高考数学专题复习:不等式和绝对值不等式
- 格式:ppt
- 大小:1.93 MB
- 文档页数:40
高考数学知识点:不等式1500字高考数学中的不等式是一个重要的知识点,几乎在每年的高考试卷中都会出现。
不等式在很多实际问题中都有重要的应用,如经济学中的利润最大化问题、几何学中的面积最大最小问题等。
下面将对高考数学中常见的不等式知识点进行详细介绍。
一、一元一次不等式一元一次不等式的形式为ax+b>0(或ax+b≥0)、ax+b<0(或ax+b≤0),其中a和b为已知实数,x为未知数。
要求解这类不等式,需要注意以下几点:1. 若a>0,则当a>0时,不等式两侧都乘以正数a;当a<0时,不等式两侧都乘以负数a,不等号方向不变。
2. 若a<0,则当a>0时,解的不等式两侧都乘以负数a,不等号方向相反;当a<0时,解的不等式两侧都乘以正数a,不等号方向不变。
3. 若a=0,则不等式只有在b>0(或b≥0)和b<0(或b≤0)时有解。
二、一元二次不等式一元二次不等式是形如ax²+bx+c>0(或ax²+bx+c≥0)、ax²+bx+c<0(或ax²+bx+c≤0)的不等式,其中a、b、c为已知实数,a≠0。
要求解一元二次不等式,需要经过以下几个步骤:1. 确定a的正负性,若a>0则为开口向上的抛物线,若a<0则为开口向下的抛物线。
2. 计算抛物线的顶点坐标,即x₀=-b/2a。
3. 根据a的正负性确定抛物线的上升段或下降段。
4. 根据a的正负性确定不等式的解集。
三、绝对值不等式绝对值不等式是形如|ax+b|>c(或|ax+b|≥c)、|ax+b<c(或|ax+b|≤c)的不等式,其中a、b、c为已知实数,a≠0且c>0。
要求解绝对值不等式,需要根据绝对值的定义和性质进行推导,具体步骤如下:1. 根据绝对值的定义,将不等式分为正数和负数两个部分。
2. 对于正数部分,去掉绝对值符号,并得到一个二次不等式。
不等式与绝对值不等式不等式是数学中一个重要的概念,也是我们日常生活中常常会用到的一个知识点。
它指的是两个数之间的大小关系,并用大于号(>),小于号(<),大于等于号(≥),小于等于号(≤)等符号来表示。
而绝对值不等式则是一种特殊的不等式,它涉及到数字的绝对值,并且有着一些与普通不等式不同的性质。
一、普通不等式普通不等式是指两个数之间的大小关系,形式一般为 a < b,a > b,a ≤b 或a ≥ b。
当 a < b 时,我们可以理解为 a 在数轴上位于 b 的左侧,这样的不等式也称为“小于不等式”;而当 a > b 时,我们可以理解为 a在数轴上位于b 的右侧,这样的不等式也称为“大于不等式”。
类似地,a ≤ b 和a ≥ b 也被称为小于等于不等式和大于等于不等式。
对于普通不等式,我们可以通过移项变形、乘除运算、绝对值等方法进行求解。
举个例子,如果我们有不等式 2x - 5 > 1,则可以通过移项变形得到 2x > 6,再除以2得到 x > 3。
这样,我们就求出了这个不等式的解集为 x ∈ (3, +∞)。
二、绝对值不等式绝对值不等式是一种涉及到数字的绝对值的不等式,形式一般为|ax + b| > c 或 |ax + b| < c,其中 a、b、c 均为常数。
这种不等式有着一些与普通不等式不同的性质和求解方法。
首先,由于绝对值的定义,|ax + b| 的值始终大于等于0,因此当 |ax + b| > c 时,其实就是要求 |ax + b| 与 c 之间的距离大于0,即|ax + b| - c > 0。
这样,我们就将原来的绝对值不等式转化为了普通不等式,进而可以通过上述方法进行求解。
其次,在绝对值不等式中,绝对值函数的性质也有所不同。
具体来说,当 |x| < a 时,我们可以得到 -a < x < a;当 |x| > a 时,我们可以得到 x < -a 或 x > a。
第51课时:第六章 不等式——含绝对值的不等式课题:含绝对值的不等式一.复习目标:1.理解含绝对值的不等式的性质,及其中等号成立的条件,能运用性质论证一些问题;2.会解一些简单的含绝对值的不等式.二.知识要点:1.含绝对值的不等式的性质:①||||||||||a b a b a b -≤+≤+,当 时,左边等号成立;当 0 ab ≥时,右边等号成立.②||||||||||a b a b a b -≤-≤+,当 时,左边等号成立;当 时,右边等号成立.③进而可得:||||||||||a b a b a b -≤±≤+.2.绝对值不等式的解法: ①0a >时,|()|()()f x a f x a f x a >⇔><-或;|()|()f x a a f x a <⇔-<<;②去绝对值符号是解绝对值不等式的常用方法;③根据绝对值的几何意义,通过数形结合解绝对值不等式.三.课前预习:1.不等式|lg ||||lg |x x x x -<+的解集为 ( )()A (0,)+∞ ()B (0,1) ()C (1,)+∞ ()D (1,10)2.不等式1|21|2x ≤-<的解集为 ( )()A 13(,0)[1,)22- ()B 13{01}22x x -<<≤≤且 ()C 13(,0][1,)22- ()D 13{01}22x x -<≤≤<且3.()f x 为R 上的增函数,()y f x =的图象过点(0,1)A -和下面哪一点时,能确定不等式|(1)|1f x -<的解集为{|14}x x << ( )()A (3,1) ()B (4,1) ()C (3,0) ()D (4,0)4.已知集合{||1|}A x x a =-≤,{||3|4}B x x =->,且A B φ=,则a 的取值范围是 .5.设有两个命题:①不等式|||1|x x m +->的解集是R ;②函数()(73)x f x m =--是减函数,如果这两个命题中有且只有一个是真命题,则实数m 的取值范围是 .四.例题分析:例1.已知01x <<,01a <<,试比较|log (1)|a x -和|log (1)|a x +的大小.例2.求证:||||||1||1||1||a b a b a b a b +≤+++++.例3.设,,a b c R ∈,已知二次函数2()f x ax bx c =++,2()g x cx bx a =++,且当||1x ≤时,|()|2f x ≤,(1)求证:|(1)|2g ≤;(2)求证:||1x ≤时,|()|4g x ≤.例4.设m 等于||a 、||b 和1中最大的一个,当||x m >时,求证:2||2a b x x +<.五.课后作业:1.若,a b R ∈,且||||a c b -<,则 ( )()A ||||||a b c <+ ()B ||||||a b c >- ()C a b c <+ ()D a b c >-2.若0m >,则||x a m -<且||y a m -<是||2x y m -<的 ( )()A 充分不必要条件 ()B 必要不充分条件 ()C 充要条件 ()D 既不充分也不必要条件3.已知函数()f x 、()g x ,设不等式|()||()|f x g x a +<(0)a >的解集是M ,不等式|()()|f x g x a +<(0)a >的解集是N ,则集合M 、N 的关系是 ( )()A N M ≠⊂ ()B M N = ()C M N ⊆ ()D M N ≠⊂4.不等式||22x x x x ≥++的解集是 . 5.不等式|4||3|x x a -+-<的解集不是空集,则a 的取值范围是 .6.若实数,a b 满足0ab >,则①||||a b a +>;②||||a b b +<;③||||a b a b +<-;④||||a b a b +>-.这四个式子中,正确的是 .7.解关于x 的不等式2||x a a -<(a R ∈). 8.解不等式:(1)2|1121|x x x -+>;(2)|3||21|12x x x +-->+.9.设有关于x 的不等式lg(|3||7|)x x a ++->,(1)当1a =时,解这个不等式;(2)当a 为何值时,这个不等式的解集为R .10.设二次函数2()f x ax bx c =++对一切[1,1]x ∈-,都有|()|1f x ≤, 求证:(1)||1a c +≤;(2)对一切[1,1]x ∈-,都有|2|4ax b +≤.。
数学高考不等式知识点归纳数学是高考中不可或缺的一门科目,而数学的不等式是其中一个重要的知识点。
在高考中,会涉及到各种类型的不等式问题,考生需要对不等式的性质和解法有深刻的理解。
下面我将对数学高考中常见的不等式知识点进行归纳整理。
一、基本不等式基本不等式是解决不等式问题的基础,它是数学推理的起点。
基本不等式有两个方面的含义:其一是一个数平方一定大于等于零,即对任意实数x,x²≥0,即x²≥0;其二是有理数的平方的大小关系,即对任意实数x和y,如果x>y,则x²>y²。
二、一元一次不等式一元一次不等式是高考中最简单、最常见的不等式类型。
对于一元一次不等式,考生需要掌握解法的基本思路,如通过移项、乘除法等基本运算,确定不等式的解集。
三、一元二次不等式一元二次不等式是高考中较为复杂的不等式类型。
对于一元二次不等式,考生需要将其转化为二次函数的解析表达式,然后通过解二次方程来求解。
在解决一元二次不等式问题时,应注意借助二次函数的图像进行推理,从而获得正确的解集。
四、有理不等式有理不等式是由有理数构成的不等式。
对于有理不等式,考生需要掌握解法的一般步骤,如将不等式分母消去、确定分界点、绘制数轴图、判断各个区间的正负性等。
五、绝对值不等式绝对值不等式是高考中常见的不等式类型,而且解法相对简单。
对于绝对值不等式,考生需要掌握将其转化为两个简单的不等式,并分别求解的方法。
六、复合不等式复合不等式由多个不等式组合而成,对于复合不等式,考生需要掌握解法的一般步骤,如将多个不等式合并、确定解集的交集或并集等。
在解复合不等式问题时,需要特别注意各个不等式的对应关系。
七、几何不等式几何不等式是利用几何图形的性质来解决不等式问题。
对于几何不等式,考生需要通过合理的假设、推理以及几何图形的性质来求解。
在解决几何不等式问题时,应灵活运用几何知识和不等式知识,结合具体题目进行分析和推导。
1.2.2 绝对值不等式的解法课堂导学三点剖析一、绝对值不等式的典型类型和方法(一) 【例1】 解下列不等式: (1)1<|x+2|<5; (2)|3-x|+|x+4|>8.解析:(1)法一:原不等式⇔⎩⎨⎧<<--<->⇔⎩⎨⎧<+<->+⇔⎩⎨⎧<+>+.37,31525125|2|1|2|x x x x x x x 或 故原不等式的解集为{x|-1<x<3或-7<x<-3}.法二:原不等式⎩⎨⎧<--<<+⎩⎨⎧<+<≥+⇔521,02521,02x x x x 或, ⇔⎩⎨⎧-<<--<⎩⎨⎧<<--≥⇔37,231,2x x x x 或-1<x<3或-7<x<-3.∴原不等式的解集为{x|-1<x<3或-7<x<3}.(2)法一:原不等式⎩⎨⎧>++-<<-⎩⎨⎧>---≤⇔,843,34843,4x x x x x x 或⎩⎨⎧>≥⎩⎨⎧><<-⎩⎨⎧>---≤⇔⎩⎨⎧>++-≥.72,387,34821,4843,3x x x x x x x x 或或或 ∴x>27或x<29-. ∴原不等式的解集为{x|x<29-或x>27}.法二:将原不等式转化为|x-3|+|x+4|-8>0,构造函数y=|x-3|+|x+4|-8,即y=⎪⎩⎪⎨⎧≥-<<---≤--.3,72,34,1,492x x x x作出函数的图象如图.从图象可知当x>27或x<29-时,y>0,故原不等式的解集为{x|x>27或x<29-}. 温馨提示在本例中主要利用了绝对值的概念,|x|<a(或|x|>a)的解集以及数形结合的方法,这些方法都是解绝对值不等式的典型方法. 各个击破 类题演练1 解下列不等式:(1)|432-x x|≤1; (2)|x+3|-|2x-1|>2x+1.解析:(1)原不等式⎩⎨⎧≥+-±≠⇔⎪⎩⎪⎨⎧-≤≠-⇔016172)4(904242222x x x x x x ⇔⎩⎨⎧≥≤±≠⇔161222x x x 或-1≤x≤1或x≤-4或x≥4. 故原不等式的解集为{x|-1≤x≤1或x≤-4或x≥4}. (2)由x+3=0,得x 1=-3, 由2x-1=0,得x 2=21. ①当x<-3时,不等式化为x-4>2x+1,解得x>10,而x<-3,故此时无解; ②当-3≤x<21时,不等式化为3x+2>2x +1,解得x>52-,这时不等式的解为52-<x<21;③当x≥21时,不等式化为-x+4>2x +1,即x<2,这时不等式的解为21≤x<2.综合上述,原不等式的解集为{x|52-<x<2}.变式提升1(1)解不等式|x 2-5x+5|<1.解析:不等式可化为-1<x 2-5x+5<1,即⎪⎩⎪⎨⎧->+-<+-.155,15522x x x x解之,得1<x<2或3<x<4.所以原不等式的解集为{x|1<x<2或3<x<4}.(2)求使不等式|x-4|+|x-3|<a 有解的a 的取值范围. 解法一:将数轴分为(-∞,3),[3,4],(4,+∞)三个区间. 当x<3时,得(4-x)+(3-x)<a,x>27a -有解条件为27a-<3,即a>1; 当3≤x≤4,得(4-x)+(x-3)<a,即a>1; 当x>4时,得(x-4)+(x-3)<a,则x<27+a有解条件为27+a >4.∴a>1. 以上三种情况中任何一个均可满足题目要求,故是它们的并集,即仍为a>1.解法二:设数x 、3、4在数轴上对应的点分别为P 、A 、B,由绝对值的几何意义,原不等式即求|PA|+|PB|<a 成立.因为|AB|=1,故数轴上任一点到A 、B 距离之和大于(等于)1,即|x-4|+|x-3|≥1,故当a>1时,|x-4|+|x-3|<a 有解.另外,本题还可利用绝对值不等式性质求函数的最值方法处理: ∵|x -4|+|x-3|=|x-4|+|3-x| ≥|x -4+3-x|=1,∴a 的取值范围是a>1.二、绝对值不等式的典型类型和方法(二)【例2】 解不等式|x 2-9|≤x+3.解析:方法一:原不等式⎪⎩⎪⎨⎧+≤-≥-⇔39,0922x x x ⎪⎩⎪⎨⎧+≤-≥-39,0922x x x 或 由①得x=-3或3≤x≤4,由②得2≤x<3,∴原不等式解集是{x|2≤x≤4或x=-3}.方法二:原不等式⎪⎩⎪⎨⎧≤≤--≤-≥⇔⎩⎨⎧+≤-≤+-≥+⇔433339)3(032x x x x x x x x ⇔或2≤x≤4. ∴原不等式的解集为{x|x=-3或2≤x≤4}. 温馨提示对于|f(x)|≤g(x)型的不等式,通常有两种思路,一种是利用绝对值的意义,将其转化为f(x)≥0,⎩⎨⎧≤-<⎩⎨⎧≤≥).()(,0)()()(,0)(x g x f x f x g x f x f 或 另一种则是转化为⎩⎨⎧≤≤-≥)()()(,0)(x g x f x g x g 来求.当然也可直接转化为-g(x)≤f(x)≤g(x)来解(为什么?请同学们思考). 类题演练2解不等式|2x-1|>3x.解析:①当x<0时,原不等式显然成立;②当x≥0时,两端平方,得(2x-1)2>9x 2,即5x 2+4x-1<0,解之,得-1<x<51, ∴0≤x<51. 由①②知原不等式的解集为{x|x<51}. 变式提升2(1)解不等式|x 2-3x+2|>x 2-3|x|+2.解析:在同一坐标系内分别画出函数y=|x 2-3x+2|和y=x 2-3|x|+2=|x|2-3|x|+2的图象(如图所示).由图可知,原不等式的解集为{x|x<0或1<x<2}. (2)解不等式|x+1|(x-1)≥0. 解析:1° x+1=0,适合不等式;2° x+1≠0,则|x+1|>0,故原不等式等价于x-1≥0,∴x≥1,显然x+1≠0. ∴原不等式的解集为{x|x≥1或x=-1}. 三、绝对值不等式的证明【例3】 设f(x)=ax 2+bx+c,当|x|≤1时,总有|f(x)|≤1,求证:当|x|≤2时,|f(x)|≤7. 证明:由于f(x)是二次函数,|f(x)|在[-2,2]上的最大值只能是|f(2)|,|f(-2)|或|f(a b 2-)|,故只要证明|f(2)|≤7,|f(-2)|≤7;当|a b 2-|≤2时,有|f(ab 2-)|≤7. 由题意有|f(0)|≤1,|f(-1)|≤1,|f(1)|≤1.由⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=--+=⎪⎩⎪⎨⎧+-=-++==).0()],1()1([21)],0(2)1()1([21,)1(,)1(,)0(f c f f b f f f a c b a f c b a f c f 得∴|f(2)|=|4a+2b+c|=|3f(1)+f(-1)-3f(0)|≤3|f(1)|+|f(-1)|+3|f(0)|≤3+1+3=7, |f(-2)|=|4a-2b+c|=|f(1)+3f(-1)-3f(0)|≤|f(1)|+3|f(-1)|+3|f(0)|≤1+3+3=7. ∵|b|=21|f(1)-f(-1)|≤21(|f(1)|+|f(-1)|)≤21(1+1)=1, ∴当|ab2-|≤2时,|f(a b 2-)|=|a b ac 442-|=|c a b 42-|=|c a b 2-·2b |≤|c|+|a b 2|·2||b ≤1+2×21=2<7.因此当|x|≤2时,|f(x)|≤7.类题演练3已知f(x)=x 2+ax+b(x 、a 、b∈R ,a 、b 是常数),求证:|f(1)|、|f(2)|、|f(3)|中至少有一个不小于21. 证明:假设|f(1)|、|f(2)|、|f(3)|全都小于21,即有|f(1)|<21,|f(2)|<21,|f(3)|<21. 于是|f(1)+f(3)-2f(2)|≤|f(1)|+|f(3)|+2|f(2)|<21+21+2×21=2.又f(1)+f(3)-2f(2)=2,二者产生矛盾,故|f(1)|、|f(2)|、|f(3)|中至少有一个不小于21. 变式提升3已知函数f(x)=ax+b,满足|x|≤1,a 2+b 2=1,求证:|f(x)|≤2.证法一:|f(x)|≤2⇔2-≤f(x)≤2⇔f(x)min ≥2-且f(x)max ≤2.若a>0,则f(x)max =f(1)=a+b≤2)(222=+b a ,f(x)min =f(-1)=-a+b≥2])[(222-=+--b a . 若a=0,则f(x)=b 且b 2=1, ∴|f(x)|≤2.若a<0,则f(x)max =f(-1)=-a+b≤2)(222=+b a ,f(x)min =f(1)=a+b≥2)(222-=+-b a . 综上,知不等式成立. 证法二:|f(x)|2-(2)2=(ax+b)2-2(a 2+b 2)=a 2x 2+b 2+2abx-2(a 2+b 2)≤a 2+b 2+2abx-2(a 2+b 2)=2abx-a 2-b 2≤2abx -a 2x 2-b 2=-(ax-b)2≤0, ∴|f(x)|≤2.。
高考数学一轮总复习绝对值不等式的解法与数列极限的关系与绝对值的应用绝对值是数学中常见的概念,它的应用广泛且重要。
在高考数学一轮总复习中,不等式与绝对值的联系及数列极限与绝对值的应用是我们需要重点掌握的知识点。
本文将介绍绝对值不等式的解法与数列极限的关系,并探讨绝对值的应用。
1. 绝对值不等式的解法绝对值不等式是一种形式特殊的不等式,它的解法与普通的不等式有所区别。
下面介绍几种常见的解法:1.1 分类讨论法当绝对值中的表达式包含不同情况时,可以通过分类讨论的方式来解决。
例如,对于不等式|2x+3|≥5,可以分别讨论2x+3的取值范围,然后求解得出满足条件的x的值。
1.2 倍角法倍角法是解决绝对值不等式的常用方法之一。
例如,对于不等式|sinx|>0.5,可以通过考虑sinx和cosx的正负性来得出满足条件的x的取值范围。
1.3 区间法对于一些特殊的不等式,可以利用区间的性质来进行求解。
例如,对于不等式|2x-1|<3,可以通过构造区间[-3,3],然后确定满足条件的x的取值范围。
2. 数列极限与绝对值的应用数列极限是高中数学中的重要知识点,与绝对值的应用有紧密的联系。
下面介绍两种常见的相关应用:2.1 极限定义的证明在数列极限的证明中,常常需要使用到绝对值的性质。
例如,证明数列{an}的极限是A,需要证明对于任意给定的误差ε>0,存在正整数N,使得当n>N时就有|an-A|<ε成立。
这里的绝对值就是用来限制误差范围的。
2.2 极限计算的辅助工具在一些求极限的过程中,需要用到绝对值的性质来简化计算。
例如,求极限lim(x→∞)|x-1|/x,可以利用绝对值的非负性质,将|x-1|替换为x-1,从而得到简化后的表达式1-1/x。
3. 绝对值的应用除了与不等式及数列极限的联系外,绝对值还有许多其他的应用。
下面介绍一些常见的应用情景:3.1 函数定义的拆分在一些函数的定义中,需要将函数分段来描述。