高三物理一轮滚动练习1——动力学基本问题的方法练
- 格式:doc
- 大小:701.38 KB
- 文档页数:4
分层规范快练(三十四) 电磁感应中的动力学、能量和动量问题
.如图所示,竖直放置的两根平行金属导轨之间接有定值电阻
属棒与两导轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,
棒在竖直向上的恒力
.如图所示,纸面内有一矩形导体闭合线框abcd,ab
的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方
进入磁场,线框上产生的热量为
B,两条电阻不计的平行光滑导轨竖直放置在磁场
,导体棒ab、cd长度均为
100 m过程中电阻R上产生的焦耳热.
由图乙得ab棒刚开始运动瞬间a=2.5 m/s2,
.金属棒中感应电流的方向为C→D
16 J
.通过电阻的电荷量为0.25 C .定值电阻产生的焦耳热为0.75 J
导体棒刚进入磁场瞬间回路的电流;
最终的速度及ab进入磁场后系统产生的焦耳热.
如图,一质量为m,边长为
高度由静止下落,依次经过两匀强磁场区域,且金属线框
,两磁场的磁感应强度分别为B1和B2,且B1=
,线框进入磁场B1时,恰好做匀速运动,速度为
匀速通过宽度也为h的磁场B2.
答案::
[2019·山东济宁模拟
形成左右两导轨平面,左导轨平面与水平面成。
动力学两类基本问题1.考点及要求:(1)牛顿运动定律的应用(Ⅱ);(2)匀变速直线运动的公式(Ⅱ).2.方法与技巧:(1)抓住两个分析:受力分析和运动过程分析;(2)解决动力学问题时对力的处理方法:合成法和正交分解法;(3)求解加速度是解决问题的关键.1.(已知运动分析受力)如图1所示,一物体从倾角为30°的斜面顶端由静止开始下滑,s1段光滑,s2段有摩擦,已知s2=2s1,物体到达斜面底端的速度刚好为零,求s2段的动摩擦因数μ.(g取10 m/s2)图12.(已知受力分析运动)如图2所示,在质量为m B=30 kg的车厢B内紧靠右壁,放一质量m A=20 kg的小物体A(可视为质点),对车厢B施加一水平向右的恒力F,且F=120 N,使之从静止开始运动.测得车厢B在最初t=2.0 s内移动s=5.0 m,且这段时间内小物块未与车厢壁发生过碰撞.车厢与地面间的摩擦忽略不计.图2(1)计算B在2.0 s的加速度;(2)求t=2.0 s末A的速度大小;(3)求t=2.0 s内A在B上滑动的距离.3.如图3甲所示,在风洞实验室里,一根足够长的固定的均匀直细杆与水平方向成θ=37°角,质量m=1 kg的小球穿在细杆上且静止于细杆底端O处,开启送风装置,有水平向右的恒定风力F作用于小球上,在t1=2 s时刻风停止.小球沿细杆运动的部分v-t图象如图乙所示,g取10 m/s2,sin 37°=0.6,cos 37°=0.8,忽略浮力.求:图3(1)小球在0~2 s内的加速度a1和2~5 s内的加速度a2;(2)小球与细杆间的动摩擦因数μ和水平风力F的大小.4.如图4所示为四旋翼无人机,它是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m=2 kg的无人机,其动力系统所能提供的最大升力F=36 N,运动过程中所受空气阻力大小恒为f=4 N.g取10 m/s2.图4(1)无人机在地面上从静止开始,以最大升力竖直向上起飞.求在t=5 s时离地面的高度h.(2)当无人机悬停在距离地面高度H=100 m处,由于动力设备故障,无人机突然失去升力而坠落.求无人机坠落地面时的速度v.(3)在无人机从离地高度H=100 m处坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上最大升力.为保证安全着地,求飞行器从开始下落到恢复升力的最长时间t1.答案解析 1.32解析 设物体的质量为m ,在s 1段物体做匀加速直线运动,在s 2段物体做匀减速运动,在s 1段由牛顿第二定律得:mg sin θ=ma 1,解得a 1=g sin θ=5 m/s 2在s 2段:μmg cos θ-mg sin θ=ma 2,解得a 2=μg cos θ-g sin θ 设s 1段结束时的速度为v ,根据运动学方程,在s 1段:v 2=2a 1s 1 在s 2段:v 2=2a 2s 2,又s 2=2s 1解得:μ=322.(1)2.5 m/s 2 (2)4.5 m/s (3)0.5 m解析 (1)设t =2.0 s 内车厢的加速度为a B ,由s =12a B t 2得a B =2.5 m/s 2(2)对B ,由牛顿第二定律:F -f =m B a B ,得f =45 N对A ,据牛顿第二定律得A 的加速度大小为a A =2.25 m/s 2所以t =2.0 s 末A 的速度大小为:v A =a A t =4.5 m/s.(3)在t =2.0 s 内A 运动的位移为s A =12a A t 2=4.5 m ,A 在B 上滑动的距离Δs =s -s A =0.5 m.3.(1)15 m/s 2,方向沿杆向上 10 m/s 2,方向沿杆向下 (2)0.5 50 N解析 (1)取沿细杆向上的方向为正方向,由题图可知, 在0~2 s 内,a 1=Δv 1Δt 1=15 m/s 2(方向沿杆向上)在2~5 s 内,a 2=Δv 2Δt 2=-10 m/s 2(“-”表示方向沿杆向下).(2)有风力F 时的上升过程,由牛顿第二定律,有F cos θ-μ(mg cos θ+F sin θ)-mg sin θ=ma 1,停风后的上升阶段,由牛顿第二定律,有-μmg cos θ-mg sin θ=ma 2,联立解得μ=0.5,F =50 N.4.(1)75 m (2)40 m/s (3)53 5 s解析 (1)由牛顿第二定律:F -mg -f =ma得a =6 m/s 2高度h =12at 2 解得h =75 m(2)下落过程中mg -f =ma 1a 1=8 m/s 2落地时v 2=2a 1H解得v =40 m/s(3)恢复升力后向下减速运动过程F -mg +f =ma 2 a 2=10 m/s 2设恢复升力时的速度为v m ,则有v 2m 2a 1+v 2m 2a 2=H 得v m =4053m/s 由v m =a 1t 1解得t 1=553 s。
专题十一电磁感应中的动力学、能量和动量问题考点一电磁感应中的动力学问题师生共研例1 如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1 m,两导轨M、P之间接入电阻R=0.2 Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面向下的磁场Ⅰ,磁感应强度B0=1 T,磁场的宽度x1=1 m;在cd连线以下区域有一个方向也垂直于导轨平面向下的磁场Ⅱ,磁感应强度B1=0.5 T.一个质量为m=1 kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r=0.2 Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动.金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8 m.求(g取10 m/s2):(1)金属棒在磁场Ⅰ运动的速度大小;(2)金属棒滑过cd位置时的加速度大小;(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小.【考法拓展1】在【例1】中,求金属棒从开始到刚离开磁场Ⅰ所经历的时间.【考法拓展2】在【例1】中,求金属棒由释放到ab连线滑过的距离x0.【考法拓展3】在【例1】中,求金属棒从开始到在磁场Ⅱ中达到稳定状态这段时间中电阻R产生的热量.练1 [2021·黑龙江大庆模拟](多选)在倾角θ=30°的斜面上固定两根足够长的平行金属导轨MN、EF,间距为L,导轨处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.有两根质量均为m、电阻均为R、长度均为L的金属棒ab、cd垂直导轨放置且与导轨接触良好,光滑的ab棒用平行于导轨的不可伸长的轻绳跨过光滑定滑轮与质量为2m的重物P连接,如图所示.初始时作用在ab棒上一个外力(题中未画出)使ab棒、重物P保持静止,cd棒也静止在导轨上且刚好不下滑.已知重力加速度大小为g,导轨电阻不计,最大静摩擦力等于滑动摩擦力.现撤去外力,ab棒和重物P从静止开始运动,到cd棒刚好要向上滑动的过程中,则( )A.重物P向下做加速度不断减小的加速运动B.cd棒刚好要向上滑动时,ab棒中的电流大小I=C.cd棒刚好要向上滑动时,重物P的速度大小为v=D.重物P减少的重力势能等于ab棒、重物P增加的动能与ab、cd棒产生的焦耳热之和练2 [2020·全国卷Ⅰ](多选)如图,U形光滑金属框abcd置于水平绝缘平台上,ab和dc边平行,和bc边垂直.ab、dc足够长,整个金属框电阻可忽略.一根具有一定电阻的导体棒MN置于金属框上,用水平恒力F向右拉动金属框,运动过程中,装置始终处于竖直向下的匀强磁场中,MN与金属框保持良好接触,且与bc边保持平行.经过一段时间后( )A.金属框的速度大小趋于恒定值B.金属框的加速度大小趋于恒定值C.导体棒所受安培力的大小趋于恒定值D.导体棒到金属框bc边的距离趋于恒定值练3 如图所示,间距为L的两根平行金属导轨弯成“L”形,竖直导轨面与水平导轨面均足够长,整个装置处于竖直向上大小为B的匀强磁场中.质量均为m、阻值均为R的导体棒ab、cd均垂直于导轨放置,两导体棒与导轨间动摩擦因数均为μ,当导体棒cd在水平恒力作用下以速度v0沿水平导轨向右匀速运动时,释放导体棒ab,它在竖直导轨上匀加速下滑.某时刻将导体棒cd所受水平恒力撤去,经过一段时间,导体棒cd静止,此过程流经导体棒cd的电荷量为q(导体棒ab、cd与导轨间接触良好且接触点及金属导轨的电阻不计,已知重力加速度为g),则下列判断错误的是( )A.导体棒cd受水平恒力作用时流经它的电流I=B.导体棒ab匀加速下滑时的加速度大小a=g-C.导体棒cd在水平恒力撤去后它的位移为s=D.导体棒cd在水平恒力撤去后它产生的焦耳热为Q=m-题后反思1.电磁感应中动力学问题的解题思路2.电磁感应中的动态分析导体受外力运动感应电动势感应电流导体受安培力―→合力变化加速度变化―→速度变化―→临界状态.考点二电磁感应中的能量问题多维探究1.能量转化2.求解焦耳热Q的三种方法3.解题的一般步骤(1)确定研究对象(导体棒或回路);(2)弄清电磁感应过程中哪些力做功,以及哪些形式的能量相互转化;(3)根据功能关系或能量守恒定律列式求解.题型1|由焦耳定律求解焦耳热例 2 小明设计的电磁健身器的简化装置如图所示,两根平行金属导轨相距l=0.50 m,倾角θ=53 °,导轨上端串接一个R=0.05 Ω的电阻.在导轨间长d=0.56 m的区域内,存在方向垂直导轨平面向下的匀强磁场,磁感应强度B=2.0 T.质量m=4.0 kg的金属棒CD水平置于导轨上,用绝缘绳索通过定滑轮与拉杆GH相连.CD棒的初始位置与磁场区域的下边界相距s=0.24 m.一位健身者用恒力F=80 N 拉动GH杆,CD棒由静止开始运动,上升过程中CD棒始终保持与导轨垂直.当CD棒到达磁场上边界时健身者松手,触发恢复装置使CD棒回到初始位置(重力加速度g取10 m/s2,sin 53°=0.8,不计其他电阻、摩擦力以及拉杆和绳索的质量).求:(1)CD棒进入磁场时速度v的大小.(2)CD棒进入磁场时所受的安培力F A的大小.(3)在拉升CD棒的过程中,健身者所做的功W和电阻产生的焦耳热Q.题型2|由安培力做功求解焦耳热例3 如图所示,足够长的粗糙斜面与水平面成θ=37°角放置,在斜面上虚线cc′和bb′与斜面底边平行,且两线间距为d=0.1 m,在cc′、bb′围成的区域内有垂直斜面向上的有界匀强磁场,磁感应强度为B=1 T;现有一质量为m=10 g,总电阻为R=1 Ω,边长也为d=0.1 m的正方形金属线圈MNPQ,其初始位置PQ边与cc′重合,现让金属线圈以一定初速度沿斜面向上运动,当金属线圈从最高点返回到磁场区域时,线圈刚好做匀速直线运动.已知线圈与斜面间的动摩擦因数为μ=0.5,取g=10 m/s2,不计其他阻力,求:(取sin 37°=0.6,cos 37°=0.8)(1)线圈向下返回到磁场区域时的速度大小;(2)线圈向上离开磁场区域时的动能;(3)线圈向下通过磁场区域过程中,线圈中产生的焦耳热.题型3|由能量守恒或功能关系求解焦耳热例4 [2021·广州市模拟]如图甲所示,空间存在B=0.5 T、方向竖直向下的匀强磁场,MN、PQ是水平放置的平行长直导轨,其间距L=0.2 m,R是连在导轨一端的电阻,ab是跨接在导轨上质量m=0.1 kg 的导体棒.从零时刻开始,对ab施加一个大小为F=0.45 N、方向水平向左的恒定拉力,使其从静止开始沿导轨滑动,滑动过程中棒始终保持与导轨垂直且接触良好,图乙是棒的v t图象,其中AO是图象在O 点的切线,AB是图象的渐近线.除R以外,其余部分的电阻均不计.设最大静摩擦力等于滑动摩擦力.已知当棒的位移为100 m时,其速度达到了最大速度10 m/s.求:(1)R的阻值;(2)在棒运动100 m过程中电阻R上产生的焦耳热.练4 [2020·济南模拟]如图所示,水平传送带上放置n个相同的正方形闭合导线圈,每个线圈的质量均为m,电阻均为R,边长均为L,线圈与传送带间的动摩擦因数均为μ,线圈与传送带共同以速度v0匀速向右运动.MN与PQ为匀强磁场的边界,平行间距为d(L<d),速度v0方向与MN垂直.磁场的磁感应强度为B,方向竖直向下.当线圈右侧边进入磁场时与传送带发生相对运动,线圈的右侧边到达边界PQ 时又恰好与传送带的速度相同.设传送带足够长,且线圈在传送带上始终保持右侧边平行于磁场边界.已知重力加速度为g,线圈间不会相碰.求:(1)线圈的右侧边刚进入磁场时,线圈的加速度大小;(2)线圈右侧边从MN运动到PQ经过的时间t;(3)n个线圈均通过磁场区域到恢复和传送带共速,线圈释放的焦耳热.练5 [2021·石嘴山模拟]如图所示,光滑且足够长的平行金属导轨MN、PQ固定在竖直平面内,两导轨间的距离为L=1 m,导轨间连接的定值电阻R=3 Ω,导轨上放一质量为m=0.1 kg的金属杆ab,金属杆始终与导轨接触良好,杆的电阻r=1 Ω,其余电阻不计,AB位置下方存在磁感应强度为B=1 T 的匀强磁场,磁场的方向垂直导轨平面向里.重力加速度g取10 m/s2.现让金属杆从AB水平位置由静止释放,忽略空气阻力的影响,求:(1)金属杆的最大速度.(2)若从金属杆开始下落到刚好达到最大速度的过程中,电阻R上产生的焦耳热Q=0.6 J,此时金属杆下落的高度为多少?(3)达到最大速度后,为使ab杆中不产生感应电流,从该时刻开始,磁感应强度B′应怎样随时间t 变化?推导这种情况下B′与t的关系式.考点三电磁感应与动量的综合问题多维探究题型1|动量定理在电磁感应中的应用在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.(1)求电荷量或速度:B lΔt=mv2-mv1,q=t.(2)求时间:Ft=I冲=mv2-mv1,I冲=BIlΔt=Bl(3)求位移:-BIlΔt=-=0-mv0,即-x=m(0-v0).例5 [2020·山东潍坊期末] (多选)如图所示,水平金属导轨P、Q间距为L,M、N间距为2L,P与M相连,Q与N相连,金属棒a垂直于P、Q放置,金属棒b垂直于M、N放置,整个装置处在磁感应强度大小为B、方向竖直向上的匀强磁场中.现给棒a一大小为v0、水平向右的初速度,假设导轨都足够长,两棒质量均为m,在棒a的速度由v0减小到0.8v0的过程中,两棒始终与导轨接触良好.以下说法正确的是( )A.俯视时感应电流方向为顺时针B.棒b的最大速度为0.4v0C.回路中产生的焦耳热为0.1mD.通过回路中某一截面的电荷量为题型2|动量守恒定律在电磁感应中的应用例6 [2019·全国卷Ⅲ,19](多选)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图象中可能正确的是( )练6 [2020·山东阳谷二中期末](多选)如图所示,在高为h的桌面上固定着两根平行光滑金属导轨,导轨左段弯曲,右段水平,两部分平滑连接,导轨间距为L,电阻不计,在导轨的水平部分有竖直向上的匀强磁场,磁感应强度为B,ab、cd为两根相同的金属棒,质量均为m,长度均为L,电阻均为r.开始时cd静置于水平导轨上某位置,将ab从弯曲导轨上距离桌面高为h处由静止释放,cd离开导轨水平抛出,落地点ef距轨道末端的水平距离也为h,金属棒在运动过程中没有发生碰撞且与导轨接触良好,重力加速度为g.以下说法正确的是( )A.cd在导轨上的最大加速度为B.cd在导轨上的最大加速度为C.ab的落地点在ef的右侧D.电路中产生的热量为mgh练7 如图甲所示,两足够长且不计其电阻的光滑金属轨道,如图所示放置,间距为d=1 m,在左端弧形轨道部分高h=1.25 m处放置一金属杆a,弧形轨道与平面轨道以光滑圆弧连接,在平直轨道右端放置另一金属杆b.杆a、b电阻分别为R a=2 Ω,R b=5 Ω,在平直轨道区域有竖直向上的匀强磁场,磁感应强度B=2 T.现杆b以大小5 m/s的初速度(设为v0)开始向左滑动,同时由静止释放杆a.杆a由静止滑到水平轨道的过程中,通过杆b的平均电流为0.3 A.从杆a下滑到水平轨道时开始计时,a、b杆运动图象如图乙所示(以杆a运动方向为正),其中m a=2 kg,m b=1 kg,g=10 m/s2,求:(1)杆a在弧形轨道上运动的时间;(2)杆a在水平轨道上运动过程中通过其截面的电荷量;(3)在整个运动过程中杆b上产生的焦耳热.专题十一 电磁感应中的动力学、能量和动量问题考点突破例1 解析:(1)金属棒进入磁场Ⅰ做匀速运动,设速度为v 0,由平衡条件得mgsin θ=F 安① 而F 安=B 0I 0L ,② I 0=B 0Lv 0R +r③代入数据解得v 0=2 m/s.④(2)金属棒滑过cd 位置时,其受力如图所示.由牛顿第二定律得 mgsin θ-F ′安=ma ,⑤ 而F ′安=B 1I 1L ,⑥ I 1=B 1Lv 0R +r,⑦代入数据可解得a =3.75 m/s 2.⑧(3)金属棒在进入磁场Ⅱ区域达到稳定状态时,设速度为v 1,则mgsin θ=F ″安,⑨ 而F ″安=B 1I 2L ○10 I 2=B 1Lv 1R +r,⑪代入数据解得v 1=8 m/s.⑫答案:(1)2 m/s (2)3.75 m/s 2 (3)8 m/s考法拓展1 解析:金属棒从静止开始到刚进入磁场Ⅰ的时间t 1=v 0gsin θ=0.4 s ,在磁场Ⅰ运动时间t 2=x 1v 0=0.5 s ,所以金属棒从开始到刚离开磁场Ⅰ所经历的时间为t =t 1+t 2=0.9 s.答案:0.9 s考法拓展2 解析:金属棒在未进入磁场前做初速度为0的匀加速直线运动a =gsin θ,由运动学公式得v 20=2ax 0,代入数据解得x 0=0.4 m. 答案:0.4 m考法拓展3 解析:金属棒从开始运动到在磁场Ⅱ中达到稳定状态过程中,根据能量守恒得 mg(x 0+x 1+x 2)sin θ=Q +12mv 21,Q R =R R +r Q =7.5 J.答案:7.5 J练1 解析:本题考查电磁感应中的楞次定律,通过分析安培力判断物体的运动状态,回路中的电流以及焦耳热.重物P 和ab 棒是一个系统,重物P 的重力不变,ab 棒的重力沿斜面向下的分力不变,而ab 棒切割磁感线的速度在增大,则沿斜面向下的安培力随之增大,则ab 与P 的加速度变小,所以重物P 向下做加速度不断减小的加速运动,A 正确;cd 棒刚开始恰好不下滑,则有mgsin θ=μmgcos θ,cd 棒刚好要向上滑动时,则有BIL =mgsin θ+μmgcos θ,联立解得I =mgBL ,B 正确;cd 棒刚好要向上滑动时,ab 棒切割磁感线产生的感应电动势E =BLv ,感应电流I =BLv 2R ,可得v =2mgRB 2L 2,C 正确;由能量守恒定律可知,重物P 减少的重力势能等于ab 棒、重物P 增加的动能、ab 棒增加的重力势能与ab 、cd 棒产生的焦耳热之和,D 错误.答案:ABC练2 解析:用水平恒力F 向右拉动金属框,bc 边切割磁感线产生感应电动势,回路中有感应电流i ,bc 边受到水平向左的安培力作用,设金属框的质量为M ,加速度为a 1,由牛顿第二定律有F -BiL =Ma 1;导体棒MN 受到向右的安培力,向右做加速运动,设导体棒的质量为m ,加速度为a 2,由牛顿第二定律有BiL =ma 2.设金属框bc 边的速度为v 时,导体棒的速度为v ′,则回路中产生的感应电动势为E =BL(v -v ′),由闭合电路欧姆定律i =E R =BL (v -v ′)R,F 安=BiL ,可得金属框bc 边所受安培力和导体棒MN 所受的安培力均为F 安=B 2L 2(v -v ′)R ,二者加速度之差Δa =a 1-a 2=F -F 安M -F 安m =F M -F 安⎝ ⎛⎭⎪⎫1M +1m ,随着所受安培力的增大,二者加速度之差Δa 减小,当Δa 减小到零时,F M =B 2L 2(v -v ′)R ·⎝ ⎛⎭⎪⎫1M +1m ,之后金属框和导体棒的速度之差Δv =v -v ′=FRmB 2L 2(m +M ),保持不变.由此可知,金属框的速度逐渐增大,金属框所受安培力趋于恒定值,金属框的加速度大小趋于恒定值,导体棒所受的安培力F 安=B 2L 2(v -v ′)R 趋于恒定值,选项A 错误,BC 正确;导体棒到金属框bc 边的距离x =⎠⎛0t (v -v ′)dt ,随时间的增大而增大,选项D 错误.答案:BC练3 解析:cd 切割磁感线产生感应电动势为E =BLv 0,根据闭合电路欧姆定律得I =E 2R =BLv 02R ,故A 项错误.对于ab 棒:根据牛顿第二定律得mg -F f =ma ,又F f =μF N ,F N =BIL ,联立解得,加速度大小为a =g -μB 2L 2v 02mR ,故B 项正确.对于cd 棒,由公式q =ΔΦR 总得q =BLs 2R ,则得,s =2Rq BL,故C 项正确.设导体棒cd 在水平恒力撤去后产生的焦耳热为Q ,由于ab 的电阻与cd 相同,两者串联,则ab 产生的焦耳热也为Q.根据能量守恒得2Q +μmgs =12mv 20,又s =2Rq BL ,解得Q =14mv 20-μmgRqBL ,故D 项正确.综上所述,应选择A.答案:A例2 解析:(1)由牛顿第二定律a =F -mgsin θm =12 m/s 2进入磁场时的速度v =2as =2.4 m/s. (2)感应电动势E =Blv 感应电流I =BlvR安培力F A =IBl代入得F A =(Bl )2vR =48 N.(3)健身者做功W =F(s +d)=64 J 由牛顿第二定律F -mgsin θ-F A =0 CD 棒在磁场区域做匀速运动 在磁场中运动的时间t =dv焦耳热Q =I 2Rt =26.88 J.答案:(1)2.4 m/s (2)48 N (3)64 J 26.88 J例3 解析:(1)金属线圈向下匀速进入磁场时,有mgsin θ=μmgcos θ+F 安 其中F 安=BId ,I =ER,E =Bdv解得v =(mgsin θ-μmgcos θ)RB 2d2=2 m/s. (2)设最高点离bb ′的距离为x ,线圈从最高点到开始进入磁场过程做匀加速直线运动,有v 2=2ax ,mgsin θ-μmgcos θ=ma 线圈从向上离开磁场到向下进入磁场的过程,根据动能定理有E k1-E k =μmgcos θ·2x ,其中E k =12mv 2得E k1=12mv 2+v 2μmgcos θgsin θ-μgcos θ=0.1 J.(3)线圈向下匀速通过磁场区域过程中, 有mgsin θ·2d -μmgcos θ·2d +W 安=0 Q =-W 安解得Q =2mgd(sin θ-μcos θ)=0.004 J. 答案:(1)2 m/s (2)0.1 J (3)0.004 J例4 解析:(1)由图乙得ab 棒刚开始运动瞬间a =2.5 m/s 2, 则F -F f =ma , 解得F f =0.2 N.ab 棒最终以速度v =10 m/s 匀速运动,则所受到拉力、摩擦力和安培力的合力为零,F -F f -F 安=0.F 安=BIL =BL Blv R =B 2L 2vR .联立可得R =B 2L 2vF -F f=0.4 Ω.(2)由功能关系可得(F -F f )x =12mv 2+Q ,解得Q =20 J.答案:(1)0.4 Ω (2)20 J练4 解析:(1)线圈刚进入磁场时有:E =BLv 0 根据闭合电路欧姆定律:I =ER所以安培力F =B 2L 2v 0R根据牛顿第二定律:F -μmg =ma. a =B 2L 2v 0mR -μg ,方向向左(2)根据动量定理,对线圈: μmgt -I 安=0. 其中安培力的冲量:I 安=F 安t ′=B I -L ·t ′=BLq q =ΔΦR =BL 2R .综上解得t =B 2L 3μmgR.(3)自线圈进入磁场到线圈右侧边到达PQ 过程中,对于单个线圈,根据动能定理得 μmgd -W 安=0,所以克服安培力做功W 安=μmgd单个线圈离开磁场的运动情况和进入磁场相同,W ′安=W 安=μmgd , 所以对于n 个线圈有Q =2n μmgd答案:(1)B 2L 2v 0mR -μg (2)B 2L3μmgR(3)2n μmgd练5 解析:(1)设金属杆的最大速度为v m ,安培力与重力平衡,则有:F 安=mg 又F 安=BIL ,I =ER +r,E =BLv m 联立得:F 安=B 2L 2v mR +r解得:v m =4 m/s(2)电路中产生的总焦耳热: Q 总=R +r R Q =3+13×0.6 J =0.8 J由能量守恒定律得:mgh =12mv 2m +Q 总解得:h =1.6 m(3)为使ab 杆中不产生感应电流,应使穿过回路平面的磁通量不发生变化, 在该时刻穿过回路平面的磁通量为: Φ1=BLht 时刻的磁通量为: Φ2=B ′L ⎝ ⎛⎭⎪⎫h +v m t +12gt 2 由Φ1=Φ2得:B ′=Bhh +v m t +12gt2代入数据解得:B ′= 1.65t 2+4t +1.6T答案:(1)4 m/s (2)1.6 m (3)B ′= 1.65t 2+4t +1.6T例5 解析:本题考查电磁感应中的电荷量、能量等物理量的计算.棒a 向右运动,回路面积减小,根据楞次定律可知,俯视时感应电流方向为逆时针,A 错误;在棒a 的速度由v 0减小到0.8v 0的过程中,棒a 减速,棒b 加速,对棒a ,由动量定理可得B I -·Lt =BqL =mv 0-0.8mv 0,对棒b ,由动量定理可得B I -·2Lt =mv ,联立可得v =0.4v 0,q =mv 05BL ,B 正确,D 错误;根据能量守恒定律可得Q =12mv 20-12m(0.8v 0)2+12m(0.4v 0)2=0.1mv 20,C 正确.答案:BC例6 解析:由楞次定律可知ab 棒做减速运动,cd 棒做加速运动,即v 1减小,v 2增加.回路中的感应电动势E =BL(v 1-v 2),回路中的电流I =E R =BL (v 1-v 2)R ,回路中的导体棒ab 、cd 的加速度大小均为a =F m =BIL m =B 2L 2(v 1-v 2)mR ,由于v 1-v 2减小,可知a 减小,所以ab 与cd 的v t 图线斜率减小,I 也非线性减小,所以A 、C 正确,B 、D 错误.答案:AC练6 解析:本题从动量和能量两个角度考查双棒问题.当cd 受到的安培力最大时,cd 在导轨上的加速度最大,即ab 刚进入磁场时,cd 在导轨上的加速度最大,设此时ab 的速度为v ,根据机械能守恒定律可得12mv 2=mgh ,解得v =2gh ,此时回路中的感应电流I =BLv 2r ,cd 在导轨上的最大加速度a =BIL m =B 2L 22gh2mr,故A 正确,B 错误; 设cd 离开导轨时的速度为v 1,根据平抛运动规律可知,下落时间t =2h g ,则v 1=h t=gh2,设cd 离开导轨时ab 的速度为v ′,根据动量守恒定律可得mv =mv ′+mv 1,解得v ′=v 1=gh2,所以ab 的落地点也在ef 处,故C 错误;电路中产生的热量Q =mgh -12mv ′2-12mv 21=12mgh ,故D 正确.答案:AD练7 解析:(1)设杆a 刚滑到水平轨道时,杆b 的速度为v b ,杆a 在弧形轨道上运动的时间与杆b 从开始滑动到杆a 刚滑到水平轨道时所用时间相等,对杆b 应用动量定理有Bd I -t 1=m b v b -m b v 0其中v 0=-5 m/s ,v b =-2 m/s 解得t 1=5 s.(2)设杆a 下滑到水平轨道时的速度为v a ,由杆a 下滑的过程中机械能守恒有 m a gh =12m a v 2a解得v a =5 m/s设两杆最后共同的速度为v ,两杆在水平轨道上运动过程中动量守恒,有 m a v a +m b v b =(m a +m b )v 解得v =83m/s对杆a 在水平轨道上运动过程应用动量定理有 -Bd I -t 2=m a v -m a v a 又q =I -t 2解得q =73C.(3)由能量守恒定律得,两杆产生的总焦耳热Q 总=m a gh +12m b v 20-12(m a +m b )v 2=1616 J杆a 、b 串联,电流相等,则相同时间内产生的焦耳热与电阻成正比 故杆b 上产生的焦耳热Q =R b R a +R b Q 总=1156J. 答案:(1)5 s (2)73 C (3)1156 J。
20 动力学两类基本问题(一)[方法点拨] (1)做好受力分析,分析出物体受到的各个力,判断合力的方向,表示出合力与各力的关系;(2)做好运动过程分析,分析物体的运动性质,判断加速度的方向,并表示出加速度与运动各量的关系;(3)求解加速度是解决问题的关键;(4)力的处理方法一般用合成法或正交分解法.1.(2020·启东中学月考)如图1所示,一倾角θ=37°的足够长斜面固定在水平地面上.当t =0时,滑块以初速度v 0=10 m/s 沿斜面向上运动.已知滑块与斜面间的动摩擦因数μ=0.5,g =10 m/s 2,s in 37°=0.6,cos 37°=0.8,下列说法正确的是( )图1A .滑块一直做匀变速直线运动B .t =1 s 时,滑块速度减为零,然后静止在斜面上C .t =2 s 时,滑块恰好又回到出发点D .t =3 s 时,滑块的速度大小为4 m/s2.一飞行器在地面附近做飞行试验,从地面起飞时沿与水平方向成30°角的直线斜向右上方匀加速飞行,此时发动机提供的动力方向与水平方向夹角为60°.若飞行器所受空气阻力不计,重力加速度为g.则可判断( )A .飞行器的加速度大小为gB .飞行器的加速度大小为2gC .起飞后t 时间内飞行器上升的高度为12gt 2 D .起飞后t 时间内飞行器上升的高度为gt 23.设雨点下落过程中受到的空气阻力与雨点(可看成球形)的最大横截面积S 成正比,与下落速度v 的二次方成正比,即f =kSv 2,其中k 为比例常数,且雨点最终都做匀速运动.已知球的体积公式为V =43πr 3(r 为半径).若两个雨点的半径之比为1∶2,则这两个雨点的落地速度之比为( )A .1∶ 2B .1∶2C .1∶4D .1∶8 4.(2020·南京市三校联考)“娱乐风洞”是一种惊险的娱乐项目.在竖直的圆筒内,从底部竖直向上的风可把游客“吹”起来,让人体验太空飘浮的感觉(如图2甲).假设风洞内各位置的风速均相同且保持不变,已知人体所受风力的大小与正对风的面积成正比,水平横躺时受风面积最大,站立时受风面积最小,为最大值的18;当人体与竖直方向成一倾角、受风面积是最大值的12时,人恰好可静止或匀速漂移.如图乙所示,在某次表演中,质量为m 的表演者保持站立身姿从距底部高为H 的A 点由静止开始下落;经过B 点时,立即调整身姿为水平横躺并保持;到达底部的C 点时速度恰好减为零.则在从A 到C 的过程中,下列说法正确的是( )图2A .表演者加速度的最大值是34gB .B 点距底部的高度是35H C .从A 到B 表演者克服风力做的功是从B 到C 克服风力做功的16D .若保持水平横躺,表演者从C 返回到A 时风力的瞬时功率为2m 2g 3H5.(2020· 如东县质量检测)冰壶运动是在水平冰面上进行的体育项目,运动场地示意图如图3所示.在第一次训练中,运动员从起滑架处推着冰壶出发,在投掷线上的A 处放手,让冰壶以一定的速度沿虚线滑出,冰壶沿虚线路径运动了s =28.9 m ,停在圆垒内的虚线上.已知冰壶与冰面间的动摩擦因数为μ=0.02,重力加速度大小为g =10 m/s 2.(1)运动员在投掷线A 处放手时,冰壶的速度是多大?(2)在第二次训练中,该运动员在投掷线A 处放手让冰壶以同样的速度滑出,同时,多名擦冰员用毛刷不断地擦冰壶运行前方的冰面,冰壶沿虚线路径比第一次多走了s′=5.1 m 停下.假设用毛刷擦冰面后,被擦冰面各处粗糙程度相同,求冰壶与被擦冰面间的动摩擦因数.图36.从地球极地处竖直向上发射一科研火箭,由火箭内部的压力传感器传来的信息表明:火箭发射的最初10 s 内火箭里所有物体对支持面的压力是火箭发射前的1.8倍,此后火箭无推动力飞行.而在火箭从最高点落回到地面的过程中,火箭里所有物体对支持面的压力为0.认为火箭受到的地球引力不变化,求从火箭发射到落回地面所用的时间是多少?答案精析1.D2.A [飞行器受力如图所示:由几何关系可知,飞行器的加速度大小为a=g,A项正确,B项错误;起飞后t时间内飞行器的位移x=12at2=12gt2,所以飞行器上升的高度h=xsin 30°=14gt2,C、D项错误.]3.A [当雨点做匀速直线运动时,重力与阻力相等,即f=mg,故k·πr2·v2= mg=ρ·43πr3,即v2=4ρr3k,由于半径之比为1∶2,则落地速度之比为1∶2,选项A正确.]4.C5.(1)3.4 m/s (2)0.017解析(1)第一次训练中,设冰壶离手时的速度为v0,加速度为a,以冰壶运动方向为正方向,根据匀变速直线运动公式有:0-v02=2as设冰壶质量为m,冰壶沿水平方向只受摩擦力作用,根据牛顿第二定律:-μmg=ma联立解得:v0=2μgs代入数据求得:v0=3.4 m/s(2)设冰壶与被擦后的冰面之间的动摩擦因数为μ′,同理可得:v0=2μ′g(s+s′)联立解得:μ′=ss+s′μ代入数据求得:μ′=0.0176.30 s解析火箭发射时,火箭上所有物体对支持面的压力是火箭发射前的1.8倍,F=1.8mg,根据牛顿第二定律,有:F-mg=ma,解得:a=0.8g根据位移时间关系公式,有:x1=12at2末速度为:v1=at发动机关闭后做竖直上抛运动,以向上为正方向,有:x2=v1t1-12gt12由于最后回到出发点,故:x1=-x2联立各式解得:t1=20 s (负值舍去)故火箭运动的总时间为:t总=t+t1=30 s高考理综物理模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
动力学中的两类典型问题一、单项选择题1.物块."在静止的传送帝上匀速下滑时,传送带突然顺时针转动,传送带转动的方向如图中领头所示,那么传送帝转动后()A.物块将我速下滑B.物块仍匀速下滑C.物块受到的摩擦力变小I).物块受到的摩擦力变大饼析:当传送带静止时,物块勾速下滑,由物块受力平衡可除咐in〃咐os。
:当传送帝转动起来时,由于物块与传送带之间运动方向相反,可判断物块所受的滑动摩擦力方向并没有发生变化,仍然沿斜面向上,大小仍为〃砂:os 0,选项C、D错误:物块受力仍然是平衡的.所以物块仍匀速下滑.选项A错误,B正确.答案:B2.如图甲所示,将-•物块尹轻轻放在水平且足够长的传送皮带上,之后尹最初一段时间的速度一时间图象如图乙.以水平向右为正方向关于皮带的运动情况描述正确的选项是A.可能是向右的匀加速B.可能是向右的匀速C.•定是向左的匀加速D.可能是向左的匀速解析:物块轻轻放在皮带上,初速度为零,由图乙知物块向左做匀加速运动,对物块受力分析知受到皮带对它向左的滑动摩擦力.那么皮带相对物块向左运动,所以皮带•定向左运动,可能加速、匀速或减速,D正确.答案:D3.(20XX •河北衡水模拟)如图甲所示.一长为2.0叭质量为2 kg的长木板静止在粗糙水平面上,有一个质量为1 kg可视为质点的小物块置于长木板右端.对长木板施加的外力尸从零逐渐增大时,小物块所受的摩擦力内随外力尸的变化关系如图乙所示.现改用尸=22 N 的水平外力拉长木板.取尸10 m/s\那么小物块在长木板上滑行的时间为()C.彖sD.瑚s解析:由题图乙知力尸较小时,小物块和长木板均静止,随着外力的增大二者先一起做加速运动,后来发生相对滑动,当,〉2N时二者开始加速,说明长木板受水平面的滑动摩擦力&=2N,当^>14 N时小物块和长木板开始相对滑动,此时小物块受到的摩擦力A.=4N. 小物块的加速度勾=4 m/s'.改用尸=22 N的外力水平拉长木板时,由牛顿第二定律诃得F 一队d.由运动学规律知小物块在长木板上滑行的时间满足*-按=£,解得/ =1 s.应选项A正确.答案:A4.如下图,一长木板花水平地面上运动,在某时刻(£=0)将一物块轻放到木板上,己知物块与木板的质量相等.物块与木版间及木板与地面向均有摩擦.物块与木板间的最大静摩擦力等于滑动摩擦力,FL物块始终在木板上.在物块放到木板上之后,木板运动的速度一时间图象可能是以下选项中的()二 n解析:设在木板与物块未到达相同速度之前,木板的加速度为^物块与木板间的动摩擦因数为外,木板与地面间的动摩擦因数为对木板应用牛顿第二定律得一外财一么・2格=踏,找= -(s + 2s)g,设物块与木板到达相同速燧之后,木板的加速度为&,对整体有一用・2曲尸2翊,压= 岫可见切1>1&1由号图象的斜率表示加速度大小可知,图象A正确.答案:A5.如下图,在光滑水平面上有•威信为弱的足够长的木版,其上距放•欣量:为血的木块.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等.现给木块施加一•随时间t 增大的水平力P=k\k是常数),木板和木块加速度的大小分别为活和所,以下反映n和成变化的图线中正确的选项是().NXx\XxVWXXXxxX\XXx'解析:木块和木板之间相对静止时,所受的摩擦力均为静摩擦力.在到达最大静摩擦力前,木块和木板以相同加速度运动,根据牛顿第二定律知木块和木板相对运动时,&=些冬定不变,成=电一“g,所是,的线性函数,,增大,也增大,又由于临何!伽十成能那么木块与木板相对滑动后田图线斜率大于a的图线斜率,所以A正确.答案:A二,多项选择题6.如下图,水平传送带从8两端相距x=4 in,以的=4 Ws的速度(始终保持不变)顺时针运转,今将一小煤块(诃视为质点)无初速度地轻放至4端,由于煤块与传送带之间有相对滑动,会在传送带上留卜划痕.煤块与传送带间的动摩擦因数〃=0.4,取页力加速度^=10 m/s\那么煤块从』运动到4的过程中()C 二()A.煤块到4运动到B的时间是2.25 sB.煤块从X运动到8的时间是1.5 sC.划痕长度是2 mD.划痕长度是0.5 m解析:煤块任传送指上匀加速运动时,根据牛顿第二定律有"破=时得日=,&=4 m/s\当煤块速度和传送带速度相同时,位移-v.=^=2 m<4 m,因此煤块先加速后匀速. 匀加速运动的时间6=-=1 s.匀速运动的时间6=AZ£=0.5S,煤块从X运动到3的总a K)时间£=白+心=1.5 s, A错误,B正确:在加速阶段产生相对位移叩产生划痕,那么有Ax = r0Zi —x,=2 m, C 正确,D 错误.答案:BC7.(20XX •辽宁胡芦岛模拟)如图甲所示,倾角为"的足够长的传送带以恒定的速度所沿逆时针方向运行.f=0时,将质说奸I kg的物体(可视为质点)轻放在传送带上,物体相对地面的/ [图象如图乙所示.设沿传送带向下为正方向,取重力加速度^=10m/s2. 那么()A.传送带的速率K)=10 m/s&传送带的倾角〃=30°C.物体与传送带之间的动摩擦因数〃=0.5D.0~2 s内摩擦力对物体做功件一2,1 J解析:由题图可知,当物体速度到达1^=10 m/s时,加速度的大小发生了变化,这是因为此时物体与传送带到达共速,物体受到的滑动摩擦力变向所致,故A正确:0〜1 s内物体的加速度为找=10 m/s」1〜2 s内为&=2 m/s\那么有atgsin。
高考物理一轮复习专项训练及答案解析—动力学和能量观点的综合应用1.如图所示,足够长的水平传送带以恒定速率v 顺时针运动,某时刻一个质量为m 的小物块,以大小也是v 、方向与传送带的运动方向相反的初速度冲上传送带,最后小物块的速度与传送带的速度相同.在小物块与传送带间有相对运动的过程中,滑动摩擦力对小物块做的功为W ,小物块与传送带间因摩擦产生的热量为Q ,则下列判断中正确的是( )A .W =0,Q =m v 2B .W =0,Q =2m v 2C .W =m v 22,Q =m v 2D .W =m v 2,Q =2m v 22.(多选)如图所示,质量m =1 kg 的物体(可视为质点)从高为h =0.2 m 的光滑轨道上P 点由静止开始下滑,滑到水平传送带上的A 点,轨道与传送带在A 点平滑连接,物体和传送带之间的动摩擦因数为μ=0.2,传送带A 、B 两点之间的距离为L =5 m ,传送带一直以v =4 m/s 的速度顺时针运动,则(g 取10 m/s 2)( )A .物体从A 运动到B 的时间是1.5 sB .物体从A 运动到B 的过程中,摩擦力对物体做功为2 JC .物体从A 运动到B 的过程中,产生的热量为2 JD .物体从A 运动到B 的过程中,带动传送带转动的电动机多做的功为10 J3.如图所示,一足够长的木板在光滑的水平面上以速度v 向右匀速运动,现将质量为m 的物体轻轻地放置在木板上的右端,已知物体与木板之间的动摩擦因数为μ,为保持木板的速度不变,从物体放到木板上到物体相对木板静止的过程中,须对木板施一水平向右的作用力F ,则力F 对木板所做的功为( )A.m v 24B.m v 22 C .m v 2D .2m v 24.(多选)如图甲所示,一长木板静止在水平地面上,在t =0时刻,一小物块以一定速度从左端滑上长木板,之后长木板运动的v -t 图像如图乙所示,已知小物块与长木板的质量均为m =1 kg ,已知木板足够长,g 取10 m/s 2,则( )A .小物块与长木板间的动摩擦因数μ=0.5B .在整个运动过程中,物块与木板构成的系统所产生的热量70 JC .小物块的初速度为v 0=12 m/sD .0~2 s 与2~3 s 物块和木板构成的系统机械能减少量之比为17∶15.(多选)如图甲,一足够长的传送带与水平面的夹角θ=30°,传送带在电动机的带动下,速率始终不变.t =0时刻在传送带适当位置上放一具有一定初速度的小物块.取沿传送带向上为正方向,物块在传送带上运动的速度随时间的变化如图乙所示.已知小物块质量m =1 kg ,g 取10 m/s 2,下列说法正确的是( )A .传送带顺时针转动,速度大小为2 m/sB .传送带与小物块之间的动摩擦因数μ=235C .0~t 2时间内因摩擦产生的热量为27 JD .0~t 2时间内电动机多消耗的电能为28.5 J6.如图所示,光滑水平面上有一木板,质量M =1.0 kg ,长度L =1.0 m .在木板的最左端有一个小铁块(可视为质点),质量m =1.0 kg.小铁块和木板之间的动摩擦因数μ=0.30.开始时它们都处于静止状态,某时刻起对木板施加一个水平向左的拉力F 将木板抽出,若F =8 N ,g 取10 m/s 2.求:(1)抽出木板的过程中摩擦力分别对木板和铁块做的功; (2)抽出木板的过程中由于摩擦产生的内能Q .7.(2023·安徽省六安中学高三检测)如图所示,水平轨道AB 长为2R ,其A 端有一被锁定的轻质弹簧,弹簧左端连接在固定的挡板上.圆心在O 1、半径为R 的光滑圆弧轨道BC 与AB 相切于B 点,并且和圆心在O 2、半径为2R 的光滑细圆管轨道CD 平滑对接,O 1、C 、O 2三点在同一条直线上.光滑细圆管轨道CD 右侧有一半径为2R ,圆心在D 点的14圆弧挡板MO 2竖直放置,并且与地面相切于O 2点.质量为m 的小滑块(可视为质点)从轨道上的C 点由静止滑下,刚好能运动到A 点,触发弹簧,弹簧立即解除锁定,小滑块被弹回,小滑块在到达B 点之前已经脱离弹簧,并恰好无挤压通过细圆管轨道最高点D (计算时圆管直径可不计,重力加速度为g ).求:(1)小滑块与水平轨道AB 间的动摩擦因数μ; (2)弹簧锁定时具有的弹性势能E p ;(3)小滑块通过最高点D 后落到挡板上时具有的动能E k .8.“高台滑雪”一直受到一些极限运动爱好者的青睐.挑战者以某一速度从某曲面飞出,在空中表演各种花式动作,飞跃障碍物(壕沟)后,成功在对面安全着陆.某实验小组在实验室中利用物块演示分析该模型的运动过程:如图所示,ABC 为一段半径为R =5 m 的光滑圆弧轨道,B 为圆弧轨道的最低点.P 为一倾角θ=37°的固定斜面,为减小在斜面上的滑动距离,在斜面顶端表面处铺了一层防滑薄木板DE ,木板上边缘与斜面顶端D 重合,圆形轨道末端C 与斜面顶端D 之间的水平距离为x =0.32 m .一物块以某一速度从A 端进入,沿圆形轨道运动后从C 端沿圆弧切线方向飞出,再经过时间t =0.2 s 恰好以平行于薄木板的方向从D 端滑上薄木板,物块始终未脱离薄木板,斜面足够长.已知物块质量m =3 kg ,薄木板质量M =1 kg ,木板与斜面之间的动摩擦因数μ1=1924,木板与物块之间的动摩擦因数μ2=56,重力加速度g =10 m/s 2,sin 37°=0.6,不计空气阻力,求:(1)物块滑到圆轨道最低点B 时,对轨道的压力(计算结果可以保留根号); (2)物块相对于木板运动的距离;(3)整个过程中,系统由于摩擦产生的热量.9.如图所示,竖直放置的半径为R=0.2 m的螺旋圆形轨道BGEF与水平直轨道MB和BC 平滑连接,倾角为θ=30°的斜面CD在C处与直轨道BC平滑连接.水平传送带MN以v0=4 m/s的速度沿顺时针方向运动,传送带与水平地面的高度差为h=0.8 m,MN间的距离为L MN=3.0 m,小滑块P与传送带和BC段轨道间的动摩擦因数μ=0.2,轨道其他部分均光滑.直轨道BC长L BC=1 m,小滑块P的质量为m=1 kg.重力加速度g取10 m/s2.(1)若滑块P第一次到达与圆轨道圆心O等高的F点时,对轨道的压力刚好为零,求滑块P 从斜面静止下滑处与BC轨道高度差H;(2)若滑块P从斜面高度差H′=1.0 m处静止下滑,求滑块从N点平抛后到落地过程中的水平位移大小;(3)滑块P在运动过程中能两次经过圆轨道最高点E点,求滑块P从斜面静止下滑的高度差H 的范围.答案及解析1.B 2.AC 3.C 4.ACD 5.ABC 6.(1)-7.5 J 4.5 J (2)3 J解析 (1)当用F =8 N 的力将木板从小铁块下方抽出,小铁块运动的加速度大小为a 1=μg =3 m/s 2木板运动的加速度大小为 a 2=F -μmg M =5 m/s 2设抽出过程的时间为t ,则有 12a 2t 2-12a 1t 2=L , 解得t =1 s ,所以小铁块运动的位移为x 1=12a 1t 2,解得x 1=1.5 m木板运动的位移为x 2=12a 2t 2,解得x 2=2.5 m摩擦力对小铁块做的功为 W 1=μmgx 1, 解得W 1=4.5 J 摩擦力对木板做的功为 W 2=-μmgx 2, 解得W 2=-7.5 J(2)抽出木板的过程中由于摩擦产生的内能Q =μmgL =3 J. 7.(1)13 (2)113mgR(3)(22-1)mgR解析 (1)由几何关系得BC 间的高度差h =23R小滑块从C 点运动到A 点的过程中,由动能定理得mgh -μmg ·2R =0,解得μ=13(2)弹簧对滑块做功过程由功能关系有W 弹=E p 滑块从A 到D 过程由动能定理得 E p -mg ·2R -μmg ·2R =12m v 2-0 滑块在D 点,由重力提供向心力,有mg =m v 22R联立解得E p =113mgR .(3)滑块通过D 点后做平抛运动,根据平抛运动的规律可知,水平方向有x =v t 竖直方向有y =12gt 2由几何关系可知x 2+y 2=4R 2可得滑块落到挡板上时的动能为E k =12m [v 2+(gt )2],联立解得E k =(22-1)mgR .8.(1)(91.92-245) N (2)1.5 m (3)87 J解析 (1)物块由C 到D ,做斜上抛运动 水平方向v 水平=xt=1.6 m/s物块恰好以平行于薄木板的方向从D 端滑上薄木板,则在D 的速度大小 v =v 水平cos θ=2 m/s , v 竖直=v sin θ=1.2 m/s物块在C 端时竖直方向速度大小v 竖直′=v 竖直-gt =-0.8 m/s , v C =v 水平2+v 竖直′2=455m/s 由B 到C 有12m v B 2=12m v C 2+mgR (1-cos α)其中cos α=v 水平v C,在B 点有F N -mg =m v B 2R由牛顿第三定律得F 压=F N =(91.92-245) N(2)物块刚滑上木板时,对物块有μ2mg cos θ-mg sin θ=ma m ,解得物块加速度大小a m =23 m/s 2,做匀减速直线运动对木板有μ2mg cos θ+Mg sin θ-μ1(M +m )g cos θ=Ma M ,解得木板加速度大小a M =23 m/s 2,做匀加速直线运动设两者经时间t 1达到共速v 共,则有v -a m t 1=a M t 1=v 共 解得t 1=1.5 s ,v 共=1 m/s 此过程中s 物=v +v 共2t 1=94 m ,s 板=v 共2t 1=34m物块相对于木板运动的距离 Δs =s 物-s 板=1.5 m(3)μ2mg cos θ>mg sin θ,此后两者一起做匀减速直线运动,直到停止. 以物块和木板为整体,a 共=μ1g cos θ-g sin θ=13 m/s 2,s 共=v 共22a 共=1.5 mQ 物-板=μ2mg cos θ·Δs =30 JQ 板-斜=μ1(M +m )g cos θ·(s 板+s 共)=57 J整个过程中,系统由于摩擦产生的热量Q =Q 物-板+Q 板-斜=87 J. 9.(1)0.4 m (2)0.8 m (3) 0.7 m ≤H ≤0.8 m解析 (1)滑块P 在圆形轨道F 点时对轨道的压力刚好为零,则v F =0 mg (H -R )-μmgL BC =0解得H =0.4 m(2)H ′=1.0 m ,设滑块运动到N 点时的速度为v N ,对滑块从开始到N 点的过程应用动能定理mgH ′-μmg (L BC +L MN ) =12m v N 2-0 解得v N =2 m/s滑块从N 点做平抛运动,水平位移为 x =v N2hg=0.8 m (3)设滑块P 在运动过程中恰好能第一次经过E 点时,高度差为H 1,从开始到E 点应用动能定理有mgH 1-μmgL BC -2mgR =12m v E 2-0 在E 点时有mg =m v E 2R解得H 1=0.7 m滑块滑上传送带时的速度为v M mgH 1-μmgL BC =12m v M 2-0v M =10 m/s<4 m/s 滑块做减速运动的位移为 L =v M 22μg=2.5 m<L MN因此滑块返回M 点时的速度为v M ′=10 m/s ,因此能第二次过E 点. 设高度为H 2时,滑块从传送带返回M 点时的最大速度为 v =2μgL MN =2 3 m/s 从开始到M 点应用动能定理有mgH 2-μmgL BC =12m v 2-0解得H 2=0.8 m第二次经过E 点后,当滑块再次从B 点滑上圆轨道时在B 点的速度为v B ,则有mgH 2-3μmgL BC =12m v B 2-0 v B =2 m/s<10 m/s所以滑块不会第三次过E 点,则能两次经过E 点的高度差H 的范围是0.7 m ≤H ≤0.8 m.。
综合运用动力学、能量、动量观点解决问题练习1.如图所示,在光滑的水平面上有一足够长的质量M=4 kg的长木板,在长木板右端有一质量m=1 kg的小物块,长木板与小物块间的动摩擦因数μ=0.2,开始时长木板与小物块均静止.现用F =14 N的水平恒力向右拉长木板,经时间t=1 s撤去水平恒力F,取g=10 m/s2.求:(1)小物块在长木板上发生相对滑动时,小物块加速度a的大小;(2)刚撤去F时,小物块离长木板右端的距离;(3)撒去F后,系统损失的最大机械能ΔE.2.如图所示,质量m1=0.3 kg的小车静止在光滑的水平面上,车长L=1.5 m,现有质量m2=0.2 kg可视为质点的物块,以水平向右的速度v0=2 m/s从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,g取10 m/s2,求:(1)物块与小车的共同速度;(2)物块在车面上滑行的时间t;(3)小车运动的位移x;(4)要使物块不从小车右端滑出,物块滑上小车左端的速度v0′不超过多少?3.如图所示,半径为R的竖直光滑半圆轨道bc与水平光滑轨道ab在b点连接,开始时可视为质点的物体A和B静止在ab上,A、B之间压缩有一处于锁定状态的轻弹簧(弹簧与A、B不连接).某时刻解除锁定,在弹力作用下A向左运动,B向右运动,B沿轨道经过c点后水平抛出,落点p与b点间距离为2R.已知A质量为2m,B质量为m,重力加速度为g,不计空气阻力,求:(1)B经c点抛出时速度的大小;(2)B经b时速度的大小;(3)锁定状态的弹簧具有的弹性势能.4.如图所示,一小车置于光滑水平面上,小车质量m0=3 kg,AO部分粗糙且长L=2 m,物块与AO部分间动摩擦因数μ=0.3,OB部分光滑.水平轻质弹簧右端固定,左端拴接物块b,另一小物块a,放在小车的最左端,和小车一起以v0=4 m/s的速度向右匀速运动,小车撞到固定竖直挡板后瞬间速度变为零,但不与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a、b两物块视为质点,质量均为m=1 kg,碰撞时间极短且不粘连,碰后以共同速度一起向右运动.(g取10 m/s2)求:(1)物块a与b碰后的速度大小;(2)当物块a相对小车静止时小车右端B到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.5.如图所示,物块A和B通过一根轻质不可伸长的细绳相连,跨放在质量不计的光滑定滑轮两侧,质量分别为m A=2 kg、m B=1 kg.初始时A静止于水平地面上,B悬于空中.现将B竖直向上举高h=1.8 m(未触及滑轮),然后由静止释放.一段时间后细绳绷直,A、B 以大小相等的速度一起运动,之后B 恰好可以和地面接触.g 取10 m/s 2,空气阻力不计.求:(1)B 从释放到细绳刚绷直时的运动时间t ;(2)A 的最大速度v 的大小;(3)初始时B 离地面的高度H.6.如图所示,滑块A 、B 静止于光滑水平桌面上,B 的上表面水平且足够长,其左端放置一滑块C ,B 、C 间的动摩擦因数为μ(数值较小),A 、B 由不可伸长的轻绳连接,绳子处于松弛状.现在突然给C 一个向右的速度v 0,让C 在B 上滑动,当C 的速度为14v 0时,绳子刚好伸直,接着绳子被瞬间拉断,绳子拉断时B 的速度为316v 0.已知A 、B 、C 的质量分别为2m 、3m 、m.求:(1)从C 获得速度v 0开始经过多长时间绳子刚好伸直;(2)从C 获得速度v 0开始到绳子被拉断的过程中整个系统损失的机械能.7.在一次投掷手榴弹的演习中,某个士兵在战壕里将一颗质量m =0.25 kg 的手榴弹从水平地面朝目标方向斜向上抛出,当手榴弹上升到最大高度h =5 m 时速度为10 m/s ,且恰好爆炸成前后两块弹片,其中质量m 1=0.1 kg 的一块弹片在爆炸后做自由落体运动.已知手榴弹内部火药的质量Δm =0.05 kg ,且爆炸瞬间火药充分燃烧,重力加速度g取10 m/s2,火药爆炸后生成气体的动量不计,空气阻力不计,求:(1)士兵投掷手榴弹的初速度v0;(2)爆炸中火药燃烧对两弹片做的功W及两块弹片落地点间的距离Δx.8.有人对鞭炮中炸药爆炸的威力产生了浓厚的兴趣,他设计如下实验,在一光滑水平面上放置两个可视为质点的紧挨着的A、B 两个物体,它们的质量分别为m1=1 kg、m2=3 kg,在它们之间放少量炸药,水平面左方有一弹性的挡板,水平面右方接一光滑的1 4竖直圆轨道.开始A、B两物体静止,点燃炸药让其爆炸,物体A向左运动与挡板碰后原速返回,在水平面上追上物体B并与其碰撞后粘在一起,最后恰能到达圆弧最高点,已知圆弧的半径为R=0.2 m,g取10 m/s2.求:(1)求AB粘在一起时的速度;(2)炸药爆炸时对A、B两物体所做的功.9.如图所示,ABC为一固定在竖直平面内的光滑轨道,AB段是半径R=0.8 m的14圆弧,B在圆心O的正下方,BC段水平,AB段与BC段平滑连接.球2、球3分别放在BC轨道上,质量m1=0.4 kg的球1从A点由静止释放,球1进入水平轨道后与球2发生弹性正碰,球2再与球3发生弹性正碰,g=10 m/s2.(1)求球1到达B点时对轨道的压力大小;(2)若球2的质量m2=0.1 kg,求球1与球2碰撞后球2的速度大小;(3)若球3的质量m3=0.1 kg,为使球3获得最大的动能,球2的质量应为多少.10.如图所示,三个直径相同的小球静止在足够长的光滑水平面上,A、C两球的质量均为m,B球的质量为km(k>1).给A球一个水平向右的初速度v0,B球先与A球发生弹性正碰,再与C球发生弹性正碰.求系数k的值为多大时,B与C碰后瞬间B球的速度最大?11.竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平滑连接,小物块B静止于水平轨道的最左端,如图(a)所示.t=0时刻,小物块A在倾斜轨道上从静止开始下滑,一段时间后与B发生弹性碰撞(碰撞时间极短);当A返回到倾斜轨道上的P 点(图中未标出)时,速度减为0,此时对其施加一外力,使其在倾斜轨道上保持静止.物块A运动的v-t图像如图(b)所示,图中的v1和t1均为未知量.已知A的质量为m,初始时A与B的高度差为H,重力加速度大小为g,不计空气阻力.(1)求物块B的质量;(2)在图(b)所描述的整个运动过程中,求物块A克服摩擦力所做的功;(3)已知两物块与轨道间的动摩擦因数均相等.在物块B停止运动后,改变物块与轨道间的动摩擦因数,然后将A从P点释放,一段时间后A刚好能与B再次碰上.求改变前后动摩擦因数的比值.12.静止在水平地面上的两小物块A、B,质量分别为m A=1.0 kg,m B=4.0 kg;两者之间有一被压缩的微型弹簧,A与其右侧的竖直墙壁距离l=1.0 m,如图所示.某时刻,将压缩的微型弹簧释放,使A、B瞬间分离,两物块获得的动能之和为E k=10.0 J.释放后,A沿着与墙壁垂直的方向向右运动.A、B与地面之间的动摩擦因数均为μ=0.20.重力加速度取g=10 m/s2.A、B运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短.(1)求弹簧释放后瞬间A、B速度的大小;(2)物块A、B中的哪一个先停止?该物块刚停止时A与B之间的距离是多少?(3)A和B都停止后,A与B之间的距离是多少?答案:1. (1) 2 m/s 2(2) 0.4 J2. (1) 0.8 m/s(2) 0.24 s(3) 0.096 m(4) 5 m/s3. (1)B 平抛运动过程竖直方向有2R =12gt 2,水平方向:2R =v c t ,解得:v c =gR(2)B 从b 到c ,由机械能守恒定律得12mv 2b =2mgR +12mv 2c 解得:v b =5gR(3)设完全弹开后,A 的速度为v a ,弹簧恢复原长过程中A 与B 组成系统动量守恒2mv a -mv b =0解得:v a =12v b =5gR 2由能量守恒定律,得弹簧弹性势能:E p =12×2mv 2a +12mv 2b解得:E p =3.75mgR4. (1)对物块a ,由动能定理得-μmgL =12mv 21-12mv 20代入数据解得a 与b 碰前a 的速度v 1=2 m/sa 、b 碰撞过程系统动量守恒,以a 的初速度方向为正方向由动量守恒定律得:mv 1=2mv 2代入数据解得v 2=1 m/s(2)当弹簧恢复到原长时两物块分离,物块a 以v 2=1 m/s 的速度在小车上向左滑动,当与小车同速时,以向左为正方向由动量守恒定律得mv 2=(m 0+m)v 3代入数据解得v 3=0.25 m/s对小车,由动能定理得μmgs =12m 0v 23代入数据解得,同速时小车B 端到挡板的距离s =132 m(3)由能量守恒得μmgx =12mv 22-12(m 0+m)v 23 解得物块a 与车相对静止时与O 点的距离:x =0.125 m5. (1)B 从释放到细绳刚绷直前做自由落体运动,有:h =12gt 2解得:t =0.6 s(2)设细绳绷直前瞬间B 速度大小为v 0,有v 0=gt =6 m/s细绳绷直瞬间,细绳张力远大于A 、B 的重力,A 、B 相互作用,总动量守恒:m B v 0=(m A +m B )v绳子绷直瞬间,A 、B 系统获得的速度:v =2 m/s之后A 做匀减速运动,所以细绳绷直瞬间的速度v 即为最大速度,A 的最大速度为2 m/s(3)细绳绷直后,A 、B 一起运动,B 恰好可以和地面接触,说明此时A 、B 的速度为零,这一过程中A 、B 组成的系统机械能守恒,有:12(m A +m B )v 2+m B gH =m A gH 解得初始时B 离地面的高度H =0.6 m6. (1)从C 获得速度v 0到绳子刚好伸直的过程中,根据动量定理得:-μmgt =14mv 0-mv 0解得:t =3v 04μg(2)设绳子刚伸直时B 的速度为v B ,对B 、C 组成的系统,由动量守恒定律得:mv 0=m·14v 0+3mv B解得:v B =14v 0绳子被拉断的过程中,A 、B 组成的系统动量守恒,根据动量守恒定律得:3mv B =2mv A +3m·316v 0解得:v A =332v 0整个过程中,根据能量守恒定律得:E 损=12mv 20-12×2mv 2A -12×3m·⎝ ⎛⎭⎪⎫316v 02-12m·⎝ ⎛⎭⎪⎫14v 02=4171 024mv 20 7. (1)手榴弹上升到最大高度h =5 m 时速度为10 m/s ,则有:v 0=10 m/s ,-v 2y =-2gh ,v =v 20+v 2y解得v =10 2 m/s(2)弹片在爆炸后瞬间的速率为零,另一块弹片的质量为m 2=m -m 1-Δm =0.1 kg设其爆炸后瞬间的速率为v2,由动量守恒定律得:m2v2=mv0解得v2=25 m/s设爆炸中火药燃烧对两弹片做的功为W,则根据动能定理有:12mv 2+W=12m2v22解得W=18.75 J质量m1=0.1 kg的一块弹片在爆炸后做自由落体运动、质量为m2的弹片做平抛运动,则两块弹片落地点间的距离为Δx=v22h g=25 m8.(1)炸药爆炸后,设A的速度大小为v1,B的速度大小为v2.动量守恒定律得m1v1-m2v2=0A物与挡板碰后追上B物,碰后两物共同速度设为v,取向右为正方向,由动量守恒定律得m1v1+m2v2=(m1+m2)v两物上升到圆弧的最高点时速度为0,两物体的动能转化为重力势能,由机械能守恒定律12(m1+m2)v2=(m1+m2)gR炸药爆炸时对A、B两物体所做的功W=12m1v21+12m2v22联立解得AB粘在一起时的速度v=2 m/s,W=10.7 J9. (1)对球1从A 到B 应用动能定理:m 1gR =12m 1v 20在B 点对球1应用牛顿第二定律:F N -m 1g =m 1v 20R联立解得:v 0=4 m/s 、F N =12 N由牛顿第三定律F N ′=F N =12 N(2)球1、球2的碰撞,根据动量守恒定律有:m 1v 0=m 1v 1+m 2v 2由机械能守恒得:12m 1v 20=12m 1v 21+12m 2v 22解得:v 2=2m 1m 1+m 2v 0=6.4 m/s (3)同理,球2、3碰撞后:v 3=2m 2m 2+m 3v 2则v 3=2m 2m 2+m 3·2m 1m 1+m 2v 0代入数据:v 3= 1.6m 2+0.04m 2+0.5v 0 由数学知识,当m 2=0.04m 2时,m 2+0.04m 2+0.5最小,v 3最大 所以m 22=0.04,m 2=0.2 kg10. 设A 、B 发生弹性碰撞后的速度分别v A 、v B1,则 mv 0=mv A +kmv B112mv 20=12mv 2A +12kmv 2B1 联立解得v A =1-k k +1v 0,v B1=2k +1v 0设B 、C 发生弹性碰撞后的速度分别为v B2、v C同理可得v B2=k -1k +1v B1代入整理得v B2=⎣⎢⎡⎦⎥⎤2k +1-4(k +1)2v 0 设x =2k +1,则有v B2=(x -x 2)v 0 当x =0.5时,即2k +1=0.5时v B2最大,解得k =3 11. (1) 3m(2) 215mgH(3) 11912. (1) 1.0 m/s(2) 0.50 m(3) 0.91 m。
第三章牛顿运动定律专题强化三动力学两类基本问题和临界极值问题专题解读1.本专题是动力学方法处理动力学两类基本问题、多过程问题和临界极值问题,高考在选择题和计算题中命题频率都很高.2.学好本专题可以培养同学们的分析推理能力,应用数学知识和方法解决物理问题的能力.3.本专题用到的规律和方法有:整体法和隔离法、牛顿运动定律和运动学公式、临界条件和相关的数学知识.过好双基关————回扣基础知识训练基础题目一、动力学的两类基本问题1.由物体的受力情况求解运动情况的基本思路:先求出几个力的合力,由牛顿第二定律(F合=ma)求出加速度,再由运动学的有关公式求出速度或位移.2.由物体的运动情况求解受力情况的基本思路:已知加速度或根据运动规律求出加速度,再由牛顿第二定律求出合力,从而确定未知力.3.应用牛顿第二定律解决动力学问题,受力分析和运动分析是关键,加速度是解决此类问题的纽带,分析流程如下:受力情况二、动力学中的临界与极值问题1.临界或极值条件的标志(1)题目中“刚好”“恰好”“正好”等关键词句,明显表明题述的过程存在着临界点.(2)题目中“取值范围”“多长时间”“多大距离”等词句,表明题述过程存在着“起止点”,而这些“起止点”一般对应着临界状态.(3)题目中“最大”“最小”“至多”“至少”等词句,表明题述的过程存在着极值,这个极值点往往是临界点.2.常见临界问题的条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是弹力F N=0.(2)相对滑动的临界条件:静摩擦力达到最大值.(3)绳子断裂与松弛的临界条件:绳子断裂的临界条件是绳中张力等于它所能承受的最大张力;绳子松弛的临界条件是F T=0.(4)最终速度(收尾速度)的临界条件:物体所受合外力为零.研透命题点————细研考纲和真题分析突破命题点1.解题关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)两个桥梁——加速度是联系运动和力的桥梁;速度是各物理过程间相互联系的桥梁.2.常用方法(1)合成法(2)正交分解法◆类型1已知物体受力情况,分析物体运动情况【例1】(2021·河北卷)如图,一滑雪道由AB 和BC 两段滑道组成,其中AB 段倾角为θ,BC 段水平,AB 段和BC 段由一小段光滑圆弧连接,一个质量为2kg 的背包在滑道顶端A 处由静止滑下,若1s 后质量为48kg 的滑雪者从顶端以1.5m/s 的初速度、3m/s 2的加速度匀加速追赶,恰好在坡底光滑圆弧的水平处追上背包并立即将其拎起,背包与滑道的动摩擦因数为μ=112,重力加速度取g =10m/s 2,sin θ=725,cos θ=2425,忽略空气阻力及拎包过程中滑雪者与背包的重心变化,求:(1)滑道AB段的长度;(2)滑雪者拎起背包时这一瞬间的速度.答案(1)9m(2)7.44m/s解析(1)A→B过程对背包(m1):受力分析,由牛顿第二定律得m1g sinθ-μm1g cosθ=m1a1解得a1=2m/s2①由运动分析得:l=1a1t2②,v1=a1t③2对滑雪者(m2):由运动分析得l=v0(t-t0)+1a2(t-t0)2④2v2=v0+a2(t-t0),其中t0=1s⑤联立①②③④⑤得t=3s,v1=6m/s,v2=7.5m/s,l=9m(2)滑雪者拎起背包过程水平方向动量守恒,有m1v1+m2v2=(m1+m2)v解得v=7.44m/s滑雪者拎起背包时的速度为7.44m/s【变式1】(多选)如图甲所示,质量为m的小球(可视为质点)放在光滑水平面上,在竖直线MN的左侧受到水平恒力F1作用,在MN的右侧除受F1外还受到与F1在同一直线上的水平恒力F2作用,现小球从A点由静止开始运动,小球运动的v-t图像如图乙所示,下列说法中正确的是()A.小球在MN右侧运动的时间为t1-t2B.F2的大小为m v1t1+2mv1 t3-t1C.小球在MN右侧运动的加速度大小为2v1 t3-t1D.小球在0~t4时间内运动的最大位移为v1t2答案BC解析小球在MN右侧运动的时间为t3~t1,故A错误;小球在MN右侧的加速度大小a2=2v1t3-t1,在MN的左侧,由牛顿第二定律可知F1=ma1=mv1t1,在MN的右侧,由牛顿第二定律可知F2-F1=ma2得F2=2mv1t3-t1+mv1t1,故B、C正确;t2时刻后小球反向运动,所以小球在0~t4时间内运动的最大位移是v1t22,故D错误.◆类型2已知物体运动情况,分析物体受力情况【例2】如图甲所示,一质量m=0.4kg的小物块,以v0=2m/s的初速度,在与斜面平行的拉力F作用下,沿斜面向上做匀加速运动,经t=2s的时间物块由A点运动到B点,A、B之间的距离L=10m.已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g取10m/s2.求:(1)物块到达B点时速度和加速度的大小;(2)拉力F的大小;(3)若拉力F与斜面夹角为α,如图乙所示,试写出拉力F的表达式(用题目所给物理量的字母表示).答案(1)8m/s3m/s2(2)5.2N(3)F=mg sinθ+μcosθ+ma cosα+μsinα解析(1)物块做匀加速直线运动,根据运动学公式,有L=v0t+12at2,v=v0+at,联立解得a=3m/s2,v=8m/s(2)对物块受力分析可得,平行斜面方向F cosα-mg sinθ-F f=ma,垂直斜面方向F N=mg cosθ其中F f=μF N解得F=mg(sinθ+μcosθ)+ma=5.2N(3)拉力F与斜面夹角为α时,物块受力如图所示根据牛顿第二定律有F cosα-mg sinθ-F f=ma F N+F sinα-mg cosθ=0其中F f=μF NF=mg sinθ+μcosθ+macosα+μsinα.【变式2】如图所示,粗糙的地面上放着一个质量M=1.5kg的斜面体,斜面部分光滑,底面与地面的动摩擦因数μ=0.2,倾角θ=37°,在固定在斜面的挡板上用轻质弹簧连接一质量m=0.5kg的小球,弹簧劲度系数k=200 N/m,现给斜面施加一水平向右的恒力F,使整体向右以a=1m/s2的加速度匀加速运动(已知sin37°=0.6,cos37°=0.8,g取10m/s2).求:(1)F的大小;(2)弹簧的形变量及斜面对小球的支持力大小.答案(1)6N(2)0.017m 3.7N解析(1)对整体应用牛顿第二定律:F-μ(M+m)g=(M+m)a,解得F=6N.(2)设弹簧的形变量为x,斜面对小球的支持力为F N对小球受力分析:在水平方向:kx cosθ-F N sinθ=ma在竖直方向:kx sinθ+F N cosθ=mg解得x=0.017m,F N=3.7N.多过程问题分析步骤1.将“多过程”分解为许多“子过程”,各“子过程”间由“衔接点”连接.2.对各“衔接点”进行受力分析和运动分析,必要时画出受力图和过程示意图.3.根据“子过程”“衔接点”的模型特点选择合理的物理规律列方程.4.分析“衔接点”速度、加速度等的关联,确定各段间的时间关联,并列出相关的辅助方程.5.联立方程组,分析求解,对结果进行必要的验证或讨论.【例3】如图所示,两滑块A、B用细线跨过定滑轮相连,B距地面一定高度,A可在细线牵引下沿足够长的粗糙斜面向上滑动.已知m A=2kg,m B =4kg,斜面倾角θ=37°.某时刻由静止释放A,测得A沿斜面向上运动的v -t图像如图所示.已知g=10m/s2,sin37°=0.6,cos37°=0.8.求:(1)A与斜面间的动摩擦因数;(2)A沿斜面向上滑动的最大位移;(3)滑动过程中细线对A拉力所做的功.答案(1)0.25(2)0.75m(3)12J解析(1)在0~0.5s内,根据图像,A、B系统的加速度为a1=vt =20.5m/s2=4m/s2对A、B系统受力分析,由牛顿第二定律有m B g-m A g sinθ-μm A g cosθ=(m A+m B)a1得:μ=0.25(2)B落地后,A减速上滑.由牛顿第二定律有m A g sinθ+μm A g cosθ=m A a2将已知量代入,可得a2=8m/s2故A减速向上滑动的位移为x2=v22a2=0.25m0~0.5s内A加速向上滑动的位移x1=v22a1=0.5m所以,A上滑的最大位移为x=x1+x2=0.75m(3)A加速上滑过程中,由动能定理:W-m A gx1sinθ-μm A gx1cosθ=12m A v2-0得W=12J.【变式3】如图所示,一足够长斜面上铺有动物毛皮,毛皮表面具有一定的特殊性,物体上滑时顺着毛的生长方向,毛皮此时的阻力可以忽略;下滑时逆着毛的生长方向,会受到来自毛皮的滑动摩擦力,现有一物体自斜面底端以初速度v0=6m/s冲上斜面,斜面的倾角θ=37°,经过2.5s物体刚好回到出发点,(g=10m/s2,sin37°=0.6,cos37°=0.8).求:(1)物体上滑的最大位移;(2)若物体下滑时,物体与毛皮间的动摩擦因数μ为定值,试计算μ的数值.(结果保留两位有效数字)答案(1)3m(2)0.42解析(1)物体向上滑时不受摩擦力作用,设最大位移为x.由牛顿第二定律可得:mg sin37°=ma1代入数据得:a1=6m/s2由运动学公式有:v20=2a1x联立解得物体上滑的最大位移为:x=3m(2)物体沿斜面上滑的时间为:t1=v0a1=66s=1s物体沿斜面下滑的时间为:t2=t-t1=1.5s下滑过程中,由运动学公式有:x=12a2t22由牛顿第二定律可得:mg sin37°-μmg cos37°=ma2联立解得:μ≈0.421.基本思路(1)认真审题,详尽分析问题中变化的过程(包括分析整体过程中有几个阶段);(2)寻找过程中变化的物理量;(3)探索物理量的变化规律;(4)确定临界状态,分析临界条件,找出临界关系.2.思维方法极限法把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的假设法临界问题存在多种可能,特别是非此即彼两种可能时,或变化过程中可能出现临界条件,也可能不出现临界条件时,往往用假设法解决问题数学法将物理过程转化为数学表达式,根据数学表达式解出临界条件【例4】如图所示,一弹簧一端固定在倾角为θ=37°的光滑固定斜面的底端,另一端拴住质量为m1=6kg的物体P,Q为一质量为m2=10kg的物体,弹簧的质量不计,劲度系数k=600N/m,系统处于静止状态.现给物体Q施加一个方向沿斜面向上的力F ,使它从静止开始沿斜面向上做匀加速运动,已知在前0.2s 时间内,F 为变力,0.2s 以后F 为恒力,sin 37°=0.6,cos 37°=0.8,g 取10m/s 2.求:(1)系统处于静止状态时,弹簧的压缩量x 0;(2)物体Q 从静止开始沿斜面向上做匀加速运动的加速度大小a ;(3)力F 的最大值与最小值.答案(1)0.16m (2)103m/s 2(3)2803N 1603N 解析(1)设开始时弹簧的压缩量为x 0对整体受力分析,平行斜面方向有(m 1+m 2)g sin θ=kx 0解得x 0=0.16m(2)前0.2s 时间内F 为变力,之后为恒力,则0.2s 时刻两物体分离,此时P 、Q 之间的弹力为零且加速度大小相等,设此时弹簧的压缩量为x 1对物体P ,由牛顿第二定律得kx 1-m 1g sin θ=m 1a前0.2s 时间内两物体的位移x 0-x 1=12at 2联立解得a =103m/s 2(3)对两物体受力分析知,开始运动时拉力最小,分离时拉力最大NF min=(m1+m2)a=1603对Q应用牛顿第二定律得F max-m2g sinθ=m2aN.解得F max=m2(g sinθ+a)=2803【变式4】两物体A、B并排放在水平地面上,且两物体接触面为竖直面,现用一水平推力F作用在物体A上,使A、B由静止开始一起向右做匀加速运动,如图a所示,在A、B的速度达到6m/s时,撤去推力F.已知A、B 质量分别为m A=1kg、m B=3kg,A与地面间的动摩擦因数μ=0.3,B与地面间没有摩擦,B物体运动的v-t图像如图b所示.g取10m/s2,求:(1)推力F的大小;(2)A刚停止运动时,物体A、B之间的距离.答案(1)15N(2)6m解析(1)在水平推力F作用下,设物体A、B一起做匀加速运动的加速度为a,由B的v-t图象得:a=3m/s2对于A、B组成的整体,由牛顿第二定律得:F-μm A g=(m A+m B)a代入数据解得:F=15N.(2)撤去推力F后,A、B两物体分离.A在摩擦力作用下做匀减速直线运动,B做匀速运动,设A匀减速运动的时间为t,对于A有:μm A g=m A a A解得:a A=μg=3m/s2根据匀变速直线运动规律有:0=v0-a A t解得:t=2s撤去力F后,A的位移为x A=v0t-1a A t2=6m2B的位移为x B=v0t=12m所以,A刚停止运动时,物体A、B之间的距离为Δx=x B-x A=6m.。
阶段滚动练(一) 教师独具时间:50分钟一、选择题(本题共8小题,每小题6分,共48分,1~5题为单项选择题,6~8题为多项选择题)1.冰壶在冰面上运动时受到的阻力很小,可以在较长时间内保持运动速度的大小和方向不变,我们可以说冰壶有较强的抵抗运动状态变化的“本领”。
这里所指的“本领”是冰壶的惯性,则惯性的大小取决于( )图1A .冰壶的速度B .冰壶的质量C .冰壶受到的推力D .冰壶受到的阻力解析 由于惯性是物体本身的固有属性,其大小只由物体的质量来决定,故只有选项B 正确。
答案 B2.(2016·河南信阳模拟)中国首架空客A380大型客机在最大重量的状态下起飞需要滑跑距离约为3 000 m ,着陆距离大约为2 000 m 。
设客机起飞滑跑和着陆时都做匀变速运动,起飞时速度是着陆时速度的1.5倍,则起飞滑跑时间和着陆滑跑时间之比是( ) A .3∶2B .1∶1C .1∶2D .2∶1解析 由题意可知,x 起飞=3 000 m ,x 着陆=2 000 m ,v 起飞=1.5v 0,v 着陆=v 0,由x =v 2t 可得:t 起飞=2x 起飞v 起飞=6 000 m 1.5v 0=4 000 m v 0;t 着陆=4 000 m v 0,选项B 正确。
答案 B3.(2016·广东佛山二模)广州塔,昵称小蛮腰,总高度达600米,游客乘坐观光电梯大约一分钟就可以到达观光平台。
若电梯简化成只受重力与绳索拉力,已知电梯在t =0时由静止开始上升,a -t 图像如图2所示。
则下列相关说法正确的是( )图2A .t =4.5 s 时,电梯处于失重状态B .5~55 s 时间内,绳索拉力最小C .t =59.5 s 时,电梯处于超重状态D .t =60 s 时,电梯速度恰好为零解析 利用a -t 图像可判断:t =4.5 s 时,电梯有向上的加速度,电梯处于超重状态,则A 错误;0~5 s 时间内,电梯处于超重状态,拉力大于重力,5 s ~55 s 时间内,电梯处于匀速上升过程,拉力等于重力,55 s ~60 s 时间内,电梯处于失重状态,拉力小于重力,综上所述,B 、C 错误;因a -t 图线与t 轴所围的“面积”代表速度改变量,而图中横轴上方的“面积”与横轴下方的“面积”相等,则电梯的速度在t =60 s 时为零,D 正确。
单元小结练动力学基本问题的方法练
基础巩固
1.(2013·重庆·4)如图1为伽利略研究自由落体运动实验的示意图,让小球由倾角为θ的光滑斜面滑下,然后在不同的θ角条件下进行多次实验,最后推理出自由落体运动是一种匀加速直线运动.分析该实验可知,小球对斜面的压力、小球运动的加速度和重力加速度与各自最大值的比值y随θ变化的图象分别对应图2中的()
图1图2
A.①、②和③B.③、②和①
C.②、③和①D.③、①和②
2.下列说法正确的是()
A.凡是大小相等、方向相反、分别作用在两个物体上的两个力,必定是一对作用力和反作用力
B.凡是大小相等、方向相反、作用在同一个物体上的两个力,必定是一对作用力和反作用力
C.凡是大小相等、方向相反,作用在同一直线上且分别作用在两个物体上的两个力,才是一对作用力和反作用力
D.相互作用的一对力中,究竟哪一个力是作用力、哪一个力是反作用力是任意的
3.如图3所示,在一辆表面光滑且足够长的小车上,有质量为m1和m2的两个小球(m1>m2),随车一起运动,当车突然停止时,若不考虑其他阻力,则两个小球()
图3
A.一定相碰B.一定不相碰
C.不一定相碰D.无法确定
4.如图4所示,小车沿水平面做直线运动,小车内光滑底面上有一物块被压缩的弹簧压向左壁,小车向右加速运动.若小车向右的加速度增大,则车左壁受物块的压力F1和车右壁受弹簧的压力F2的大小变化是()
A.F1不变,F2变大B.F1变大,F2不变
C.F1、F2都变大D.F1变大,F2减小图4
5.如图5所示,带支架的平板小车沿水平面向左做直线运动,小球A用细线悬挂于支架前端,质量为m的物块B始终相对于小车静止放在右端.B与平板小车间的动摩擦因数为μ.若某时刻观察到细线偏离竖直方向θ角,则此刻小车对物块B产生的作用力的大小和方向为()
A.mg1+tan2θ,斜向右上方
B.mg1+μ2,斜向左上方
C.mg tan θ,水平向右图5
D.mg,竖直向上
6.如图6所示,质量为m的球置于斜面上,被一个竖直挡板挡住,处于静止状态,现用一个力F拉斜面体,使斜面体在水平面上做加速度为a的匀加速直线运动,忽略一切摩擦,以下说法中正确的是()
A.球做匀加速直线运动时竖直挡板对球的弹力比球处于静止状态时大
B.若加速度足够大,斜面对球的弹力可能为0 图6
C.斜面对球的弹力变大
D.斜面和挡板对球的弹力的合力等于ma
7.(多选)如图7所示,总质量为460 kg的热气球,从地面刚开始竖直上升时的加速度为0.5 m/s2,当热气球上升到180 m时,以5 m/s的速度向上匀速运动.若离开地面后热气球所受浮力保持不变,上升过程中热气球总质量不变,重力加速度g=10 m/s2.关于热气球,下列说法正确的是()
A.所受浮力大小为4 830 N
B.加速上升过程中所受空气阻力保持不变
C.从地面开始上升10 s后的速度大小为5 m/s
D.以5 m/s匀速上升时所受空气阻力大小为230 N
图7
综合应用
8.(多选)乘坐“空中缆车”饱览大自然的美景是旅游者绝妙的选择.若某一缆车沿着坡度为30°的山坡以加速度a 上行,如图8所示.在缆车中放一个与山坡表面平行的斜面,斜面上放一个质量为m 的小物块,小物块相对斜面静止(设缆车保持竖直状态运行).则( )
A .小物块受到的摩擦力方向平行于斜面向上
B .小物块受到的摩擦力方向平行于斜面向下
C .小物块受到的滑动摩擦力为12
mg +ma D .小物块受到的静摩擦力为12
mg +ma 图8 9.(多选)如图9所示,在水平地面上的箱子内,用细线将质量为m 的两个球a 、b 分别系于箱子的上、下两底的内侧,轻质弹簧两端分别与球相连接,系统处于静止状态时,弹簧处于拉伸状态,下端细线对箱底的拉力为F ,箱子的质量为M ,则下列说法正确的是(重力加速度为g )( )
A .系统处于静止状态时地面受到的压力大小为(M +2m )g -F
B .系统处于静止状态时地面受到压力大小为(M +2m )g
C .剪断连接球b 与箱底的细线的瞬间,地面受到的压力大小为(M +2m )g +F
D .剪断连接球b 与箱底的细线的瞬间,地面受到的压力大小为(M +2m )g 图9
10.如图10为一条平直公路中的两段,其中A 点左边的路段为足够长的柏油路面,A 点右边路段为水泥路面.已知汽车轮胎与柏油路面的动摩擦因数为μ1,与水泥路面的动摩擦因数为μ2.当汽车以速度v 0沿柏油路面行驶时,若刚过A 点时紧急刹车(车轮立即停止转动),汽车要滑行一段距离到B 处才能停下,若该汽车以速度2v 0在柏油路面上行驶,突然发现B 处有障碍物,需在A 点左侧的柏油路上某处紧急刹车,若最终汽车刚好撞不上障碍物,求:(重力加速度为g )
图10
(1)水泥路面AB 段的长度;
(2)在第二种情况下汽车运动了多长时间才停下?
11.如图11所示,倾角为30°的光滑斜面与粗糙的水平面平滑连接.现将一滑块(可视为质点)从斜面上A点由静止释放,最终停在水平面上的C点.已知A点距水平面的高度h=0.8 m,B点距C点的距离L=2.0 m(滑块经过B点时没有能量损失,g取10 m/s2),求:
图11
(1)滑块在运动过程中的最大速度的大小;
(2)滑块与水平面间的动摩擦因数μ;
(3)滑块从A点释放后,经过时间t=1.0 s时速度的大小.。