5-TOFD – 超声波衍射时差法
- 格式:ppt
- 大小:3.28 MB
- 文档页数:53
[超声波衍射时差法(TOFD)检测中参数设定的研究]超声波衍射时差法摘?要在TOFD检测过程中,相关参数的设置非常为重要,关系到采集图谱质量的好坏。
下面,就结合现场情况,把TOFD检测实践中的一些见解归纳分析一下,主要以ISONIC系列仪器进行研究。
关键词 TOFD检测;ISONIC;参数设定;研究TN914 A 1673-9671-(xx)071-0198-011 TOFD检测中的参数设置的重要性TOFD检测扫描前主要注意的参数有:探头真实频率,脉冲宽度,重复频率,阻抗,感抗,滤波频率,信号平均值,时间窗口,增益等参数。
脉冲宽度是非常重要的,它有助于优化接受信号的形状。
改变脉冲宽度可以导致不同周期部分减弱或加强。
如果想使两个超声脉冲组成单一频率的信号,则应将脉冲宽度设置为所用探头频率周期的一半(例:5 MHz时使用100 ns);为了使信号持续最低周期数,应将脉冲宽度设置为所用探头频率的一个周期(例:5 MHz时使用200 ns)。
其中探头频率必须是探头实际频率,而不是探头的标称频率。
在实际工作中必须通过试验来获得最优脉冲宽度。
如果使用手动采集数据,则需要注意脉冲重复频率PRF与探头移动速度必须相匹配,由于手动扫查时计算机不能判断和控制探头移动,只能由操作者正确选择PRF来保证能正常采集A扫数据。
若采用编码器或者电机驱动,则PRF相对不重要,因计算机可以计算出探头位置,在规定的A扫采样率间隔采集数据。
若PRF设置不当时将采集到空白A扫。
阻抗Tuning项匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。
对于不同特性的电路,匹配条件是不一样的。
在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。
感抗damping项的单位是欧。
知道了交流电的频率f(Hz)和线圈的电感L(H),就可以把感抗计算出来。
在实际调节射频波波幅时,需要不断地改变感抗值来选择最优波幅,使图谱效果达到最佳。
无损检测技术衍射时差法超声TOFD检测基本原理无损检测(Nondestructive Testing,简称NDT)技术是一种应用于工程领域的检测方法,其目的是在不损伤被测物体的情况下获得其内部和表面的缺陷信息,以判断材料的质量和可靠性。
衍射时差法超声TOFD(Time of Flight Diffraction)是无损检测中一种常用的超声检测技术,它通过分析超声波在被测物体内部的衍射图样和所传播时间的差异来确定缺陷的位置和尺寸。
衍射时差法超声TOFD检测的基本原理如下:1.超声波传播:超声波在被检测材料内部的传播速度是已知的,传播路径是直线传播的。
超声波发射器发射出短脉冲的超声波信号,经过材料中的声阻抗不一致表面发生反射;然后通过被检材料内部传播,当超声波遇到缺陷时,会部分反射、散射和透射;最后,超声波信号达到接收器并被记录。
2.衍射现象:当超声波遇到边界或缺陷时,会发生衍射现象。
衍射现象是指波通过开口或缝隙时,从波的前向运动方向上的边界或缝隙中发射出去一部分。
3.TOFD测量:TOFD测量的关键在于将两个特征回波的衍射声波进行时间差测量。
超声波发射器和接收器之间有一对平行排列的接收器,其中一个接收器用于接收来自发射器产生的超声波的第一个回波,另一个接收器用于接收来自发射器产生的超声波的第二个回波。
4.TOFD信号分析:通过同时接收两个回波,并测量二者之间的时间差,可以确定缺陷的位置和尺寸。
当超声波传播到缺陷区域时,由于缺陷的存在,衍射声波将被传播到两个接收器之间。
通过测量两个回波的时间差,可以计算出衍射声波的传播路径,从而确定缺陷的位置。
5.结果分析:将TOFD信号进行处理和分析,可以得到缺陷的尺寸、位置和形态。
同时,根据TOFD原理的高度灵敏度特点,可以检测到非常小的缺陷。
衍射时差法超声TOFD检测技术具有以下优点:1.高敏感性:TOFD检测技术可以检测到相对较小的缺陷,对大多数工程材料和结构缺陷的检测效果非常好。
超声波衍射时差法(TOFD)检测过程控制要点超声波衍射时差法(TOFD)是采用一发一收探头,利用缺陷端点的衍射波信号探测缺陷和测定缺陷尺寸的一种超声检测技术,其对垂直于探测面缺陷的尺寸测量具有独特的优势,在结构焊缝检测上的应用已经较为成熟。
随着国内标准NB/T 47013.10-2010《承压设备无损检测第10部分:衍射时差法超声检测》的颁布,TOFD检测技术在国内得到迅速推广。
TOFD检测不是一个基于幅度响应的超声检测技术,但需要足够的灵敏度以使待检测的缺陷能够被识别。
TOFD检测的一个弱点是检测面和底面附近存在盲区,为了确保声束覆盖检测区域,必须在确定检测工艺时考虑这一因素。
探头选择和探头配置很大程度上决定着TOFD检测技术的整体精度、信噪比和覆盖区域。
进行仪器设置是为了确保足够的系统增益和信噪比,以便发现所关注的衍射信号,确保分辨力可接受、声束能够覆盖所关注的区域以及系统动态范围的有效使用。
TOFD检测过程和现场评审中有以下几点需要重点关注:一、检测区域覆盖根据任务要求的检测区域和检测级别,首先通过选择探头角度、测定探头前沿及声束扩散角来确定探头组合和间距,并根据厚度决定是否需要分区检测。
然后进行上下面盲区的确认,以决定是否需要补充超声横波检测,或偏置非平行扫查。
二、数据采样间距进行TOFD扫查时,沿扫查方向的数据采样间距在各标准中有明确规定。
三、仪器设置和验证1.灵敏度:TOFD检测不是基于幅度对缺陷进行当量评定的检测技术,TOFD检测灵敏度的设置方式也与常规超声不同,不是以人工缺陷的幅度作为基准。
灵敏度的设置只是为了保证信号幅度在一定范围内,并具有较高的信噪比。
通常要求直通波高度为满刻度的40%~90%,或在底波80%的基础上再增益20~32dB,或噪声在满刻度的5%~10%。
有时标准会要求在试块上验证探头指定区域缺陷的检出性。
2.深度校准:TOFD检测中,探头接收的信号到达时间与反射体的深度并不是线性关系,反射体的深度是在假定信号位于两探头中心的正下方的情况下,依据已知的声速和信号与直通波的时间差由软件自动计算得到的。
摘要:超声波衍射时差法,即Time Of Flight Diffraction(TOFD),是一种依靠从待检试件内部结构(主要是指缺陷)的“端角”和“端点”处得到的衍射能量来检测缺陷的方法,用于缺陷的检测、定量和定位。
该技术已经在我国得到了广泛的应用,后来在无损检领域又兴起了一项新的检测方法,即超声波相控阵检测方法,这项新技术已经在医疗领域得到了广泛的应用,本文主要是对这两项检测技术进行简要对比。
关键词:超声波衍射时差法(TOFD)超声波相控阵对比目前我国无损检领域应用最广泛的是TOFD技术,业界人士已经普遍认可了TOFD技术,这项技术在我国的工业领域已经有了数不胜数的成功案例。
21世纪初,我国引入了Isonic系列便携式超声波成像检测系统(以色列的IsonotronNDT公司出品),经由一系列的实际的对比以及验证加之不断改进和创新了的扫查器系统,TOFD技术被更多的应用到各工业现场检测中。
TOFD方法具有超声成像技术,它通过采用一发一收探头布置,然后要求相应的探头入射点间距离,在平板对接焊缝、环焊缝及直径大于500mm的纵缝中厚板检测方面具有很大的优势,但是该技术也存在一些弊端,比如对于复杂几何形状的结构件、焊缝检测盲区等束手无策。
到目前为止超声相控阵技术已经在我国发展了20年,在早期主要应用在医疗领域,利用该技术可以在实际的医学超声成像中对被检器官进行成像,有益于医学的不断发展和进步,但是由于很多客观因素的限制,比如系统的复杂性、固体中波动传播的复杂性及成本费用高等,使得该技术的应用面受限。
在这种情况下,在超声相控阵成像领域应用压电复合材料、数据处理分析等高新技术是大势所趋,未来超声相控阵检测技术一定会得到更加广泛的应用。
超声相控阵是采用多晶片控制声束聚焦技术,探头可以在同一位置实现很大声束及角度范围内的电子扫查,适用于复杂几何形状结构件的检测。
下面对TOFD和相控阵的检测技术做简要对比。
1TOFD的技术特点1.1TOFD的优点TOFD技术不仅具有很强的缺陷检出能力,还具有很高的缺陷定量精度,除此之外还具有很高的时效性和安全性,可永久保存其检测数据。
一TOFD原理超声TOFD(Time of Flight Diffraction Technique –衍射时差法)技术就是用两个探头相向对置,一发一收,利用缺陷端部产生的散射波和衍射波,来检测出缺陷和评定缺陷的方法。
下图即表示TOFD法的探伤原理、探伤波形的模式图。
(a)TOFD原理图(b)波形图图(a)中,①为发射探头发射横向纵波沿试件表面传播的正向侧向波(Lateral wave),它是区分和测量缺陷的参考。
④为底面负向反射波(Back-wall reflection),当有裂纹缺陷存在时,在①④间会接收到缺陷上端的负向衍射波②(Upper Crack Tip Signal)和缺陷下端的正向衍射波③(Lower Crack TipSignal )。
这里只考虑纵波声速V ,忽略缺陷处的波形变换产生的横波等。
说明:TOFD 技术采用一发一收的方式,通常使用高阻压、窄脉冲压力探头,主压力波的反射角范围是45º至70º。
假定两探头间的距离为S ,试件的厚度为H ,裂纹在试件厚度方向的高度为L ,裂纹上端距离试件表面的埋藏深度为D ,沿试件表面传播的侧向波的接收时间为t L , 接收到缺陷上端的负向衍射波的时间为t 1,接收到缺陷下端的正向衍射波的时间为t 2,接收到底面负向反射波的时间为t BW 。
试件的纵波声速为V 。
则:CS t L = CS D t 2214+= CS L D t 222)(4++= CS H t BW224+= 根据以上各个时间可以求出: 裂纹上端距离试件表面的埋藏深度 222121S C t D -=裂纹在试件厚度方向的高度 D S C t L --=222221二 TOFD 应用超声TOFD 法之所以引人注目,是由于此法对缺陷检测、定位、定量较一般的波幅法容易、直观,且有客观记录。
这对在役设备检测中的缺陷评价特别有价值。
如果结合常规的缺陷测长方法,就可掌握缺陷二维形状,就可利用断裂力学对被检测设备进行寿命评价。
TOFD超声成像技术浅析作者:大同电力机车有限公司工艺开发部李仁摘要:本文着重介绍TOFD(超声波端点衍射技术)的技术原理、优点和局限性。
从检测效率和缺陷检出率等方面,将其与传统A扫描技术、射线照相技术进行比较,总结出TOFD技术的应用特点和前景。
“TOFD”即Time off light diffraction,译成中文是“超声波衍射时差法检测”,TOFD检测技术是利用超声波遇到诸如裂纹等缺陷时,在缺陷尖端产生迭加到正常反射波上的衍射波,探头探测到衍射波,从而判定缺陷的大小和深度。
一、TOFD技术原理超声衍射时差技术(TOFD)是一种依靠从检件工件内部结构,主要是指缺陷的“端角”和“端点”处得到的衍射能量来检测缺陷的方法。
当超声波遇到诸如裂纹等的缺陷时,在缺陷尖端发生叠加到正常反射波上的衍射波,探头探测到衍射波,可以判定缺陷的大小和深度。
当超声波在存在缺陷的线性不连续处(欧洲很多标准中都使用discontinuity一词,即理解为材质的不连续结构),如裂纹等处出现传播障碍时,在裂纹端点处除了正常反射波以外,还要发生衍射现象。
衍射能量在很大的角度范围内放射出并且假定此能量起源于裂纹末端。
这与依赖于间断反射能量总和的常规超声波形成一个显著的对比。
超声波在工件内的传播遵循惠更斯原理,除在缺陷表面产生超声波的反射波外,还在缺陷的端点或端角处产生衍射波。
衍射波被接收后经过仪器放大,由于缺陷端点和端角间的传播时间的差异,检测仪器可以自动记录和计算出时间差,进而对缺陷大小进行计算;同时计算机系统还搜集相关的数据,通过全功能的A扫、B扫和C扫,对该缺陷进行数字成像,形成易于理解的被检工件的截面图,对缺陷进行成像显示,进而对缺陷进行定性。
如图1所示。
图1二、TOFD技术的优势TOFD技术使用两个超声波探头,一个发射超声波信号,另一个接收衍射信号、表面横波和底波,因此在A扫显示四个幅值信号,结合软件技术可以实现全功能的A扫、B扫和C扫。