北师大版九年级数学_上学期_第六章_频率与概率(一)
- 格式:doc
- 大小:48.00 KB
- 文档页数:7
九年级数学上册学问点归纳(北师大版)第一章特殊平行四边形第二章一元二次方程第三章概率的进一步相识第四章图形的相像第五章投影及视图第六章反比例函数(八下前情回忆)※平行四边的定义:两线对边分别平行的四边形叫做平行四边形.....,平行四边形不相邻的两顶点连成的线段叫做它的对角线...。
※平行四边形的性质:平行四边形的对边相等,对角相等,对角线相互平分。
※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两条对角线相互平分的四边形是平行四边形。
※平行线之间的间隔:若两条直线相互平行,则其中一条直线上随意两点到另一条直线的间隔相等。
这个间隔称为平行线之间的间隔。
第一章特殊平行四边形1菱形的性质及断定菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线相互垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线相互垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2矩形的性质及断定※矩形的定义:有一个角是直角的平行四边形叫矩形..。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)※矩形的断定:有一个内角是直角的平行四边形叫矩形(依据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
3正方形的性质及断定正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)※正方形常用的断定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线相互垂直的矩形是正方形。
九年级(上册)第一章证明(二)一、1、公理及其推论三边对应相等的两个三角形全等。
两边及其夹角对应相等的两个三角形全等。
两角及其夹边对应相等的两个三角形全等。
全等三角形的对应边相等,对应角相等。
两角及其中一角的对边对应相等的两个三角形全等。
2、等腰三角形知识回顾(1)等腰三角形的两个底角相等。
(等边对等角)(2)等腰三角形顶角的平分线、底边的中线、底边的高线互相重合。
3、等腰三角形的判定定理:有两个角相等的三角形是等腰三角形。
(等角对等边)4、等边三角形的判定(1)三条边都相等的三角形是等边三角形。
(2)三个角都相等的三角形是等边三角形。
(3)有一个角等于60度的等腰三角形是等边三角形。
等边三角形是特殊的等腰三角形,它具有等腰三角形的一切性质,除此以外,它还具有每个内角都是60度的特殊性质。
5、直角三角形的特殊性质:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。
二、1、勾股定理:直角三角形两条直角边的平方和等于斜边的平方。
2、勾股定理的逆定理:如果三角形两边的平方呵呵等于第三边的平方,那么这个三角形是直角三角形。
3、在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。
4、如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理。
5、HL定理:斜边和一条直角边对应相等的两个直角三角形全等。
简称“斜边,直角边”或“HL”三、线段的垂直平分线1、线段垂直平分线的性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
2、线段垂直平分线的逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
3、定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
四、角平分线1、角平分线性质定理:角平分线上的点到这个角的两边的距离相等。
北师大版数学九年级上册6.5《频率与概率》说课稿一. 教材分析《频率与概率》这一节内容是北师大版数学九年级上册第六章第五节的内容。
本节课主要介绍了频率与概率的概念,以及如何通过实验来估计概率。
教材通过具体的案例和活动,使学生理解和掌握频率与概率的关系,培养学生的数学思维能力和实践能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对统计和概率有一定的了解。
但是,对于频率和概率的概念以及它们之间的关系,可能还比较模糊。
因此,在教学过程中,需要通过具体的案例和实验,让学生深刻理解和掌握频率与概率的关系。
三. 说教学目标1.知识与技能目标:学生能够理解频率和概率的概念,掌握频率估计概率的方法,能够通过实验来估计事件的概率。
2.过程与方法目标:通过实验和案例分析,培养学生的观察能力、思考能力和数学思维能力。
3.情感态度与价值观目标:学生能够积极参与数学活动,体验数学的乐趣,培养对数学的兴趣。
四. 说教学重难点1.重点:频率和概率的概念,频率估计概率的方法。
2.难点:频率与概率之间的关系,如何通过实验来估计概率。
五. 说教学方法与手段本节课采用讲授法、实验法、讨论法等多种教学方法。
利用多媒体课件和实验器材,为学生提供直观的学习资源,激发学生的学习兴趣,引导学生主动参与课堂活动。
六. 说教学过程1.导入:通过一个简单的实验,让学生观察和思考实验结果,引出频率和概率的概念。
2.知识讲解:讲解频率和概率的定义,通过具体的案例来说明频率估计概率的方法。
3.实践活动:让学生进行实验,自己动手来估计事件的概率,培养学生的实践能力。
4.讨论与交流:让学生分组讨论,分享自己的实验结果和感受,引导学生思考频率与概率之间的关系。
5.总结与反思:对本节课的内容进行总结,引导学生反思自己的学习过程,巩固所学知识。
七. 说板书设计板书设计要简洁明了,突出频率与概率的关系。
可以设计一个,列出频率和概率的定义,以及频率估计概率的方法。
新版北师大初中数学教材目录七年级上册第一章丰富的图形世界1.生活中的立体图形 2.展开与折叠3.截一个几何体 4.从三个不同方向看物体的形状第二章有理数及其运算1.有理数 2.数轴 3.绝对值4.有理数的加法 5.有理数的减法6.有理数的加减混合运算 7.有理数的乘法8.有理数的除法 9.有理数的乘方 10.科学计数法11.有理数的混合运算 12.用计算器进行运算第三章整式及其加减1.字母表示数 2.代数式 3.整式4.整式的加减 5.探索与表达规律第四章基本平面图形1.线段、射线、直线 2.比较线段的长短3.角 4.角的比较 5.多边形和圆的初步认识第五章一元一次方程1.认识一元一次方程 2.求解一元一次方程3.应用一元一次方程——水箱变高了4.应用一元一次方程——打折销售5.应用一元一次方程——“希望工程”义演6.应用一元一次方程——追赶小明第六章数据的收集与整理1.数据的收集 2.普查和抽样调查3.数据的表示 4.统计图的选择七年级下册第一章整式的乘除1.同底数幂的乘法 2.幂的乘方与积的乘方3.同底数幂的除法 4.整式的乘法5.平方差公式 6.完全平方公式 7.整式的除法第二章相交线与平行线1.两条直线的位置关系 2.探索直线平行的条件3.平行线的性质 4.用尺规作角第三章三角形1.认识三角形 2.图形的全等 3.探索三角形全等的条件4.用尺规作三角形 5.利用三角形全等测距离第四章变量之间的关系1.用表格表示的变量间关系 2.用关系式表示的变量间关系3.用图像表示的变量间关系第五章生活中的轴对称1.轴对称现象 2.探索轴对称的性质3.简单轴对称图形 4.利用轴对称进行设计第六章频率与概率1.感受可能性 2.频率的稳定性 3.等可能事件的概率八年级上册第一章勾股定理1.探索勾股定理 2.一定是直角三角形吗 3.勾股定理的应用第二章实数1.认识无理数 2.平方根 3.立方根 4.估算5.用计算器开方 6.实数 7.二次根式第三章位置与坐标1.确定位置 2.平面直角坐标系 3.轴对称与坐标变化第四章一次函数1.函数 2.一次函数与正比例函数 3.一次函数的图象4.一次函数的应用第五章二元一次方程组1.认识二元一次方程组 2.求解二元一次方程组3.应用二元一次方程组——鸡兔同笼4.应用二元一次方程组——增收节支5.应用二元一次方程组——里程碑上的数6.二元一次方程与一次函数7.用二元一次方程组确定一次函数表达式8.三元一次方程组第六章数据的分析1.平均数 2.中位数与众数3.从统计图分析数据的集中趋势 4.数据的离散程度第七章平行线的证明1.为什么要证明 2.定义与命题 3.平行线的判定4.平行线的性质 5.三角形内角和定理八年级下册第一章证明(二)1.等腰三角形 2.直角三角形 3.线段的垂直平分线 4.角平分线第二章一元一次不等式和一元一次不等式组1.不等关系 2.不等式的基本性质3.不等式的解集 4.一元一次不等式5.一元一次不等式与一次函数 6.一元一次不等式组第三章图形的平移与旋转1.图形的平移 2.图形的旋转 3.中心对称 4.简单的图案设计第四章因式分解1.因式分解 2.提公因式法 3.运用公式法第五章分式1.认识分式 2.分式的乘除法 3.分式的加减法 4.分式方程第六章平行四边形1.平行四边形的性质 2.平行四边形的判别3.三角形的中位线 4.多边形的内角和与外角和九年级上册第一章特殊的平行四边形1.菱形的性质与判定 2.矩形的性质与判定 3.正方形的的性质与判定第二章一元二次方程1.认识一元二次方程 2.配方法 3.公式法4.因式分解法 5.一元二次方程的应用第三章相似图形1.成比例线段 2.平行线分线段成比例 3.相似多边形4.相似三角形的判定 5.黄金分割 6.测量旗杆的高度7.相似三角形的性质 8.图形的放大与缩小第四章视图与投影1.投影 2.视图第五章反比例函数1.反比例函数 2.反比例函数的图象与性质 3.反比例函数的应用第六章对概率的进一步研究1.游戏公平吗 2.投针试验 3.生日相同的概率九年级下册第一章直角三角形的边角关系1.从梯子的倾斜程度谈起 2.特殊角的三角函数值3.三角函数的有关计算 4.船有触礁的危险吗 5.测量物体的高度第二章二次函数1.二次函数所描述的关系 2.二次函数的图像与性质 3.确定二次函数的表达式4.最大面积是多少 5.何时获得最大利润 6.二次函数与一元二次方程第三章圆1.圆 2.圆的对称性 3.垂径定理 4.圆周角与圆心角的关系5.确定圆的条件 6.直线和圆的位置关系 7.切线长定理8.圆内接正多边形 9.弧长及扇形的面积第四章统计与概率1.视力的变化 2.生活中的概率 3.统计与概率的应用。
九年级数学上册知识点归纳(北师大版)第一章特殊平行四边形第二章一元二次方程第三章概率的进一步认识第四章图形的相似第五章投影与视图第六章反比例函数(八下前情回顾)※平行四边的定义:两线对边分别平行的四边形叫做平行四边形.....,平行四边形不相邻的两顶点连成的线段叫做它的对角线...。
※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。
※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两条对角线互相平分的四边形是平行四边形。
※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。
这个距离称为平行线之间的距离。
第一章特殊平行四边形1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
3正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。
练 案1、下列说法正确的是 ( ) A. 某事件发生的概率为21,这就是说:在两次重复实验中,必有一次发生 B .一个袋子里有100个球,小明摸了8次,每次都只摸到黑球,没摸到白球,结论:袋子里只有黑色的球C .两枚一元的硬币同时抛下,可能出现的情形有:①两枚均为正;②两枚均为反;③一正一反,所以出现一正一反的概率是31 D .全年级有400名同学,一定会有2人同一天过生日2、掷一枚硬币,落地后,国徽朝上、朝下的概率各是多少?3、一个均匀的小正方体,各面分别标有1~6六个数字,求下列事件的概率: (1)随机掷这个小正方体,落地后朝上面数字是6的概率是 ;(2)随机掷这个小正方体两次,两次落地后朝上面数字之和为6的概率是 .6.1 频率与概率(2)学案学习目标: 学习用树状图和列表法计算涉及两步实验的随机事件发生的概率. 重难点:会用树状图和列表法计算涉及两步实验的随机事件发生的概率 学习过程: 一、复习1.当试验次数很大时,一个事件发生的 也稳定在相应的 附近.因此,我们可以通过多次试验,用一个事件发生的 来估计这一事件发生的 .2.掷两枚完全相同的硬币,两个都是正面朝上的概率是多少?3.抛骰子时,出现点数为6的概率是多少?二、自主学习(1)在前面的摸牌游戏中,在第一次试验中,如果摸得第一张牌的牌面的数字为1,那么摸第二张牌时,摸得牌面数字为几的可能性大? 如果摸得第一张牌的牌面的数字为2呢?(2)做一做:根据你所做的30次试验的记录,分别统计一下,摸得第一张牌的牌面的数字为1时,摸第二张牌的牌面数字为1和2的次数.摸得第二张牌的牌面的数字为1 ( 次) 第一张牌的牌面的数字为1( 次)摸得第二张牌的牌面的数字为2 ( 次) (3)议一议:阅读P175内容,你同意小明的看法吗? (4)想一想对于前面的摸牌游戏,一次试验中会出现哪些可能的结果?每种结果出现的可能性相同吗? (5)自学课本P176—P178页内容 (6)请用列表法解答例1当堂检测:1.随机掷一枚均匀的硬币两次,到少有一次正面朝上的概率是多少?(请用树状图法和列表法两种方法解答)2.从一定高度随机掷一枚均匀的硬币,落地后其朝上的一面可能出现正面和反面这样两种等可能的结果.小明正在做掷硬币的试验,他已经掷了3次硬币,不巧的是这3次都是正面朝上.那么,你认为小明第4次掷硬币,出现正面朝上的可能性大,还是反面朝上的可能性大,还是一样大?说说你的理由,并与同伴进行交流.3.袋中装有一个红球和一个黄球,他们除了颜色外都相同.随机从中摸出一球,记录下颜色再放回袋中,充分摇匀后,再随机摸出一球.两次都摸到红球的概率是多少?(请用列表法解答)练案1.袋中装有三个完全相同的球,分别标有“1”“2”“3”.从中随机摸出一球,以该球上的数字作为十位数;将球放回并充分摇匀后,再随机摸出一球,以该球上的数字作为个位数.那么所得数字为“23”的概率为多少?(请用树状图法解答)2.在摸球游戏中,如果每组3张牌,他们的牌面数字分别为1,2,3,那么从每组牌中各随机摸出一张牌,两张牌的牌面数字和为几的概率最大?最大的概率为多少?3.A,B,C三个小朋友在做游戏前需要确定游戏的先后顺序.他们协商约定:将两枚均匀的硬币同时向上抛出,落地后,若都是正面朝上,则A 先做;若都是反面朝上,则B先做;若一正一反,则C先做.这样的办法对三人是否公平?为什么?6.1 频率与概率(3)学案学习目标:1、进一步经历用树状图、列表法计算两步随机实验的概率.2、经历计算理论概率的过程,在活动中进一步发展学生的合作交流意识及反思的习惯.教学重点:用树状图、列表法计算概率教学难点:正确地利用列表法计算概率学习过程:一、复习检测1.当试验次数很大时,一个事件发生也稳定在相应的附近.因此,我们可以通过多次试验,用一个事件发生的来估计这一事件发生的 .2.利用或可以清晰地表示出某个事件发生的所有可能出现的结果;从而较方便地求出某些事件发生的概率.3、请利用列表法.求出掷两枚骰子:(1)“点数和为12点”的概率;(2)“点数和至少是9点”的概率;(3)“两颗骰子点数相同”的慨率;(4)“两颗骰子的点数都是偶数”的概率;(5)“点数和为1点”的概率;(6)“点数和小于13点”的概率.二、自主学习1.完成课本P180页问题2、想一想:阅读课本P180---181页内容你认为谁做的对?说说你的理由。
北师大版 九年级数学 上学期 第六章 频率与概率(一)一、知识概括:本章的主要内容是通过实验体会概率的意义,在具体情境中,了解频率与概率的关系,会用实验的方法估计一个事件发生的概率。
知道在大量重复实验时,实验发生的频率可以作为事件发生概率的估计值;同时在具体情境中学习运用列举法(包括列表、画树状图等)来计算简单事件发生的概率。
经历“猜测结果–––进行实验––––分析实验结果”的过程,建立正确的概率直觉,进一步丰富对概率知识的认识。
1. 当实验的次数很大时,我们会发现事件发生的频率稳定在相应的概率附近。
因此,我们可以通过大量实验,用一个事件发生的频率来估计这一事件发生的概率;同时能运用列举法(列表、画树状图)计算简单事件发生的概率。
2. 一般地我们用实验的方法来估计一个事件发生的概率,但有时通过实验的方法估计一个事件发生的概率有一定的难度时,我们可以通过模拟实验的方法来估计该事件发生的概率的大小。
3. 求概率的方法: (1)列表;(2)画树状图;(3)实验或模拟实验的方法二、要点分析:1. 通过实验体会概率的意义,了解频率与概率的关系。
随机现象表面看无规律可循,出现哪一个结果事先无法预料,但当我们大量地重复实验时,实验的每一个结果都会呈现出其频率的稳定性。
如:通过实验获得图钉从一定高度落下后钉尖着地的概率,在具体的实验活动中,对频率与概率之间的这种关系进行体会,通过实验感受到大量重复实验时频率可以作为事件发生概率的估计值,并可以利用这种方法来估计一些事件发生的概率。
2. 经历“猜测结果→进行实验→分析实验结果”的过程,建立正确的概率直觉。
生活经验是学习概率的基础,但其中往往有一些是错误的,因此建立正确的概率直觉是非常重要的,必须亲自经历对随机现象的探索过程,亲自动手进行实验,收集实验数据,分析实验结果,并将所得结果与自己的猜测进行比较。
如下面掷硬币游戏的公平性问题:小明和小亮在做掷硬币的游戏。
任意掷一枚硬币两次,如果两次朝上的面相同,那么小明获胜;如果两次朝上的面不同,那么小亮获胜。
这个游戏公平吗?小刚认为不公平,他认为小明获胜的概率为,而小亮获胜的概率是。
其实小刚存在的误解是把硬币出现的2313结果认为两正和两反的次数比一正一反的次数多,实际上澄清小刚误解的一个重要方法是亲身经历实验,通过实验结果修正自己的想法。
同时在实验的过程中可以发现,每一次实验的结果事先是无法预料的,收集到的实验数据都带有不确定性,但大量实验后,四种情况(两正、两反、一正一反、一反一正)出现的频率都是稳定在同一数值上,所以小刚的猜测是不正确的。
3. 学习利用列举法计算简单事件发生的概率。
了解概率的意义,理解现实世界中随机现象的特点是本章的重点和难点,通过现实生活中熟悉和感兴趣的问题,丰富对概率背景的认识,积累大量的活动经验,探索计算概率的方法,体会随机观念的特点。
如:即使告诉你中奖的概率为,那么你买张奖券也不一定能中奖;又如:明天的降110001000水概率为10%,后天的降水概率是90%,但却有可能明天下雨了,而后天没有下雨。
从这些例子可以说明我们不能在实验之前预知实验的确切结果,只能知道每个结果发生的概率,这就是随机观念。
4. 学会用实验的方法估计一个事件发生的概率,并会设计一个方案来估计一个事件发生的概率。
用模拟实验的方法来估计一个事件发生的概率是本章的一个难点。
如某种“36选6”的彩票规定:从1~36这36个数字中选择6个(可以重复),如果其中有2个与所公布的中奖号码(不妨设为3,1,8,6,6)相同,即可获取四等奖,我们就可以利用计算器模拟实验估计获得四等奖的概率,利用计算器产生1~36之间的随机数,并记录下来,每产生6个随机数为一次实验,通过多次实验来看看有与上面中奖号码中2个相同的数的频率是多少,从而估计出四等奖的中奖概率。
5. 运用统计与概率的知识和方法解决一些简单的实际问题。
通过实例进一步丰富对概率的认识,并能解决一些实际问题,如:统计一段英文中字母“A ”或“G ”出现的频率,从而了解键盘的设计原理和破译某种密码的方法;又如调查学校周围道路交通状况,为交通方面提出合理的建议等;将统计与概率有机地结合起来,学会运用概率的相关知识解决日常生活中的一些问题,从而提高自己解决问题的能力。
三、典型例题例1. 两袋分别盛着写有0,1,2,3,4,5六个数字的六张卡片,从每袋中各取一张,求所得之和等于6的概率,现有小刚和小颖分别给出了下述两种不同解答:小刚的解法:两数之和共有0,1,2,3……10,这11种不同的结果,因此所求的概率为;111小颖的解法:从每袋中各任取一张卡片共有36种取法,其中和数为6的情况共有5种。
(1,5)(2,4)(3,3)(4,2)(5,1)因此所有的概率为536请问哪一种解法正确?为什么?解:小刚的解法是错误的;小颖的解法是正确的。
因为从每袋中各取一张组成两数之和的可能结果有36种情况,且每种情况发生的可能性相同,而出现和为6的情况共5次,因此所得数字之和为的概率为。
而小刚的错误是没有考虑到事件发生的等6536可能性。
例2. 小华和小明做抛掷两枚硬币的游戏,每人各抛10次,看看不确定事件“出现两个正面”的次数。
下表是小华和小明的实验记录:实验结果的频数 小华 小明 两个正面的频数2 1 不是两个正面的频数8 9在小华的10次实验中,“出现两个正面”的次数是2次,“出现两次正面”的频率是2 102010,也就是%,小明“出现两次正面”的频率是多少?那么次实验中,小华和小明“出现不是两个正面”的频率是多少?小华和小明“出现两个正面”的频率之差是多少?并说明两人的“出现两个正面”的频率为什么不相同?解:小明在10次实验中,“出现两次正面”的次数只有1次,所以“出现两次正面”的频率是10%。
小华“出现不是两次正面”的频率是(1-20%)=80%。
小明“出现不是两次正面”的频率是(1-10%)=90%。
小华和小明“出现两个正面”的频率之差是(20%-10%)=10%。
在实验过程中,实验频率存在着偶然性、随机性。
例3.用列表的方法求下列概率1. 已知|a|=2,|b|=5,求|a+b|的值为7的概率2. 袋中有1个红球和1个黄球,它们除了颜色外其余都相同,任意摸出一球,再放回袋中再摸,求至少一次摸到红球的概率。
解:1. 因为|a|=2,所以a=±2因为|b|=5,所以b=±5a=2 a=-2b=5 (5,2)(5,-2)b=-5 (-5,2)(-5,-2)∴|+=+=+=-=+=-+=+=--=a b a b a b a b|||||||||||||||257253523527或或或∴+= P a b(||)的值为71 22.红球黄球红球(红,红)(红,黄)黄球(黄,红)(黄,黄)∴P()至少一次摸到红球=3 4练习与测试1. 某位同学抛掷两枚硬币,分10组实验,每组20次,下面是共计200次实验中记录下的结果。
实验组别两个正面一个正面没有正面第1组 6 11 3第2组 2 10 8第3组 6 12 2第4组7 10 3第5组 6 10 4第6组7 12 1第7组9 10 1第8组 5 6 9第9组 1 9 10第10组 4 14 2(1)在他的每次实验中,抛出的________、________、________都是不确定事件。
(2)在他10组实验中,抛出“两个正面”的次数最多的是他的第________组实验,抛出“两个正面”的次数最少的是他的第________组实验。
(3)在他的第1组实验中,抛出“两个正面”的频率是________,在他的前2组实验中,抛出“两个正面”的频率是________,在他的前8组实验中,抛出的“两个正面”的频率是________,从这些数据中可以说明______________。
(4)在他的10组实验中,抛出“两个正面”的频率是___________,抛出“一个正面”的频率是_________,抛出“没有正面”的频率是________,这三个频率之和是________。
2. 小亮和小明在玩游戏,游戏规则如下:投掷两个正方体的骰子,把两个骰子的点数相加,如果掷出“和为7”,则小亮赢;如果掷出“和为9”,则小明赢,你认为这个游戏公平吗?为什么?如果不公平,请用列表方法说明谁的概率大。
3. 在不透明的袋中有3个大小相同的小球,其中2个为白色,1个为红色。
每次从袋中摸出1个球,然后放回搅匀再摸,在多次的摸球实验中得到下列表中部分数据:摸球次数40 80 120 160 200 240 280 320 360 400 出现红色的频数14 23 38 52 67 86 97 111 120 136 出现红色的频率35%32%33%35%35%(1)请将数据表补充完整(2)画出频率折线图3)观察上面的图表可以发现:随着实验次数的增大,出现红色小球的频率接近于_____4. 利用计算器产生1~6的随机数(整数),连续两次随机数相同的概率是多少?试用列表法说明。
5. 准备20张大小相同的小卡片,上面分别写好数字1到20,然后将卡片放在袋子里搅匀。
每次从袋中抽出一张卡片,记录下结果,然后放回搅匀再抽。
(1)将实验结果填入下表:实验次数20 40 60 80 100 120 140 160 180 200出现5的倍数的频数出现5的倍数的频率(2)根据上表中的数据绘制频率折线图。
(3)从实验数据中可以发现什么规律?(4)频率随着实验次数的增加,稳定于什么值?(5)从袋中抽出一张卡片是5的倍数的概率是多少?答案1. (1)“两个正面”,“一个正面”,“没有正面”(2)7,9(3)30%,20%,30%,随着实验次数的增多,出现“两个正面”的频率趋于一个稳定值(4)26.5% 52% 21.5% 100%2. 不公平,P(和为7)=1 6P(和为9)=2 9列表略3. (1)28.75% 33.5% 35.8% 33.3% 34% (2)略;(3)34%4. 16列表略5. (1)略(2)略(3)随着实验次数的增加,出现5的倍数的频率趋于一个稳定值(4)1 5(5)P(5的倍数)=150989790708。