万有引力与航天测试题(附答案)
- 格式:doc
- 大小:134.24 KB
- 文档页数:5
高中物理万有引力与航天题20套(带答案)一、高中物理精讲专题测试万有引力与航天1.中国计划在2017年实现返回式月球软着陆器对月球进行科学探测,宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出一小球,测出水平射程为L (这时月球表面可以看作是平坦的),已知月球半径为R ,万有引力常量为G ,求: (1)月球表面处的重力加速度及月球的质量M 月;(2)如果要在月球上发射一颗绕月球运行的卫星,所需的最小发射速度为多大? (3)当着陆器绕距月球表面高H 的轨道上运动时,着陆器环绕月球运动的周期是多少?【答案】(1)22022hV R M GL =(23)T =【解析】 【详解】(1)由平抛运动的规律可得:212h gt =0L v t =2022hv g L=由2GMmmg R = 22022hv RM GL =(2)1v ===(3)万有引力提供向心力,则()()222GMmm R H T R H π⎛⎫=+ ⎪⎝⎭+解得:T =2.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(引力常量为G)【答案】【解析】设两颗恒星的质量分别为m1、m2,做圆周运动的半径分别为r1、r2,角速度分别为w1,w2.根据题意有w1=w2 ① (1分)r1+r2=r ② (1分)根据万有引力定律和牛顿定律,有G③ (3分)G④ (3分)联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解3.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P点,远地点为同步圆轨道Ⅲ上的Q点.到达远地点Q时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G,地球质量为M,地球半径为R,飞船质量为m,同步轨道距地面高度为h.当卫星距离地心的距离为r时,地球与卫星组成的系统的引力势能为p GMmEr=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能)【答案】(1)2GMm R (23【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:2v = (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:3v =. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.4.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3)()2R H R HTRπ++ 【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT+=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT+=. 联立得()2πR H R HV TR++=5.设地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.若把一质量为m 的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.(1)若把物体放在北极的地表,求该物体对地表压力的大小F 1; (2)若把物体放在赤道的地表,求该物体对地表压力的大小F 2;(3)假设要发射一颗卫星,要求卫星定位于第(2)问所述物体的上方,且与物体间距离始终不变,请说明该卫星的轨道特点并求出卫星距地面的高度h .【答案】(1)2GMm R (2)22224Mm F G m R R T π=-(3)2324GMTh R π= 【解析】【详解】(1) 物体放在北极的地表,根据万有引力等于重力可得:2MmG mg R = 物体相对地心是静止的则有:1F mg =,因此有:12MmF GR = (2)放在赤道表面的物体相对地心做圆周运动,根据牛顿第二定律:22224Mm GF mR RTπ-=解得: 22224Mm F G m R R Tπ=-(3)为满足题目要求,该卫星的轨道平面必须在赤道平面内,且做圆周运动的周期等于地球自转周期T以卫星为研究对象,根据牛顿第二定律:2224()()Mm GmR h R h Tπ=++解得卫星距地面的高度为:2324GMTh R π=-6.“嫦娥一号”在西昌卫星发射中心发射升空,准确进入预定轨道.随后,“嫦娥一号”经过变轨和制动成功进入环月轨道.如图所示,阴影部分表示月球,设想飞船在圆形轨道Ⅰ上作匀速圆周运动,在圆轨道Ⅰ上飞行n 圈所用时间为t ,到达A 点时经过暂短的点火变速,进入椭圆轨道Ⅱ,在到达轨道Ⅱ近月点B 点时再次点火变速,进入近月圆形轨道Ⅲ,而后飞船在轨道Ⅲ上绕月球作匀速圆周运动,在圆轨道Ⅲ上飞行n 圈所用时间为.不考虑其它星体对飞船的影响,求:(1)月球的平均密度是多少?(2)如果在Ⅰ、Ⅲ轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则经过多长时间,他们又会相距最近?【答案】(1)22192n Gtπ;(2)1237mt t m n (,,)==⋯ 【解析】试题分析:(1)在圆轨道Ⅲ上的周期:38tT n=,由万有引力提供向心力有:222Mm G m R R T π⎛⎫= ⎪⎝⎭又:343M R ρπ=,联立得:22233192n GT Gt ππρ==. (2)设飞船在轨道I 上的角速度为1ω、在轨道III 上的角速度为3ω,有:112T πω= 所以332T πω=设飞飞船再经过t 时间相距最近,有:312t t m ωωπ''=﹣所以有:1237mtt m n(,,)==⋯. 考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要考查万有引力定律的应用,开普勒定律的应用.同时根据万有引力提供向心力列式计算.7.一名宇航员抵达一半径为R 的星球表面后,为了测定该星球的质量,做下实验:将一个小球从该星球表面某位置以初速度v 竖直向上抛出,小球在空中运动一间后又落回原抛出位置,测得小球在空中运动的时间为t ,已知万有引力恒量为G ,不计阻力,试根据题中所提供的条件和测量结果,求:(1)该星球表面的“重力”加速度g 的大小; (2)该星球的质量M ;(3)如果在该星球上发射一颗围绕该星球做匀速圆周运动的卫星,则该卫星运行周期T 为多大?【答案】(1)2v g t =(2)22vR M Gt=(3)2T π=【解析】 【详解】(1)由运动学公式得:2vt g=解得该星球表面的“重力”加速度的大小 2v g t=(2)质量为m 的物体在该星球表面上受到的万有引力近似等于物体受到的重力,则对该星球表面上的物体,由牛顿第二定律和万有引力定律得:mg =2mM GR解得该星球的质量为 22vR M Gt= (3)当某个质量为m′的卫星做匀速圆周运动的半径等于该星球的半径R 时,该卫星运行的周期T 最小,则由牛顿第二定律和万有引力定律2224m M m RG R Tπ''=解得该卫星运行的最小周期 22Rt T vπ= 【点睛】重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.本题要求学生掌握两种等式:一是物体所受重力等于其吸引力;二是物体做匀速圆周运动其向心力由万有引力提供.8.神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX ﹣3双星系统,它由可见星A 和不可见的暗星B 构成.将两星视为质点,不考虑其他天体的影响,A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,(如图)所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T .(1)可见星A 所受暗星B 的引力FA 可等效为位于O 点处质量为m ′的星体(视为质点)对它的引力,设A 和B 的质量分别为m1、m2,试求m ′(用m1、m2表示); (2)求暗星B 的质量m2与可见星A 的速率v 、运行周期T 和质量m1之间的关系式; (3)恒星演化到末期,如果其质量大于太阳质量ms 的2倍,它将有可能成为黑洞.若可见星A 的速率v =2.7×105 m/s ,运行周期T =4.7π×104s ,质量m1=6ms ,试通过估算来判断暗星B 有可能是黑洞吗?(G =6.67×10﹣11N •m 2/kg2,ms =2.0×103 kg )【答案】(1)()32212'm m m m =+()3322122m v T Gm m π=+(3)有可能是黑洞 【解析】试题分析:(1)设A 、B 圆轨道的半径分别为12r r 、,由题意知,A 、B 的角速度相等,为0ω,有:2101A F m r ω=,2202B F m r ω=,又A B F F =设A 、B 之间的距离为r ,又12r r r =+ 由以上各式得,1212m m r r m +=① 由万有引力定律得122A m m F Gr =将①代入得()3122121A m m F G m m r =+令121'A m m F G r =,比较可得()32212'm m m m =+② (2)由牛顿第二定律有:211211'm m v G m r r =③ 又可见星的轨道半径12vT r π=④ 由②③④得()3322122m v T Gm m π=+ (3)将16s m m =代入()3322122m v T G m m π=+得()3322226s m v TGm m π=+⑤ 代入数据得()3222 3.56s s m m m m =+⑥设2s m nm =,(n >0)将其代入⑥式得,()322212 3.561s sm n m m m m n ==+⎛⎫+ ⎪⎝⎭⑦可见,()32226s m m m +的值随n 的增大而增大,令n=2时得20.125 3.561s s sn m m m n =<⎛⎫+ ⎪⎝⎭⑧要使⑦式成立,则n 必须大于2,即暗星B 的质量2m 必须大于12m ,由此得出结论,暗星B 有可能是黑洞.考点:考查了万有引力定律的应用【名师点睛】本题计算量较大,关键抓住双子星所受的万有引力相等,转动的角速度相等,根据万有引力定律和牛顿第二定律综合求解,在万有引力这一块,设计的公式和物理量非常多,在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算9.“嫦娥四号”卫星从地球经地一月转移轨道,在月球附近制动后进入环月轨道,然后以大小为v 的速度绕月球表面做匀速圆周运动,测出其绕月球运动的周期为T ,已知引力常量G ,月球的半径R 未知,求: (1)月球表面的重力加速度大小;(2)月球的平均密度。
高中物理万有引力与航天试题(有答案和解析)一、高中物理精讲专题测试万有引力与航天1.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:(1)该星球表面的重力加速度; (2)该星球的质量。
【答案】(1)02tan v g t θ=(2)202tan v R Gtθ【解析】 【分析】平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度;根据万有引力等于重力求出星球的质量; 【详解】(1)根据平抛运动知识可得200122gt y gt tan x v t v α===解得02v tan g tα=(2)根据万有引力等于重力,则有2GMmmg R = 解得2202v R tan gR M G Gtα==2.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T ,地球半径为R ,地球表面的重力加速度为g ,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G .求: (1)地球的密度; (2)地球的第一宇宙速度v ; (3)“天宫一号”距离地球表面的高度. 【答案】(1)34gGRρπ= (2)v gR =22324gT R h R π= 【解析】(1)在地球表面重力与万有引力相等:2MmGmg R =, 地球密度:343M M R Vρπ==解得:34gGRρπ=(2)第一宇宙速度是近地卫星运行的速度,2v mg m R=v =(3)天宫一号的轨道半径r R h =+, 据万有引力提供圆周运动向心力有:()()2224MmGm R h TR h π=++,解得:h R =3.经过逾6 个月的飞行,质量为40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日03:56在火星安全着陆。
万有引力与航天试题全集(含答案)一、选择题:本大题共。
1、地球绕太阳运动的轨道是一椭圆,当地球从近日点向远日点运动时,地球运动的速度大小(地球运动中受到太阳的引力方向在地球与太阳的连线上,并且可认为这时地球只受到太阳的吸引力)()A.不断变大B.逐渐减小C.大小不变D.没有具体数值,无法判断2、对于开普勒第三定律的表达式=k的理解正确的是A.k与a3成正比B.k与T2成反比C.k值是与a和T无关的值D.k值只与中心天体有关3、苹果落向地球,而不是地球向上运动碰到苹果,下列论述中正确的是A.由于苹果质量小,对地球的引力小,而地球质量大,对苹果的引力大造成的B.由于地球对苹果有引力,而苹果对地球没有引力而造成的C.苹果对地球的作用力和地球对苹果的作用力是相等的,由于地球质量极大,不可能产生明显的加速度D.以上说法都正确4、某球状行星具有均匀的密度ρ,若在赤道上随行星一起转动的物体对行星表面的压力恰好为零,则该行星自转周期为(万有引力常量为G)A. B. C. D.5、关于开普勒第三定律的公式=k,下列说法中正确的是A.公式只适用于绕太阳做椭圆轨道运行的行星B.公式适用于所有围绕星球运行的行星(或卫星)C.式中的k值,对所有行星(或卫星)都相等D.式中的k值,对围绕不同星球运行的行星(或卫星)都相同6、根据观测,某行星外围有一模糊不清的环,为了判断该环是连续物还是卫星群,测出了环中各层的线速度v的大小与该层至行星中心的距离R.则以下判断中正确的是A.若v与R成正比,则环是连续物B.若v与R成反比,则环是连续物C.若v2与R成反比,则环是卫星群D.若v2与R成正比,则环是卫星群7、关于太阳系中各行星的轨道,以下说法正确的是A.所有行星绕太阳运动的轨道都是椭圆B.有的行星绕太阳运动的轨道是圆C.不同行星绕太阳运动的椭圆轨道的半长轴是不同的D.不同的行星绕太阳运动的轨道各不相同8、类似于太阳与行星间的引力,地球和月球有相当大的万有引力,为什么它们不靠在一起,其原因是A.不仅地球对月球有万有引力,而且月球对地球也有万有引力,这两个力大小相等,方向相反,互相平衡B.地球对月球的引力还不算大C.不仅地球对月球有万有引力,而且太阳系里其他星球对月球也有万有引力,这些力的合力为零D.万有引力不断改变月球的运动方向,使得月球绕地球运动9、下列说法正确的是A.经典力学能够说明微观粒子的规律性B.经典力学适用于宏观物体的低速运动问题,不适用于高速运动的问题C.相对论与量子力学的出现,表示经典力学已失去意义D.对于宏观物体的高速运动问题,经典力学仍能适用10、下面关于行星绕太阳运动的说法中正确的是A.离太阳越近的行星周期越大B.离太阳越远的行星周期越大C.离太阳越近的行星的向心加速度越大D.离太阳越近的行星受到太阳的引力越大11、可以发射一颗这样的人造地球卫星,使其圆轨道A.与地球表面上某一纬度线(非赤道)是共面同心圆B.与地球表面上某一经度线所决定的圆是共面同心圆[从太阳-恒星惯性系中看,某一经线构成的圆平面会随地球自转而不断改变方位,但卫星的极地轨道平面的方位却几乎不变——垂直于该平面过圆心的直线几乎总是指向同一方向,就像地轴的方向几乎总是指向北极星一样。
《万有引力与航天》测试题一、选择题(每小题4分,全对得4分,部分对的得2分,有错的得0分,共48分。
)1.第一次通过实验比较准确的测出引力常量的科学家是( )A . 牛顿B . 伽利略C .胡克D . 卡文迪许2.如图1所示a 、b 、c 是在地球大气层外圆形轨道上运动的3颗卫星,下列说法正确的是( )A .b 、c 的线速度大小相等,且大于a 的线速度;B .b 、c 的向心加速度大小相等,且大于a 的向心加速度;C .c 加速可追上同一轨道上的b ,b 减速可等候同一轨道上的c ;D .a 卫星由于某种原因,轨道半径变小,其线速度将变大3.宇宙飞船为了要与“和平号“轨道空间站对接,应该:( ) A.在离地球较低的轨道上加速 B.在离地球较高的轨道上加速C.在与空间站同一高度轨道上加速D.不论什么轨道,只要加速就行4、 发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q 点,轨道2、3相切于P 点,如图2所示。
则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:( )A .卫星在轨道3上的速率大于在轨道1上的速率。
B .卫星在轨道3上的角速度小于在轨道1上的角速度。
C .卫星在轨道1上经过Q 点时的速度大于它在轨道2上经过Q 点时的速度。
D .卫星在轨道2上经过P 点时的加速度等于它在轨道3ba c 地球图1上经过P 点时的加速度5、 宇航员在围绕地球做匀速圆周运动的空间站中会处于完全失重中,下列说法中正确的是( )A.宇航员仍受重力的作用B.宇航员受力平衡C.宇航员受的重力正好充当向心力D.宇航员不受任何作用力6.某星球质量为地球质量的9倍,半径为地球半径的一半,在该星球表面从某一高度以10 m/s 的初速度竖直向上抛出一物体,从抛出到落回原地需要的时间为(g 地=10 m/s 2)( ) A .1sB .91s C .181s D .361s 7.假如地球自转速度增大,关于物体重力,下列说法正确的是( )A 放在赤道地面上的万有引力不变B 放在两极地面上的物体的重力不变C 放在赤道地面上物体的重力减小D 放在两极地面上的物体的重力增加 8、设想把质量为m 的物体放在地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是( )A.零B.无穷大C.2GMm R D.无法确定9.对于质量m 1和质量为m 2的两个物体间的万有引力的表达式122m m F Gr ,下列说法正确的是( )和m 2所受引力总是大小相等的 B 当两物体间的距离r 趋于零时,万有引力无穷大 C.当有第三个物体m 3放入之间时,m 1和m 2间的万有引力将增大 D.所受的引力性质可能相同,也可能不同10地球赤道上的重力加速度为g ,物体在赤道上随地球自转的向心加速度为a ,要使赤道上物体“飘” 起来,则地球的转速应为原来转速的( )A ga 倍 Bg aa+倍 Cg aa-倍 Dga倍11.关于地球同步通讯卫星,下列说法中正确的是()A.它一定在赤道上空运行B.各国发射的这种卫星轨道半径都一样C.它运行的线速度一定小于第一宇宙速度D.它运行的线速度介于第一和第二宇宙速度之间12.由于地球的自转,地球表面上各点均做匀速圆周运动,所以()A.地球表面各处具有相同大小的线速度B.地球表面各处具有相同大小的角速度C.地球表面各处具有相同大小的向心加速度D.地球表面各处的向心加速度方向都指向地球球心二.填空题(每题6分,共12分。
万有引力与航天单元测试题一、选择题1.关于日心说被人们接受的原因就是 ( )A.太阳总就是从东面升起,从西面落下B.若以地球为中心来研究的运动有很多无法解决的问题C.若以太阳为中心许多问题都可以解决,对行星的描述也变得简单D.地球就是围绕太阳运转的2.有关开普勒关于行星运动的描述,下列说法中正确的就是( )A.所有的行星绕太阳运动的轨道都就是椭圆,太阳处在椭圆的一个焦点上B.所有的行星绕太阳运动的轨道都就是圆,太阳处在圆心上C.所有的行星轨道的半长轴的三次方跟公转周期的二次方的比值都相等D.不同的行星绕太阳运动的椭圆轨道就是不同的3.关于万有引力定律的适用范围,下列说法中正确的就是( )A.只适用于天体,不适用于地面物体B.只适用于球形物体,不适用于其她形状的物体C.只适用于质点,不适用于实际物体D.适用于自然界中任意两个物体之间4.已知万有引力常量G,要计算地球的质量还需要知道某些数据,现在给出下列各组数据,可以计算出地球质量的就是( )A.地球公转的周期及半径B.月球绕地球运行的周期与运行的半径C.人造卫星绕地球运行的周期与速率D.地球半径与同步卫星离地面的高度5.人造地球卫星由于受大气阻力,轨道半径逐渐变小,则线速度与周期变化情况就是( )A.速度减小,周期增大,动能减小B.速度减小,周期减小,动能减小C.速度增大,周期增大,动能增大D.速度增大,周期减小,动能增大6.一个行星,其半径比地球的半径大2倍,质量就是地球的25倍,则它表面的重力加速度就是地球表面重力加速度的( )A.6倍B.4倍C.25/9倍D.12倍7.假如一个做圆周运动的人造卫星的轨道半径增大到原来的2倍仍做圆周运动,则( )A.根据公式v=ωr可知,卫星运动的线速度将增加到原来的2倍B.根据公式F=mv2/r可知,卫星所需向心力减小到原来的1/2C.根据公式F=GMm/r2可知,地球提供的向心力将减小到原来的1/4D.根据上述B与C中给出的公式,8.假设在质量与地球质量相同,半径为地球半径两倍的天体上进行运动比赛,那么与在地球上的比赛成绩相比,下列说法正确的就是()A.跳高运动员的成绩会更好B.用弹簧秤称体重时,体重数值变得更大C.从相同高度由静止降落的棒球落地的时间会更短些D.用手投出的篮球,水平方向的分速度变化更慢9.在地球大气层外有很多太空垃圾绕地球做匀速圆周运动,每到太阳活动期,由于受太阳的影响,地球大气层的厚度开始增加,使得部分垃圾进入大气层.开始做靠近地球的近心运动,产生这一结果的初始原因就是( )A.由于太空垃圾受到地球引力减小而导致做近心运动B.由于太空垃圾受到地球引力增大而导致做近心运动C.由于太空垃圾受到空气阻力而导致做近心运动D.地球引力提供了太空垃圾做匀速圆周运动所需的向心力,故产生向心运动的结果与空气阻力无关10.“东方一号”人造地球卫星A与“华卫二号”人造卫星B,它们的质量之比为m A:m B=1:2,它们的轨道半径之比为2:1,则下面的结论中正确的就是( )A.它们受到地球的引力之比为F A:F B=1:1B.它们的运行速度大小之比为v A:v B=1:22:1C.它们的运行周期之比为T A:T B=23:1D.它们的运行角速度之比为ωA:ωB=211.西昌卫星发射中心的火箭发射架上,有一待发射的卫星,它随地球自转的线速度为v1、加速度为a1;发射升空后在近地轨道上做匀速圆周运动,线速度为v2、加速度为a2;实施变轨后,使其在同步卫星轨道上做匀速圆周运动,运动的线速度为v3、加速度为a3。
高一物理万有引力与航天试题答案及解析1.把太阳系各行星的运动近似看做匀速圆周运动,则离太阳越远的行星A.周期越大B.线速度越小C.角速度越大D.加速度越小【答案】A【解析】设太阳的质量为M,行星的质量为m,轨道半径为r.行星绕太阳做圆周运动,万有引力提供向心力,则由牛顿第二定律得:G=m,G=mω2r,G=ma,解得:v=,ω=,a=,周期T==2π,可知,行星离太远越近,轨道半径r越小,则周期T越小,线速度、角速度、向心加速度越大,故BCD错误;故选:A.2.发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图所示。
则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的角速度小于在轨道1上的角速度C.卫星在轨道1上运动一周的时间小于于它在轨道2上运动一周的时间D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度【答案】BCD【解析】根据公式,解得,即轨道半径越大,线速度越小,A错误;根据公式可得,即轨道半径越大,角速度越小,故B正确;根据开普勒第三定律可得轨道半径或半长轴越大,运动周期越大,故卫星在轨道1上运动一周的时间小于它在轨道2上运动一周的时间,故C正确;在轨道2和3上经过P点时卫星到地球的距离相等,根据,可得,半径相同,即加速度相等,D正确。
3.关于第一宇宙速度,下列说法正确的是A.它是人造地球卫星绕地球飞行的最小速度B.它是同步卫星的运行速度C.它是使卫星进入近地圆轨道的最大发射速度D.它是人造卫星在圆形轨道的最大运行速度【答案】D【解析】第一宇宙速度又称为环绕速度,是指在地球上发射的物体绕地球飞行作圆周运动所需的最小发射速度,为环绕地球运动的卫星的最大速度,即近地卫星的环绕速度,同步卫星轨道要比近地卫星的大,所以运行速度小于该速度,故D正确。
高中物理万有引力与航天题20套(带答案)含解析一、高中物理精讲专题测试万有引力与航天1.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”. 【答案】(1)02v g t = (2) 032πv RGt ρ=(3)02v Rv t= 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度02v Rv gR t==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.2.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r ,周期为T ,引力常量为G ,行星半径为求: (1)行星的质量M ;(2)行星表面的重力加速度g ; (3)行星的第一宇宙速度v . 【答案】(1) (2)(3)【解析】【详解】(1)设宇宙飞船的质量为m ,根据万有引力定律求出行星质量 (2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.3.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已知该星球的半径为R ,且物体只受该星球的引力作用.求: (1)该星球表面的重力加速度;(2)从这个星球上发射卫星的第一宇宙速度.【答案】(1)202v h(2) 02v R h【解析】本题考查竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则202v g h ='解得,该星球表面的重力加速度202v g h'=(2) 卫星贴近星球表面运行,则2v mg m R'=解得:星球上发射卫星的第一宇宙速度02R v g R v h=='4.我国预计于2022年建成自己的空间站。
物理万有引力与航天题20套(带答案)及解析一、高中物理精讲专题测试万有引力与航天1.如图所示,A是地球的同步卫星,另一卫星B的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R,地球自转角速度为ω0,地球表面的重力加速度为g,O为地球中心.(1)求卫星B的运行周期.(2)如卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,它们再一次相距最近?【答案】(1)32()2BRhTgRp+= (2)23()tgRR hω=-+【解析】【详解】(1)由万有引力定律和向心力公式得()()2224BMmG m R hTR hπ=++①,2MmG mgR=②联立①②解得:()322BR hTR gπ+=③(2)由题意得()02Btωωπ-=④,由③得()23BgRR hω=+⑤代入④得()23tR gR hω=-+2.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P点沿水平方向以初速度v0抛出一个小球,测得小球经时间t落到斜坡上另一点Q,斜面的倾角为α,已知该星球半径为R,万有引力常量为G,求:(1)该星球表面的重力加速度;(2)该星球的密度; (3)该星球的第一宇宙速度v ;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T . 【答案】(1)02tan v t α;(2)03tan 2v GRt απ;;(4)2【解析】 【分析】 【详解】(1) 小球落在斜面上,根据平抛运动的规律可得:20012tan α2gt y gt x v t v ===解得该星球表面的重力加速度:02tan αv g t=(2)物体绕星球表面做匀速圆周运动时万有引力提供向心力,则有:2GMmmg R= 则该星球的质量:GgR M 2= 该星球的密度:33tan α34423v M gGR GRt R ρπππ===(3)根据万有引力提供向心力得:22Mm v G m R R= 该星球的第一宙速度为:v ===(4)人造卫星绕该星球表面做匀速圆周运动时,运行周期最小,则有:2RT vπ=所以:22T π==点睛:处理平抛运动的思路就是分解.重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.3.“嫦娥一号”在西昌卫星发射中心发射升空,准确进入预定轨道.随后,“嫦娥一号”经过变轨和制动成功进入环月轨道.如图所示,阴影部分表示月球,设想飞船在圆形轨道Ⅰ上作匀速圆周运动,在圆轨道Ⅰ上飞行n 圈所用时间为t ,到达A 点时经过暂短的点火变速,进入椭圆轨道Ⅱ,在到达轨道Ⅱ近月点B 点时再次点火变速,进入近月圆形轨道Ⅲ,而后飞船在轨道Ⅲ上绕月球作匀速圆周运动,在圆轨道Ⅲ上飞行n 圈所用时间为.不考虑其它星体对飞船的影响,求:(1)月球的平均密度是多少?(2)如果在Ⅰ、Ⅲ轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则经过多长时间,他们又会相距最近?【答案】(1)22192n Gtπ;(2)1237mt t m n (,,)==⋯ 【解析】试题分析:(1)在圆轨道Ⅲ上的周期:38tT n=,由万有引力提供向心力有:222Mm G m R R T π⎛⎫= ⎪⎝⎭又:343M R ρπ=,联立得:22233192n GT Gt ππρ==. (2)设飞船在轨道I 上的角速度为1ω、在轨道III 上的角速度为3ω,有:112T πω= 所以332T πω=设飞飞船再经过t 时间相距最近,有:312t t m ωωπ''=﹣所以有:1237mtt m n(,,)==⋯. 考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要考查万有引力定律的应用,开普勒定律的应用.同时根据万有引力提供向心力列式计算.4.用弹簧秤可以称量一个相对于地球静止的小物体m 所受的重力,称量结果随地理位置的变化可能会有所不同。
高中物理《万有引力与航天》练习题(附答案解析)学校:___________姓名:___________班级:_________一、单选题1.如图所示,两球间的距离为r ,两球的质量分布均匀,质量大小分别为m 1、m 2,半径大小分别为r 1、r 2,则两球间的万有引力大小为( )A .122m m Gr B .2212221m m G r r r ++C .12212()m m G r r +D .12212()m m Gr r r ++2.2021年5月15日,我国首次火星探测任务天问一号探测器在火星乌托邦平原南部预选着陆区成功软着陆。
用h 表示着陆器与火星表面的距离,用F 表示它所受的火星引力大小,则在着陆器从火星上空向火星表面软着陆的过程中,能够描述F 随h 变化关系的大致图像是( )A .B .C .D .3.发现万有引力定律和测出引力常量的科学家分别是( ) A .牛顿、卡文迪许 B .开普勒、卡文迪许 C .开普勒、库仑D .牛顿、库仑4.经典力学有一定的局限性。
当物体以下列速度运动时,经典力学不再适用的是( ) A .32.910m/s -⨯ B .02.910m/s ⨯ C .42.910m/s ⨯ D .82.910m/s ⨯5.有a 、b 、c 、d 四颗地球卫星,a 还未发射,在地球赤道上随地球一起转动,b 在近地轨道做匀速圆周运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图所示。
关于这四颗卫星,下列说法正确的是( )A .a 的向心加速度等于重力加速度g B .c 在4 h 内转过的圆心角是6C .在相同时间内,这四颗卫星中b 转过的弧长最长D .d 做圆周运动的周期有可能是20小时6.2019年10月28日发生了天王星冲日现象,即太阳、地球、天王星处于同一直线,此时是观察天王星的最佳时间。
已知日地距离为0R ,天王星和地球的公转周期分别为T 和0T ,则天王星与太阳的距离为( )A 0B 0C 0D 07.如图所示,两颗人造卫星绕地球逆时针运动,卫星1、卫星2分别沿圆轨道、椭圆轨道运动,圆的半径与椭圆的半长轴相等,两轨道相交于A 、B 两点,某时刻两卫星与地球在同一直线上,如图所示,下列说法中正确的是( )A .两卫星在图示位置的速度v 1<v 2B .两卫星在A 处的加速度大小不相等C .两颗卫星可能在A 或B 点处相遇D .两卫星永远不可能相遇8.我们的银河系的恒星中大约四分之一是双星。
万有引力与航天1. 飞船围绕太阳在近似圆周的轨道上运动,若其轨道半径是地球轨道半径的9倍,则宇宙飞船绕太阳运行的周期是( )A. 3年B. 9年C. 27年D. 81年2. 我国发射的神州五号载人宇宙飞船的周期约为90min ,如果把它绕地球的运动看作是匀速圆周运动,飞船的运动和人造地球同步卫星的运动相比,下列判断中正确的是A. 飞船的轨道半径大于同步卫星的轨道半径B. 飞船的运行速度小于同步卫星的运行速度C. 飞船运动的向心加速度大于同步卫星运动的向心加速度D. 飞船运动的角速度小于同步卫星运动的角速度3. 一星球半径和地球半径相同,它的表面重力加速度是地球表面重力加速度的2倍,则该星球质量是地球质量的(忽略地球、星球的自转)( )A. 2倍B. 4倍C. 8倍D. 16倍4. “嫦娥三号”从距月面高度为100km 的环月圆轨道Ⅰ上的P 点实施变轨,进入近月点为15km 的椭圆轨道Ⅱ,由近月点Q 成功落月,如图所示.关于“嫦娥三号”,下列说法正确的是( )A. 沿轨道Ⅱ运行的周期大于沿轨道Ⅰ运行的周期B. 沿轨道Ⅰ运动至P 点时,需制动减速才能进入轨道ⅡC. 沿轨道Ⅱ运行时,在P 点的加速度大于在Q 点的加速度D. 在轨道Ⅱ上由P 点运行到Q 点的过程中,万有引力对其做正功,它的动能增加,重力势能减小,机械能不变5.2016年9月15日在酒泉卫星发射中心发射成功的“天宫二号”,是继“天宫一号”后我国自主研发的第二个空间实验室,也是我国第一个真正意义的空间实验室。
“天宫二号”绕地球做匀速圆周运动,其运行周期为T 1,线速度为v ,离地高度为h ;地球半径为R ,自转周期为T 2,万有引力常量为G ,则下列说法正确的是( )A. “天宫二号”的线速度大于地球的第一宇宙速度B. “天宫二号”的向心加速度为C. 地球的质量为D. 静止于地球赤道上物体的重力加速度为v 2(R+ℎ)R 2−4π2R T 226. 假设火星和地球都是球体.火星的质量为M 火星,地球的质量为M 地球,两者质量之比为p ;火星的半径为R 火,地球的半径为R 地,两者半径之比为q .求它们表面处的重力加速度之比.7. 中国自行研制,具有完全自主知识产权的“神舟号”飞船,目前已经达到或优于国际第三代载人飞船技术,其发射过程简化如下:飞船在酒泉卫星发射中心发射,由长征运载火箭送入近地点为A、远地点为B的椭圆轨道上,A点距地面的高度为h1,飞船飞行五周后进行变轨,进入预定圆轨道,如图所示,设飞船在预定圆轨道上飞行n圈所用时间为t,若已知地球表面重力加速度为g,地球半径为R,求:(1)地球的平均密度是多少;(2)飞船经过椭圆轨道近地点A时的加速度大小;(3)椭圆轨道远地点B距地面的高度.8. 宇航员站在某一星球表面上H高处的位置,沿水平方向以初速度v0水平抛出一个小球,小球落在星球表面,测得水平位移为x,已知该星球的半径为R,万有引力常量为G,求该星球:(1)表面的重力加速度g;(2)该星球的密度ρ;(3)该星球的第一宇宙速度v.1.C2.C3.A4.BD5.BD6. pq27.(1)3g4πGR(2)gR2(R+ℎ1)2(3)√gR2t24π2n23−R8.(1);(2);(3)。
一、选择题
1.下列说法符合史实的是 ( )
A .牛顿发现了行星的运动规律
B .开普勒发现了万有引力定律
C .卡文迪许第一次在实验室里测出了万有引力常量
D .牛顿发现了海王星和冥王星
2.下列说法正确的是 ( )
A .第一宇宙速度是人造卫星环绕地球运动的速度
B .第一宇宙速度是人造卫星在地面附近绕地球做匀速圆周运动所必须具有的速度
C .如果需要,地球同步通讯卫星可以定点在地球上空的任何一点
D .地球同步通讯卫星的轨道可以是圆的也可以是椭圆的
3.关于环绕地球运转的人造地球卫星,有如下几种说法,其中正确的是 ( )
A . 轨道半径越大,速度越小,周期越长
B . 轨道半径越大,速度越大,周期越短
C . 轨道半径越大,速度越大,周期越长
D . 轨道半径越小,速度越小,周期越长
4.两颗质量之比4:1:21=m m 的人造地球卫星,只在万有引力的作用之下,环绕地球运转。
如 果它们的轨道半径之比1:2:21=r r ,那么它们的动能之比21:k k E E 为 ( )
A . 8:1
B . 1:8
C . 2:1
D . 1:2
5.科学家们推测,太阳系的第十颗行星就在地球的轨道上,从地球上看,它永远在太阳的背 面,人类一直未能发现它,可以说是“隐居”着的地球的“孪生兄弟”.由以上信息可以确定 ( )
A .这颗行星的公转周期与地球相等
B .这颗行星的半径等于地球的半径
C .这颗行星的密度等于地球的密度
D .这颗行星上同样存在着生命
6.关于开普勒行星运动的公式23
T
R =k ,以下理解正确的是 ( )
A .k 是一个与行星无关的常量
B .若地球绕太阳运转轨道的半长轴为R 地,周期为T 地;月球绕地球运转轨道的长半轴
为R 月,周期为T 月,则2323月月地地
T R T R =
C .T 表示行星运动的自转周期
D .T 表示行星运动的公转周期
7.若已知行星绕太阳公转的半径为r ,公转的周期为T ,万有引力恒量为G ,则由此可求出 ( )
A .某行星的质量
B .太阳的质量
C .某行星的密度
D .太阳的密度
8.已知下面的哪组数据,可以算出地球的质量M 地(引力常量G 为已知) ( )
A .月球绕地球运动的周期T 及月球到地球中心的距离R 1
B .地球绕太阳运行周期T 2及地球到太阳中心的距离R 2
C .人造卫星在地面附近的运行速度v 3和运行周期T 3
D .地球绕太阳运行的速度v 4及地球到太阳中心的距离R 4
9.下列说法中正确的是 ( )
A .天王星偏离根据万有引力计算的轨道,是由于天王星受到轨道外面其他行星的引力作 用
B .只有海王星是人们依据万有引力定律计算轨道而发现的
C .天王星是人们依据万有引力定律计算轨道而发现的
D .以上均不正确
10.2001年10月22日,欧洲航天局由卫星观测发现银河系中心存在一个超大型黑洞,命名
为MCG 6-30-15,由于黑洞的强大引力,周围物质大量掉入黑洞,假定银河系中心仅此一个黑洞,已知太阳系绕银河系中心匀速运转,下列哪一组数据可估算该黑洞的质量 ( )
A .地球绕太阳公转的周期和速度
B .太阳的质量和运行速度
C .太阳质量和到MCG 6-30-15的距离
D .太阳运行速度和到MCG 6-30-15的距离
二、填空题
11.两颗人造卫星A 、B 的质量之比m A ∶m B =1∶2,轨道半径之比r A ∶r B =1∶3,某一时刻它
们的连线通过地心,则此时它们的线速度之比v A ∶v B = ,向心加速度之比a A ∶a B = ,向心力之比F A ∶F B = 。
12.地球绕太阳运行的半长轴为1.5×1011 m ,周期为365 天;月球绕地球运行的轨道半长轴
为3.82×108m ,周期为27.3 天,则对于绕太阳运行的行星;R 3/T 2的值为______m 3/s 2,对于绕地球运行的物体,则R 3/T 2=________ m 3/s 2.
13.地核的体积约为整个地球体积的16%,地核的质量约为地球质量的34%.经估算,地核的
平均密度为_______kg/m 3.(已知地球半径为6.4×106 m ,地球表面重力加速度为9.8 m/s 2,
万有引力常量为6.7×10-11N ·m 2/kg 2,结果取两位有效数字)
三、计算题
14.宇航员驾驶一飞船在靠近某行星表面附近的圆形轨道上运行,已知飞船运行的周期为T ,
行星的平均密度为ρ。
试证明k T =2
ρ(万有引力恒量G 为已知,κ是恒量)
15.在某个半径为m 105=R 的行星表面,对于一个质量1=m kg 的砝码,用弹簧称量,其重
力的大小N 6.1=G 。
请您计算该星球的第一宇宙速度1v 是多大?(注:第一宇宙速度1v ,也即近地、最大环绕速度;本题可以认为物体重力大小与其万有引力的大小相等。
)
16.神舟五号载人飞船在绕地球飞行的第5圈进行变轨,由原来的椭圆轨道变为距地面高度
h=342km 的圆形轨道。
已知地球半径R k m
=⨯637103
.,地面处的重力加速度g m s =102/。
试导出飞船在上述圆轨道上运行的周期T 的公式(用h 、R 、g 表示)
,然后计算周期的数值(保留两位有效数字)。
参考答案
1.C 2.B 3.A 4.B 5.A
6.AD 【解析】 公式23
T
R =k 成立的前提条件是绕同一天体运动的行星,故B 错.公式中的T 指的是行星运转的公转周期,故D 正确,C 错.由于此公式对所有行星都成立,而各行星质量及其他又相差很多,故k 应是与行星无关的常量.故A 正确.
7.B 【解析】 根据万有引力充当行星的向心力,得GMm /r 2=m 4π2r /T 2,所以太阳的质量为
M =4π2r 3/GT 2.
要求太阳的密度还需要知道太阳的半径.
根据行星绕太阳的运动,既不能求行星的质量也不能求行星的密度.
8.AC 【解析】 要求地球的质量,应利用围绕地球的月球、卫星的运动.根据地球绕太阳的运
动只能求太阳的质量,而不能求地球的质量,B 、D 选项错.设地球质量为M ,卫星或月球的轨道半径为R ,则有G 2224T m R Mm π=R
所以,地球的质量为M =2324GT R π
再由v =T π2R 得R =π2vT , 代入上式得M =G
T v π23 所以,A 、C 选项正确.
9.A 解析:1781年3月13日晚,恒星天文学之父——赫歇耳用自制的大望远镜发现天王星.
海王星是继天王星之后发现的第二颗新行星,但与天王星不同,海王星的发现是神机妙算的结果.同理,冥王星也是天文学家分析推算出来的.所以本题A 为正确答案.
10. D 解析:G 2r Mm =m r v 2,M =G
r v 2.故D 选项正确. 11.1:3;9:1;9:2
12.3.4×1018;1.0×1013
13.1.2×104
【解析】 要计算地核密度,就要计算地球密度,由条件知ρ核=16.034.0ρ=2.125ρ
而要求地球密度只有R 和g 为已知量,可以根据地球表面重力近似等于万有引力来求:
即:g =2R GM 而ρ=334R M π
即:ρ=GR g π43=5.46×103 kg/m 3 ρ核=1.2×104 kg/m 3
14.设行星半径为R 、质量为M ,飞船在靠近行星表面附近的轨道上运行时,有
R T m R Mm G 22)2(π= 即22
34GT
R M π= ①(6分) 又行星密度33
4R M πρ= ②(2分) 将①代入②得 κπρ==
G
T 32证毕(2分) 15.解:由重量和质量的关系知:G m g = 所以6.1==m
G g m/s 2……………………3分 设:环绕该行星作近地飞行的卫星,其质量为m ′,所以,应用牛顿第二定律有:
R
v m g m 21 '='……………………3分 解得:Rg v =1……………………3分
代入数值得第一宇宙速度:4001=v m/s ……………………1分
16.解:设地球质量为M ,飞船质量为m ,速度为v ,圆轨道的半径为r ,由万有引力和牛顿
第二定律,有
分解以上各式得分由已知条件分地面附近分分2)(23212223
222g
R h R T h R r m g R Mm G v r T r v m r
Mm G +=+====ππ
代入数值,得
T s =⨯54103. 2分。