高考人教数学(理)大一轮复习检测:第八章 第六节 抛物线 Word版含解析
- 格式:doc
- 大小:143.00 KB
- 文档页数:9
高中数学高考总复习抛物线习题(附参考答案)一、选择题1.(2010·湖北黄冈)若抛物线y 2=2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为( )A .-2B .2C .-4D .4[答案] D[解析] 椭圆中,a 2=6,b 2=2,∴c =a 2-b 2=2, ∴右焦点(2,0),由题意知p2=2,∴p =4.2.已知点M 是抛物线y 2=2px (p >0)上的一点,F 为抛物线的焦点,若以|MF |为直径作圆,则这个圆与y 轴的关系是( )A .相交B .相切C .相离D .以上三种情形都有可能[答案] B[解析] 如图,由MF 的中点A 作准线l 的垂线AE ,交直线l 于点E ,交y 轴于点B ;由点M 作准线l 的垂线MD ,垂足为D ,交y 轴于点C ,则MD =MF ,ON =OF , ∴AB =OF +CM 2=ON +CM2=DM 2=MF 2, ∴这个圆与y 轴相切.3.(2010·山东文)已知抛物线y 2=2px (p >0),过焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-2[答案] B[解析] 设A (x 1,y 1),B (x 2,y 2),则线段AB 的中点(x 1+x 22,y 1+y 22),∴y 1+y 22=2,∵A 、B 在抛物线y 2=2px 上,∴⎩⎪⎨⎪⎧y 12=2px 1 ①y 22=2px 2② ①-②得y 12-y 22=2p (x 1-x 2),∴k AB =y 1-y 2x 1-x 2=2p y 1+y 2=p 2,∵k AB =1,∴,p =2∴抛物线方程为y 2=4x ,∴准线方程为:x =-1,故选B.4.双曲线x 29-y 24=1的渐近线上一点A 到双曲线的右焦点F 的距离等于2,抛物线y 2=2px (p >0)过点A ,则该抛物线的方程为( )A .y 2=9xB .y 2=4xC .y 2=41313xD .y 2=21313x[答案] C[解析] ∵双曲线x 29-y 24=1的渐近线方程为y =±23x ,F 点坐标为(13,0),设A 点坐标为(x ,y ),则y =±23x ,由|AF |=2⇒(x -13)2+⎝⎛⎭⎫23x 2=2⇒x =913,y =±613,代入y 2=2px 得p =21313,所以抛物线方程为y 2=41313x ,所以选C.5.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A.172B .3 C. 5D.92[答案] A[解析] 记抛物线y 2=2x 的焦点为F ⎝⎛⎭⎫12,0,准线是l ,由抛物线的定义知点P 到焦点F 的距离等于它到准线l 的距离,因此要求点P 到点(0,2)的距离与点P 到抛物线的准线的距离之和的最小值,可以转化为求点P 到点(0,2)的距离与点P 到焦点F 的距离之和的最小值,结合图形不难得知相应的最小值就等于焦点F 与点(0,2)的距离,因此所求的最小值等于⎝⎛⎭⎫122+22=172,选A. 6.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,过抛物线C 上的点A 作准线l 的垂线,垂足为M ,若△AMF 与△AOF (其中O 为坐标原点)的面积之比为,则点A 的坐标为( )A .(2,22)B .(2,-22)C .(2,±2)D .(2,±22)[答案] D[解析] 如图,由题意可得,|OF |=1,由抛物线定义得,|AF |=|AM |,∵△AMF 与△AOF (其中O 为坐标原点)的面积之比为3∶1,∴S △AMFS △AOF =12×|AF |×|AM |×sin ∠MAF 12×|OF |×|AF |×sin (π-∠MAF )=3, ∴|AM |=3,设A ⎝⎛⎭⎫y 024,y 0,∴y 024+1=3,解得y 0=±22,∴y 024=2,∴点A 的坐标是(2,±22),故选D.7.(2010·河北许昌调研)过点P (-3,1)且方向向量为a =(2,-5)的光线经直线y =-2反射后通过抛物线y 2=mx ,(m ≠0)的焦点,则抛物线的方程为( )A .y 2=-2xB .y 2=-32xC .y 2=4xD .y 2=-4x[答案] D[解析] 设过P (-3,1),方向向量为a =(2,-5)的直线上任一点Q (x ,y ),则PQ →∥a ,∴x +32=y -1-5,∴5x +2y +13=0,此直线关于直线y =-2对称的直线方程为5x +2(-4-y )+13=0,即5x -2y +5=0,此直线过抛物线y 2=mx 的焦点F ⎝⎛⎭⎫m 4,0,∴m =-4,故选D.8.已知mn ≠0,则方程是mx 2+ny 2=1与mx +ny 2=0在同一坐标系内的图形可能是( )[答案] A[解析] 若mn >0,则mx 2+ny 2=1应为椭圆,y 2=-mn x 应开口向左,故排除C 、D ;∴mn <0,此时抛物线y 2=-mnx 应开口向右,排除B ,选A.9.(2010·山东聊城模考)已知A 、B 为抛物线C :y 2=4x 上的不同两点,F 为抛物线C 的焦点,若F A →=-4FB →,则直线AB 的斜率为( )A .±23B .±32C .±34D .±43[答案] D[解析] ∵F A →=-4FB →,∴|F A →|=4|FB →|,设|BF |=t ,则|AF |=4t ,∴|BM |=|AA 1|-|BB 1|=|AF |-|BF |=3t ,又|AB |=|AF |+|BF |=5t ,∴|AM |=4t ,∴tan ∠ABM =43,由对称性可知,这样的直线AB 有两条,其斜率为±43.10.已知抛物线C 的方程为x 2=12y ,过点A (0,-4)和点B (t,0)的直线与抛物线C 没有公共点,则实数t 的取值范围是( )A .(-∞,-1)∪(1,+∞) B.⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫22,+∞ C .(-∞,-22)∪(22,+∞) D .(-∞,-22)∪(2,+∞) [答案] B[解析] 由题意知方程组⎩⎨⎧x 2=12y ①x t +y-4=1 ②无实数解由②得y =4xt -4,代入①整理得,2x 2-4x t +4=0,∴Δ=16t 2-32<0,∴t >22或t <-22,故选B. [点评] 可用数形结合法求解,设过点A (0,-4)与抛物线x 2=12y 相切的直线与抛物线切点为M (x 0,y 0),则切线方程为y -y 0=4x 0(x -x 0), ∵过A 点,∴-4-2x 02=4x 0(0-x 0), ∴x 0=±2,∴y 0=4,∴切线方程为y -4=±42x -8, 令y =0得x =±22,即t =±22,由图形易知直线与抛物线无公共点时,t <-22或t >22. 二、填空题11.已知点A (2,0)、B (4,0),动点P 在抛物线y 2=-4x 上运动,则AP →·BP →取得最小值时的点P 的坐标是______.[答案] (0,0)[解析] 设P ⎝⎛⎭⎫-y 24,y ,则AP →=⎝⎛⎭⎫-y 24-2,y ,BP →=⎝⎛⎭⎫-y 24-4,y ,AP →·BP →=⎝⎛⎭⎫-y24-2⎝⎛⎭⎫-y 24-4+y 2=y 416+52y 2+8≥8,当且仅当y =0时取等号,此时点P 的坐标为(0,0).12.(文)(2010·泰安市模拟)如图,过抛物线y 2=2px (p >0)的焦点F 作倾斜角为60°的直线l ,交抛物线于A 、B 两点,且|F A |=3,则抛物线的方程是________.[答案] y 2=3x[解析] 设抛物线准线为l ,作AA 1⊥l ,BB 1⊥l ,FQ ⊥l ,垂足分别为A 1、B 1、Q ,作BM ⊥AA 1垂足为M ,BM 交FQ 于N ,则由条件易知∠ABM =30°,设|BF |=t ,则|NF |=t 2,|MA |=t +32,∵|AM |=|QN |,∴3-t +32=p -t 2,∴p =32,∴抛物线方程为y 2=3x .(理)(2010·泰安质检)如图,过抛物线y 2=2px (p >0)的焦点的直线l 依次交抛物线及其准线于点A 、B 、C ,若|BC |=2|BF |,且|AF |=3,则抛物线的方程是________.[答案] y 2=3x[解析] 解法1:过A 、B 作准线垂线,垂足分别为A 1,B 1,则|AA 1|=3,|BB 1|=|BF |,∵|BC |=2|BF |,∴|BC |=2|BB 1|,∴|AC |=2|AA 1|=2|AF |=6,∴|CF |=3,∴p =12|CF |=32,∴抛物线方程为y 2=3x .解法2:由抛物线定义,|BF |等于B 到准线的距离,由|BC |=2|BF |得∠BCB 1=30°,又|AF |=3,从而A ⎝⎛⎭⎫p 2+32,332在抛物线上,代入抛物线方程y 2=2px ,解得p =32.点评:还可以由|BC |=2|BF |得出∠BCB 1=30°,从而求得A 点的横坐标为|OF |+12|AF |=p2+32或3-p 2,∴p 2+32=3-p 2,∴p =32. 13.已知F 为抛物线C :y 2=4x 的焦点,过F 且斜率为1的直线交C 于A 、B 两点.设|F A |>|FB |,则|F A |与|FB |的比值等于________.[答案] 3+2 2[解析] 分别由A 和B 向准线作垂线,垂足分别为A 1,B 1,则由条件知, ⎩⎪⎨⎪⎧|AA 1|+|BB 1|=|AB |,|AA 1|-|BB 1|=22|AB |,解得⎩⎪⎨⎪⎧|AA 1|=2+24|AB ||BB 1|=2-24|AB |,∴|AA 1||BB 1|=3+22,即|F A ||FB |=3+2 2. 14.(文)若点(3,1)是抛物线y 2=2px 的一条弦的中点,且这条弦所在直线的斜率为2,则p =________.[答案] 2[解析] 设弦两端点P 1(x 1,y 1),P 2(x 2,y 2),则⎩⎪⎨⎪⎧y 12=2px 1y 22=2px 2,两式相减得,y 1-y 2x 1-x 2=2p y 1+y 2=2,∵y 1+y 2=2,∴p =2.(理)(2010·衡水市模考)设抛物线x 2=12y 的焦点为F ,经过点P (2,1)的直线l 与抛物线相交于A 、B 两点,又知点P 恰为AB 的中点,则|AF |+|BF |=________.[答案] 8[解析] 过A 、B 、P 作准线的垂线AA 1、BB 1与PP 1,垂足A 1、B 1、P 1,则|AF |+|BF |=|AA 1|+|BB 1|=2|PP 1|=2[1-(-3)]=8.三、解答题15.(文)若椭圆C 1:x 24+y 2b 2=1(0<b <2)的离心率等于32,抛物线C 2:x 2=2py (p >0)的焦点在椭圆C 1的顶点上.(1)求抛物线C 2的方程;(2)若过M (-1,0)的直线l 与抛物线C 2交于E 、F 两点,又过E 、F 作抛物线C 2的切线l 1、l 2,当l 1⊥l 2时,求直线l 的方程.[解析] (1)已知椭圆的长半轴长为a =2,半焦距c =4-b 2, 由离心率e =c a =4-b 22=32得,b 2=1.∴椭圆的上顶点为(0,1),即抛物线的焦点为(0,1), ∴p =2,抛物线的方程为x 2=4y .(2)由题知直线l 的斜率存在且不为零,则可设直线l 的方程为y =k (x +1),E (x 1,y 1),F (x 2,y 2),∵y =14x 2,∴y ′=12x ,∴切线l 1,l 2的斜率分别为12x 1,12x 2,当l 1⊥l 2时,12x 1·12x 2=-1,即x 1·x 2=-4,由⎩⎪⎨⎪⎧y =k (x +1)x 2=4y得:x 2-4kx -4k =0, 由Δ=(-4k )2-4×(-4k )>0,解得k <-1或k >0. 又x 1·x 2=-4k =-4,得k =1. ∴直线l 的方程为x -y +1=0.(理)在△ABC 中,CA →⊥CB →,OA →=(0,-2),点M 在y 轴上且AM →=12(AB →+CD →),点C在x 轴上移动.(1)求B 点的轨迹E 的方程;(2)过点F ⎝⎛⎭⎫0,-14的直线l 交轨迹E 于H 、E 两点,(H 在F 、G 之间),若FH →=12HG →,求直线l 的方程.[解析] (1)设B (x ,y ),C (x 0,0),M (0,y 0),x 0≠0, ∵CA →⊥CB →,∴∠ACB =π2,∴2x 0·y 0-x 0=-1,于是x 02=2y 0① M 在y 轴上且AM →=12(AB →+AC →),所以M 是BC 的中点,可得 ⎩⎨⎧x 0+x 2=0y +02=y,∴⎩⎪⎨⎪⎧x 0=-x ②y 0=y2③ 把②③代入①,得y =x 2(x ≠0),所以,点B 的轨迹E 的方程为y =x 2(x ≠0). (2)点F ⎝⎛⎭⎫0,-14,设满足条件的直线l 方程为: y =kx -14,H (x 1,y 1),G (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -14y =x 2消去y 得,x 2-kx +14=0.Δ=k 2-1>0⇒k 2>1,∵FH →=12HG →,即⎝⎛⎭⎫x 1,y 1+14=12(x 2-x 1,y 2-y 1), ∴x 1=12x 2-12x 1⇒3x 1=x 2.∵x 1+x 2=k ,x 1x 2=14,∴k =±233,故满足条件的直线有两条,方程为:8x +43y +3=0和8x -43y -3=0. 16.(文)已知P (x ,y )为平面上的动点且x ≥0,若P 到y 轴的距离比到点(1,0)的距离小1.(1)求点P 的轨迹C 的方程;(2)设过点M (m,0)的直线交曲线C 于A 、B 两点,问是否存在这样的实数m ,使得以线段AB 为直径的圆恒过原点.[解析] (1)由题意得:(x -1)2+y 2-x =1,化简得:y 2=4x (x ≥0). ∴点P 的轨迹方程为y 2=4x (x ≥0).(2)设直线AB 为y =k (x -m ),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -m )y 2=4x ,得ky 2-4y -4km =0, ∴y 1+y 2=4k ,y 1·y 2=-4m .∴x 1·x 2=m 2,∵以线段AB 为直径的圆恒过原点, ∴OA ⊥OB ,∴x 1·x 2+y 1·y 2=0.即m 2-4m =0⇒m =0或4.当k 不存在时,m =0或4. ∴存在m =0或4,使得以线段AB 为直径的圆恒过原点.[点评] (1)点P 到定点F (1,0)的距离比到y 轴的距离大1,即点P 到定点F (1,0)的距离与到定直线l :x =-1的距离相等.∴P 点轨迹是以F 为焦点,l 为准线的抛物线,∴p =2,∴方程为y 2=4x .(理)已知抛物线y 2=4x ,过点(0,-2)的直线交抛物线于A 、B 两点,O 为坐标原点. (1)若OA →·OB →=4,求直线AB 的方程.(2)若线段AB 的垂直平分线交x 轴于点(n,0),求n 的取值范围.[解析] (1)设直线AB 的方程为y =kx -2 (k ≠0),代入y 2=4x 中得,k 2x 2-(4k +4)x +4=0①设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k +4k 2,x 1x 2=4k 2.y 1y 2=(kx 1-2)·(kx 2-2)=k 2x 1x 2-2k (x 1+x 2)+4=-8k.∵OA →·OB →=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=4k 2-8k =4,∴k 2+2k -1=0,解得k =-1±2.又由方程①的判别式Δ=(4k +4)2-16k 2=32k +16>0得k >-12,∴k =-1+2,∴直线AB 的方程为(2-1)x -y -2=0.(2)设线段AB 的中点的坐标为(x 0,y 0),则由(1)知x 0=x 1+x 22=2k +2k 2,y 0=kx 0-2=2k,∴线段AB 的垂直平分线的方程是 y -2k =-1k ⎝⎛⎭⎫x -2k +2k 2. 令y =0,得n =2+2k +2k 2=2k 2+2k +2=2⎝⎛⎭⎫1k +122+32.又由k >-12且k ≠0得1k <-2,或1k>0,∴n >2⎝⎛⎭⎫0+122+32=2.∴n 的取值范围为(2,+∞). 17.(文)(2010·全国Ⅰ)已知抛物线C :y 2=4x 的焦点为F ,过点K (-1,0)的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(1)证明:点F 在直线BD 上;(2)设F A →·FB →=89,求△BDK 的内切圆M 的方程.[解析] 设A (x 1,y 1),B (x 2,y 2),D (x 1,-y 1),l 的方程为x =my -1(m ≠0) (1)将x =my -1(m ≠0)代入y 2=4x 并整理得 y 2-4my +4=0,从而y 1+y 2=4m ,y 1y 2=4① 直线BD 的方程为y -y 2=y 2+y 1x 2-x 1(x -x 2)即y -y 2=4y 2-y 1⎝⎛⎭⎫x -y 224 令y =0,得x =y 1y 24=1,所以点F (1,0)在直线BD 上.(2)由(1)知,x 1+x 2=(my 1-1)+(my 2-1)=4m 2-2, x 1x 2=(my 1-1)(my 2-1)=1因为F A →=(x 1-1,y 1),FB →=(x 2-1,y 2),F A →·FB →=(x 1-1,y 1)·(x 2-1,y 2)=x 1x 2-(x 1+x 2)+1+4=8-4m 2,故8-4m 2=89,解得m =±43,直线l 的方程为3x +4y +3=0,3x -4y +3=0. 从而y 2-y 1=±(4m )2-4×4=±437,故4y 2-y 1=±37因而直线BD 的方程为3x +7y -3=0,3x -7y -3=0.。
第6节抛物线【选题明细表】基础巩固(时间:30分钟)1.(2018·沈阳质量监测)抛物线y=4ax2(a≠0)的焦点坐标是( C )(A)(0,a) (B)(a,0)(C)(0,) (D)(,0)解析:将y=4ax2(a≠0)化为标准方程得x2=y(a≠0),所以焦点坐标为(0,),所以选C.2.(2018·新余一中模拟)动点P到点A(0,2)的距离比它到直线l:y=-4的距离小2,则动点P的轨迹方程为( D )(A)y2=4x (B)y2=8x (C)x2=4y (D)x2=8y解析:因为动点P到A(0,2)点的距离比它到直线l:y=-4的距离小2,所以动点P到点A(0,2)的距离与它到直线y=-2的距离相等,根据抛物线的定义可得点P的轨迹为以A(0,2)为焦点,以直线y=-2为准线的抛物线,其标准方程为x2=8y,故选D.3.(2018·云南昆明一中月考)设抛物线C:y2=2px(p>0)的焦点为F,准线为l,点A为C上一点,以F为圆心,FA为半径的圆交l于B,D两点,若∠BFD=120°,△ABD的面积为2,则p等于( A )(A)1 (B) (C) (D)2解析:因为∠BFD=120°,所以圆的半径|FA|=|FB|=2p,|BD|=2p,由抛物线定义,点A到准线l的距离d=|FA|=2p,所以|BD|·d=2p·p=2,所以p=1,选A.4.(2018·四川南充二模)抛物线C:y2=8x的焦点为F,准线为l,P是l 上一点,连接PF并延长交抛物线C于点Q,若|PF|=|PQ|,则|QF|等于( C )(A)3 (B)4 (C)5 (D)6解析:如图,直线l与x轴的交点为D,过Q点作QQ′⊥l,Q′为垂足,设|QF|=d,由抛物线的定义可知|QQ′|=d,又|PF|=|PQ|,所以|PF|=4d,|PQ|=5d,又△PDF∽△PQ′Q,所以=,解得d=5,即|QF|=5,故选C.5.(2018·湖南两市九月调研)如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于A,B,交其准线l于点C,若点F是AC的中点,且|AF|=4,则线段AB的长为( C )(A)5 (B)6(C)(D)解析:如图,过点A作AD⊥l交l于点D,所以|AF|=|AD|=4,由点F是AC的中点,有|AF|=2|MF|=2p.所以2p=4,解得p=2,抛物线y2=4x设A(x1,y1),B(x2,y2),则|AF|=x1+=x1+1=4.所以x1=3,A(3,2),F(1,0).k AF==.AF:y=(x-1)与抛物线y2=4x,联立得3x2-10x+3=0,x1+x2=,|AB|=x1+x2+p=+2=.故选C.6.(2018·大庆中学模拟)已知点A(4,0),抛物线C:y2=2px(0<p<4)的准线为l,点P在C上,作PH⊥l于H,且|PH|=|PA|,∠APH=120°,则p= .解析:设焦点为F,由题可得∠PAF=,x P=+⇒x P=,所以4=x P++⇒p=.答案:7.(2018·海南省八校联考)已知F是抛物线C:y2=16x的焦点,过F的直线l与直线x+y-1=0垂直,且直线l与抛物线C交于A,B两点,则|AB|= .解析:F是抛物线C:y2=16x的焦点,所以F(4,0),又过F的直线l与直线x+y-1=0垂直.所以直线l的方程为y=(x-4),代入抛物线C:y2=16x,易得3x2-40x+48=0.设A=(x1,y1),B=(x2,y2),x1+x2=,|AB|=x1+x2+8=.答案:能力提升(时间:15分钟)8.(2018·吉林百校联盟联考)已知抛物线C:y2=2px(p>0)的焦点F到其准线l的距离为2,过焦点且倾斜角为60°的直线与抛物线交于M,N两点,若MM′⊥l,NN′⊥l,垂足分别为M′,N′,则△M′N′F的面积为( B )(A)(B) (C)(D)解析:因为p=2,所以抛物线方程为y2=4x,直线MN:x=y+1,由得y2-y-4=0,则y1+y2=,y1y2=-4,所以|y1-y2|==.所以S△M′N′F=××2=.选B.9.如图,过抛物线y2=4x焦点的直线依次交抛物线和圆(x-1)2+y2=1于A,B,C,D四点,则|AB|·|CD|等于( C )(A)4 (B)2(C)1 (D)解析:法一(特值法)由题意可推得|AB|·|CD|为定值,所以分析直线与x轴垂直的情况,即可得到答案.因为圆(x-1)2+y2=1的圆心为抛物线y2=4x的焦点,半径为1,所以此时|AB|=|CD|=1.所以|AB|·|CD|=1,故选C.法二(直接法)设A(x1,y1),D(x2,y2),抛物线的焦点为F,AD的方程为y=k(x-1).则由消去y,可得x1x2=1,而|AB|=|FA|-1=x1+1-1=x1,|CD|=|FD|-1=x2+1-1=x2,所以|AB|·|CD|=x1·x2=1.故选C.10.(2018·临川二中模拟)如图所示,点F是抛物线y2=8x的焦点,点A,B分别在抛物线y2=8x及圆(x-2)2+y2=16的实线部分上运动,且AB总是平行于x轴,则△FAB的周长的取值范围为.解析:抛物线的准线l:x=-2,焦点F(2,0),由抛物线定义可得|AF|=x A+2,圆(x-2)2+y2=16的圆心为(2,0),半径为4,所以△FAB的周长为|AF|+|AB|+|BF|=x A+2+(x B-x A)+4=6+x B,由抛物线y2=8x及圆(x-2)2+y2=16可得交点的横坐标为2,所以x B∈(2,6],所以6+x B∈(8,12].答案:(8,12]11.(2018·东北三校二模)设抛物线y2=2x的焦点为F,过点M(,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比= .解析:设AB:y=k(x-),代入y2=2x得k2x2-(2k2+2)x+3k2=0,设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=3,而|BF|=2,所以x2+=2.所以x2=,x1=2.====.答案:12.(2018·全国Ⅱ卷)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.解:(1)抛物线C:y2=4x的焦点为F(1,0),当直线的斜率不存在时,|AB|=4,不满足;设直线AB的方程为y=k(x-1),设A(x1,y1),B(x2,y2),则整理得k2x2-2(k2+2)x+k2=0,则Δ=16k2+16>0,故x1+x2=,x1x2=1,由|AB|=x1+x2+p=+2=8,解得k2=1,则k=1,所以直线l的方程y=x-1.(2)由(1)可得AB的中点坐标为D(3,2),则直线AB的垂直平分线方程为y-2=-(x-3),即y=-x+5,设所求圆的圆心坐标为(x0,y0),则解得或因此,所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.13.(2018·东城区二模)已知抛物线C:y2=2px经过点P(2,2),A,B是抛物线C上异于点O的不同的两点,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)若OA⊥OB,求△AOB面积的最小值.解:(1)由抛物线C:y2=2px经过点P(2,2)知4p=4,解得p=1,则抛物线C的方程为y2=2x,抛物线C的焦点坐标为(,0),准线方程为x=-.(2)由题知,直线AB不与y轴垂直,设直线AB:x=ty+a.由消去x,得y2-2ty-2a=0,设A(x1,y1),B(x2,y2),则y1+y2=2t,y1y2=-2a,因为OA⊥OB,所以x1x2+y1y2=0,即+y1y2=0,解得y1y2=0(舍)或y1y2=-4,所以-2a=-4,解得a=2,所以直线AB:x=ty+2,所以直线AB过定点(2,0),S△AOB=×2×|y1-y2|==≥=4.当且仅当y1=2,y2=-2或y1=-2,y2=2时,等号成立, 所以△AOB面积的最小值为4.。
【走向高考】2016届 高三数学一轮基础巩固 第8章 第6节 抛物线新人教B 版一、选择题1.(2015·石家庄五校联考)若抛物线y =ax2的准线的方程是y =2,则实数a 的值是( )A.18 B .-18C .8D .-8[答案] B[解析] 由条件知,-14a =2,∴a =-18.2.(2014·合肥质检)已知点M(1,0),直线l :x =-1,点B 是l 上的动点,过点B 垂直于y 轴的直线与线段BM 的垂直平分线交于点P ,则点P 的轨迹是( )A .抛物线B .椭圆C .双曲线的一支D .直线[答案] A[解析] P 在BM 的垂直平分线上,故|PB|=|PM|.又PB ⊥l ,因而点P 到直线l 的距离等于P 到M 的距离,所以点P 的轨迹是抛物线.3.(文)直线y =x -3与抛物线y2=4x 交于A 、B 两点,过A 、B 两点向抛物线的准线作垂线,垂足分别为P 、Q ,则梯形APQB 的面积为( )A .48B .56C .64D .72[答案] A[解析] 由题意不妨设A 在第一象限,联立y =x -3和y2=4x 可得A(9,6),B(1,-2),而抛物线的准线方程是x =-1,所以|AP|=10,|QB|=2,|PQ|=8,故S 梯形APQB =12(|AP|+|QB|)·|PQ|=48,故选A.(理)(2013·郑州质量预测)过抛物线y2=8x 的焦点F 作倾斜角为135°的直线交抛物线于A 、B 两点,则弦AB 的长为( )A .4B .8C .12D .16[答案] D[解析] 抛物线y2=8x 的焦点F 的坐标为(2,0),直线AB 的倾斜角为135°,故直线AB 的方程为y =-x +2,代入抛物线方程y2=8x ,得x2-12x +4=0.设A(x1,y1),B(x2,y2),则弦AB 的长|AB|=x1+x2+4=12+4=16.4.(2014·湖北武汉调研)已知O 为坐标原点,F 为抛物线C :y2=42x 的焦点,P 为C 上一点,若|PF|=42,则△POF 的面积为( )A .2B .2 2C .2 3D .4 [答案] C[解析] 设P 点坐标为(x0,y0),则由抛物线的焦半径公式得|PF|=x0+2=42,x0=32,代入抛物线的方程,得|y0|=26,S △POF =12|y0|·|OF|=23,选C.5.(文)(2014·辽宁五校联考)已知AB 是抛物线y2=2x 的一条焦点弦,|AB|=4,则AB 中点C 的横坐标是( )A .2B .12C.32 D .52[答案] C[解析] 设A(x1,y1),B(x2,y2),则|AB|=x1+x2+1=4,∴x1+x2=3,∴x1+x22=32,即AB 中点C 的横坐标是32.(理)(2014·武昌模拟)直线y =k(x -2)交抛物线y2=8x 于A ,B 两点,若AB 中点的横坐标为3,则弦AB 的长为( )A .6B .10C .215D .16[答案] B[解析] 将y =k(x -2)代入y2=8x 中消去y 得,k2x2-(4k2+8)x +4k2=0,设A(x1,y1),B(x2,y2),∴x1+x2=4k2+8k2=6,∴k =±2, ∴|AB|=1+k2|x1-x2|=5·x1+x22-4x1x2=5·36-4×4=10.6.已知直线l1:4x -3y +6=0和直线l2:x =-1,P 是抛物线y2=4x 上一动点,则点P 到直线l1和直线l2的距离之和的最小值是( )A .2B .3C.115 D .3716[答案] A[解析] 直线l2:x =-1为抛物线y2=4x 的准线,由抛物线的定义知,P 到l2的距离等于P 到抛物线的焦点F(1,0)的距离,故本题化为在抛物线y2=4x 上找一个点P ,使得P 到点F(1,0)和直线l2的距离之和最小,最小值为F(1,0)到直线l1:4x -3y +6=0的距离,即dmin =|4-0+6|5=2,故选A.[点评] 与抛物线有关的最值问题常见题型.(1)点在抛物线外,利用两点间线段最短求最小值.①(2013·甘肃天水调研)已知P 为抛物线y =14x2上的动点,点P 在x 轴上的射影为M ,点A 的坐标是(2,0),则|PA|+|PM|的最小值是________.[答案] 5-1[解析] 如图,抛物线y =14x2,即x2=4y 的焦点F(0,1),记点P 在抛物线的准线l :y =-1上的射影为P ′,根据抛物线的定义知,|PP ′|=|PF|,则|PP ′|+|PA|=|PF|+|PA|≥|AF|=22+12= 5.所以(|PA|+|PM|)min=(|PA|+|PP ′|-1)min =5-1.(2)定点在抛物线内,利用点到直线的垂线段最短求最小值.②(2013·河南洛阳、安阳统考)点P 在抛物线x2=4y 的图象上,F 为其焦点,点A(-1,3),若使|PF|+|PA|最小,则相应P 的坐标为________.[答案] (-1,14)[解析] 由抛物线定义可知PF 的长等于点P 到抛物线准线的距离,所以过点A 作抛物线准线的垂线,与抛物线的交点(-1,14)即为所求点P 的坐标,此时|PF|+|PA|最小.③已知抛物线y2=2x 的焦点是F ,点P 是抛物线上的动点,又定点A(3,2),求|PA|+|PF|的最小值,并求出取最小值时P 点的坐标.[分析] 抛物线上点P 到焦点F 的距离等于点P 到准线l 的距离d ,求|PA|+|PF|的问题可转化为|PA|+d 的问题,运用三点共线可使问题得到解决.[解析] 将x =3代入抛物线方程y2=2x ,得y =±6,∵6>2,∴点A 在抛物线内部.设抛物线上点P 到准线l :x =-12的距离为d ,由定义,知|PA|+|PF|=|PA|+d ,当PA ⊥l 时,|PA|+d 最小,最小值为72,即|PA|+|PF|的最小值为72,此时P 点纵坐标为2,代入y2=2x ,得x =2,即点P 的坐标为(2,2).(3)抛物线上动点到定直线与抛物线准线(或焦点)距离和(或差)的最值转化为点到直线距离最小.④已知P 是抛物线y2=4x 上一动点,则点P 到直线l :2x -y +3=0和y 轴的距离之和的最小值是( ) A. 3 B . 5C .2D .5-1[答案] D[解析] 由题意知,抛物线的焦点为F(1,0).设点P 到直线l 的距离为d ,由抛物线的定义可知,点P 到y 轴的距离为|PF|-1,所以点P 到直线l 的距离与到y 轴的距离之和为d +|PF|-1.易知d +|PF|的最小值为点F 到直线l 的距离,故d +|PF|的最小值为|2+3|22+-12=5,所以d +|PF|-1的最小值为5-1.(4)利用直角三角形斜边大于直角边求最小值.⑤(2014·陕西质检)已知点M(-3,2)是坐标平面内一定点,若抛物线y2=2x 的焦点为F ,点Q 是该抛物线上的一动点,则|MQ|-|QF|的最小值是( )A.72 B .3C.52 D .2[答案] C[解析] 如图,|MQ ′|-|Q ′F|=|MQ ′|-|Q ′A ′|=|MA ′|=|NA|=|NQ|-|AQ|≤|MQ|-|AQ|=|MQ|-|QF|.(其中l 是抛物线的准线,QA ⊥l ,垂足为A ,Q ′M ⊥l 垂足为A ′,MN ⊥QN),∵抛物线的准线方程为x =-12,∴|QM|-|QF|≥|xQ +3|-|xQ +12|=3-12=52,选C.(5)与其他曲线有关的抛物线最值问题.⑥(2014·忻州联考)已知P 为抛物线y2=4x 上一个动点,Q 为圆x2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是________.[答案] 17-1[解析] 抛物线y2=4x 的焦点为F(1,0),圆x2+(y -4)2=1的圆心为C(0,4),设点P 到抛物线的准线距离为d ,根据抛物线的定义有d =|PF|,∴|PQ|+d =|PQ|+|PF|≥(|PC|-1)+|PF|≥|CF|-1=17-1.(6)与平面向量交汇命题.⑦已知点A(2,0)、B(4,0),动点P 在抛物线y2=-4x 上运动,则AP →·BP →取得最小值时的点P 的坐标是______.[答案] (0,0)[解析] 设P ⎝⎛⎭⎫-y24,y ,则AP →=⎝⎛⎭⎫-y24-2,y ,BP →=⎝⎛⎭⎫-y24-4,y ,AP →·BP →=⎝⎛⎭⎫-y24-2⎝⎛⎭⎫-y24-4+y2=y416+52y2+8≥8,当且仅当y =0时取等号,此时点P 的坐标为(0,0).(7)利用三角形两边之和大于第三边.⑧(2013·郑州第一次质量检测)已知抛物线x2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为( )A.34B.32C .1D .2[答案] D[解析] 由题意知,抛物线的准线l :y =-1,过点A 作AA1⊥l 交l 于点A1,过点B 作BB1⊥l交l 于点B1,设弦AB 的中点为M ,过点M 作MM1⊥l 交l 于点M1,则|MM1|=|AA1|+|BB1|2.因为|AB|≤|AF|+|BF|(F 为抛物线的焦点),即|AF|+|BF|≥6,当直线AB 过点F 时,等号成立,所以|AA1|+|BB1|=|AF|+|BF|≥6,2|MM1|≥6,|MM1|≥3,故点M 到x 轴的距离d≥2,选D.(8)转化为二次函数最值或用基本不等式求最值.二、填空题7.若点(3,1)是抛物线y2=2px 的一条弦的中点,且这条弦所在直线的斜率为2,则p =________.[答案] 2[解析] 设弦两端点P1(x1,y1),P2(x2,y2),则⎩⎪⎨⎪⎧y21=2px1,y22=2px2,两式相减得,y1-y2x1-x2=2p y1+y2=2, ∵y1+y2=2,∴p =2.8.(2013·福州期末)若抛物线y2=4x 的焦点为F ,过F 且斜率为1的直线交抛物线于A 、B 两点,动点P 在曲线y2=-4x(y≥0)上,则△PAB 的面积的最小值为________.[答案] 2 2[解析] 由题意得F(1,0),直线AB 的方程为y =x -1.由⎩⎪⎨⎪⎧y =x -1,y2=4x ,得x2-6x +1=0. 设A(x1,y1),B(x2,y2),则x1+x2=6,x1x2=1,∴|AB|=2·x1+x22-4x1x2=8.设P(-y204,y0),则点P 到直线AB 的距离为|y204+y0+1|2, ∴△PAB 的面积S =|y20+4y0+4|2=y0+222≥22,即△PAB 的面积的最小值是2 2. 9.(2014·山东广饶一中期末)抛物线y2=8x 的顶点为O ,A(1,0),过焦点且倾斜角为π4的直线l与抛物线交于M ,N 两点,则△AMN 的面积是________.[答案] 4 2[解析] 焦点F(2,0),直线l :x =y +2,代入抛物线y2=8x ,消去x ,得y2-8y -16=0.设M(x1,y1),N(x2,y2),则y1+y2=8,y1y2=-16.∴|y1-y2|=y1+y22-4y1y2=8 2.故△AMN的面积S =12×1×|y1-y2|=4 2. 三、解答题10.(2015·豫南九校联考)已知动圆M 过定点F(1,0)且与直线x =-1相切,圆心M 的轨迹为H.(1)求曲线H 的方程;(2)一条直线AB 经过点F 交曲线H 于A 、B 两点,点C 为x =-1上的动点,是否存在这样的点C ,使得△ABC 是正三角形?若存在,求点C 的坐标;否则,说明理由.[解析] (1)设M(x ,y),由题意知M 到定点F 的距离等于到定直线x =-1的距离,所以M 的轨迹是以F 为焦点的抛物线,p 2=1,∴p =2,∴曲线H 的方程为y2=4x.(2)设直线AB :x =my +1,A(x1,y1),B(x2,y2),C(-1,n),由⎩⎪⎨⎪⎧x =my +1,y2=4x ,消去x 得y2-4my -4=0, ∴y1+y2=4m ,y1y2=-4,∴x1+x2=4m2+2,x1x2=1.则M 的坐标为(x1+x22,y1+y22),即M(2m2+1,2m).由kCM·kAB =2m -n 2m2+2·1m=-1得n =2m3+4m ,则C(-1,2m3+4m). ∵|CM|=2m2+22+2m3+2m 2=2(m2+1)m2+1,|AB|=1+m2|y1-y2|=4(1+m2),∵|CM|=32|AB|,∴m =± 2.∴存在这样的点C(-1,±82),使△ABC 为正三角形.一、选择题11.已知P ,Q 为抛物线x2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为( )A .1B .3C .-4D .-8[答案] C[解析] 由已知可设P(4,y1),Q(-2,y2).∵点P ,Q 在抛物线x2=2y 上,∴42=2y1,(-2)2=2y2,∴y1=8,y2=2.∴P(4,8),Q(-2,2).又∵抛物线方程可化为y =12x2,∴y ′=x.∴过点P 的切线斜率为k1=4,切线方程为y =4x -8,又∵过点Q 的切线斜率为k2=-2,∴过点Q 的切线方程为y =-2x -2,联立⎩⎪⎨⎪⎧y =4x -8,y =-2x -2,解得x =1,y =-4. ∴点A 的纵坐标为-4.12.(文)如图,抛物线C1:y2=4x 和圆C2:(x -1)2+y2=1,直线l 经过C1的焦点F ,依次交C1,C2于A ,B ,C ,D 四点,则AB →·CD →的值为( )A.34 B .1C .2D .4[答案] B[解析] 法一:抛物线C1的焦点F 也是圆C2的圆心(1,0).可用特殊法:当l 与x 轴垂直时,|AD|=4,|BC|=2,|AB|=|CD|=1,∴AB →·CD →=|AB →||CD →|=1.故选B.法二:由抛物线的定义知,|AB →|=|AF →|-1=xA ,|CD →|=|DF →|-1=xD ,|AB →||CD →|=xA·xD =p24=1.∴AB →·CD →=|AB →||CD →|=1.故选B.(理)直线3x -4y +4=0与抛物线x2=4y 和圆x2+(y -1)2=1从左到右的交点依次为A 、B 、C 、D ,则|AB||CD|的值为( )A .16B .116C .4D .14[答案] B[解析] 由⎩⎪⎨⎪⎧3x -4y +4=0,x2=4y 得x2-3x -4=0, ∴xA =-1,xD =4,yA =14,yD =4,∵直线3x -4y +4=0恰过抛物线的焦点F(0,1).∴|AF|=yA +1=54,|DF|=yD +1=5,∴|AB||CD|=|AF|-1|DF|-1=116.故选B.13.(文)(2014·山东淄博一模)过抛物线y2=4x 焦点F 的直线交其于A ,B 两点,A 在第一象限,B 在第四象限,O 为坐标原点.若|AF|=3,则△AOB 的面积为( ) A.22 B . 2 C.322 D .2 2[答案] C[解析] 设A(x0,y0),由|AF|=1+x0=3,得x0=2,∴A(2,22),直线AB 的方程为y =22(x-1),与y2=4x 联立,解得B(12,-2).∴S △AOB =12×1×|22-(-2)|=322.(理)(2014·课标全国Ⅱ理)设F 为抛物线C :y2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334 B .938C.6332 D .94[答案] D[解析] 由已知得F(34,0),故直线AB 的方程为y =tan30°·(x -34),即y =33x -34.设A(x1,y1),B(x2,y2),联立⎩⎪⎨⎪⎧ y =33x -34, ①y2=3x , ②将①代入②并整理得13x2-72x +316=0,∴x1+x2=212,∴线段|AB|=x1+x2+p =212+32=12.又原点(0,0)到直线AB 的距离为d =3413+1=38. ∴S △OAB =12|AB|d =12×12×38=94.14.(2014·课标全国Ⅰ理)已知抛物线C :y2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF|=( )A.72 B .52C .3D .2[答案] C[解析] 抛物线的焦点是F(2,0),过点Q 作抛物线的准线的垂线,垂足是A ,则|QA|=|QF|,抛物线的准线与x 轴的交点为G ,因为FP →=4FQ →,∴|PQ →||PF →|=34,由于△QAP ∽△FGP ,所以可得|QA||FG|=|PQ →||PF →|=34,所以|QA|=3,所以|QF|=3.二、填空题15.已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为________.[答案] x =-1[解析] 由⎩⎪⎨⎪⎧y2=2px ,y =x -p 2,消去x 得,y2-2py -p2=0,设A(x1,y1),B(x2,y2),则y1+y2=2p ,由条件知,y1+y2=4,∴p =2,∴抛物线的准线方程为x =-1.16.(2014·湖南理)如图,正方形ABCD 和正方形DEFG 的边长分别为a 、b(a<b),原点O 为AD的中点,抛物线y2=2px(p>0)经过C 、F 两点,则b a =________.[答案] 2+1[解析] 由题可得C(a 2,-a),F(a 2+b ,b),∵C 、F 在抛物线y2=2px 上,∴⎩⎪⎨⎪⎧a2=pa ,b2=2p a 2+b , ∴b2-2ab -a2=0,∴b a =2+1,故填2+1.三、解答题17.(文)(2014·北京西城区期末)已知A ,B 是抛物线W :y =x2上的两个点,点A 的坐标为(1,1),直线AB 的斜率为k ,O 为坐标原点.(1)若抛物线W 的焦点在直线AB 的下方,求k 的取值范围;(2)设C 为W 上一点,且AB ⊥AC ,过B ,C 两点分别作W 的切线,记两切线的交点为D ,求|OD|的最小值.[解析] (1)抛物线y =x2的焦点为(0,14).由题意,得直线AB 的方程为y -1=k(x -1),令x =0,得y =1-k ,即直线AB 与y 轴相交于点(0,1-k).因为抛物线W 的焦点在直线AB 的下方,所以1-k>14,解得k<34.(2)由题意,设B(x1,x21),C(x2,x22),D(x3,y3),联立方程⎩⎪⎨⎪⎧ y -1=k x -1y =x2消去y ,得x2-kx +k -1=0,由根与系数的关系,得1+x1=k ,所以x1=k -1.同理,得AC 的方程为y -1=-1k (x -1),x2=-1k -1.对函数y =x2求导,得y ′=2x ,所以抛物线y =x2在点B 处的切线斜率为2x1,所以切线BD 的方程为y -x21=2x1(x -x1),即y =2x1x -x21.同理,抛物线y =x2在点C 处的切线CD 的方程为y =2x2x -x22.联立两条切线的方程⎩⎪⎨⎪⎧y =2x1x -x21y =2x2x -x22, 解得x3=x1+x22=12(k -1k -2),y3=x1x2=1k -k ,所以点D 的坐标为(12(k -1k -2),1k -k).因此点D 在定直线2x +y +2=0上.因为点O 到直线2x +y +2=0的距离d =|2×0+0+2|22+12=255, 所以|OD|≥255,当且仅当点D(-45,-25)时等号成立. 由y3=1k -k =-25,得k =1±265,验证知符合题意.所以当k =1±265时,|OD|有最小值255.(理)(2014·开封摸底考试)已知圆(x -a)2+(y +1-r)2=r2(r>0)过点F(0,1),圆心M 的轨迹为C.(1)求轨迹C 的方程;(2)设P 为直线l :x -y -2=0上的点,过点P 作曲线C 的两条切线PA ,PB ,当点P(x0,y0)为直线l 上的定点时,求直线AB 的方程;(3)当点P 在直线l 上移动时,求|AF|·|BF|的最小值.[解析] (1)依题意,由圆过定点F 可知C 的方程为x2=4y.(2)抛物线C 的方程为y =14x2,求导得y ′=12x.设A(x1,y1),B(x2,y2)(其中y1=x214,y2=x224),则切线PA ,PB 的斜率分别为12x1,12x2,所以切线PA 的方程为y -y1=x12(x -x1),即x1x -2y -2y1=0.同理可得切线PB 的方程为x2x -2y -2y2=0.因为切线PA ,PB 均过点P(x0,y0),所以x1x0-2y0-2y1=0,x2x0-2y0-2y2=0,所以(x1,y1),(x2,y2)为方程x0x -2y0-2y =0的两组解.所以直线AB 的方程为x0x -2y -2y0=0.(3)由抛物线定义可知|AF|=y1+1,|BF|=y2+1,所以|AF|·|BF|=(y1+1)(y2+1)=y1y2+(y1+y2)+1,联立方程⎩⎪⎨⎪⎧x0x -2y -2y0=0x2=4y ,消去x 整理得y2+(2y0-x20)y +y20=0, 由一元二次方程根与系数的关系可得y1+y2=x20-2y0,y1y2=y20,所以|AF|·|BF|=y1y2+(y1+y2)+1=y20+x20-2y0+1.又点P(x0,y0)在直线l 上,所以x0=y0+2,所以y20+x20-2y0+1=2y20+2y0+5=2(y0+12)2+92,所以当y0=-12时,|AF|·|BF|取得最小值,且最小值为92.18.(文)已知动圆过定点F(0,2),且与定直线L :y =-2相切.(1)求动圆圆心的轨迹C 的方程;(2)若AB 是轨迹C 的动弦,且AB 过F(0,2),分别以A 、B 为切点作轨迹C 的切线,设两切线交点为Q ,证明:AQ ⊥BQ.[解析] (1)依题意,圆心的轨迹是以F(0,2)为焦点,L :y =-2为准线的抛物线,因为抛物线焦点到准线距离等于4,所以圆心的轨迹方程是x2=8y.(2)证明:因为直线AB 与x 轴不垂直,设AB :y =kx +2.A(x1,y1),B(x2,y2).由⎩⎪⎨⎪⎧y =kx +2,y =18x2,可得x2-8kx -16=0, ∴x1+x2=8k ,x1x2=-16.抛物线方程为y =18x2,求导得y ′=14x.所以过抛物线上A 、B 两点的切线斜率分别是k1=14x1,k2=14x2,k1k2=14x1·14x2=116x1·x2=-1.所以AQ ⊥BQ.(理)(2013·长春三校调研)在直角坐标系xOy 中,点M(2,-12),点F 为抛物线C :y =mx2(m>0)的焦点,线段MF 恰被抛物线C 平分.(1)求m 的值;(2)过点M 作直线l 交抛物线C 于A 、B 两点,设直线FA 、FM 、FB 的斜率分别为k1、k2、k3,问k1、k2、k3能否成公差不为零的等差数列?若能,求直线l 的方程;若不能,请说明理由.[解析] (1)由题得抛物线C 的焦点F 的坐标为(0,14m ),线段MF 的中点N(1,18m -14)在抛物线C 上,∴18m -14=m,8m2+2m -1=0,∴m =14(m =-12舍去).(2)由(1)知抛物线C :x2=4y ,F(0,1).设直线l 的方程为y +12=k(x -2),A(x1,y1)、B(x2,y2),由⎩⎪⎨⎪⎧ y +12=k x -2,x2=4y ,得x2-4kx +8k +2=0, Δ=16k2-4(8k +2)>0,∴k<2-62或k>2+62. ⎩⎪⎨⎪⎧x1+x2=4k ,x1x2=8k +2. 假设k1、k2、k3能成公差不为零的等差数列,则k1+k3=2k2.而k1+k3=y1-1x1+y2-1x2=x2y1+x1y2-x2-x1x1x2=x2x214+x1x224-x2-x1x1x2=x1x24-1x1+x2x1x2 =8k +24-1·4k 8k +2=4k2-k 4k +1, k2=-34,∴4k2-k 4k +1=-32,8k2+10k +3=0, 解得k =-12(符合题意)或k =-34(不合题意,舍去). ∴直线l 的方程为y +12=-12(x -2),即x +2y -1=0.∴k1、k2、k3能成公差不为零的等差数列,此时直线l 的方程为x +2y -1=0.。
第七节抛物线[考纲传真] 1.掌握抛物线的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).2.理解数形结合的思想.3.了解抛物线的实际背景及抛物线的简单应用.1.抛物线的概念平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.2.抛物线的标准方程与几何性质1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( )(2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫a 4,0,准线方程是x =-a 4.( )(3)抛物线既是中心对称图形,又是轴对称图形.( )(4)AB 为抛物线y 2=2px (p >0)的过焦点F ⎝ ⎛⎭⎪⎫p 2,0的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 24,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .( )[答案](1)× (2)× (3)× (4)√2.(教材改编)若抛物线y=4x2上的一点M到焦点的距离为1,则点M的纵坐标是()A.1716 B.1516C.78 D.0B[M到准线的距离等于M到焦点的距离,又准线方程为y=-1 16,设M(x,y),则y+116=1,∴y=1516.]3.抛物线y=14x2的准线方程是()A.y=-1 B.y=-2 C.x=-1 D.x=-2A[∵y=14x2,∴x2=4y,∴准线方程为y=-1.]4.(2017·西安质检)若抛物线y2=2px(p>0)的准线经过双曲线x2-y2=1的一个焦点,则p=__________.22[抛物线的准线方程为x=-p2,p>0,双曲线的焦点为F1(-2,0),F2(2,0),所以-p2=-2,p=2 2.]5.(2016·浙江高考)若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是________.9[设点M的横坐标为x0,则点M到准线x=-1的距离为x0+1,由抛物线的定义知x0+1=10,∴x0=9,∴点M到y轴的距离为9.]A(x0,y0)是C上一点,|AF |=54x 0,则x 0=( )A .1 B.2 C .4D.8(2)(2017·广东汕头调研)已知P 是抛物线y 2=4x 上的一个动点,Q 是圆(x -3)2+(y -1)2=1上的一个动点,N (1,0)是一个定点,则|PQ |+|PN |的最小值为( )A .3 B.4 C .5D.2+1(1)A (2)A [(1)由y 2=x ,知2p =1,即p =12, 因此焦点F ⎝ ⎛⎭⎪⎫14,0,准线l 的方程为x =-14.设点A (x 0,y 0)到准线l 的距离为d ,则由抛物线的定义可知d =|AF |. 从而x 0+14=54x 0,解得x 0=1.(2)由抛物线方程y 2=4x ,可得抛物线的焦点F (1,0),又N (1,0),所以N 与F 重合.过圆(x -3)2+(y -1)2=1的圆心M 作抛物线准线的垂线MH ,交圆于Q ,交抛物线于P ,则|PQ |+|PN |的最小值等于|MH |-1=3.][规律方法] 1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.如本例充分运用抛物线定义实施转化,使解答简捷、明快.2.若P (x 0,y 0)为抛物线y 2=2px (p >0)上一点,由定义易得|PF |=x 0+p2;若过焦点的弦AB 的端点坐标为A (x 1,y 1),B (x 2,y 2),则弦长为|AB |=x 1+x 2+p ,x 1+x 2可由根与系数的关系整体求出.[变式训练1] (2017·郑州调研)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4 FQ →,则|QF |=( )A.72B.52 C .3D.2C [∵FP →=4 FQ →, ∴|FP →|=4|FQ →|, ∴|PQ ||PF |=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则|AF |=4, ∴|PQ ||PF |=|QQ ′||AF |=34, ∴|QQ ′|=3.根据抛物线定义可知|QF |=|QQ ′|=3.]程是( )【导学号:01772323】A .x 2=112yB.x 2=112y 或x 2=-136yC .x 2=-136yD.x 2=12y 或x 2=-36y(2)(2016·全国卷Ⅰ)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2 B.4 C .6D.8(1)D (2)B [(1)将y =ax 2化为x 2=1a y .当a >0时,准线y =-14a ,则3+14a =6,∴a =112. 当a <0时,准线y =-14a ,则⎪⎪⎪⎪⎪⎪3+14a =6,∴a =-136.∴抛物线方程为x 2=12y 或x 2=-36y .(2)设抛物线的方程为y 2=2px (p >0),圆的方程为x 2+y 2=r 2. ∵|AB |=42,|DE |=25, 抛物线的准线方程为x =-p2, ∴不妨设A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5.∵点A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上,∴⎩⎪⎨⎪⎧16p 2+8=r 2,p 24+5=r 2,∴16p 2+8=p 24+5,∴p =4(负值舍去).∴C 的焦点到准线的距离为4.][规律方法] 1.求抛物线的标准方程的方法:(1)求抛物线的标准方程常用待定系数法,因为未知数只有p ,所以只需一个条件确定p 值即可.(2)因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.2.由抛物线的方程可以确定抛物线的开口方向、焦点位置、焦点到准线的距离;从而进一步确定抛物线的焦点坐标及准线方程.[变式训练2] (1)(2017·河南中原名校联考)抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线的方程为 ( )A .y 2=6x B.y 2=8x C .y 2=16xD.y 2=15x2(2)若抛物线y 2=2px 的焦点与椭圆x 29+y 25=1的右焦点重合,则该抛物线的准线方程为__________.(1)B (2)x =-2 [(1)设M (x ,y ),因为|OF |=p2,|MF |=4|OF |, 所以|MF |=2p ,由抛物线定义知x +p2=2p , 所以x =32p ,所以y =±3p . 又△MFO 的面积为43,所以12×p2×3p =43,解得p =4(p =-4舍去). 所以抛物线的方程为y 2=8x .(2)由椭圆x 29+y 25=1,知a =3,b =5, 所以c 2=a 2-b 2=4,所以c =2. 因此椭圆的右焦点为(2,0), 又抛物线y 2=2px 的焦点为⎝ ⎛⎭⎪⎫p 2,0.依题意,得p2=2, 于是抛物线的准线x =-2.]☞角度(2016·全国卷Ⅰ)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由. [解](1)如图,由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t .又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t ,2分故直线ON 的方程为y =p t x ,将其代入y 2=2px 整理得px 2-2t 2x =0,解得x 1=0,x 2=2t 2p .因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t .所以N 为OH 的中点,即|OH ||ON |=2.5分 (2)直线MH 与C 除H 以外没有其他公共点.理由如下: 直线MH 的方程为y -t =p 2t x ,即x =2tp (y -t ).8分 代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t , 即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点.12分[规律方法] 1.(1)本题求解的关键是求出点N ,H 的坐标.(2)第(2)问将直线MH 的方程与抛物线C 的方程联立,根据方程组的解的个数进行判断.2.(1)判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标,也可利用消元后的一元二次方程的判别式来确定,需注意利用判别式的前提是二次项系数不为0.(2)解题时注意应用根与系数的关系及设而不求、整体代换的技巧.☞角度2 与抛物线弦长或中点有关的问题(2017·泰安模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线C与直线l 1:y =-x 的一个交点的横坐标为8.【导学号:01772324】(1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1的垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP |=|PB |,求△F AB 的面积.[解](1)易知直线与抛物线的交点坐标为(8,-8),2分 ∴(-8)2=2p ×8,∴2p =8,∴抛物线方程为y 2=8x .5分(2)直线l 2与l 1垂直,故可设直线l 2:x =y +m ,A (x 1,y 1),B (x 2,y 2),且直线l 2与x 轴的交点为M .6分由⎩⎪⎨⎪⎧y 2=8x ,x =y +m ,得y 2-8y -8m =0, Δ=64+32m >0,∴m >-2. y 1+y 2=8,y 1y 2=-8m ,∴x 1x 2=y 21y 2264=m 2.8分由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2-8m =0,∴m =8或m =0(舍),∴直线l 2:x =y +8,M (8,0).10分 故S △F AB =S △FMB +S △FMA =12·|FM |·|y 1-y 2| =3(y 1+y 2)2-4y 1y 2=24 5.12分[规律方法] 1.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.2.涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等方法.3.涉及弦的中点、斜率时,一般用“点差法”求解.[思想与方法]1.抛物线定义的实质可归结为“一动三定”:一个动点M ,一个定点F (抛物线的焦点),一条定直线l (抛物线的准线),一个定值1(抛物线的离心率).2.抛物线的定义中指明了抛物线上点到焦点的距离与到准线距离的等价性,故二者可相互转化,这一转化思想在解题中有着重要作用.3.抛物线的焦点弦:设过抛物线y 2=2px (p >0)的焦点的直线与抛物线交于A (x 1,y 1),B (x 2,y 2),则:(1)y 1y 2=-p 2,x 1x 2=p 24;(2)若直线AB 的倾斜角为θ,则|AB |=2psin 2θ=x 1+x 2+p . [易错与防范]1.认真区分四种形式的标准方程.(1)区分y=ax2(a≠0)与y2=2px(p>0),前者不是抛物线的标准方程.(2)求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y2=mx或x2=my(m≠0).2.直线与抛物线结合的问题,不要忘记验证判别式.3.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.当直线与抛物线有一个公共点,并不表明直线与抛物线相切.。
第7讲抛物线1.抛物线的定义满足以下三个条件的点的轨迹是抛物线:(1)在平面内;(2)动点到定点F的距离与到定直线l的距离相等;(3)定点不在定直线上.2.抛物线的标准方程和几何性质1.辨明两个易误点(1)抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与定直线垂直的直线.(2)对于抛物线标准方程中参数p ,易忽视只有p >0才能证明其几何意义是焦点F 到准线l 的距离,否则无几何意义.2.与焦点弦有关的常用结论(以右图为依据)设A (x 1,y 1),B (x 2,y 2). (1)y 1y 2=-p 2,x 1x 2=p 24.(2)|AB |=x 1+x 2+p =2psin 2θ(θ为AB 的倾斜角).(3)1|AF |+1|BF |为定值2p. (4)以AB 为直径的圆与准线相切. (5)以AF 或BF 为直径的圆与y 轴相切.1.教材习题改编抛物线y =-14x 2的焦点坐标是( )A .(0,-1)B .(0,1)C .(1,0)D .(-1,0)A 抛物线y =-14x 2的标准方程为x 2=-4y ,开口向下,p =2,p 2=1,故焦点为(0,-1).2.已知抛物线C 与双曲线x 2-y 2=1有相同的焦点,且顶点在原点,则抛物线C 的方程是( )A .y 2=±22x B .y 2=±2x C .y 2=±4xD .y 2=±42xD 因为双曲线的焦点为(-2,0),(2,0).设抛物线方程为y 2=±2px (p >0),则p2=2,所以p =22,所以抛物线方程为y 2=±42x .3.顶点在原点,对称轴为坐标轴,且过点P (-4,-2)的抛物线的标准方程是( ) A .y 2=-xB .x 2=-8yC .y 2=-8x 或x 2=-yD .y 2=-x 或x 2=-8yD 设抛物线为y 2=mx ,代入点P (-4,-2),解得m =-1,则抛物线方程为y 2=-x ;设抛物线为x 2=ny ,代入点P (-4,-2),解得n =-8,则抛物线方程为x 2=-8y .4.教材习题改编 抛物线x 2=2py (p >0)上的点P (m ,2)到焦点F 的距离为3,则该抛物线的方程为________.根据抛物线定义可知2+p2=3,所以p =2,所以抛物线的方程为x 2=4y .x 2=4y5.动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为________. 设动圆的圆心坐标为(x ,y ),则圆心到点(1,0)的距离与到直线x =-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y 2=4x .y 2=4x抛物线的定义及其应用(1)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF与C 的一个交点,若FP →=4FQ →,则|QF |=( )A.72 B .52 C .3D .2(2)已知抛物线y 2=4x 的焦点是F ,点P 是抛物线上的动点,又有点B (3,2),则|PB |+|PF |的最小值为________.【解析】 (1)因为FP →=4FQ →, 所以|FP →|=4|FQ →|, 所以|PQ ||PF |=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则|AF |=4,所以|PQ ||PF |=|QQ ′||AF |=34,所以|QQ ′|=3,根据抛物线定义可知|QF |=|QQ ′|=3.(2)如图,过点B 作BQ 垂直准线于Q ,交抛物线于点P 1,则|P 1Q |=|P 1F |,则有|PB |+|PF |≥|P 1B |+|P 1Q |=|BQ |=4.即|PB |+|PF |的最小值为4. 【答案】 (1)C (2)4若本例(2)中的B 点坐标改为(3,4),试求|PB |+|PF |的最小值.由题意可知点(3,4)在抛物线的外部.因为|PB |+|PF |的最小值即为B ,F 两点间的距离,所以|PB |+|PF |≥|BF |=42+22=16+4=2 5.即|PB |+|PF |的最小值为2 5.抛物线定义的应用(1)利用抛物线的定义解决此类问题,应灵活地进行抛物线上的点到焦点的距离与到准线距离的等价转化.即“看到准线想到焦点,看到焦点想到准线”.(2)注意灵活运用抛物线上一点P (x ,y )到焦点F 的距离|PF |=|x |+p 2或|PF |=|y |+p2.1.设经过抛物线C 的焦点的直线l 与抛物线C 交于A 、B 两点,那么抛物线C 的准线与以AB 为直径的圆的位置关系为( )A .相离B .相切C .相交但不经过圆心D .相交且经过圆心B 设圆心为M ,过点A 、B 、M 作准线l 的垂线,垂足分别为A 1、B 1、M 1,则|MM 1|=12(|AA 1|+|BB 1|).由抛物线定义可知|BF |=|BB 1|,|AF |=|AA 1|,所以|AB |=|BB 1|+|AA 1|,|MM 1|=12|AB |,即圆心M 到准线的距离等于圆的半径,故以AB 为直径的圆与抛物线的准线相切. 2.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,则抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A.355 B .2 C.115D .3B 由题可知l 2:x =-1是抛物线y 2=4x 的准线,设抛物线的焦点F 为(1,0),则动点P 到l 2的距离等于|PF |,则动点P 到直线l 1和直线l 2的距离之和的最小值即为焦点F 到直线l 1:4x -3y +6=0的距离,所以最小值是|4-0+6|5=2.抛物线的标准方程及性质(高频考点)抛物线的标准方程及性质是高考的热点,考查时多以选择题、填空题形式出现,个别高考题有一定难度.高考对该内容的考查主要有以下两个命题角度: (1)求抛物线的标准方程; (2)抛物线性质的研究.(1)(2017·河南中原名校联考)抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线的方程为( )A .y 2=6x B .y 2=8x C .y 2=16xD .y 2=15x 2(2)(2016·高考全国卷乙)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8【解析】 (1)设M (x ,y ),因为|OF |=p2,|MF |=4|OF |,所以|MF |=2p ,由抛物线定义知x +p 2=2p ,所以x =32p ,所以y =±3p ,又△MFO 的面积为43,所以12×p2×3p =43,解得p =4(p =-4舍去).所以抛物线的方程为y 2=8x .(2)由题意,不妨设抛物线方程为y 2=2px (p >0),由|AB |=42,|DE |=25,可取A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5,设O 为坐标原点,由|OA |=|OD |,得16p 2+8=p 24+5,得p =4,所以选B .【答案】 (1)B (2)B(1)求抛物线的标准方程的方法①求抛物线的标准方程常用待定系数法,因为未知数只有p ,所以只需一个条件确定p 值即可.②因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量. (2)确定及应用抛物线性质的技巧①利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程化成标准方程.②要结合图形分析,灵活运用平面几何的性质以图助解.角度一 求抛物线的标准方程1.动直线l 的倾斜角为60°,且与抛物线x 2=2py (p >0)交于A ,B 两点,若A ,B 两点的横坐标之和为3,则抛物线的方程为________.设直线l 的方程为y =3x +b ,联立⎩⎨⎧y =3x +b ,x 2=2py,消去y ,得x 2=2p (3x +b ), 即x 2-23px -2pb =0,所以x A +x B =23p =3,所以p =32,则抛物线的方程为x 2=3y .x 2=3y角度二 抛物线性质的研究2.若抛物线y 2=2x 上一点M 到它的焦点F 的距离为32,O 为坐标原点,则△MFO 的面积为( )A.22B .24C.12 D .14B 由题意知,抛物线准线方程为x =-12.设M (a ,b ),由抛物线的定义可知, 点M 到准线的距离为32,所以a =1,代入抛物线方程y 2=2x , 解得b =±2,所以S △MFO =12×12×2=24.直线与抛物线的位置关系(2016·高考全国卷乙)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.(1)由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t . 又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t , ON 的方程为y =ptx ,代入y 2=2px ,整理得px 2-2t 2x =0, 解得x 1=0,x 2=2t2p.因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t . 所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点.理由如下: 直线MH 的方程为y -t =p2t x ,即x =2tp(y -t ).代入y 2=2px 得y 2-4ty +4t 2=0, 解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其他公共点.解决直线与抛物线位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=|x 1|+|x 2|+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.涉及弦的中点、斜率时,一般用“点差法”求解.1.(2017·重庆适应性测试(二))设抛物线y 2=2px (p >0)的焦点为F ,过F 且斜率为3的直线交抛物线于A ,B 两点.若线段AB 的垂直平分线与x 轴交于点M (11,0),则p =( )A .2B .3C .6D .12C 由题意可得直线AB 的方程是y =3⎝ ⎛⎭⎪⎫x -p 2,代入抛物线方程y 2=2px (p >0)中,化简得3x 2-5px +34p 2=0,则AB 中点坐标是⎝ ⎛⎭⎪⎫5p 6,33p ,则33p 5p 6-11=-33,解得p =6.2.过点(-2,1)斜率为k 的直线l 与抛物线y 2=4x 只有一个公共点,则由k 的值组成的集合为________.设l 的方程为y -1=k (x +2), 由方程组⎩⎪⎨⎪⎧y =kx +(2k +1)y 2=4x,得ky 2-4y +4(2k +1)=0,①当k =0时,y =1,此时x =14,l 与抛物线仅有一个公共点⎝ ⎛⎭⎪⎫14,1. ②当k ≠0时,由Δ=-16(2k 2+k -1)=0,得k =-1或k =12,所以k 的值组成的集合为⎩⎨⎧⎭⎬⎫0,-1,12.⎩⎨⎧⎭⎬⎫0,-1,12)——抛物线中最值问题的求法1.定义转换法(2017·豫南九校联考)已知点P 是抛物线x 2=4y 上的动点,点P 在x 轴上的射影是点Q ,点A 的坐标是(8,7),则|PA |+|PQ |的最小值为( )A .7B .8C .9D .10【解析】 抛物线的焦点为F (0,1),准线方程为y =-1,根据抛物线的定义知,|PF |=|PM |=|PQ |+1.所以|PA |+|PQ |=|PA |+|PM |-1=|PA |+|PF |-1≥|AF |-1=82+(7-1)2-1=10-1=9.【答案】 C与抛物线上的点到准线距离有关的最值问题,一般都是利用抛物线的定义,将到准线的距离转化为到焦点的距离,然后通过数形结合直接判断出取得最值时所要满足的条件,这样就能避免烦琐的代数运算.2.平移直线法抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是________. 【解析】 法一:如图,设与直线4x +3y -8=0平行且与抛物线y =-x 2相切的直线为4x +3y +b =0,切线方程与抛物线方程联立得⎩⎪⎨⎪⎧y =-x 2,4x +3y +b =0,消去y 整理得3x 2-4x -b =0,则Δ=16+12b=0,解得b =-43,所以切线方程为4x +3y -43=0,抛物线y =-x 2上的点到直线4x +3y-8=0距离的最小值是这两条平行线间的距离d =⎪⎪⎪⎪⎪⎪8-435=43.法二:由y =-x 2,得y ′=-2x .如图,设与直线4x +3y -8=0平行且与抛物线y =-x 2相切的直线与抛物线的切点是T (m ,-m 2),则切线斜率k =y ′|x =m =-2m =-43,所以m=23,即切点T ⎝ ⎛⎭⎪⎫23,-49,点T 到直线4x+3y -8=0的距离d =⎪⎪⎪⎪⎪⎪83-43-816+9=43,由图知抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是43.【答案】 43若抛物线上的任一点P 到直线l 的距离最小,则过点P 与l 平行的直线与抛物线相切,且最小距离为两平行直线间的距离,所以可将问题转化为求与抛物线相切的直线,然后求两平行直线间的距离.3.函数法针对上面例2,我们给出第三种解决方法:法三:设P (x ,-x 2),则点P 到直线4x +3y -8=0的距离d =|4x -3x 2-8|16+9=15⎪⎪⎪⎪⎪⎪3⎝ ⎛⎭⎪⎫x -232+203=35⎝ ⎛⎭⎪⎫x -232+43,在抛物线y =-x 2中,x ∈R ,所以当x =23时,d 取得最小值43,即抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是43.若点P 在抛物线y 2=x 上,点Q 在圆(x -3)2+y 2=1上,则|PQ |的最小值为________.【解析】 由题意得抛物线与圆不相交, 且圆的圆心为A (3,0), 则|PQ |≥|PA |-|AQ |=|PA |-1, 当且仅当P ,Q ,A 三点共线时取等号, 所以当|PA |取得最小值时,|PQ |最小.设P (x 0,y 0),则y 20=x 0,|PA |=(x 0-3)2+y 20=x 20-6x 0+9+x 0= ⎝ ⎛⎭⎪⎫x 0-522+114,当且仅当x 0=52时,|PA |取得最小值112,此时|PQ |取得最小值112-1.【答案】112-1解与抛物线有关的最值问题可通过两点间距离公式或者点到直线的距离公式建立目标函数,再用求函数最值的方法求解.解题的关键是根据所给抛物线方程设出动点坐标.1.已知点A (-2,3)在抛物线C :y 2=2px (p >0)的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .-43B .-1C .-34D .-12C 由已知,得准线方程为x =-2,所以F 的坐标为(2,0).又A (-2,3),所以直线AF 的斜率为k =3-0-2-2=-34. 2.(2017·山西省高三考前质量检测)已知抛物线C 1:x 2=2py (p >0)的准线与抛物线C 2:x 2=-2py (p >0)交于A ,B 两点,C 1的焦点为F ,若△FAB 的面积等于1,则C 1的方程是( )A .x 2=2y B .x 2=2y C .x 2=yD .x 2=22y A 由题意得,F ⎝ ⎛⎭⎪⎫0,p 2,不妨设A ⎝⎛⎭⎪⎫p ,-p 2,B (-p ,-p 2),所以S △FAB =12·2p ·p =1,则p =1,即抛物线C 1的方程是x 2=2y ,故选A.3.(2017·广东茂名二模)若动圆的圆心在抛物线y =112x 2上,且与直线y +3=0相切,则此圆恒过定点( )A .(0,2)B .(0,-3)C .(0,3)D .(0,6)C 直线y +3=0是抛物线x 2=12y 的准线,由抛物线的定义知抛物线上的点到直线y =-3的距离与到焦点(0,3)的距离相等,所以此圆恒过定点(0,3).4.设F 为抛物线y 2=2x 的焦点,A 、B 、C 为抛物线上三点,若F 为△ABC 的重心,则|FA →|+|FB →|+|FC →|的值为( )A .1B .2C .3D .4C 依题意,设点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),又焦点F ⎝ ⎛⎭⎪⎫12,0,x 1+x 2+x 3=3×12=32,则|FA →|+|FB →|+|FC →|=⎝⎛⎭⎪⎫x 1+12+⎝ ⎛⎭⎪⎫x 2+12+⎝ ⎛⎭⎪⎫x 3+12=(x 1+x 2+x 3)+32=32+32=3.5.(2017·辽宁抚顺部分重点高中一模)已知点A 是抛物线y 2=2px (p >0)上一点,F 为其焦点,以F 为圆心,以|FA |为半径的圆交准线于B ,C 两点,△FBC 为正三角形,且△ABC 的面积是1283,则抛物线的方程为( )A .y 2=12x B .y 2=14x C .y 2=16x D .y 2=18xC由题意,如图可得|DF ||BF |=cos 30°及|DF |=p ,可得|BF |=2p 3, 从而|AF |=2p 3, 由抛物线的定义知点A 到准线的距离也为2p 3,又因为△ABC 的面积为1283,所以12×2p 3×2p 3=1283,解得p =8,故抛物线的方程为y 2=16x .6.(2017·湖北七市联考)过抛物线y 2=2px (p >0)的焦点F 的直线与双曲线x 2-y 23=1的一条渐近线平行,并交抛物线于A 、B 两点,若|AF |>|BF |,且|AF |=2,则抛物线的方程为( )A .y 2=2x B .y 2=3x C .y 2=4xD .y 2=xA 由双曲线方程x 2-y 23=1知其渐近线方程为y =±3x ,所以过抛物线焦点F 且与渐近线平行的直线AB 的斜率为±3,不妨取k AB =3,则其倾斜角为60°,即∠AFx =60°.过A 作AN ⊥x 轴,垂足为N .由|AF |=2,得|FN |=1.过A 作AM ⊥准线l ,垂足为M ,则|AM |=p +1.由抛物线的定义知,|AM |=|AF |.所以p +1=2,所以p =1,所以抛物线的方程为y 2=2x ,故选A.7.(2017·合肥市第二次质量检测)已知抛物线y 2=2px (p >0)上一点M 到焦点F 的距离等于2p ,则直线MF 的斜率为________.设M (x M ,y M ),由抛物线定义可得|MF |=x M +p 2=2p ,解得x M =3p2,代入抛物线方程可得y M =±3p ,则直线MF 的斜率为y M x M -p 2=±3pp =± 3.± 38.已知抛物线C 的方程为y 2=2px (p >0),○·M 的方程为x 2+y 2+8x +12=0,如果抛物线C 的准线与○·M 相切,那么p 的值为________.将○·M 的方程化为标准方程:(x +4)2+y 2=4,圆心坐标为(-4,0),半径r =2,又因为抛物线的准线方程为x =-p2,所以⎪⎪⎪⎪⎪⎪4-p 2=2,p =12或4.12或49.抛物线y 2=4x 的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AFK 的面积是________.因为抛物线y 2=4x 的焦点F 的坐标为(1,0),所以经过F 且斜率为3的直线方程为y =3(x -1),得A 点的横坐标x A =3,由抛物线的定义知|AK |=|AF |=3+1=4,又AK ∥x 轴,所以∠FAK =60°,△AFK 的面积是12×4×4×32=4 3.4 310.(经典考题)如图所示是抛物线形拱桥,当水面在l 时,拱顶离水面2 m ,水面宽4 m .水位下降1 m 后,水面宽________m.建立如图所示的平面直角坐标系,设抛物线方程为x 2=-2py (p >0),则A (2,-2),将其坐标代入x 2=-2py ,得p =1.所以x 2=-2y .当水面下降1 m ,得D (x 0,-3)(x 0>0),将其坐标代入x 2=-2y ,得x 20=6,所以x 0= 6. 所以水面宽|CD |=2 6 m. 2 611.顶点在原点,焦点在x 轴上的抛物线截直线y =2x -4所得的弦长|AB |=35,求此抛物线方程.设所求的抛物线方程为y 2=ax (a ≠0),A (x 1,y 1),B (x 2,y 2),把直线y =2x -4代入y 2=ax ,得4x 2-(a +16)x +16=0,由Δ=(a +16)2-256>0,得a >0或a <-32. 又x 1+x 2=a +164,x 1x 2=4,所以|AB |=(1+22)[(x 1+x 2)2-4x 1x 2] =5⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1642-16=35, 所以5⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1642-16=45, 所以a =4或a =-36.故所求的抛物线方程为y 2=4x 或y 2=-36x .12.已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)若过M 作MN ⊥FA ,垂足为N ,求点N 的坐标. (1)抛物线y 2=2px 的准线为x =-p2,于是4+p2=5,所以p =2.所以抛物线方程为y 2=4x . (2)因为点A 的坐标是(4,4), 由题意得B (0,4),M (0,2).又因为F (1,0),所以k FA =43,因为MN ⊥FA ,所以k MN =-34.又FA 的方程为y =43(x -1),①MN 的方程为y -2=-34x ,②联立①②,解得x =85,y =45,所以点N 的坐标为⎝ ⎛⎭⎪⎫85,45.13.(2017·湖南长郡中学月考)抛物线y 2=2px (p >0)的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足∠AFB =120°,过AB 的中点M 作抛物线准线l 的垂线MN ,垂足为N ,则|MN ||AB |的最大值为( ) A.33 B .1 C.233D .2A 过A 、B 分别作抛物线准线的垂线,垂足分别为A 1,B 1,连接AF 、BF ,由抛物线的定义知|MN |=12(|AA 1|+|BB 1|)=12(|AF |+|BF |),在△AFB 中,|AB |2=|AF |2+|BF |2-2|AF ||BF |·cos 120°=|AF |2+|BF |2+|AF ||BF |.所以⎝ ⎛⎭⎪⎫|MN ||AB |2=14·|AF |2+|BF |2+2|AF ||BF ||AF |2+|BF |2+|AF ||BF |=14⎝ ⎛⎭⎪⎫1+|AF ||BF ||AF |2+|BF |2+|AF ||BF |=14⎝⎛⎭⎪⎪⎫1+1|AF ||BF |+|BF ||AF |+1≤14×⎝ ⎛⎭⎪⎫1+12+1=13,当且仅当|AF |=|BF |时取等号,所以|MN ||AB |的最大值为33.14.已知抛物线x 2=2y ,过抛物线的焦点F 的直线l 交抛物线于P ,Q 两点,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.由x 2=2y ,得y =12x 2,所以y ′=x .设P (x 1,y 1),Q (x 2,y 2),所以抛物线在P ,Q 两点处的切线的斜率分别为x 1,x 2,所以过点P 的抛物线的切线方程为y -y 1=x 1(x -x 1),又x 21=2y 1,所以切线方程为y =x 1x -x 212,同理可得过点Q 的切线方程为y =x 2x -x 222,两切线方程联立解得⎩⎪⎨⎪⎧x A=x 1+x 22,y A=x 1x 22.又抛物线焦点F 的坐标为⎝ ⎛⎭⎪⎫0,12,易知直线l 的斜率存在,可设直线l 的方程为y =mx+12,由⎩⎪⎨⎪⎧y =mx +12,x 2=2y ,得x 2-2mx -1=0,所以x 1x 2=-1,所以y A =-12.-1215.如图所示,已知抛物线C :y 2=4x 的焦点为F ,直线l 经过点F且与抛物线C 相交于A 、B 两点.(1)若线段AB 的中点在直线y =2上,求直线l 的方程; (2)若线段|AB |=20,求直线l 的方程.(1)由已知得抛物线的焦点为F (1,0).因为线段AB 的中点在直线y =2上,所以直线l 的斜率存在,设直线l 的斜率为k ,A (x 1,y 1),B (x 2,y 2),AB 的中点M (x 0,y 0),则⎩⎪⎨⎪⎧x 0=x 1+x 22,y 0=y 1+y 22.由⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),所以2y 0k =4. 又y 0=2,所以k =1,故直线l 的方程是y =x -1.(2)设直线l 的方程为x =my +1,与抛物线方程联立得错误!消元得y 2-4my -4=0, 所以y 1+y 2=4m ,y 1y 2=-4,Δ=16(m 2+1)>0. |AB |=m 2+1|y 1-y 2|=m 2+1·(y 1+y 2)2-4y 1y 2 =m 2+1·(4m )2-4×(-4) =4(m 2+1).所以4(m 2+1)=20,解得m =±2, 所以直线l 的方程是x =±2y +1, 即x ±2y -1=0.16.(2017·湖南六校联考)已知抛物线的方程为x 2=2py (p >0),其焦点为F ,点O 为坐标原点,过焦点F 作斜率为k (k ≠0)的直线与抛物线交于A ,B 两点,过A ,B 两点分别作抛物线的两条切线,设两条切线交于点M .(1)求OA →·OB →;(2)设直线MF 与抛物线交于C ,D 两点,且四边形ACBD 的面积为323p 2,求直线AB 的斜率k .(1)设直线AB 的方程为y =kx +p2,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2=2py ,y =kx +p 2,得x 2-2pkx -p 2=0,则⎩⎪⎨⎪⎧x 1+x 2=2pk ,x 1·x 2=-p 2, 所以OA →·OB →=x 1·x 2+y 1·y 2=-34p 2.(2)由x 2=2py ,知y ′=x p,所以抛物线在A ,B 两点处的切线的斜率分别为x 1p ,x 2p,所以直线AM 的方程为y -y 1=x 1p (x -x 1),直线BM 的方程为y -y 2=x 2p(x -x 2),则可得M ⎝⎛⎭⎪⎫pk ,-p 2. 所以k MF =-1k,所以直线MF 与AB 相互垂直.由弦长公式知,|AB |=k 2+1|x 1-x 2|=k 2+1·4p 2k 2+4p 2=2p (k 2+1), 用-1k代替k 得,|CD |=2p ⎝ ⎛⎭⎪⎫1k 2+1,四边形ACBD 的面积S =12·|AB |·|CD |=2p 2⎝ ⎛⎭⎪⎫2+k 2+1k 2=323p 2,解得k 2=3或k 2=13,即k =±3或k =±33.。
第七节抛物线[备考方向要明了][归纳·知识整合]1.抛物线的定义满足以下三个条件的点的轨迹是抛物线:(1)在平面内;(2)动点到定点F距离与到定直线l的距离相等;(3)定点不在定直线上.[探究] 1.当定点F在定直线l上时,动点的轨迹是什么图形?提示:当定点F在定直线l上时,动点的轨迹是过定点F且与直线l垂直的直线.2.抛物线y2=2px(p>0)上任意一点M(x0,y0)到焦点F的距离与点M的横坐标x0有何关系?若抛物线方程为x2=2py(p>0),结果如何?提示:由抛物线定义得|MF|=x0+p2;若抛物线方程为x2=2py(y>0),则|MF|=y+p2.2.抛物线的标准方程和几何性质[自测·牛刀小试]1.设抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程是( ) A .y 2=-8x B .y 2=-4x C .y 2=8xD .y 2=4x解析:选C 由抛物线准线方程为x =-2知p =4,且开口向右,故抛物线方程为y 2=8x .2.已知d 为抛物线y =2px 2(p >0)的焦点到准线的距离,则pd 等于( ) A.12p 2 B .p 2 C.12D.14解析:选D 抛物线方程可化为x 2=12p y ,所以d =14p ,则pd =14.3.抛物线的焦点为椭圆x 29+y 24=1的左焦点,顶点为椭圆中心,则抛物线方程为________.解析:由c 2=9-4=5得F (-5,0), 则抛物线方程为y 2=-45x . 答案:y 2=-45x4.若点(3,1)是抛物线y 2=2px 的一条弦的中心,且这条弦所在直线的斜率为2,则p =________.解析:设弦两端点P 1(x 1,y 1),P 2(x 2,y 2),则⎩⎪⎨⎪⎧y 21=2px 1,y 22=2px 2,两式相减得,y 1-y 2x 1-x 2=2py 1+y 2=2,∵y 1+y 1=2,∴p =2. 答案:25.若抛物线x 2=ay 过点A ⎝⎛⎭⎫1,14,则点A 到此抛物线的焦点的距离为________. 解析:由题意可知,点A 在抛物线x 2=ay 上,所以1=14a ,解得a =4,得x 2=4y .由抛物线的定义可知点A 到焦点的距离等于点A 到准线的距离,所以点A 到抛物线的焦点的距离为y A +a 4=14+1=54.答案:54[例1] 设P 是抛物线y 2=4x 上的一个动点.(1)求点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值; (2)若B (3,2),求|PB |+|PF |的最小值.[自主解答] (1)如图,易知抛物线的焦点为F (1,0),准线是x =-1.由抛物线的定义知:点P 到直线x =-1的距离等于点P 到焦点F 的距离.于是,问题转化为:在曲线上求一点P ,使点P 到点A (-1,1)的距离与点P 到F (1,0)的距离之和最小.显然,连接AF 交曲线于P 点,则所求的最小值为|AF |,即为 5.(2)如图,自点B作BQ垂直准线于Q,交抛物线于点P1,则|P1Q|=|P1F|.则有|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4.即|PB|+|PF|的最小值为4.若将本例(2)中的B点坐标改为(3,4),求|PB|+|PF|的最小值.解:由题意可知点(3,4)在抛物线的外部.∵|PB|+|PF|的最小值即为B,F两点间的距离.∴|PB|+|PF|≥|BF|=42+22=16+4=2 5.———————————————————抛物线定义中的“转化”法利用抛物线的定义解决此类问题,应灵活地进行抛物线上的点到焦点的距离与到准线距离的等价转化.“看到准线想到焦点,看到焦点想到准线”,这是解决抛物线焦点弦有关问题的有效途径.1.(1)若点P到直线y=-1的距离比它到点(0,3)的距离小2,则点P的轨迹方程是________.(2)过抛物线y2=4x的焦点作直线l交抛物线于A,B两点,若线段AB中点的横坐标为3,则|AB|等于________.解析:(1)由题意可知点P到直线y=-3的距离等于它到点(0,3)的距离,故点P的轨迹是以点(0,3)为焦点,以y=-3为准线的抛物线,且p=6,所以其标准方程为x2=12y.(2)抛物线的准线方程为x=-1,则AB中点到准线的距离为3-(-1)=4.由抛物线的定义得|AB|=8.答案:(1)x2=12y(2)8[例2] (1)抛物线y 2=24ax (a >0)上有一点M ,它的横坐标是3,它到焦点的距离是5,则抛物线的方程为( )A .y 2=8xB .y 2=12xC .y 2=16xD .y 2=20x(2)设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段F A 的中点B 在抛物线上,则B 到该抛物线准线的距离为________.[自主解答] (1)由题意知,3+6a =5,a =13,则抛物线方程为y 2=8x .(2)抛物线的焦点F 的坐标为⎝⎛⎭⎫p 2,0,线段F A 的中点B 的坐标为⎝⎛⎭⎫p4,1,代入抛物线方程得1=2p ×p4,解得p =2,故点B 的坐标为⎝⎛⎭⎫24,1,故点B 到该抛物线准线的距离为24+22=324. [答案] (1)A (2)324——————————————————— 求抛物线的标准方程的方法及注意事项(1)方法:求抛物线的标准方程常用待定系数法,因为未知数只有p ,所以,只需一个条件确定p 值即可;(2)注意事项:因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.2.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上一点,则△ABP 的面积为( )A .18B .24C .36D .48解析:选C 设抛物线方程为y 2=2px ,则焦点坐标为⎝⎛⎭⎫p 2,0,将x =p2代入y 2=2px 可得y 2=p 2,|AB |=12,即2p =12,得p =6.点P 在准线上,到AB 的距离为p =6,所以△P AB 的面积为12×6×12=36.[例3] 已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 1)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC =OA +λOB ,求λ的值. [自主解答] (1)直线AB 的方程是y =22⎝⎛⎭⎫x -p2,与y 2=2px 联立, 从而有4x 2-5px +p 2=0,所以x 1+x 2=5p4.由抛物线定义得|AB |=x 1+x 2+p =9, 所以p =4,从而抛物线方程是y 2=8x .(2)由p =4,4x 2-5px +p 2=0可简化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-22,y 2=42,从而A (1,-22),B (4,42).设OC =(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22),又y 23=8x 3,即[22(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1, 解得λ=0或λ=2.——————————————————— 求解直线与抛物线位置关系问题的方法在解决直线与抛物线位置关系的问题时,其方法类似于直线与椭圆的位置关系.在解决此类问题时,除考虑代数法外,还应借助平面几何的知识,利用数形结合的思想求解.3.已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点,若|F A |=2|FB |,求k 的值.解:设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x +2),y 2=8x ,得k 2x 2+(4k 2-8)x +4k 2=0,所以x 1+x 2=8k 2-4,x 1x 2=4.又由抛物线的定义可知|F A |=x 1+2,|FB |=x 2+2, 所以x 1+2=2(x 2+2),即x 1=2(x 2+1),代入x 1x 2=4得2(x2+1)x2=4,解得x2=1(x2=-2舍去),将x2=1,x1=4代入x1+x1=8k2-4得k2=89,由已知k>0,所以k=223.4个结论——直线与抛物线相交的四个结论已知抛物线y2=2px(p>0),过其焦点的直线交抛物线于A,B两点,设A(x1,y1),B(x2,y2),则有以下结论:(1)|AB|=x1+x2+p或|AB|=2psin2α(α为AB所在直线的倾斜角);(2)x1x2=p2 4;(3)y1y2=-p2;(4)过抛物线焦点且与对称轴垂直的弦称为抛物线的通径,抛物线的通径长为2p.3个注意点——抛物线问题的三个注意点(1)求抛物线的标准方程时一般要用待定系数法求p的值,但首先要判断抛物线是否为标准方程,若是标准方程,则要由焦点位置(或开口方向)判断是哪一种标准方程.(2)注意应用抛物线定义中的距离相等的转化来解决问题.(3)直线与抛物线有一个交点,并不表明直线与抛物线相切,因为当直线与对称轴平行(或重合)时,直线与抛物线也只有一个交点.创新交汇——圆锥曲线中的实际应用题1.随着新课程改革的深入,一些以圆锥曲线在生活和生产中实际应用为背景的应用问题已经进入教材,并且越来越受重视,在一些考试中越来越多的体现.2.解决此类问题,要把实际问题抽象为数学问题,建立数学模型,抓住问题实质,利用数形结合,根据这些圆锥曲线的几何性质解决问题.[典例](2012·陕西高考)下图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽____________米.[解析]以拱顶为坐标原点建立平面直角坐标系,设抛物线的方程为x2=-2py(p>0),由题意知抛物线过点(2,-2),代入方程得p=1,则抛物线的方程为x2=-2y,当水面下降1米时,为y =-3,代入抛物线方程得x =±6,所以此时水面宽为26米.[答案] 2 6 [名师点评]1.本题有以下创新点(1)命题形式的创新:以实际应用题的形式考查圆锥曲线的性质.(2)命题内容的创新:本题不是直接考查抛物线的性质,而是巧设背景,以实际应用问题为载体来考查抛物线.考查学生的应用意识.2.解决本题的关键点解题的关键是建立坐标系求出抛物线的方程.3.在解决以圆锥曲线为背景的创新交汇问题时,应注意以下两点(1)注意解实际应用问题的四个解题步骤,同时对有关圆锥曲线的基本知识必须要熟练掌握,以便能及时提取运用.(2)注意观察实际生活中一些形状与圆锥曲线的形状接近的事物,如截面为抛物线形的拱桥、探照灯,截面为双曲线形的烟筒,斜截圆柱得椭圆形状的截面等.[变式训练]海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图所示.现假设:①失事船的移动路径可视为抛物线y =1249x 2;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为7t .(1)当t =0.5时,写出失事船所在位置P 的纵坐标.若此时两船恰好会合,求救援船速度的大小;(2)问救援船的时速至少是多少海里才能追上失事船?解:(1)t =0.5时,P 的横坐标x P =7t =72,代入抛物线方程y =1249x 2,得P的纵坐标y P =3.由|AP |=9492,得救援船速度的大小为949海里/时. (2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为(7t,12t 2). 由v t =(7t )2+(12t 2+12)2,整理得v 2=144⎝⎛⎭⎫t 2+1t 2+337. 因为t 2+1t2≥2,当且仅当t =1时等号成立.所以v 2≥144×2+337=252,即v ≥25.因此,救援船的时速至少是25海里才能追上失事船.一、选择题(本大题共6小题,每小题5分,共30分) 1.抛物线x 2=(2a -1)y 的准线方程是y =1,则实数a =( ) A.52 B.32 C .-12D .-32解析:选D 把抛物线方程化为x 2=-2⎝⎛⎭⎫12-a y ,则p =12-a ,故抛物线的准线方程是y =p 2=12-a 2,则12-a2=1,解得a =-32. 2.已知抛物线y 2=4x ,若过焦点F 且垂直于对称轴的直线与抛物线交于A ,B 两点,O 是坐标原点,则△OAB 的面积是( )A .1B .2C .4D .6解析:选B 焦点坐标是(1,0),A (1,2),B (1,-2),|AB |=4,故△OAB 的面积S =12|AB ||OF |=12×4×1=2. 3.直线y =x +1截抛物线y 2=2px 所得弦长为26,此抛物线方程为( ) A .y 2=2xB .y 2=6xC .y 2=-2x 或y 2=6xD .以上都不对解析:选C 由⎩⎪⎨⎪⎧y =x +1,y 2=2px ,得x 2+(2-2p )x +1=0.x 1+x 2=2p -2,x 1x 2=1. 则26=1+12·(x 1+x 2)2-4x 1x 2= 2·(2p -2)2-4.解得p =-1或p =3,故抛物线方程为y 2=-2x 或y 2=6x .4.已知点M (1,0),直线l :x =-1,点B 是l 上的动点,过点B 垂直于y 轴的直线与线段BM 的垂直平分线交于点P ,则点P 的轨迹是( )A .抛物线B .椭圆C .双曲线的一支D .直线解析:选A 由点P 在BM 的垂直平分线上,故|PB |=|PM |.又PB ⊥l ,因而点P 到直线l 的距离等于点P 到点M 的距离,所以点P 的轨迹是抛物线.5.(2013·湛江模拟)以坐标轴为对称轴,原点为顶点且过圆x 2+y 2-2x +6y +9=0圆心的抛物线方程是( )A .y =3x 2或y =-3x 2B .y =3x 2C .y 2=-9x 或y =3x 2D .y =-3x 2或y 2=9x解析:选D 圆的标准方程为(x -1)2+(y +3)2=1,故圆心坐标为(1,-3),设抛物线方程为y 2=2p 1x 或x 2=-2p 2y ,则(-3)2=2p 1或1=6p 2,得2p 1=9或2p 2=13,故抛物线方程为y 2=9x 或x 2=-13y ,则y 2=9x 或y =-3x 2.6.(2013·衡水模拟)设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x解析:选B 由题可知抛物线焦点坐标为⎝⎛⎭⎫a 4,0,于是过焦点且斜率为2的直线的方程为y =2⎝⎛⎭⎫x -a 4,令x =0,可得A 点坐标为⎝⎛⎭⎫0,-a 2,所以S △OAF =12·|a |4·|a |2=4. 得a =±8故抛物线方程为y =±8x .二、填空题(本大题共3小题,每小题5分,共15分)7.以抛物线x 2=-4y 的顶点为圆心,焦点到准线的距离为半径的圆的方程是______________.解析:抛物线的顶点在原点,焦点到准线的距离为2,所以所求圆的方程为x 2+y 2=4. 答案:x 2+y 2=48.(2013·厦门模拟)已知动圆圆心在抛物线y 2=4x 上,且动圆恒与直线x =-1相切,则此动圆必过定点________.解析:因为动圆的圆心在抛物线y 2=4x 上,且x =-1是抛物线y 2=4x 的准线,所以由抛物线的定义知,动圆一定过抛物线的焦点(1,0).答案:(1,0)9.(2012·安徽高考)过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点.若|AF |=3,则|BF |=________.解析:如图,设A (x0,y 0)(y 0<0),易知抛物线y 2=4x 的焦点为F (1,0),抛物线的准线方程为x =-1,故由抛物线的定义得|AF |=x 0-(-1)=3,解得x 0=2,所以y 0=-2 2.故点A (2,-22).则直线AB 的斜率为k =-22-02-1=-2 2,直线AB 的方程为y =-22x +22,联立⎩⎪⎨⎪⎧ y =-22x +22,y 2=4x ,消去y 得2x 2-5x +2=0,由x 1x 2=1,得A ,B 两点横坐标之积为1,所以点B 的横坐标为12.再由抛物线的定义得|BF |=12-(-1)=32. 答案:32三、解答题(本大题共3小题,每小题12分,共36分)10.已知圆C 过定点F ⎝⎛⎭⎫-14,0,且与直线x =14相切,圆心C 的轨迹为E ,曲线E 与直线l :y =k (x +1)(k ∈R )相交于A ,B 两点.(1)求曲线E 的方程;(2)当△OAB 的面积等于10时,求k 的值.解:(1)由题意,点C 到定点F ⎝⎛⎭⎫-14,0和直线x =14的距离相等, 故点C 的轨迹E 的方程为y 2=-x .(2)由方程组⎩⎪⎨⎪⎧y 2=-x ,y =k (x +1)消去x 后, 整理得ky 2+y -k =0.设A (x 1,y 1),B (x 2,y 2),由韦达定理有y 1+y 2=-1k,y 1y 2=-1. 设直线l 与x 轴交于点N ,则N (-1,0).∵S △OAB =S △OAN +S △OBN =12|ON ||y 1|+12|ON ||y 2|, =12|ON ||y 1-y 2|=12·1·(y 1+y 2)2-4y 1y 2 =12 ⎝⎛⎭⎫1k 2+4. ∵S △OAB =10,所以12 ⎝⎛⎭⎫1k 2+4=10, 解得k =±16. 11.若椭圆C 1:x 24+y 2b 2=1(0<b <2)的离心率等于32,抛物线C 2:x 2=2py (p >0)的焦点在椭圆C 1的上顶点.(1)求抛物线C 2的方程;(2)若过M (-1,0)的直线l 与抛物线C 2交于E ,F 两点,又过E ,F 作抛物线C 2的切线l 1,l 2,当l 1⊥l 2时,求直线l 的方程.解:(1)已知椭圆的长半轴长为a =2,半焦距c =4-b 2,由离心率e =c a =4-b 22=32得,b 2=1. 则椭圆的上顶点为(0,1),即抛物线的焦点为(0,1),所以p =2,抛物线的方程为x 2=4y .(2)由题知直线l 的斜率存在且不为零,则可设直线l 的方程为y =k (x +1),E (x 1,y 1),F (x 2,y 2),∵y =14x 2,∴y ′=12x . ∴切线l 1,l 2的斜率分别为12x 1,12x 2, 当l 1⊥l 2时,12x 1·12x 2=-1,即x 1·x 2=-4, 由⎩⎪⎨⎪⎧y =k (x +1),x 2=4y ,得x 2-4kx -4k =0, 则Δ=(-4k )2-4×(-4k )>0,解得k <-1或k >0.又x 1·x 2=-4k =-4,得k =1. ∴直线l 的方程为y =x +1.12.(2013·珠海模拟)在平面直角坐标系xOy 中,设点F ⎝⎛⎭⎫12,0,直线l :x =-12,点P 在直线l 上移动,R 是线段PF 与y 轴的交点,RQ ⊥FP ,PQ ⊥l .(1)求动点Q 的轨迹方程C ;(2)设圆M 过A (1,0),且圆心M 在曲线C 上,TS 是圆M 在y 轴上截得的弦,当M 运动时,弦长|TS |是否为定值?请说明理由.解:(1)依题意知,点R 是线段FP 的中点,且RQ ⊥FP ,∴RQ 是线段FP 的垂直平分线.∵|PQ |是点Q 到直线l 的距离.点Q 在线段FP 的垂直平分线上,∴|PQ |=|QF |.故动点Q 的轨迹是以F 为焦点,l 为准线的抛物线,其方程为y 2=2x (x >0).(2)弦长|TS |为定值.理由如下:取曲线C 上点M (x 0,y 0),M 到y 轴的距离为d =|x 0|=x 0,圆的半径r =|MA |=(x 0-1)2+y 20, 则|TS |=2r 2-d 2=2y 20-2x 0+1,因为点M 在曲线C 上,所以x 0=y 202, 所以|TS |=2y 20-y 20+1=2,是定值.1.抛物线y =x 2上一点到直线2x -y -4=0的距离最短的点的坐标是( ) A.⎝⎛⎭⎫12,14B .(1,1) C.⎝⎛⎭⎫32,94 D .(2,4)解析:选B 法一:设抛物线上任一点为(x ,y ),则由点到直线的距离得d =|2x -y -4|5=|2x -x 2-4|5=|(x -1)2+3|5=(x -1)2+35≥35. 当x =1时,取得最小值,此时点的坐标为(1,1).法二:设2x -y +m =0与y =x 2相切,则x 2-2x -m =0.Δ=4+4m =0,得m =-1,此时x =1,故点的坐标为(1,1).法三:(导数法)y =x 2的导数为y ′=2x ,设所求点为P (x 0,y 0),则2x 0=2,得x 0=1,故P (1,1).2.已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,|AF |=2,则|BF |=________.解析:设点A ,B 的横坐标分别是x 1,x 2,则依题意有焦点F (1,0),|AF |=x 1+1=2,x 1=1,直线AF 的方程是x =1,此时弦AB 为抛物线的通径,故|BF |=|AF |=2.答案:23.如图,直线l :y =x +b 与抛物线C :x 2=4y 相切于点为A .(1)求实数b 的值;(2)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.解:(1)由⎩⎪⎨⎪⎧ y =x +b ,x 2=4y ,得x 2-4x -4b =0.(*) ∵直线l 与抛物线相切,∴Δ=(-4)2-4×(-4b )=0.∴b =-1.(2)由(1)知b =-1,方程(*)为x 2-4x +4=0.解得x =2,代入x 2=4y 中得,y =1,∴A (2,1).∵圆A 与抛物线准线y =-1相切,∴r =|1-(-1)|=2.∴圆A 的方程为(x -2)2+(y -1)2=4.。
姓名,年级:时间:错误!错误!知识点一抛物线的定义平面内与一个定点F和一条定直线l(F∉l)距离相等的点的轨迹叫做抛物线.1.判断正误(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线.( ×)(2)抛物线y2=4x的焦点到准线的距离是4。
(×)(3)若一抛物线过点P(-2,3),其标准方程可写为y2=2px (p>0).( ×)2.过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1+x2=6,则|PQ|等于( B )A.9 B.8C.7 D.6解析:抛物线y2=4x的焦点为F(1,0),准线方程为x=-1.根据题意可得,|PQ|=|PF|+|QF|=x1+1+x2+1=x1+x2+2=8。
知识点二抛物线的标准方程与几何性质3.以x=1为准线的抛物线的标准方程为( D )A.y2=2x B.y2=-2xC.y2=4x D.y2=-4x解析:由准线x=1知,抛物线方程为:y2=-2px(p>0)且错误!=1,p=2,∴抛物线的方程为y2=-4x.4.(选修2-1P72练习第1(1)题改编)已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P(-2,-4),则该抛物线的标准方程为y2=-8x或x2=-y.解析:很明显点P在第三象限,所以抛物线的焦点可能在x 轴负半轴上或y轴负半轴上.当焦点在x轴负半轴上时,设方程为y2=-2px(p>0),把点P(-2,-4)的坐标代入得(-4)2=-2p×(-2),解得p=4,此时抛物线的标准方程为y2=-8x;当焦点在y轴负半轴上时,设方程为x2=-2py(p〉0),把点P (-2,-4)的坐标代入得(-2)2=-2p×(-4),解得p=错误!,此时抛物线的标准方程为x2=-y。
综上可知,抛物线的标准方程为y2=-8x或x2=-y.5.(2018·北京卷)已知直线l过点(1,0)且垂直于x轴.若l 被抛物线y2=4ax截得的线段长为4,则抛物线的焦点坐标为(1,0).解析:由题意知,a〉0,对于y2=4ax,当x=1时,y=±2错误!,由于l被抛物线y2=4ax截得的线段长为4,所以4错误!=4,所以a=1,所以抛物线的焦点坐标为(1,0).1.抛物线定义的两点理解(1)定点不在定直线上.(2)当定点在定直线上时,轨迹为过定点F与定直线l垂直的一条直线.2.抛物线的方程特点(1)方程y=ax2(a≠0)可化为x2=错误!y,是焦点在y轴上的抛物线.(2)y2=2px(p>0):①p表示焦点到准线的距离;②2p为通径长.3.抛物线的图形特点抛物线是只有一条对称轴的轴对称图形,不是中心对称图形.考向一抛物线的定义及标准方程【例1】(1)(2019·河南豫南九校联考)若抛物线y2=4x 的准线为l,P是抛物线上任意一点,则P到准线l的距离与P到直线3x+4y+7=0的距离之和的最小值是( )A.2 B.错误!C.错误!D.3(2)(2019·湖北四地七校联考)已知抛物线y2=2px(p〉0),点C(-4,0),过抛物线的焦点作垂直于x轴的直线,与抛物线交于A,B两点,若△CAB的面积为24,则以直线AB为准线的抛物线方程是( )A.y2=4x B.y2=-4xC.y2=8x D.y2=-8x【解析】(1)由抛物线定义可知点P到准线l的距离等于点P到焦点F的距离,由抛物线y2=4x及直线方程3x+4y+7=0可得直线与抛物线相离.∴点P到准线l的距离与点P到直线3x +4y+7=0的距离之和的最小值为点F(1,0)到直线3x+4y+7=0的距离,即错误!=2.故选A.(2)因为AB⊥x轴,且AB过点F,所以AB是焦点弦,且|AB|=2p,所以S△CAB=错误!×2p×错误!=24,解得p=4或-12(舍),所以抛物线方程为y2=8x,所以直线AB的方程为x=2,所以以直线AB为准线的抛物线的标准方程为y2=-8x,故选D.【答案】(1)A (2)D1.应用抛物线定义的两个关键点,1由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化。
限时规范训练(限时练·夯基练·提能练)A 级 基础夯实练1.已知点A (-2,3)在抛物线C :y 2=2px (p >0)的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .-43B .-1C .-34D .-12解析:选C.由已知,得准线方程为x =-2,所以F 的坐标为(2,0).又A (-2,3),所以直线AF 的斜率为k =3-0-2-2=-34. 2.若点A ,B 在抛物线y 2=2px (p >0)上,O 是坐标原点,若正三角形OAB 的面积为43,则该抛物线方程是( )A .y 2=233xB .y 2=3xC .y 2=23xD .y 2=33x 解析:选A.根据抛物线的对称性,AB ⊥x 轴,由于正三角形的面积是43,故34AB 2=43,故AB =4,正三角形的高为23,故可以设点A 的坐标为(23,2)代入抛物线方程得4=43p ,解得p =33,故所求的抛物线方程为y 2=233x .故选A. 3.(2018·皖北协作区联考)已知抛物线C :x 2=2py (p >0),若直线y =2x 被抛物线所截弦长为45,则抛物线C 的方程为( )A .x 2=8yB .x 2=4yC .x 2=2yD .x 2=y解析:选C.由⎩⎪⎨⎪⎧x 2=2py ,y =2x 得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =4p ,y =8p ,即两交点坐标为(0,0)和(4p ,8p ),则(4p )2+(8p )2=45,得p =1(舍去负值),故抛物线C 的方程为x 2=2y .4.(2018·湖南省五市十校联考)已知抛物线y 2=2x 上一点A 到焦点F 的距离与其到对称轴的距离之比为5∶4,且|AF |>2,则点A 到原点的距离为( ) A.41B .2 2C .4D .8解析:选B.令点A 到点F 的距离为5a ,点A 到x 轴的距离为4a ,则点A 的坐标为⎝ ⎛⎭⎪⎫5a -12,4a ,代入y 2=2x 中,解得a =12或a =18(舍),此时A (2,2),故点A 到原点的距离为2 2. 5.(2018·太原模拟)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点.若FP →=4FQ →,则|QF |等于( )A.72B .52C .3D .2解析:选C.因为FP →=4FQ →,所以|FP →|=4|FQ →|,所以|PQ ||PF |=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则|AF |=4,所以|PQ ||PF |=|QQ ′||AF |=34,所以|QQ ′|=3,根据抛物线定义可知|QQ ′|=|QF |=3.6.(2018·江西协作体联考)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5.若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x解析:选C.由已知得抛物线的焦点F ⎝ ⎛⎭⎪⎫p 2,0,设点A (0,2),抛物线上点M (x 0,y 0),则AF →=⎝ ⎛⎭⎪⎫p 2,-2,AM →=⎝ ⎛⎭⎪⎫y 202p ,y 0-2.由已知得,AF →·AM →=0,即y 20-8y 0+16=0,因而y 0=4,M ⎝ ⎛⎭⎪⎫8p ,4.由|MF |=5得,⎝ ⎛⎭⎪⎫8p -p 22+16=5,又p >0,解得p =2或p =8,即抛物线方程为y 2=4x 或y 2=16x .7.(2018·云南大理州模拟)在直角坐标系xOy 中,有一定点M (-1,2),若线段OM 的垂直平分线过抛物线x 2=2py (p >0)的焦点,则该抛物线的准线方程是________.解析:依题意可得线段OM 的垂直平分线的方程为2x -4y +5=0,把焦点坐标⎝ ⎛⎭⎪⎫0,p 2代入可求得p =52, 所以准线方程为y =-54. 答案:y =-548.(2018·河北六校模拟)抛物线C :y 2=2px (p >0)的焦点为F ,点O 是坐标原点,过点O ,F 的圆与抛物线C 的准线相切,且该圆的面积为36π,则抛物线的方程为________.解析:设满足题意的圆的圆心为M.根据题意可知圆心M在抛物线上,又因为圆的面积为36π,所以圆的半径为6,则|MF|=x M+p2=6,即x M=6-p2,又由题意可知x M=p4,所以p4=6-p2,解得p=8.所以抛物线方程为y2=16x.答案:y2=16x9.设P是抛物线y2=4x上的一个动点,则点P到点A(-1,1)的距离与点P到直线x=-1的距离之和的最小值为________.解析:如图,易知抛物线的焦点为F(1,0),准线方程是x=-1,由抛物线的定义知,点P到直线x=-1的距离等于点P到F的距离.于是问题转化为在抛物线上求一点P,使点P到点A(-1,1)的距离与点P到F(1,0)的距离之和最小,连接AF交抛物线于点P,此时最小值为|AF|=[1-(-1)]2+(0-1)2= 5.答案: 510.(2018·湖北武汉调研测试)已知抛物线C:x2=2py(p>0)和定点M(0,1),设过点M的动直线交抛物线C于A,B两点,抛物线C 在A,B处的切线的交点为N.(1)若N在以AB为直径的圆上,求p的值;(2)若△ABN的面积的最小值为4,求抛物线C的方程.解:由题意知,直线AB的斜率一定存在,∴设直线AB:y=kx +1,A(x1,y1),B(x2,y2),将直线AB 的方程代入抛物线C 的方程得x 2-2pkx -2p =0, 则x 1+x 2=2pk ,x 1x 2=-2p .①(1)由x 2=2py 得y ′=x p ,则A ,B 处的切线斜率的乘积为x 1x 2p 2=-2p, ∵点N 在以AB 为直径的圆上,∴AN ⊥BN ,∴-2p=-1,∴p =2. (2)易得直线AN :y -y 1=x 1p (x -x 1),直线BN :y -y 2=x 2p(x -x 2), 联立,得⎩⎪⎨⎪⎧y -y 1=x 1p (x -x 1),y -y 2=x 2p (x -x 2),结合①式, 解得⎩⎪⎨⎪⎧x =pk ,y =-1,即N (pk ,-1). |AB |=1+k 2|x 2-x 1|=1+k 2(x 1+x 2)2-4x 1x 2=1+k 24p 2k 2+8p ,点N 到直线AB 的距离d =|kx N +1-y N |1+k 2=|pk 2+2|1+k2, 则S △ABN =12·|AB |·d ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5듈躢窢躢窢窢ꉥꉺꉺꊎꉺ蹺窢躢¢5555555555555555ᔩ扨處ᘀࠀ伱㔀脈䩃??⩈企J 儀J帀J 愀漀Ĩᔦ扨處ᘀࠀ伱㔀脈ࠀ䎁伀J 儀J 帀J 愀5ᔦ扨處ᘀࠀ伱㔀脈䩃??䩏5䩑5䩞5䩡??⡯∴ᔣ扨處ᘀࠀ伱㔀脈䩃??䩏5䩑5䩞5䩡??ᔧ扨處ᘀࠀ伱㔀脈䩃??䩏5䩐 䩑5䩞5䩡??ᔪ扨處ᘀࠀ伱㔀脈䩃??䩏5䩐 䩑5䩞5䩡??⡯∴ᔔ佨륗ᘀࠀ伱 愀5ᔐ佨륗ᘀࠀ伱愀5j 5ᔀ佨륗ᘀࠀ伱唀Ĉ䩡??℀ࠀ5ࠀ5ࠀ5ࠀ5ࠀ5र5ࠀ5੮5 5ଞ5ࠀ5൪5ඌ5ඬ5າ5ཚ5ࠀ5 5ࠀ5ᆒ5ኀ5ï55555ࠀ555555Æ55555였555555Æ55555였555555Æ55555였555555Æ55555였555555Æ55555였555555Æ55555였555555³55555였555555Æ55555였555555Æ55555였5555555555555ᔓࠀ׆ ᄀㆄሂ桤ā䜀Dec 䑗È葠ȱ摧坏¹ᔓࠀ׆ᄀ㊄ሂ桤ā䜀Kislev䑗È葠Ȳ摧ㆦOĤ옍ࠀ15萑Ȳ搒Ũ∴⑇圀졄怀㊄愂Ĥ摧ㆦĤ옍ࠀ15搒Ũ∴⑇愀Ĥ摧坏¹ࠀࠀ6ࠀ6ࠀ6ࠀ6ࠀ6ࠀ6ࠀ6ࠀ6ࠀ6ࠀ6ࠀ6ࠀ6ࠀ66आ6ऊ6ऒ6औ6ख6ठ6त6द6प6म6र6श6स6666ॐ6틧튾뺬뻒뻒뻧뻒뻒뻧蒘葮葘66666666666ᔪ扨處ᘀࠀ伱㔀脈䩃??䩏䩐䩑䩞䩡??⡯∴ᔪ扨處ᘀࠀ伱㔀脈䩃??䩏6䩐䩑6䩞6䩡??⡯∴ᔧ扨處ᘀࠀ伱㔀脈䩃??䩏6䩐䩑6䩞6䩡??ᔧ扨處ᘀࠀ伱㔀脈䩃??䩏6䩐䩑6䩞6䩡??ᔣ扨處ᘀࠀ伱㔀脈䩃??䩏6䩑6䩞6䩡??ᔦ扨處ᘀࠀ伱㔀脈䩃??䩏6䩑6䩞6䩡??⡯∴ᔩ扨處ᘀࠀ伱㔀脈ࠀ䎁伀J儀J 帀J愀漀Ĩ j6ᔀ扨處ᘀࠀ伱㔀脈ࠀ䎁伀J儀J唀Ĉ䩞6䩡??Ḁॐ66क़6ग़6फ़6ॠ6६6८6॰6ࠀ6ࠀ6ॾ6ࠀ66ࠀ6আ6ࠀ6ࠀ6চ6জ6ঞ6ঠ6প6ম6ল6ࠀ6666666ࠀ6ড়6ৠ6 6২6훪훀훪ࠀ샖횪훀훪훪禐횪훪횐禐禪邪斪666666666ᔦ扨處ᘀࠀ伱㔀脈䩃??䩏6䩑6䩞6䩡??⡯∴ᔭ扨處ᘀࠀ伱㔀脈ࠀ䎁伀Jъ儀J帀J愀漀Ĩ j6ᔀ扨處ᘀࠀ伱㔀脈ࠀ䎁伀Jъ儀J唀Ĉ䩞6䩡??ᔪ扨處ᘀࠀ伱㔀脈䩃??䩏6䩐䩑6䩞6䩡??⡯∴ᔪ扨處ᘀࠀ伱㔀脈䩃??䩏䩐䩑䩞䩡??⡯∴ᔧ扨處ᘀࠀ伱㔀脈䩃??䩏6䩐䩑6䩞6䩡??ᔪ扨處ᘀࠀ伱㔀脈ࠀ䎁伀Jъ儀J帀J愀␀২6৬6৮6ৰ6৲6৺6ࠀ6ࠀ66ਆ6ਈ6ਊ6ࠀ6ਔ6ਖ6ਠ6ਢ6ਬ6ਲ6666ࠀ666੬6ੲ6ੴ6ࠀ6ࠀ6ࠀ6ࠀ6ઊ6ઌ6ࠀ6ઔ6ઘ6જ6ઞ6દ6ન6પ6બ6મ6સ666666ࠀ냅ࠀ냅역ࠀ菭얰얃역鮰菭얰얰얰낃냅낃菅얰°666666j6ᔀ扨處ᘀࠀ伱㔀脈ࠀ䎁伀J儀J唀Ĉ䩞6䩡??ᔩ扨處ᘀࠀ伱㔀脈䩃??⩈企J儀J帀J愀漀Ĩᔩ扨處ᘀࠀ伱㔀脈ࠀ䎁伀J儀J帀J愀漀Ĩᔦ扨處ᘀࠀ伱㔀脈䩃??䩏6䩑6䩞6䩡??⡯∴ᔦ扨處ᘀࠀ伱㔀脈ࠀ䎁伀J儀J帀J愀6ᔣ扨處ᘀࠀ伱㔀脈䩃??䩏6䩑6䩞6䩡??6ࠀ666ࠀ6ࠀ6ࠀ6૨6૪6ࠀ6ࠀ6ࠀ6ࠀ6ࠀ6ࠀ6ଈ6ଊ6ଐ6ࠀ6ଖ6ଚ6ଜ6ଞ6ତ6ଦ6ࠀ귂ࠀ귂궅ࠀ귂궅궅슅薭䡜6666666666ᔧ扨處ᘀࠀ伱㔀脈䩃??䩏6䩐䩑6䩞6䩡??ᔧ扨處ᘀࠀ伱㔀脈䩃??䩏6䩐䩑6䩞6䩡??ᔩ扨處ᘀࠀ伱㔀脈䩃??⩈企J儀J帀J愀漀Ĩᔦ扨處ᘀࠀ伱㔀脈䩃??䩏7䩑7䩞7䩡??⡯∴ᔦ扨處ᘀࠀ伱㔀脈ࠀ䎁伀J儀J帀J愀7ᔩ扨處ᘀࠀ伱㔀脈ࠀ䎁伀J儀J帀J愀漀Ĩ j7ᔀ扨處ᘀࠀ伱㔀脈ࠀ䎁伀J儀J 唀Ĉ䩞7䩡??ᔣ扨處ᘀࠀ伱㔀脈䩃??䩏7䩑7䩞7䩡??ᔦ扨處ᘀࠀ伱㔀脈䩃??⩈企J儀J帀J愀᠀ଦ7ପ77777777ୠ77୬7ࠀ7ࠀ7ࠀ7ࠀ7ࠀ7ஆ7ஊ7ࠀ7ஒ7ஔ7ࠀ7ஜ7ࠀ7ࠀ7ࠀ7ந7ல7ஸ7777훪ࠀ샖篖쁻篖ࠀ홤篪훀777777777777777777ᔭ扨處ᘀࠀ伱㔀脈䩃??⩈企Jъ儀J帀J愀ࠀ漀Ĩ j7ᔀ扨處ᘀࠀ伱㔀脈ࠀ䎁伀Jъ儀J唀Ĉ䩞7䩡??ᔦ扨處ᘀࠀ伱㔀脈䩃??䩐䩑䩞7䩡??⡯∴ᔭ扨處ᘀࠀ伱㔀脈ࠀ䎁伀Jъ儀J帀J愀漀Ĩᔪ扨處ᘀࠀ伱㔀脈䩃??䩏䩐䩑䩞䩡??⡯∴ᔧ扨處ᘀࠀ伱㔀脈䩃??䩏7䩐䩑7䩞7䩡??ᔪ扨處ᘀࠀ伱㔀脈䩃??䩏7䩐䩑7䩞7䩡??⡯7777ࠀ7ࠀ7ࠀ7௦7௬7௰7௲7ࠀ7ࠀ7ఊ7ఌ7ఖ7జ7ఠ7ఢ7త7ࠀ7777ࠀ7777ࠀ7ࠀ7ࠀ7ౠ7౪7౮7ࠀ7ࠀ7౸7౼7ࠀ7ಖ7ಘ7훪훀邪ࠀ삐郖삐횪邪ࠀ禐훀훪禐禪禪邪7777777777777777777ᔭ扨處ᘀࠀ伱㔀脈ࠀ䎁伀Jъ儀J帀J愀漀Ĩ j7ᔀ扨處ᘀࠀ伱㔀脈ࠀ䎁伀Jъ儀J唀Ĉ䩞7䩡??ᔪ扨處ᘀࠀ伱㔀脈䩃??䩏7䩐䩑7䩞7䩡??⡯∴ᔪ扨處ᘀࠀ伱㔀脈䩃??䩏䩐䩑䩞䩡??⡯∴ᔧ扨處ᘀࠀ伱㔀脈䩃??䩏7䩐䩑7䩞7䩡??ᔪ扨處ᘀࠀ伱㔀脈ࠀ䎁伀Jъ儀J帀J愀⠀ಘ7ಚ7ಜ7ಞ7ನ7ಮ7ರ7ಶ7ಸ77777777೮7ࠀ7ࠀ7ࠀ7ࠀ7퓨ꎺꎍꎍ몍趣跔敹㽓㽓77777777777ᔦ扨處ᘀࠀ伱㔀脈ࠀ䎁伀J儀J帀J愀7ᔣ扨處ᘀࠀ伱㔀脈䩃??䩏7䩑7䩞7䩡??ᔧ扨處ᘀࠀ伱㔀脈䩃??䩏7䩐䩑7䩞7䩡??ᔦ扨處ᘀࠀ伱㔀脈䩃??䩏7䩑7䩞7䩡??⡯∴ᔪ扨處ᘀࠀ伱㔀脈䩃??䩏7䩐䩑7䩞7䩡??⡯∴ᔭ扨處ᘀࠀ伱㔀脈ࠀ䎁伀Jъ儀J帀J愀漀Ĩ j7ᔀ扨處ᘀࠀ伱㔀脈ࠀ䎁伀Jъ儀J唀Ĉ䩞7䩡??ᔧ扨處ᘀࠀ伱㔀脈䩃??䩏7䩐䩑8䩞8䩡??ᔭ扨處ᘀࠀ伱㔀脈䩃??⩈企Jъ儀J帀J愀漀8ഊ8ഌ8ഒ8ഔ8ച8ജ8ഠ8ഢ8ശ8സ8888ࠀ88ࠀ8൨8൮8൰8൲8ࠀ8ࠀ8ࠀ8ං 8ࠀ8ඈ8ඊ8ඐ8ඒ8ඔ8ࠀ8ක8ජ8Ĩࠀࠀ8ࠀ8ࠀ8ഈඤ8ඦ8ඨ8ඪ8ඬ8ࠀ8ࠀࠀࠀࠀࠀࠀ莘颰ࠀࠀ莰ࠀࠀ쓘莰ࠀࠀ쓘澰8888ᔧ扨處ᘀࠀ伱㔀脈䩃??䩏8䩐䩑8䩞8䩡??ᔩ扨處ᘀࠀ伱㔀脈ࠀ䎁伀J儀J帀J愀漀Ĩ j8ᔀ扨處ᘀࠀ伱㔀脈ࠀ䎁伀J儀J唀Ĉ䩞8䩡??ᔦ扨處ᘀࠀ伱㔀脈䩃??䩏8䩑8䩞8䩡??⡯∴ᔦ扨處ᘀࠀ伱㔀脈䎁ࠀ伀J儀J帀J愀8ᔣ扨處ᘀࠀ伱㔀脈䩃??䩏8䩑8䩞8䩡??ᔩ扨處ᘀࠀ伱㔀脈䩃??⩈企J儀J 帀J愀漀Ĩ⨀ࠀ8ප8ම8ය8ࠀ8ෆ8ࠀ8ࠀ8ࠀ8ࠀ8ࠀ8ࠀ8ࠀ8ࠀ8ࠀ88ࠀ8ࠀ8ࠀ8ࠀ8ค8ฆ8ช8ฎ8ฐ8ฒ8ผ8พ8ย8888เ8ไ8ๆ88 8๐8๘8헫믫햤햤햤햤軫憎꒻懫ᔪ扨處ᘀࠀ伱㔀脈䩃??䩏䩐䩑䩞䩡??⡯∴ᔭ扨處ᘀࠀ伱㔀脈䩃??⩈企Jъ儀J帀J愀漀Ĩᔪ扨處ᘀࠀ伱㔀脈ࠀ䎁伀Jъ儀J帀J愀8ᔭ扨處ᘀࠀ伱㔀脈ࠀ䎁伀Jъ儀J帀J愀漀Ĩ j8ᔀ扨處ᘀࠀ伱㔀脈ࠀ䎁伀Jъ儀J 唀Ĉ䩞8䩡??ᔪ扨處ᘀࠀ伱㔀脈䩃??䩏8䩐䩑8䩞8䩡??⡯∴ᔧ扨處ᘀࠀ伱㔀脈䩃??䩏8䩐䩑8䩞8䩡??☀๘8ࠀ8ࠀ8ࠀ8ࠀ8ࠀ8ࠀ8ຄ8ຈ8ຊ8ࠀ8ࠀ8ດ8ࠀ8ບ8ຜ8ࠀ8ࠀ8ࠀ8ࠀ8ࠀ8ະ8າ8ໄ8ໆ88໐8໒8໔8໖8໘8ࠀ8ໜ8ࠀ8ࠀ8ࠀ8ࠀ8ࠀ8ࠀ8ࠀ8퇥뫥몤몤몤몤軑멸軑ꑸ磥磑톤碎몤磑꒺軑Ñ88888888888888888888ᔪ扨處ᘀࠀ伱㔀脈䩃??䩏䩐䩑䩞䩡??⡯∴ᔪ扨處ᘀࠀ伱㔀脈ࠀ䎁伀Jъ儀J帀J愀8ᔪ扨處ᘀࠀ伱㔀脈䩃??䩏8䩐䩑8䩞8䩡??⡯∴ᔭ扨處ᘀࠀ伱㔀脈ࠀ䎁伀Jъ儀J帀J愀漀Ĩᔧ扨處ᘀࠀ伱㔀脈䩃??䩏8䩐䩑8䩞8䩡??j8ᔀ扨處ᘀࠀ伱㔀脈ࠀ䎁伀Jъ儀J唀Ĉ䩞8䩡??ࠀࠀ8ࠀ8ࠀ8ࠀ8ༀ8༂8༄8༈8༊88༎88༞8༢8༤8༦8༨8༸8༺8ག8ང8ཌ8ཎ8ཐ8པ8བ8མ8ཞ8퓨풾ࠀ풎躨憎뻔懔뻔뻔퓨풾M8888888ᔦ扨處ᘀࠀ伱㔀脈䩃??䩏8䩑8䩞8䩡??⡯∴ᔪ扨處ᘀࠀ伱㔀脈䩃??䩏䩐䩑䩞䩡??⡯∴ᔭ扨處ᘀࠀ伱㔀脈ࠀ䎁伀Jъ儀J帀J愀漀Ĩ j9ᔀ扨處ᘀࠀ伱㔀脈ࠀ䎁伀Jъ儀J 唀Ĉ䩞9䩡??ᔪ扨處ᘀࠀ伱㔀脈䩃??䩏9䩐䩑9䩞9䩡??⡯∴ᔪ扨處ᘀࠀ伱㔀脈ࠀ䎁伀Jъ儀J帀J愀9ᔧ扨處ᘀࠀ伱㔀脈䩃??䩏9䩐䩑9䩞9䩡??ᔭ扨處ᘀࠀ伱㔀脈䩃??⩈企Jъ儀J帀J愀漀Ĩࠀཞ999999999999࿄99࿈9࿊9࿌9ࠀ9ࠀ9ࠀ9ࠀ9ࠀ9ࠀ9ࠀ9ࠀ9ࠀ9ࠀ9ࠀ9ࠀ9ࠀ9ࠀ9ࠀ999ࠀ9ࠀ9ࠀ껃쎜쎜쎜貜힜힜흷힜쎜힜睟志志흷흟ë99999j9ᔀ扨處ᘀࠀ伱㔀脈ࠀ䎁伀J儀J唀Ĉ䩞9䩡??ᔩ扨處ᘀࠀ伱㔀脈ࠀ䎁伀J儀J帀J愀漀Ĩᔟ扨處ᘀࠀ伱㔀脈䩃??䩑䩞9䩡??ᔣ扨處ᘀࠀ伱㔀脈䩃??䩏9䩑9䩞9䩡??ᔩ扨處ᘀࠀ伱㔀脈䩃??⩈企J儀J帀J愀漀Ĩᔦ扨處ᘀࠀ伱㔀脈ࠀ䎁伀J儀J 帀J愀9ᔦ扨處ᘀࠀ伱㔀脈䩃??䩏9䩑9䩞9䩡??⡯∴ᔧ扨處ᘀࠀ伱㔀脈䩃??䩏9䩐䩑9䩞9䩡??⌀ࠀ9ࠀ9ࠀ999ࠀ9ࠀ9ࠀ9ࠀ9ࠀ9ࠀ9ࠀ9ࠀ9ࠀ9ࠀ9ࠀ9ࠀ9ࠀ9ࠀ9ࠀ9ࠀ9ࠀ9Ⴢ9ࠀ9ࠀ9ࠀ9გ9ე9ი9ლ9პ9რ9ფ9ღ9შ9ც9ხ9ჲ9ჴ9ჸ9ჺ9헫뿫뿫뿫ࠀ뿫迫。