不等式基础必备
- 格式:doc
- 大小:594.44 KB
- 文档页数:9
基本不等式知识点基本不等式是数学中的重要概念,它可以帮助我们判断数值大小关系,是各种不等式的基础。
在本文中,我们将介绍基本不等式的相关知识点,包括基本不等式的定义、证明方法、应用以及一些例题分析等方面。
1. 基本不等式的定义基本不等式也称为“平均数不等式”,它是数学中一个基本但又重要的不等式。
对于任意的正数 a1、a2、…、an,有以下不等式成立:(a1 + a2 + … + an) / n ≥ (a1 * a2 * … * an)1/n其中n表示正整数。
基本不等式描述了一组数的算术平均数和它们的几何平均数之间的关系。
可以看出,算术平均数大于等于几何平均数,且当且仅当所有数相等时等号成立。
2. 基本不等式的证明方法基本不等式的证明方法有很多种,下面列举一种简单易懂的证明方法。
首先,对于所有正数x,y,由均值不等式可得:(x + y) / 2 ≥ √(xy)⇒ x + y ≥ 2√(xy)接着,考虑一个序列a1,a2,……,an,它们的乘积为p。
对于每一对(aj,ak),有:aj + ak ≥ 2√(ajak)即:a1 + a2 ≥ 2√(a1a2)a1 + a2 + a3 ≥ 3√(a1a2a3)a1 + a2 + … + an ≥ n√(a1a2…an)我们可以将上述不等式相乘,得到:(a1 + a2) * (a3 + a4) * … * (an-1 + an) ≥ 2n/2* √(a1a2) * 2n/2 * √(a3a4) * … * 2n/2 * √(an-1an) 即:(a1 + a2 + … + an) / n ≥ (a1 * a2 * … * an)1/n故基本不等式得证。
3. 基本不等式的应用基本不等式在数学中应用广泛,以下列举几个经典的例子。
(1)一种常见的问题是,给定一个定值的周长,什么形状的图形可以使面积最大。
答案是正方形,因为在所有形状中,正方形的面积和周长之比最大,这个比值为4π。
基本不等式一、基础知识☐基本不等式:在不等式的应用中,有一些很基本而十分重要的不等式,如平均值不等式和三角不等式等,我们将其统称为基本不等式.☐平均值不等式:两个正数的算术平均值大于等于它们的几何平均值,即对于任意的正数a 、b ,有2a b ab ,且等号当且仅当a b 时成立.证明:对于正数a 、b ,要证明定理所述之平均值不等式,只要证明2a bab ,即20a b ab.由22a b aba b.上式显然成立,且只有当ab 时,原不等式两边才相等.☐常用不等式:对于任意的正数a 、b ,有22a bab ,且等号当且仅当a b 时成立.☐三角不等式:对于任意的实数a 、b ,有a b a b ,且等号当且仅当0ab 时成立.证明:为证明a ba b ,只需证明22a ba b,即222222aab b a ab b ,也即22ab ab ,这是显然的,且等号当且仅当a 、b 同号,即0ab时成立.二、拓展知识☐基本不等式:如果a ,b ,c R ,那么3333a b c abc (当且仅当a b c 时取“”)证明:33333223333a b c abca bc a b ab abc223a b ca ba b c c ab a b c22223a b c a ab b ac bc c ab 222a b c a b c ab bc ac 22212a bc a ba cbca ,b ,cR ,222102a b c a b a cb c从而3333ab c abc☐推论:如果a ,b ,c R ,那么33a b c abc (当且仅当a b c 时取“”)☐基本不等式:1212nn a a a a a a n,*n N ,ia R ,1in .证明可用数学归纳法,二项式定理证明,这里证明省略; ☐柯西不等式:222222211221212n nn n a b a b a b a a a b b b,1,2,,i i a b R i n ,等号当且仅当120na a a 或i ib ka 时成立(k 为常数,1,2,,i n )证明:构造二次函数2221122n nf xa xb a x b a x b2222222121122122n n n n a a a xa b a b a b xb b b222120n aa a又0f x 恒成立222222211221212440n nn n a b a b a b a a a b b b即222222211221212n nn n a b a b a b a a a b b b当且仅当0i i a x b x(1,2,,i n )即1212nna a ab bb 时等号成立. ☑一个重要的不等式链:2112a b a b+≤≤≤+. ☑函数()()0,0bf x ax a b x =+>>图象及性质 (1)函数()0)(>+=b a xb ax x f 、图象大致如下图(xx x f 1)(+=)所示:(2)函数()0)(>+=b a xb ax x f 、性质:①值域:()2,ab,⎡-∞-+∞⎣;②单调递增区间:,,⎛⎫-∞+∞ ⎪ ⎪⎝⎭;单调递减区间:0,,0⎛⎡⎫ ⎪⎢ ⎪⎝⎣⎭.三、最值常见类型注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”; (2)求最值的条件“一正,二定,三相等”;(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 类型一:积定和最小;重点:利用好“一正,二定,三相等”,凑积为定值; 例1、已知1->x ,求221xx 的最小值【解析】求和的最小值,去找积的定值,这里面发现2x 与21x 的积没有关系,但是能够注意到题目中有1->x ,从而01>+x ,且可以将2x 出来1x 让分母抵消,故有222221222122111xx x x x x ,当且仅当2211x x 即0x 时取等号;注意:在使用积定和最小时,第一要注意两个式子是正还是负(一正);第二要注意两个式子乘起来是不是定值,如果是定值,结束,如果不是定值要注意进行变形,凑成乘起来是定值的式子(二定);第三是要注意进行验证,是否可以取等(三取等);注意:三取等一定要关注,一个是为了验证等号,第二个是因为有的不等式是会进行多次应用基本不等式(多次放缩),如果多次应用中等号不一致,是不可以进行取等的; 例2、已知0xy ,1xy ,求yx y x -+22的最小值及相应的y x ,的值。
不等式知识点总结不等式是数学中的一个重要概念,它在解决各种数学问题和实际生活中的优化问题中都有着广泛的应用。
下面我们来对不等式的相关知识点进行一个全面的总结。
一、不等式的定义用不等号(大于>、小于<、大于等于≥、小于等于≤)连接两个数或代数表达式的式子,叫做不等式。
例如:3x + 2 > 5 ,y 1 ≤ 4 等都是不等式。
二、不等式的基本性质1、对称性:如果 a > b ,那么 b < a ;如果 a < b ,那么 b > a 。
例如:若 5 > 3 ,则 3 < 5 。
2、传递性:如果 a > b 且 b > c ,那么 a > c ;如果 a < b 且 b< c ,那么 a < c 。
比如:已知 7 > 5 ,5 > 3 ,则 7 > 3 ;若 2 < 4 ,4 < 6 ,则 2< 6 。
3、加法性质:如果 a > b ,那么 a + c > b + c ;如果 a < b ,那么 a + c < b + c 。
例如:因为 8 > 5 ,所以 8 + 2 > 5 + 2 ,即 10 > 7 。
4、乘法性质:如果 a > b 且 c > 0 ,那么 ac > bc ;如果 a < b 且 c > 0 ,那么ac < bc 。
如果 a > b 且 c < 0 ,那么 ac < bc ;如果 a < b 且 c < 0 ,那么ac > bc 。
例如:若 3 > 1 ,且 2 > 0 ,则 3×2 > 1×2 ,即 6 > 2 ;若 3 > 1 ,但-2 < 0 ,则 3×(-2) < 1×(-2) ,即-6 <-2 。
三、一元一次不等式1、定义:含有一个未知数,且未知数的次数是 1 的不等式叫做一元一次不等式。
例如:2x 5 > 0 。
2、解法:去分母(若有分母)。
去括号。
移项:将含有未知数的项移到一边,常数项移到另一边。
合并同类项。
系数化为 1 :注意当系数为负数时,不等号方向要改变。
初中数学知识点:不等式(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、合同协议、策划方案、规章制度、演讲致辞、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as workplace documents, contract agreements, planning plans, rules and regulations, speeches, emergency plans, experiences, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!初中数学知识点:不等式初中数学知识点必备:不等式在我们平凡的学生生涯里,不管我们学什么,都需要掌握一些知识点,知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。
基本不等式完整版(非常全面)[整理]
基本不等式可以指几乎所有组成分析和数学的基础。
它可以使许多不同的数学问题变
得更容易理解,因此使用它们进行计算是极其重要的。
基本不等式包括了三类不等式:大
小不等式,加法不等式和乘法不等式。
以下是一些基本的不等式定义。
1、大小不等式:大小不等式表示一个数与另一个数之间的存在或缺失的关系。
例如,如果A > B,则表示A大于B,而A ≤ B表示A小于或等于B,A ≠ B表示A与B之间存
在某种不同。
2、加法不等式:加法不等式表示两个数相加时的结果。
例如,A + B > C的意思是A
与B的和大于C,A + B ≤ C的意思是A与B的和小于或等于C,A + B = C的意思是A
与B的和等于C。
一般地,一个数与另一个数之间的关系可以用不等式来表示,但也可以用不等式来表
示多个数之间的关系:
1、省略不等式:3x + 2y = 4z,这表示3x + 2y至少等于4z的意思。
基本不等式可以用来处理大量数学问题,比如解一元不等式、求函数的极值以及进行
多元函数分析等。
它们对于熟悉数学理论和解决数学问题都极其重要。
完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。
②传递性:a>b。
b>c则a>c。
③可加性:a>b等价于a+c>b+c,其中c为任意实数。
同向可加性:a>b,c>d,则a+c>b+d。
异向可减性:a>b,cb-d。
④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。
⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。
异向正数可除性:a>b>0,0bc。
a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。
⑧倒数法则:a>b>0,则1/a<1/b。
2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。
a^2+b^2>=2ab,当且仅当a=b时取等号。
a+b/2>=√ab,当且仅当a=b时取等号。
a+b+c/3>=∛abc,当且仅当a=b=c时取等号。
a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。
a+b+c>=3√abc,当且仅当a=b=c时取等号。
a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。
a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。
3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。
a+b)/2<=√(a^2+b^2),对任意实数a,b成立。
a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。
a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。
a+b)/2>=√ab,对任意正实数a,b成立。
基本不等式四个公式不等式是一个有效的数学方法,用来描述两个量的差异,它的限制两个数的大小范围,有利于我们理解数字之间的关系,应用也很广泛。
基本不等式四个公式是不等式的基础,是推理计算的基础,一般在有限的条件下,由四个不等式构成,分别为:大于等于、小于等于、小于、大于式。
第一个不等式公式是大于等于式,又称为“不小于等于式”,表示两个数之间的不等式关系,它可以用来表示一个数不小于另外一个数,表达形式为:A≥B,其中A代表被比较数,B代表比较数,表示A不小于B。
例如:4≥2,表明4不小于2。
第二个不等式公式是小于等于式,又称为“不大于等于式”,表示两个数之间的不等式关系,它可以用来表示一个数不大于另外一个数,表达形式为:A≤B,其中A代表被比较数,B代表比较数,表示A不大于B。
例如:4≤5,表明4不大于5。
第三个不等式公式是小于式,又称为“不大于式”,表示两个数之间的不等式关系,它可以用来表示一个数小于另外一个数,表达形式为:A<B,其中A代表被比较数,B代表比较数,表示A小于B。
例如:3<4,表明3小于4。
第四个不等式公式是大于式,又称为“不小于式”,表示两个数之间的不等式关系,它可以用来表示一个数大于另外一个数,表达形式为:A>B,其中A代表被比较数,B代表比较数,表示A大于B。
例如:5>2,表明5大于2。
在工作中使用不等式是非常常见的,可以用于判断某人的年龄是否已满18岁、是否满足报考条件等。
在教学中,不等式也起着重要作用,有助于学生全面地掌握数学知识,更好地推理计算。
基本不等式四个公式的范围很广,可以用于科学研究、实践中的不等式推理,可以用来判断两个数之间的大小关系,也可以用来判断函数的单调性,恒等式和变换形式,对高中生、大学生和学习数学有很大帮助。
综上所述,基本不等式四个公式是不等式的基础,是推理计算的基础,它有助于学习者全面掌握数学知识,并帮助学习者正确判断数字之间的关系,从而更好地推理计算,在科学研究和实践中也具有重要的作用。
不等式基础知识一、不等式的概念1.不等式的定义不等式:用不等号连接两个解析式所得的式子,叫不等式.不等式组:含有相同未知数的几个不等式组成的式子,叫不等式组.2.不等式的分类(1)按所用不等号分:严格不等式(简单命题)、不严格不等式(复合命题).(2)按变量取值范围分:绝对不等式、条件不等式、矛盾不等式.(3)按变量的数量分:一元不等式、二元不等式、多元不等式.(4)按解析式的类型分:3.不等式的相互关系(1)由不等号方向看:同向不等式、异向不等式.(2)由变量范围看:同解不等式、等价不等式.(3)由形式关系看:同构不等式、不同构不等式.二、实数运算的性质(符号法则)实数运算的符号法则是构建不等式理论的基石,其顺序为:实数运算的符号法则→不等式的性质→不等式性质的应用.实数运算的符号法则:正数大于负数,零小于正数,零大于负数.1.0a b a b >⇔->,0,0a b a b a b a b <⇔-<=⇔-=.2.00a a >⇔-<.3.100a a >⇔>,100a a<⇔<. 4.0,00;0,00a b a b a b a b >>⇒+>><⇒->.5.0,00;0,00;0,00a b ab a b ab a b ab >>⇒>><⇒<<<⇒>.三、不等式的性质1.三歧性: 对于任意两个实数a 与b ,在,,a b a b a b ><=三种情况中仅有一种成立.2.对称性:a b b a >⇔<.3.传递性: ,(,;,;,?a b b c a c >>⇒>≥>>≥≥≥等号是否传到底?4.可加性:a b a c b c>⇔+>+; a b c a b c ->⇔>+ (移项法则、作差原理). 5.加法法则:,a b c d a c b d >>⇒+>+ (同向特征,可推广).6.可乘性: ,0a b c ac bc >>⇒>(若0c >,则a b a c b c>⇔>); ,0a b c ac bc ><⇒<(若0c <,则a b ac bc >⇔<). 7.倒数法则:(1)110a b a b >>⇒< (若a b R +∈、,则111a a b a b b>⇔<⇔>); (2)110b a a b <<⇒< (若a b R -∈、,则111a a b a b b>⇔<⇔<); (3)110a b a b >>⇒>. 8.乘法法则:0,0a b c d ac bd >>>>⇒> (可推广). 9.乘方法则:0(2,)n n a b a b n n N +>>⇒>≥∈.(乘法法则的特例)(m m a b R m Q a b a b∈∈>⇔>若、,,则).10.开方法则:02,)a b n n N +>>≥∈.11.均值定理:(1)222a b ab +≥(当且仅当a 、b 相等时取等号)(可推广);(2)a b R a b +∈+≥、,(当且仅当a 、b 相等时取等号)(几何意义:半径不小于半弦.);(3)222,()22a b a b ab ab ++≤≤(当且仅当a 、b 相等时取等号); (4)2)112a b a b R a b++≤≤≤∈+、 (当且仅当a 、b 相等时取等号);(调和平均数≤几何平均数≤算术平均数≤幂平均数); (5)0,0)q px px qx x+≥>>(一正二定三相等); (6)()()a px b qx +-≤2()4aq bp pq+ (一正二定三相等). 12.真分数性质:0,001a a m a b m b b m+<<>⇒<<<+ (浓度不等式). 注:不等式的性质可分为单向性质和双向性质两类.在解不等式时,只能用双向性质;在证明不等式时,既可用单向性质,也可用双向性质.附:化归方法在不等式中的具体运用:(1)异向化同向;(2)负数化正数;(3)减式化加式;(4)除式化乘式;(5)多项化少项;(6)高次化低次.四、不等式的证明证明不等式就是利用不等式的性质等知识,证明所给不等式在给定条件下恒成立.不等式形式的多样性导致其证明方法的灵活性,具体问题具体分析是证明不等式的准则.具体证明方法有如下几种:1.作差比较法原理:符号法则.步骤:作差→变形(配方、通分、分解、有理化、配方等)→定号→判断.2.作商比较法原理:符号法则.步骤:作商(注意前提)→变形(指数运算)→定号→判断.3.分析法原理:12n B B B B A ⇐⇐⇐⇐⇐ .步骤:执果索因,从“未知”找“需知”,逐步靠拢“已知”.特点:利于思考,方向明确,思路自然.(刑警办案、剥笋)格式:欲证……(#),(因为……,所以)只需证……,……(因为……,所以)只需证……(*),而(*)显然成立,所以(#)4.综合法原理:12n A B B B B ⇒⇒⇒⇒⇒ .步骤:由因导果,从“已知”看“可知”,逐步推向“未知”.特点:条理清楚,经验丰富,传统自然.(法官定罪、包装)注:(1)证明时,如果首先假定所要证明的不等式成立,逐步推出一个已知成立的不等式,只要推出过程的每一步都是可逆的,那么就可以断定所给的不等式成立,这也是分析法,其逻辑原理为:12n B B B B A ⇔⇔⇔⇔⇔ .(2)用分析法时要正确使用连接有关分析推理步骤的关键词,如“欲证……,只需证……”、“即……”、“假定……成立,则……”等.并且,必须有对最后找到 的,使求证结论成立的充分条件正确性的判断,否则其步骤因不完善而错误.(3)由条件或一些基本性质入手、较易的不等式,以及条件较多的不等式,多可用综合法证明.而对于条件简单而结论复杂的不等式,以及恒成立的不等式,运用分析法证明更为有效.分析法和综合法之间是互为前提、互相渗透、互相转化的辨证统一关系,分析法的终点是综合法的起点,综合法的终点是综分析法的起点.对于复杂问题的证明,常用分析法探索证明途径,然后用综合法加以整理,甚至需交替使用这两种方法,事实上,这两种方法往往也很难区分开.(4)证明不等式的方法还有反证法、判别式法、换元法、构造法、数学归纳法、导数法、放缩法(把不等式的一边适当放大或缩小,利用不等式的传递性进行证明不等式的方法,叫放缩法.其常用方法有:舍去一些项、在积中换大(小)某些项、扩大(缩小)分式的分母(分子)等)等.分析法只是一种重要的探求方式,而不是一种好的书写形式,因为它叙述较繁,如果把“只需证……”去掉不写,就成了错误。
不等式基础必备1、均值定理: n n n n Q A G H ≥≥≥(当且仅当...12n a a a ===时取等号) 注解:n Q 平方平均值:n Q =n A 算术平均值:...12nn a a a A n+++=;n G 几何平均值:n G = n H 调和平均值:...n 12nnH 111a a a =+++,即:...n 12nn 111H a a a =+++其中,,,...12n a a a 0>例如:1a 1=,2a 2=,求n Q 、n A、n G 、n H,并比较它们的大小. 解:.n Q 16==≈; .n 12A 152+==; .n G 14==≈; .n 224H 1311213122===≈++可见:有n n n n Q A G H ≥≥≥2、指数不等式:x e 1x ≥+ (当且仅当x 0=时取等号) 注解:由于要求不等式右边1x 0+≥,故:x 1≥-记忆方法见函数图.曲线x y e =在x R ∈区间都处在直线y 1x =+的上方,仅在x 0=处相切. 即:xe 1x ≥+,当且仅当x 0=时取等号.例如:x 1=时,左边.x e 2718≈,右边1x 2+=故:x e 1x ≥+3、对数不等式:ln x x 1≤- (当且仅当x 1=时取等号) 注解:由于0和负数没有对数,所以:x 0>记忆方法见函数图.曲线ln y x =在x 0>区间都处在直线y x 1=-的下方,仅在x 1=处相切. 即:ln x x 1≤-, 当且仅当x 1=时取等号也可以由x e 1x ≥+得:y 1e y -≥两边取对数:ln y 1y -≥,即:ln x x 1≤-例如:x e =时,左边ln ln x e 1==,右边.x 1e 117181-=-≈>,故:ln x x 1≤- 4、柯西不等式:(...)(...)(...)222222212n 12n 1122n n a a a b b b a b a b a b ++++++≥+++(当且仅当...n 1212na aa b b b ===时取等号) 注解:设向量(,,...,)12n A a a a =,向量(,,...,)12n B b b b =,则 (2)22212n A a a a =+++, (2)22212n B b b b =+++,...1122n n A B a b a b a b ⋅=+++由向量公式:cos ,A B A B A B ⋅=<>得:A B A B ⋅≤ 两边自乘得:()222AB A B ≥⋅将上面的结果代入得:(...)(...)(...)222222212n 12n 1122n n a a a b b b a b a b a b ++++++≥+++例如:1a 1=,2a 2=,1b 3=,2b 4=则:21a 1=,22a 4=,()2212a a 5+=;21b 9=,22b 16=,()2212b b 25+=; ()()22221212a a b b 525125++=⨯=;11a b 3=,22a b 8=,()221122a b a b 11121+==.()()22221212a a b b 125121++=>故:()()()2222212121122a a b b a b a b ++≥+5、琴生不等式: 注解:⑴ 设在[,]x a b ∈区间()f x 为上凸函数,如图即()f x 的二次导数''()f x 0≤,则:()()()f a f b a bf 22++≤ ① 图中,A 点为均值的函数值,B 点为函数的均值. 即:对于上凸函数,函数的均值不大于均值的函数值. ⑵ 设在[,]x a b ∈区间()f x 为下凸函数,如图即()f x 的二次导数''()f x 0≥,则:()()()f a f b a bf 22++≥ ② 图中,A 点为均值的函数值,B 点为函数的均值. 即:对于下凸函数,函数的均值不小于均值的函数值. 上面的①②式,称为琴生不等式.例如:对于函数()sin f x x =,在[,]x 0π∈区间为上凸函数,因为'()cos f x x =,''()sin f x x 0=-≤([,]x 0π∈) 故:()sin f x x =在[,]x 0π∈区间为上凸函数. 此时,a 0=,b π=,则a b 22π+= ()()f a f 00==,()()f b f 0π==,即:()()f a f b 00022++==;而()()a b f f 122π+==. 故:()()()f a f b a bf 22++≤ 例如:二次函数()2f x x 2x 1=-+因为'()f x 2x 2=-,''()f x 20=> 所以()f x 下凸函数.在[,]x 02∈区间有:()f 01=,()f 21=,()f 10= 即:()()f 0f 212+=,()()02f f 102+==故:()()()f 0f 202f 22++>其实,在x R ∈区间,都满足()()()f a f b a bf 22++≥ ⑶ 推广为一般形式对于(,)x a b ∈的上凸函数,即:''()f x 0≤,有:()()...()...()12n 12nf x f x f x x x x f n n++++++≤ (,,...,(,)12n x x x a b ∈)对于(,)x a b ∈的下凸函数,即:''()f x 0≥,有:()()...()...()12n 12nf x f x f x x x x f n n++++++≥ (,,...,(,)12n x x x a b ∈)这就是琴生不等式.注意不等号的方向与二次导数的方向一致. 6、伯努利不等式:()n 1x 1nx +≥+ (x 1>-) 注解:由二项式定理得:()...()n 0122n nn n n n 1x C C x C x C x 1nx g x +=++++=++在x 1>-时,()g x 0≥,即:()n 1x 1nx +≥+ (仅当n 1=时取等号) 例如:当x 1=,n 2=时,左边()()n 21x 114+=+=,右边1nx 1213+=+⨯=故:()n 1x 1nx +≥+ 7、向量不等式:⑴ 向量三角形:a b a b +≤+和 ⑵ a b a b -≤- ⑶ 向量点乘:a b a b ⋅≤ 注解:⑴ 由a ,b ,a b +构成的三角形,由三角形两边之和大于第三边得. ⑵ 由a ,b ,a b -构成的三角形,由三角形两边之差小于第三边得; ⑶ 由向量积的公式得:cos ,a b a b a b a b ⋅=<>≤,即:a b a b ⋅≤; ⑷ 若(,,)123a a a a =,(,,)123b b b b =,则:112233a b a b a b a b ⋅=++ 上面这几种基本不等式的简单记忆方法: 均值定理四兄弟,对数指数俩伴侣; 柯西琴生伯努利,向量三角点乘积.上述不等式的解法统称“公式法”.凡解证不等式,首先考虑用上述的不等式,能使用的尽量使用. 不能直接使用的,但经过变形后能使用的,也要尽量使用,即尽一切可能使用上述不等式.1、作差法:将比较的两对象相减后,其差与0比较大小的方法.注解:最常用的是构建函数法. 例如,证明()()f x g x ≥,则构建()()()h x f x g x =- 2、作商法:将比较的两正数对象相比后,其商与1比较大小的方法. 注解:例如,()f x 0≥,()g x 0≥,证明()()f x g x ≥. 将其变形为()()f xg x 与1比大小. 3、公式法:用前面不等式的公式得到结果的方法. 注解:即均值定理、柯西不等式等.4、单调性法:利用函数在某区间的单调性得出大小的方法.注解:例如,函数()f x 在区间[,]x a b ∈单调递增,则有:()()f x f a ≥,()()f x f b ≤. 5、放缩法:由等式的一边经过放大或缩小将等式变为不等式;或者大者变得更大,小者变得更小;从而使问题得到解决的方法.注解:例如,n 0>,原本22n n =,将右边减小变为()2n n n 1>- ①①式就是放缩法的结果.6、判别式法:如果一个二次函数过零点,即在零点存在二次方程的解,那么二次方程有解的条件是:判别式0∆≥. 这里就自然出现了不等式. 注解:本方法用于处理二次函数时,包括二次函数的分式.7、换元法:将一个整式、分式或根式整体看做一个量进行处理的方法,主要是简化. 注解:特别是三角换元法. 因为三角函数本身有界,所以自然就有不等式. 此法要求常用的三角恒等式必须熟悉.8、裂项相消法:将一项式子分裂成两项或多项,在求和过程中有部分项相互抵消,从而得到简明结果的方法.注解:例如,在放缩法中的①式,进一步得:()21111n n n 1n 1n<=---这样,如果是求和n2k 11k =∑,则可得结果: ()()nn n22k 1k 2k 211111111112k k k 1k n n ====+<+-=+-=--∑∑∑ 其中的()111n n 1n 1n=---是裂项.在求和过程中,好多项相互抵消()()()...()nk 21111111111k 1k 1223n 1n n=-=-+-++-=---∑ 9、倒序相加法:将一个多项求和的式子的一个正序列和一个倒序列按序相加的方法. 注解:例如,求...n S 123n =++++. 其倒序后为:()...n S n n 121=+-+++.这两个式子按序相加后得:()()...()n 2S 1n 2n 1n 1=+++-+++其中,每个圆括号内的值都是()n 1+,共有n 项. 故结果是:()n 2S n n 1=+,即:()n n n 1S 2+=10、极值法(最值法):求出函数()f x 在某个区间的极值,加上边界值找出最值,那么函数的最值就是出现不等式的方法.注解:函数()f x 在x R ∈区间的最大值是8,则有()f x 8≤11、积分法:积分实际上是求和,是简化求和运算的一种方法. 如果函数是单调的,函数的每一小区间内就会出现不等号,求和后依然存在不等号. 注解:积分法最好要画出简明图,可以看出单调性和不等的量. 上面这几种求不等式的基本方法简单记忆: 作差与0比大小,作商与1比高下; 套用公式得结果,单调放缩有小大;二次函数过零点,判别式与换元法; 倒序相加来求和,裂项相消去简化; 极值最值亦可得,单调积分号方法.[例题] 已知:,a b 0>,*n N ∈,n 2≥,求证:()n n na b a b 22++≥ 证明:⑴ 用均值定理:n n A G ≥()()...()()...()n n n n n n nn n 1n 1a b a b a b a n a 22222--+++++++≥即:()()()n 1n n n n nna b a b a n 1na 22-+++-≥ ①同理:()()()n 1n n n n nna b a b b n 1nb 22-+++-≥ ② 由①②两式相加得:()()()()()n 1n n nnnnna b a b n 1a b n a b 2-+++-+≥+即:()()()n 1n n n n na b a b a b 2n 2n 222-+++≥ 即:()()()n 1n n n n n a b a b a b 222-+++≥,即:()()()n n n n n n n 1a b a b a b 222-+++≥ 即:()n n na b a b 22++≥ ⑵ 用琴生不等式构建函数:()n f x x =(x 0>)则:'()n 1f x nx -=,''()()n 2f x n n 1x 0-=->代入琴生不等式()()()f a f b a bf 22++≥得:()n n n a b a b 22++≥。