理论力学静力学练习题
- 格式:doc
- 大小:62.50 KB
- 文档页数:2
刚架ACB 和刚架CD 通过铰链C 连接,并与地面通过铰链A ,B ,D 连接,试求刚架的支座反力(尺寸单位为m ,力的单位为kN ,载荷集度单位为kN/m )。
AB 梁一端砌在墙内,在自由端装有滑轮用以匀速吊起重物D 。
设重物的重量为G ,又AB 长为b ,斜绳与铅垂线成α角,求固定端的约束力。
结构如图,C 处为铰链,自重不计。
已知:F = 100 kN ,q = 20 kN/m ,M = 50 k N ·m 。
试求A 、B 两
支座的反力。
图示构架,由直角杆ABC 与杆BD 、CE 铰接而成,各杆自重不计。
已知:θ =450,均布载荷集度为q ,尺寸a 。
试求支座E 、杆BD 及铰C 处的约束反力。
E
在图示构架中,物体重W = 10 kN,A处为固定端,B,C,D处为铰链。
求固定端A处的约束力和杆BD的内力F BD 。
理论力学(静力学)一基本概念1.一物体是否被看作刚体,取决于。
(A)变形是否微小(B)变形不起决定因素(C)物体是否坚硬(D是否研究物体的变形答案:B2.平衡是指。
(A)物体相对任何参考体静止不动(B)物体相对任何参考体作匀速直线运动(C)物体只相对地球作匀速直线运动(D物体相对地球静止不动或作匀速直线运动答案:D3.参考答案:BC4.力有两种作用效果:力可以使物体的运动状态发生变化,也可以使物体发生变形。
答案:√5.悬挂的小球静止不动是因为小球对绳向下的拉力和绳对小球向上的拉力相互抵消的缘故。
答案:×6.在任何情况下,体内任意两点的距离保持不变的物体叫刚体。
√7.凡是合力都大于分力。
()答案:×8.二力平衡条件中的两个力作用在同一物体上;作用力和反作用力分别作用在两个物体上。
()答案:√9.理论力学的任务是研究物体作机械运动一般规律的科学。
()答案:√·1.2 静力学公理。
1.参考答案:B2.参考答案:A3.三力平衡定理是。
(A)共面不平行的三个力互相平衡必汇交于一点(B)共面三力若平衡,必汇交于一点(C)三力汇交于一点,则这三个力必互相平衡。
(D)此三个力必定互相平行答案:A4.作用和反作用定律的适用范围是。
(A)只适用于刚体(B)只适用于变形体(C)只适用于处于平衡状态的物体(D)适用于任何物体答案:D5.力的可传性原理。
(A)适用于刚体(B)适用于刚体和弹性体(C)适用于所有物体(D)只适用于平衡的刚体答案:A6.如图所示的三铰刚架,支座A、B处的约束力一定通过。
(A) C 点(B) D点(C) E点(D) F点答案:C7.下列说法正确的是。
(A) 作用力反作用力既可以作用于同一物体,也可以作用于两个不同物体(B) 作用力反作用力肯定作用于两个不同物体(C) 作用反作用定律只适用于平衡刚体(D)作用反作用定律适用于所有刚体答案:BD8.刚体受汇交于一点的三个力作用,肯定能平衡。
1-3 试画出图示各构造中构件AB的受力争1-4 试画出两构造中构件ABCD的受力争1-5 试画出图 a 和 b 所示刚系统整体各个构件的受力争1-5a1-5b1- 8 在四连杆机构的ABCD的铰链 B 和 C上分别作用有力F1和 F2,机构在图示位置均衡。
试求二力F1和 F2之间的关系。
解:杆 AB,BC, CD为二力杆,受力方向分别沿着各杆端点连线的方向。
解法 1( 分析法 )假定各杆受压,分别选用销钉 B 和 C 为研究对象,受力以下图:yyFBCC xB Fo45BCx30o o F60F2CDF AB F1由共点力系均衡方程,对 B 点有:F x0F2F BC cos4500对 C点有:F x0FBC F1 cos3000解以上二个方程可得:F12 6F2 1.63F23解法 2( 几何法 )分别选用销钉 B 和 C 为研究对象,依据汇交力系均衡条件,作用在 B 和C 点上的力构成关闭的力多边形,以下图。
F F2BCF AB o30o45CD60oFF BC F1对 B 点由几何关系可知:F2F BC cos450对 C 点由几何关系可知:F BC F1 cos300解以上两式可得:F1 1.63F22-3 在图示构造中,二曲杆重不计,曲杆AB 上作用有主动力偶 M。
试求 A 和 C 点处的拘束力。
解: BC为二力杆 ( 受力以下图 ) ,故曲杆 AB 在 B 点处遇到拘束力的方向沿BC 两点连线的方向。
曲杆AB遇到主动力偶M的作用, A 点和 B 点处的拘束力一定构成一个力偶才能使曲杆AB保持均衡。
AB受力以下图,由力偶系作用下刚体的均衡方程有(设力偶逆时针为正):M0 F A10a sin(450 )M 0F A0.354Ma此中:tan 1。
对 BC杆有:F C FB F A0.354M 3aA,C两点拘束力的方向以下图。
2-4解:机构中 AB杆为二力杆,点A,B 出的拘束力方向即可确立。
静力学试题及答案一、单项选择题(每题2分,共20分)1. 静力学中,力的三要素是什么?A. 大小、方向、作用点B. 大小、方向、作用线C. 大小、作用点、作用线D. 方向、作用点、作用线答案:A2. 力的合成遵循什么法则?A. 牛顿第一定律B. 牛顿第二定律C. 牛顿第三定律D. 平行四边形法则答案:D3. 以下哪个不是静力学平衡条件?A. 合力为零B. 合力矩为零C. 物体静止D. 物体匀速直线运动答案:D4. 在静力学中,物体的平衡状态是指:A. 物体静止B. 物体匀速直线运动C. 物体静止或匀速直线运动D. 物体加速运动答案:C5. 以下哪个力不是保守力?A. 重力B. 弹簧力C. 摩擦力D. 电场力答案:C6. 静摩擦力的方向总是:A. 与物体运动方向相反B. 与物体运动趋势相反C. 与物体运动方向相同D. 与物体运动趋势相同答案:B7. 动摩擦力的大小与以下哪个因素有关?A. 物体的质量B. 物体的速度C. 物体间的接触面积D. 物体间的正压力答案:D8. 物体在斜面上保持静止时,斜面对物体的摩擦力方向是:A. 垂直于斜面向上B. 垂直于斜面向下C. 平行于斜面向上D. 平行于斜面向下答案:C9. 以下哪个力不是静力学中的力?A. 重力B. 弹力C. 摩擦力D. 惯性力答案:D10. 物体在水平面上静止时,其受力情况是:A. 重力与支持力平衡B. 重力与摩擦力平衡C. 支持力与摩擦力平衡D. 重力与支持力不平衡答案:A二、填空题(每题2分,共20分)1. 静力学中,物体的平衡状态是指物体处于________或________状态。
答案:静止;匀速直线运动2. 力的平行四边形法则可以用于求解两个力的______。
答案:合力3. 静摩擦力的大小与物体间的正压力______。
答案:无关4. 当物体在斜面上静止时,斜面对物体的摩擦力方向是______。
答案:平行于斜面向上5. 动摩擦力的大小与物体间的正压力______。
1-3 试画出图示各结构中构件AB的受力图1-4 试画出两结构中构件ABCD的受力图1-5 试画出图a和b所示刚体系整体各个构件的受力图1-5a1-5b1- 8在四连杆机构的ABCD 的铰链B 和C 上分别作用有力F 1和F 2,机构在图示位置平衡。
试求二力F 1和F 2之间的关系。
解:杆AB ,BC ,CD 为二力杆,受力方向分别沿着各杆端点连线的方向。
解法1(解析法)假设各杆受压,分别选取销钉B 和C 为研究对象,受力如图所示:由共点力系平衡方程,对B 点有:∑=0x F 045cos 02=-BC F F对C 点有:∑=0x F 030cos 01=-F F BC解以上二个方程可得:22163.1362F F F ==解法2(几何法)分别选取销钉B 和C 为研究对象,根据汇交力系平衡条件,作用在B 和C 点上的力构成封闭的力多边形,如图所示。
对B 点由几何关系可知:0245cos BC F F =对C 点由几何关系可知:0130cos F F BC =解以上两式可得:2163.1F F =2-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。
试求A 和C 点处的约束力。
解:BC 为二力杆(受力如图所示),故曲杆AB 在B 点处受到约束力的方向沿BC 两点连线的方向。
曲杆AB 受到主动力偶M 的作用,A 点和B 点处的约束力必须构成一个力偶才能使曲杆AB 保持平衡。
AB 受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正):0=∑M 0)45sin(100=-+⋅⋅M a F A θ aM F A 354.0=其中:31tan =θ。
对BC 杆有:aM F F F A B C 354.0=== A ,C 两点约束力的方向如图所示。
2-4FF解:机构中AB杆为二力杆,点A,B出的约束力方向即可确定。
由力偶系作用下刚体的平衡条件,点O,C处的约束力方向也可确定,各杆的受力如图所示。
静力学练习题及参考答案1. 问题描述:一根长度为L的均质杆以一端固定在墙上,另一端悬挂一重物。
重物造成的杆的弯曲应力最大为σ。
杆的质量可以忽略不计。
计算重物的质量m。
解答:根据静力学原理,杆的弯曲应力可以用公式计算:σ = M / S,其中M是杆的弯矩,S是杆的截面横截面积。
因为杆是均质杆,所以它的截面横截面积在整个杆上都是相等的。
设杆的截面横截面积为A。
杆的弯矩M可以通过杆的长度L和重物的力矩T计算得到:M = T * (L/2)。
代入上面的公式,我们可以得到:σ = (T * (L/2)) / A。
根据题目的描述,我们可以得到如下等式:σ = (m * g * (L/2)) / A,其中g是重力加速度。
我们可以将这个等式转换成求解未知质量m的方程。
将等式两边的A乘以m,并将等式两边的m乘以g,我们可以得到如下方程:m^2 = (2 * σ * A) / (g * L)解这个方程,我们可以求得未知质量m。
2. 问题描述:一根均质杆的长度为L,质量为M。
杆的一端固定在墙上,另一端悬挂一重物。
杆与地面的夹角为θ。
重物造成的杆的弯曲应力最大为σ。
求重物的质量m。
解答:在这个问题中,除了重物的力矩,还需要考虑到重力对杆的力矩。
由于杆是均质杆,其质量可以均匀分布在整个杆上。
假设杆上的每个微小质量元都受到与其距离一致的力矩。
重物造成的力矩可以用公式计算:M1 = m * g * (L/2) * sinθ,其中g 是重力加速度。
由于杆是均质杆,它的质心位于杆的中点。
因此重力对杆的力矩可以用公式计算:M2 = M * g * (L/2) * cosθ。
根据静力学的原理,杆的弯曲应力可以用公式计算:σ = M / S,其中M是杆的弯矩,S是杆的截面横截面积。
在这个问题中,我们可以将弯曲应力的计算公式推广到杆的中点(也就是质心):σ = (M1 + M2) / S代入上面的公式,我们可以得到:σ = ((m * g * (L/2) * sinθ) + (M *g * (L/2) * cosθ)) / S根据题目的描述,我们可以得到如下等式:σ = ((m * g * (L/2) * sinθ) + (M * g * (L/2) * cosθ)) / (A / 2),其中A是杆的横截面积。
第一章静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()2.在理论力学中只研究力的外效应。
()3.两端用光滑铰链连接的构件是二力构件。
()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
()二、选择题1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。
则其合力可以表示为。
①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。
①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。
③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。
3.三力平衡定理是。
①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。
4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。
①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。
5.在下述原理、法则、定理中,只适用于刚体的有。
①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。
三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。
2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。
1、图示平面力系,已知:F1=8kN,F2=3kN,M=10kN·m,R=2m,θ=120º。
试求:(1)力系向O点简化的结果;(2)力系的最后简化结果,并示于图上。
2、结构如图,自重不计,已知:F P=4kN,AD=DB,DE段绳处于水平。
试求:A、B处的约束力。
3、图示多跨梁,自重不计。
已知:M、F P、q、L。
试求支座A、B的约束反力及销钉C 对AC梁的作用力。
kN⋅,F =2kN 4、图示多跨梁由AC和CD铰接而成,自重不计。
已知:q =10kN/m,M=40m作用在AB中点,且θ=450,L=2m。
试求支座A、B、D的约束力。
5、图式机构,AB=BC,BD=BE,不计各杆自重,D、E两点用原长为L=0.5m,弹簧常数k=1/6(kN/m)的弹簧连接,设在B处作用一水平力F,已知:F=20N,L1=0.4m,L2=0.6m。
求机构处于平衡时杆AB 与水平面的夹角θ。
6、在图所示机构中,曲柄OA 上作用一力偶,其力偶矩大小为M ,另在滑块D 上作用水平F ,机构尺寸如图所示,各秆重量不计。
求当机构平衡时,力F 与力偶短M 的关系。
7、在如图所示物块中,已知斜面的倾角为θ,接触面间的摩擦角为ϕ f 。
试问:(1)拉力F r 与水平面间的夹角β 等于多大时拉动物块最省力; (2)此时所需拉力F r 的大小为多少?8、两长度相同的均质杆AB ,CD 的重力大小分别为P = 100 N ,P 1 = 200 N ,在点B 用铰链连接,如图所示。
杆BC 的C 点与水平面之间的静滑动摩擦因数f s = 0.3。
已知:θ = 60º,试问:(1)系统能否平衡?并加以证明。
(2)若系统能够平衡,求C 点摩擦力的大小和方向。
刚架ACB 和刚架CD 通过铰链C 连接,并与地面通过铰链A ,B ,D 连接,试求刚架的支座反力(尺寸单位为m ,力的单位为kN ,载荷集度单位为kN/m )。
AB 梁一端砌在墙内,在自由端装有滑轮用以匀速吊起重物D 。
设重物的重量为G ,又AB 长为b ,斜绳与铅垂线成α角,求固定端的约束力。
结构如图,C 处为铰链,自重不计。
已知:F = 100 kN ,q = 20 kN/m ,M = 50 k N ·m 。
试求A 、B 两
支座的反力。
图示构架,由直角杆ABC 与杆BD 、CE 铰接而成,各杆自重不计。
已知:θ =450,均布载荷集度为q ,尺寸a 。
试求支座E 、杆BD 及铰C 处的约束反力。
E
在图示构架中,物体重W = 10 kN,A处为固定端,B,C,D处为铰链。
求固定端A处的约束力和杆BD的内力F BD 。