汽车点火波形分析
- 格式:doc
- 大小:771.50 KB
- 文档页数:24
点火系统波形分析1.点火次级波形你如同大多数技术人员一样,或许已熟悉了一种类型的示波器,例如在车间使用发动机分析仪里的示波器,正如现在已经知道的发动机分析仪中的示波器是专用的,它被设计成用来测量一个特殊系统--点火系统。
在大多数情况下,发动机分析仪不能提供足够的功能用以诊断当今轿车的所有电气系统。
因为汽车示波器具备测试当今轿车所有必要的功能--包括点火系统,所以这是它胜过发动机分析仪的地方。
用专门设计的点火探头,能够容易地使用汽车示波器去完成通常要用大型昂贵的发动机分析仪才能做到的许多相同的试验和程序,测试例如初级和次级点火阵列波形,单独气缸的初级波形,急加速高压值--至点火系统的输出等等,这些都是汽车示波器容易完成的测试,并且,由于汽车示波器完全是便提式的,所以可以用汽车示波器来进行路试检查在行驶条件下很有可能发生的点火故障,所以在任何有公路的地方,汽车示波器就像一个公路上的“诊所”。
在这一部分中,将看到为测试典型点火系统而设置在汽车示波器中的测试程序一部分,还将学会用它独特的性能去诊断当今汽车的点火系统故障。
①分电器点火次级阵列波形,参见图7。
用点火次级阵列波形显示测试作为有效的行驶能力检查,已有三十年的历史了。
点火的次级阵列波形主要被用来检查短路或开路的火花塞高压线,或引起点火不良的污损火花塞。
这个试验可以为提供一个关于各个气缸燃烧质量情况有价值的资料。
由于点火二次波形明显地受到各种不同的发动机、燃油系统和点火条件的影响,所以它能够有效地检测出发动机机械部件和燃油系统部件以及点火系统部件,故障波形的不同部分能够指明在任何气缸中的某一部件或系统的故障。
试验方法:起动发动机或驾驶汽车使行驶性能故障或点火不良等情况出现,调整触发电平直到波形稳定和发动机转速可以清楚的在显示屏上显示出来。
波形结果:确认幅值、频率、形状和脉冲宽度等判定性尺度,在各缸上都是一致的,各缸的点火峰值电压高度应该相对一致、基本相等,任何峰值高度相互之间的差到都表明有故障,一个相比高出很多的峰值,指示在该气缸点火二次系统中存在着高的电阻,这可能意味着点火高压开路或电阻太大,一个相比低出很多的峰值指示出点火高压线短路或火花塞间隙过小,火花塞污损或破裂。
三.汽油机点火波形的检测内容概括1、点火波形的种类2、点火系统的工作原理3、点火系统的结构组成包括;蓄电池、发电机、分电器、点火线圈和火花塞等组成。
4、点火波形的测量工具——示波器示波器的结构,主要由电子枪、偏转系统,荧光屏,线束,以及有关按钮组成。
5、点火波形的异常6、检测的方法采用交互性实验,通过虚拟仿真的方式对汽油机点火波形的检测。
7诊断标准。
(一)点火波形的种类点火波形定义:汽油机点火系统发生故障时,引起点火电压变化,从而与标准的点火电压不同的电压形成的波形称为异常的点火波形。
发动机的点火线圈是由两部分的线圈组成:低压部分的初级线圈和高压部分的次级线圈。
当初级线圈的电流被截断时,初级线圈会产生200V~300V的电压,而在次级线圈上将产生高达15kV~20kV的电压,所以,两者的波形有所不同,分为两类。
次级点火电压标准波形初级点火电压标准波形(1)次级点火电压标准波形a点:断电器的触点断开或电子点火器晶体管没导通,点火线圈初级突然断电,使次级电压急剧上升。
ab段:为火花塞的击穿电压,即在断电器打开的瞬间,由于初级电流下降至零,磁通也迅速减小,于是次级产生的高压急剧上升,当次级电压还没有达到最大值时,就将火花塞的间隙击穿。
所以ab也称为点火线;(5000-8000v)bc段:当火花塞的间隙被击穿时,两电极之间要出现火花放电,同时次级电压骤然下降,bc为此时的放电电压;(电容放电阶段电压)cd段:火花塞电极间隙被击穿后,通过电极间隙的电流迅速增加,致使两极间隙中的可燃气体粒子发生电离,引起火花放电。
cd的高度表示火花放电的电压,cd的宽度表示火花放电的持续时间。
cd被称为火花线;(电感放电阶段电压)在火花间隙被击穿的同时,储存在次级电容C2(指分布电容,即点火线圈匝间、火花塞中心电极与侧电极间、高压导线与机体间等所具有的电容量总合)的能量迅速释放,故abc段被称为电容放电。
其特点是放电时间极短(1μs),放电电流很大(可达几十安培),所以a,c两点基本是在同一条垂直线上。
3.点火波形分析无论是传统点火系统还是电子点火系统或计算机控制的点火系统,都是由点火线圈通过互感作用把低压电转变为高压电,通过火花塞跳火点燃混合气做功的。
点火系统低压、高压的变化过程是有规律的,它可通过其点火波形予以反映。
点火系统正常工作时的点火线圈初、次级的电压波形,称为标准点火波形,它是点火系统的诊断标准。
(1)传统点火波形图3-17所示是传统点火系统单缸初、次级电压标准波形。
图中张开时间是初级线圈断电时间,它对应于次级线圈的点火、放电及振荡阶段;闭合时间是初级线圈通电时间,它对应于点火线圈的储能阶段,这两个阶段组成了一个完整的点火循环。
图中波形反映了从断电器触点张开、闭合、再张开的整个点火过程中,初、次级电压随时间变化的规律。
1)初级电压波形。
图3-17a是单缸初级电压标准波形。
当断电器触点张开时,初级电压迅速提高(约为100~300V},从而导致次级电压急剧上升击穿火花塞间隙。
当火花塞两极火花放电时,由于初、次级间的变压器效应,初级电压下降且出现高频振荡。
火花放电完毕后,由于点火线圈和电容器中残余能量的释放,又出现低频振荡波,其波幅迅速衰减直至初级电压趋向于蓄电池电压。
当断电器触点闭合后,初级电压几乎为零,成一直线一直延续到触点的下一次张开。
当下一缸点火时,点火循环又将复现。
示波器上张开时间、闭合时问,通常用毫秒(ms)表示,也可用分电器凸轮轴转角表示,此时其张开时间、闭合时间则分别用张开角和闭合角表示。
2)次级电压波形。
因点火线圈初、次级间的变压器效应,其次级电压波形与初级电压波形具有一定的对应关系,图3-17b是单缸次级电压标准波形。
有关次级电压波形点线的含义说明如下。
①A点:断电器触点张开,点火线圈初级绕组突然断电,导致次级电压急剧上升。
②AB线:称为点火线,其幅值为火花塞击穿电压即点火电压。
击穿电压约为8~20kV,不同的车型或点火系统,其击穿电压可能不一样。
③BC线:在火花塞间隙被击穿时,两电极之间出现火花放电,同时次级电压骤然下降,BC为电压下降的幅值。
毕业论文题目赣西科技职业学院毕业论文(设计)题目:发动机点火系点火波形测试分析学号:056810302327姓名:宋移鸿年级:2009级系别:汽车工程系专业:汽车检测与维修指导教师:余立祥完成日期:2011年10月18日汽车检测与维修毕业论文课题:发动机点火系点火波形测试分析院系:汽车工程系专业:汽车检测与维修学生姓名:宋移鸿班级:09自考汽修(4)班指导老师:余之祥2011年10月20 日1.绪论...................................................................................................................................... - 2 -2. 点火系的结构与原理............................................................................................................ - 3 -2.1 概述 ........................................................................................................................... - 3 -2.1.1 点火系的类型................................................................................................... - 3 -2.1.2 对点火系统的基本要求..................................................................................... - 3 -2.2 点火系的结构与工作原理 .......................................................................................... - 3 -2.2.1 传统点火系统的组成结构及工作原理................................................................ - 3 -2.2.2 电控点火系统的结构及工作原理....................................................................... - 4 -3. 标准波形分析及故障反映区.................................................................................................. - 4 -3.1 单缸标准次级波形..................................................................................................... - 4 -3.2 多缸平列波................................................................................................................. - 5 -3.3 多缸并列波................................................................................................................. - 5 -3.4 多缸重叠波................................................................................................................. - 5 -3.5 波形故障反映区.......................................................................................................... - 6 -4. 实验测试分析 ...................................................................................................................... - 6 -4.1 实验设备与器材.......................................................................................................... - 7 -4.2 实验操作方法步骤 ...................................................................................................... - 8 -4.3 实验波形与分析........................................................................................................ - 10 -4.3.1 实验测得波形图 ............................................................................................. - 10 -4.3.2 实验波形诊断分析............................................................................................ - 10 -5.总结.................................................................................................................................... - 11 -6.谢辞………………………………………………………………-101.绪论随着微电子技术、计算机控制技术的迅猛发展,利用电子控制技术来提升汽车发动机的性能、节约能源和降低废气污染已经成为汽车电子技术的发展趋势。
第八章初级点火波形分析第一节初级点火波形的作用及分类初极点火波形是次级的感应波形,它的波形可反映点火线圈的好坏,及初级电容、白金或点火器的好坏。
通过电压变化波形,可以看到点火线圈的初级电流的导通时间,及导通时的电路压降,发现点火线圈,点火器的损坏及电路短路、断路、接触不良等故障一、初级点火波形的分类根据点火系统的组成可以分为常规点火系统和电子点火系统两类。
从波形的显示方式来区分,可以分为单缸点火初级波形和多缸平列及并列波形。
(一)单缸点火初级波形(常规点火系统)常规点火系统的单缸初级波形,在燃烧电压出现部分一般有大量的杂波产生。
见图8-1中箭头所示。
通过观察单缸点火初级波形,可以对单一气缸的初级电路进行分析。
图8-1 常规点火波形见图8-2,为使用博世FSA740发动机综合分析仪对初级点火系统进行全面测试得到的波形。
测试车辆为长安面包(化油器型)(二)单缸点火初级波形(电子点火)相对于常规点火,电子点火系统的初级波形,触点闭合部分、以及燃烧线比较干净。
见图8-3电子点火初级波形。
通过观察单缸点火初级波形,可以对单一气缸的初级电路进行分析。
(三)初级点火(平列波)图8-2 初级波形图8-3 电子点火初级波形在屏幕上从左至右按点火次序将各缸点火波形首尾相连排成一字形,称为多缸平列波。
见图8-4。
让发动机怠速运转、急加速或路试汽车,使行驶性能或点火不良等故障现象再现。
并确认各缸信号的幅值、频率、形状和脉冲宽度等判定性尺度是否一致。
图8-4 多缸平列波形(四)初级点火(并列波)在屏幕上从上到下按点火次序将各缸点火波形之首对齐并分别放置,称为多缸并列波。
如图8-5。
在并列波形图中,可以看到各缸并列波的全貌,便于分析各缸闭合角和开启角及各缸火花塞的工作状态。
从初级并列波上也很容易地测出各缸间的重叠角。
对于传统点火系统,发动机触点闭合角的标准值为:四缸发动机:40°—45°;六缸发动机:38°—42°;八缸发动机:29°—32°。
实验三汽油发动机点火波形检测与分析指导书适用专业:汽车服务工程实验时数:2学时一、实训目的与要求1、掌握利用真空表检测发动机故障的方法及原理;2、根据真空表显示的异常指示找出发动机故障的原因。
二、实训课时2学时三、实训设备及器材1、常用工具1套2、发动机综合测试仪(或汽车专用示波器)1台3、技术状况良好的发动机总成1台四、实训内容及步骤使用发动机综合测试仪的示波器功能或汽车专业示波器检测点火波形,可用来判断点火系各部件的故障。
1、发动机综合测试仪与发动机的线路连接(1)将发动机综合测试仪的蓄电池电压拾取器的红、黑夹分别夹在蓄电池的正、负极上。
(2)将红色次级信号夹夹在中央高压线上(从适配器1280408的红色BNC 头引入设备),一缸信号钳夹在一缸高压线上,如图1所示。
图1 发动机综合测试仪与发动机的连接(3)起动发动机至正常工作温度,并怠速运转。
(4)启动发动机综合测试仪,在“汽油机检测”菜单下用鼠标左键点击“次级信号”图标即进入次级信号测试界面,即可测到次级平列波、并列波、重叠波等波形。
2、标准波形分析(1)单缸波形如图2所示为发动机1500r/min时的单缸标准次级波形图。
它反映了单缸点火的工作情况。
当点火装置出现故障时,次级电压的波形就会发生变化,因此根据波形的变化可初步判断故障所在。
图2 单缸标准次级波形图图中波形上各点的含义如下:a为断电器触点打开,次级电压急剧上升;ab为击穿电压;bc为电容放电;cd为电感放电,称为火花线;de为火花消失后,剩余磁场能维持的衰减震荡;e点为断电器触点闭合;ef为触点闭合导致的负电压,并引起闭合震荡;ae为触点打开的全部时间;ea为触点闭合的全部时间。
如果时间用分电器凸轮轴转角表示,则ae 为断电器触点张开角;ea为断电器触点闭合角。
(2)多缸重叠波形多缸重叠波形时将各单缸波形之首对齐并重叠在一起的排列方式。
6缸发动机的标准次级重叠波形如图3所示。
图3 标准次级重叠波形1-平均触点闭合角 2-触点闭合点变化范围 3-重叠角(3)多缸平列波和多缸并列波形为比较各缸点火情况,可将各缸点火波形平列和并列在显示屏上。
点火波形是用于控制火花塞跳火的关键电力波形。
根据发动机的工作状况,点火波形会在特定的时间间隔内发生连续的变化。
这种波形是由多种类型组成,主要分为脉冲式点火波形、准脉冲式点火波形、可变周期的脉冲式点火波形和正弦式点火波形四种类型。
首先是脉冲式点火波形,这种波形在发动机的每个工作周期内都会产生一系列高电压的脉冲,使火花塞在脉冲结束时跳火。
这种点火方式常见于传统点火线圈的工作方式,具有高电压和电流幅值的特点,适合于低转速的发动机。
准脉冲式点火波形与脉冲式相似,但在每个工作周期内会插入一个较小的非脉冲电压,使火花塞在非脉冲期间不跳火。
这种点火方式有助于降低发动机的噪音,对于追求噪音较低的车辆来说是一种不错的选择。
可变周期的脉冲式点火波形是一种更为先进的点火方式,其周期会随着发动机转速的变化而变化。
这种点火波形可以更好地利用火花能量,提高燃烧效率,同时降低油耗和排放。
这种点火方式常见于一些高端车型上,如电动汽车等。
最后是正弦式点火波形,这是目前最为常见的点火方式。
其周期与发动机转速呈正弦曲线关系,能够更加均匀地分布火花能量,使燃烧更加充分,同时降低了发动机的噪音和振动。
这种点火方式适用于各种类型的发动机,具有较高的稳定性和可靠性。
总之,点火波形是控制火花塞跳火的关键电力波形,根据发动机的工作状况和需求,会选择不同类型的点火波形。
脉冲式、准脉冲式、可变周期的脉冲式以及正弦式是常见的四种类型,每种类型都有其独特的优点和适用范围。
在实际应用中,需要根据车辆类型、发动机类型以及工作需求来选择合适的点火波形,以达到最佳的燃烧效率和性能表现。
汽车点火波形分析摘要汽车电子化的发展,应用之广与日俱增,尤其是计算机、网络技术的发展为汽车电子化带来了根本性的变革。
因此,当代汽车的维修不是单纯的机械维修,而是机械与电子为一体的维修。
由于电子控制元件的维修比较抽象,给汽车维修技术提出了新的挑战,使许多维修人员望而止步,感到神秘莫测。
汽车电控系统技术的发展,使现代的汽车成为了一个高科技的结晶体,这就要求汽车故障诊断技术也向高新技术方向发展。
传统的故障诊断方式根本不能适应现代汽车故障诊断的要求,尤其对电控系统故障的诊断,必须采用先进的检测设备,先进的工作模式。
波形分析技术应用于汽车维修业,可以大大提高汽车故障诊断的速度与准确性,利用波形分析检测时,示波器可以显示出电子信号的各种参数,利用这些参数就能够判定这个电子信号的波形是否正常,然后,通过波形分析便可以进一步检查出电路中传感器,执行器以及电路和控制电脑等各部分的故障,从而进行修理。
本文叙述了汽车点火系统波形连接、检测、分析方法;并结合波形图形象深刻的分析汽车故障类型、位置、原因。
使学者有一目了然的深刻视觉感受,发掘学习者的兴趣。
【关键词】:点火系统;点火波形图;波形分析;故障波形分析目录第1章绪论 (1)1.1引言 (1)1.2 点火系统概述 (1)第2章点火系统检测连接及点火波形种类、特点 (3)2.1点火系统检测连接方法 (3)2.2点火波形种类 (4)2.3次级点火波形的特点 (5)第3章点火波形分析 (7)3.1点火波形分析方法 (7)3.2各类点火系波形 (8)3.2.1触点式点火系波形 (8)3.2.2无触点点火系波形 (9)3.2.3 无分电器点火系统波形 (9)3.3次级点火波形可查明的故障 (9)3.4分析次级点火波形的要点(五常看) (10)3.5点火系统的加载调试 (12)第4章故障波形分析 (13)4.1典型故障波形分析 (13)4.1.1初级电压分析 (14)4.1.2次级电压波形分析 (15)4.2次级点火故障波形分析 (16)4.3点火波形分析举例 (17)结论 (20)参考文献 (21)致谢 (22)2第1章绪论第1章绪论1.1引言汽车自1886年诞生以来,发展及其快速,已成为集机、电、液、气于一体。
并能及时、广泛地采用世界最先进技术的交通工具。
特别是电子技术、微机技术等先进的技术在汽车上应用,使汽车的动力性、经济性、排放净化性、安全性、操纵稳定性、行使平顺性、舒适性、通过性和可靠性等使用性能愈来愈完善,使得寿命愈来愈高。
随着汽车电子信息技术的迅速发展,汽车上装用的电子设备越来越多,这就对今天的汽车故障诊断提出了新的挑战。
如何快速、准确地诊断出汽车电子控制系统的故障,是现代许多汽车维修人员面临的一个难题。
汽车故障也会因发动机的使用时间过长、使用幅度过大、使用标准不良等问题而出现。
而点火系是汽油机的一个重要组成部分, 其工作状态直接影响发动机的性能, 对点火系进行检测与故障诊断对保持发动机良好的工作性能有重要意义。
汽车示波器的诞生为汽车维修人员快速判断汽车电子设备故障提供了有力的工具,电子设备的测试设定变得非常简单,无需任何设定和调整就可以直接观察电子元件的信号波形。
汽车示波器是检查点火系的有力工具, 它通过显示点火波形能确定发动机机械系统、燃油供给系统及点火系统的故障部件。
同时,波形分析技术也大大提高汽车故障诊断的速度与准确性。
1.2 点火系统概述点火系统发展:1、1886年,磁电机点火系统;2、1908年,蓄电池点火系统(传统);3、60年代,有触点电子点火系统(过渡产品);4、70年代,无触点电子点火系统(IC控制);5、80年代,微机控制电子点火系统(ECU控制);传统点火系统又称触点式点火系统,主要由点火线圈、分电器、火花塞、高压线和分缸线等组成;在传统点火系统中,电源给的6V或12V的低压直流电,经断电器和点1毕业设计(论文)火线圈转变为高压电,在经配电器分送到各缸火花塞,在火花塞的电极间产生火花,点燃混合气,使发动机工作。
点火系统的基本功用是在发动机各种工况和使用条件下,在气缸内适时、准确、可靠地产生电火花,以点燃可燃混合气,使发动机作功。
在汽油机各系统中点火系对发动机性能影响最大,统计数值表明有将近一半的故障是因为电器系统工作不良而引起的,因此,发动机性能检测往往从点火系统开始。
首先,使用先进电子技术的当属点火系统。
形式结构和工作原理更新最快的非点火系统莫属。
现用点火系统大体分为以下几类;它们在检测时的接线有所不同,必须区别对待:(1)由电磁、红外或霍尔元器件构成的非接触式断电器组成的点火系统称为无触点点火器,其放大电路又分为晶体管电路和电容放电电路两种。
(2)ECU(Electronic Control Unit)控制的点火系,ECU中的微处理器根据曲轴转角传感器的信号确定点火时刻,因而它没有断电器,只有分电器,根据ECU送来的信号直接控制点火线圈初级电路的通断。
(3)无分电器点火系统(Distributor-Less Ignite)是当前最先进的点火系统,曲轴传感器送来的不仅有点火时刻信号,而且还有气缸识别信号,从而使点火系统能向指定的气缸在指定的时刻送去点火信号,这就要求每缸配有独立的点火线圈,但如果是六缸机则1,6缸、2,5缸和3,4缸分别共用一个点火线圈,即共有三个点火线圈,显然每一个点火线圈点火时,总有一个缸是空点火,检测时应注意到这一点。
无触点点火系统能使用低阻抗电感线圈,从而大幅度提高初级电流,使次级电压高达30kv以上,增强点火能量以提高点燃稀混合气的能力,在改善燃油经济性的同时也降低排气污染。
无分电器点火系统完全是电子器件无机械运动部件,彻底解决了凸轮和轴承磨损以及点接触烧蚀间隙失调而引起的一系列故障。
2第2章点火系统检测连接及点火波形种类、特点第2章点火系统检测连接及点火波形种类、特点2.1点火系统检测连接方法检测点火系首先将信号提取系统连接到发动机线路上。
图2-1是机械点火系和晶体管点火系信号提取接头的连接方法;图2-2是电容放电式点火系统的信号提取接头连接方法。
图2-1 机械点火系和晶体管点火系信号提取接头的连接方法图2-2 电容放电式点火系统的信号提取接头连接方法无分电器点火系统是将高压通过独立式点火线圈连接送向火花塞,当高压感应夹难3毕业设计(论文)以找到可夹持的位置时,可用一种专用感应夹具夹持于独立式点火线圈上以感应出高压信号,如图2-3所示。
图2-3 独立式点火线圈上夹持式感应器2.2点火波形种类当气缸点火波形采集完成后,检测分析仪采集系统计算机软件将捕捉的点火波形进行不同类别的排列与组合,以多缸平列波、多缸并列波、多缸重叠波和单缸选缸波四种排列形式分别显示点火波形,以便于检测人员从不同排列形式波形中观测、分析、判断点火系技术状况。
以供检测人员快捷而准确的判断故障的成因。
(一)平列波按点火次序将各缸点火波形首尾相连排成一字开来,称为平列波,图2-4所示为一四缸发动机的平列波形,其作用主要用以分析次级电压的故障,各缸次级击穿电压是否均衡,火花电压是否均衡,火花电压是否有差异在平列波图上一目了然。
图2-4标准四缸次级电压的平列波形(二)并列波如将各缸的点火波形始点对齐而由上至下按点火次序排列而形成的波形,如图2-5所示为一个四缸发动机的初级电压并列波形。
这一波形图可以看到各缸的全貌,分析各缸闭合角和开起角以及各缸火花塞的工作状态十分方便,如使用TDC传感器或频闪灯4第2章点火系统检测连接及点火波形种类、特点将上止点信号标于一缸电压波形上则可以检测到点火提前角。
(三)重叠波将各缸的点火波形起始点对齐,全部重叠在一个水平位置上称为重叠波,如图2-6所示。
如果触点式点火系统的分电器凸轮磨损不均匀或凸轮轴磨损严重将会造成波形重叠不良,一般重叠角不能超过周期的5%。
图2-5 标准四缸次级电压的并列波形图2-6次级电压重叠波(四)单缸点火波形图2-7单缸点火波形2.3次级点火波形的特点在发动机点火系中, 点火线圈的初级和次级绕组均有充电和放电的过程, 这两个过程是用汽车示波器以感应方式监测点火过程的基础。
所有点火系统, 无论是传统触点点火系, 还是磁感应电子点火系和霍尔效应电子点火系, 均可在示波器上观察点火过程的曲线变化状态。
发动机停止工作时, 点火波形在示波器上是一条水平直线, 该直线定义为零线。
当发动机工作时,点火波形呈现在零线上下变化的状态。
对于某种完好的点火系统存在该5毕业设计(论文)系统点火曲线形态的相对标准波形。
根据实际监测到的点火波形与标准波形比较找出差异, 即可高效地查出故障源。
测试时, 发动机处于正常工作温度, 在不同负荷及转速下检测点火系性能。
如下图2-8 表示CA 488Q 发动机点火系单缸和多缸并列次级点火波形。
图2-8 CA 488Q 发动机点火系次级点火波形(a) 单缸(b) 多缸其中,初级电压波形和次级电压波形极为相似, 但在进行点火系故障诊断时, 大都检测次级波形, 只在判断点火线圈工作质量时才检测初级波形。
(一)单缸标准次级点火波形分成三个部分(图2-8.a):点火部分、中间部分、闭合部分。
点火部分:点火部分有一条点火线和一条火花线,点火线是一条垂直的直线, 它代表克服火花塞间隙所需的电压;火花线则是一条近似水平的线,而微观上为锯齿状曲线, 代表维持电流通过火花塞所需的电压。
中间部分:中间部分显示点火线圈中剩余的能量,它会通过初级和次级的来回振荡来耗散剩余的能量。
这时白金触点开启或晶体管断路。
闭合部分:闭合部分代表线圈的通电状态,这段时间是白金触点接合或晶体管导通的时间。
(二)多缸并列标准波形:各缸波形的状态、电压峰值、频率、脉冲宽度等都一致,且波形测试数据在标准数据范围内。
传统点火系统电压约为10kv,电子系统应该更高。
点火线应相等,且极易比较:如果有短线表示引线电阻低;长线表示引线电阻高。
6第3章点火波形分析第3章点火波形分析3.1点火波形分析方法在点火系的故障中,主要的故障有无火、缺火、乱火、火弱及点火正时失准等。
这些故障将会造成发动机不能起动或工作不正常。
点火系故障部位可分为低压线路和高压线路两部分。
点火波形是汽油机在点火过程中,分缸高压线上的电压随时间的变化规律。
如果实测的点火波形与标准波形出现明显差异,说明点火系统(或供油系统)有故障。
因此,分析点火波形方法有:确认幅值、频率、形状和脉冲宽度等判定性尺度,在各缸的点火波形上是否一致。
特别是在急加速或高负荷时。
各缸的点火峰值电压高度应该相对一致,基本相等,任何峰值电压高度与实际的偏差都意味着可能存在故障。
在急加速或高负荷条件下由于气缸压力的增加,所有缸的点火峰值电压高度都应该增加。