-23;(2)λ1=1,λ2=3;BA DECF (第21A题图)考点:1.逆矩阵;2.矩阵的特征值; C.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线C : 2x s y s =⎧⎨=⎩()s 为参数,直线l:2()4x t y =+=⎧⎪⎪⎨⎪⎪⎩为参数.设曲线C 与直线l 交于A ,B 两点,求线段AB 的长度.考点:1.参数方程与普通方程的转化;2.曲线交点;3.两点间距离公式;D.选修4-5:不等式选讲已知x,y,z都是正数,且xyz = 1,求证:(1+x)(1+y)(1+z) ≥ 8.【答案】详见解析考点:1.基本不等式;2.综合法证明不等式;【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3:0,3:1,3:2获胜的概率;(2)若比赛结果为3:0或3:1,则胜利方得3分、对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分.求甲队得分X的分布列及数学期望.【答案】(1)827,827,427;(2)详见解析;所以X 的分布列为:从而E (X )=0×19+1×427+2×427+3×1627=209.答:甲队以3∶0,3∶1,3∶2获胜的概率分别为827,827,427.甲队得分X 的数学期望为209.考点:1.独立事件的概率;2.随机变量的概率分布;3.随机变量的数学期望; 23.已知,m n N *∈,定义(1)(2)(1)()!n n n n n m f m m ---+=.(1)记6()m a f m =,求1212a a a +++ 的值;(2)记(1)()m m n b mf m =-,求122n b b b +++ 所有可能值的集合. 【答案】(1)63;(2){-1,0};考点:1.组合数公式;2.二项式系数的性质;21。