《复数》单元测试题
- 格式:pdf
- 大小:25.27 KB
- 文档页数:2
一、选择题1.设()()2225322z t t t t i =+-+++,其中t ∈R ,则以下结论正确的是( ) A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 对应的点在实轴的下方D .z 一定为实数 2.若a b 、为非零实数,则以下四个命题都成立:①10a a+≠;②()2222a b a ab b +=++;③若a b ,=则a b =±;④若2a ab =,则a b ,=则对于任意非零复数a b 、,上述命题中仍为真命题的个数为( )个. A .1 B .2 C .3 D .43.213(1)i i +=+( ) A .3122i - B .3122i + C .3122i -- D .3122i -+ 4.下列各式的运算结果为纯虚数的是A .(1+i)2B .i 2(1-i)C .i(1+i)2D .i(1+i) 5.“复数3i ia z -=在复平面内对应的点在第三象限”是“0a ≥”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.设i 是虚数单位,则2320192342020i i i i +++⋅⋅⋅+的值为( ) A .10101010i -- B .10111010i -- C .10111012i -- D .10111010i - 7.已知复数z 满足()()()1212i z i i -=++,则z 的共轭复数为( )A .1i --B .1i +C .55i +D .55i - 8.复数51i i-的虚部是( ) A .12 B .2i C .12- D .2i - 9.已知复数z 满足()2z i i i -=+,则z =( )A B C D 10.若11i ai ++是纯虚数(其中i 为虚数单位),则实数a 等于( ) A .1B .1-C .2D .2- 11.已知复数z 满足|z |=1,则|z +1-2i |的最小值为( )A 1BC .3D .212.设i 为虚数单位,a R ∈,“复数2202021a i z i =--不是纯虚数“是“1a ≠”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.设复数z 满足341z i --=,则z 的最大值是_______.14.设复数z 满足1z =,且使得关于x 的方程2230zx zx ++=有实根,则这样的复数z 的和为______.15.化简:2020201921i z i i ⎛⎫=+= ⎪ ⎪+⎝⎭________.16.在复平面内,复数(3)2a a z i =-+表示的点在直线y x =上,则z =_______. 17.在实数集R 中,我们定义的大小关系“>”为全体实数排了一个“序”.类似地,我们在复数集C 上也可以定义一个称为“序”的关系,记为“>”.定义如下:对于任意两个复数:()111222121212z a bi z a b i a a b b R z z =+=+∈,,,,,>当且仅当“12a a >”或“12a a =”且“12b b >”.按上述定义的关系“>”,给出以下四个命题:①若12z z >,则12z z >;②若1223z z z z >,>,则13z z >;③若12z z >,则对于任意12z C z z z z ∈++,>;④对于复数0z >,若12z z >,则12zz zz >.其中所有真命题的序号为______________.18.设b R ∈,i 是虚数单位,已知集合{}|2A z z i =-≤,{}11|1,B z z z bi z A ==++∈,若A B ⋂≠∅,则b 的取值范围是________. 19.已知复数z =a +3i 在复平面内对应的点位于第二象限,且|z|=2,则复数z 等于________.20.如果复数z 的模不大于1,而z 的虚部的绝对值不小于,则复平面内复数z 的对应点组成图形的面积是___.三、解答题21.已知m R ∈,复数2(1i)(5i 3)(46i)z m m =+-+-+,当m 为何值时,(1)z 为实数?(2)z 为虚数?(3)z 为纯虚数?(4)z 在复平面内对应的点在第四象限?22.已知1z i =+,i 为虚数单位.(1)若234z z ω=+-,求ω;(2)若2211z az b i z z ++=--+,求实数a ,b 的值.23.已知复数z 满足|z |=z 的实部、虚部均为整数,且z 在复平面内对应的点位于第四象限.(1)求复数z ;(2)若()22m m n i z --=,求实数m ,n 的值.24.已知复数z 满足z =,2z 的虚部为2,(1)求复数z ;(2)设22,,z z z z -在复平面上对应点分别为,,A B C ,求ABC ∆的面积. 25.已知复数z 使得2z i R +∈,2z R i∈-,其中i 是虚数单位. (1)求复数z 的共轭复数z ; (2)若复数()2z mi +在复平面上对应的点在第四象限,求实数m 的取值范围. 26.i 是虚数单位,且2(1)2(5)3i i a bi i-+++=+(,a b ∈R ). (1)求,a b 的值;(2)设复数1()z yi y R =-+∈,且满足复数()a bi z +⋅在复平面上对应的点在第一、三象限的角平分线上,求||z .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据()2222110t t t ++=++>,2253t t +-可正可负也可为0,即可判定.【详解】()2222110t t t ++=++>,z ∴不可能为实数,所以D 错误; z ∴对应的点在实轴的上方,又z 与z 对应的点关于实轴对称,z 对应的点在实轴的下方,所以C 正确;213,25302t t t -<<+-<,z 对应的点在第二象限,所以A 错误; 21,25302t t t =+-=,z 可能为纯虚数,所以B 错误; ∴C 项正确.故选:C【点睛】此题考查复数概念的辨析,关键在于准确求出实部和虚部的取值范围.2.B解析:B【解析】【分析】根据复数的概念和性质,利用复数的代数形式的运算法则,即可得出正确选项.【详解】解:对于①,当a i =时,10a a+=,即①不成立, 对于②,根据复数代数形式的运算法则,满足乘法公式,即②在正确,对于③,在复数C 中,1i =,则1,a b i ==时,a b ≠±,即③错误,对于④,根据复数代数形式的运算法则可得,若2a ab =,则a b ,=即④正确, 综上可得上述命题中仍为真命题的序号为②④,故选B.【点睛】本题考查了复数的概念和性质及复数的代数形式的运算法则,属基础题.3.A解析:A【分析】首先计算2(1)i +,之后应用复数的除法运算法则,求得结果.【详解】 ()21313312221ii i i i ++==-+, 故选A.【点睛】该题考查的是有关复数的运算,属于简单题目.4.A【分析】利用复数的四则运算,再由纯虚数的定义,即可求解.【详解】由题意,对于A 中,复数2(1)2i i +=为纯虚数,所以正确;对于B 中,复数2(1)1i i i ⋅-=-+不是纯虚数,所以不正确;对于C 中,复数2(1)2i i ⋅+=-不是纯虚数,所以不正确;对于D 中,复数(1)1i i i ⋅+=-+不是纯虚数,所以不正确,故选A.【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其四则运算技巧和常规思路. 其次要熟悉复数相关基本概念是解答此类问题的关键,着重考查了推理与计算能力,属于基础题. 5.A解析:A【详解】 因为33ai z a i i-==--,所以由题设可得00a a -<⇒>,因此0a >是0a ≥的充分不必要条件,故应选答案A . 6.B解析:B【分析】利用错位相减法、等比数列的求和公式及复数的周期性进行计算可得答案.【详解】解:设2320192342020S i i i i =+++⋅⋅⋅+,可得:24201920320023420192020iS i i i i i =++++⋅⋅⋅++,则24201923020(1)22020i S i i i i ii -=++++⋅⋅⋅+-, 2019242019202023020(1)(1)202020201i i i S i i i i i i i i i i--=+++++⋅⋅⋅+-+-=-, 可得:2(1)(1)(1)20202020202112i i i i i S i i i i ++-=+-=+-=-+-, 可得:2021(2021)(1)1011101012i i i S i i -+-++===---, 故选:B.【点睛】本题主要考查等比数列的求和公式,错位相减法、及复数的乘除法运算,属于中档题. 7.A解析:A化简得到1z i =-+,再计算共轭复数得到答案.【详解】()()()1212i z i i -=++,故()()()()()()()()()121212131211212125i i i i i i i z i i i i +++++++====-+--+,故1z i =--. 故选:A .【点睛】本题考查了复数的化简,共轭复数,意在考查学生的计算能力.8.A解析:A【解析】【分析】由题意首先化简所给的复数,然后确定其虚部即可.【详解】 由复数的运算法则可知:51i i -()()()1111122i i i i i +==-+-+, 则复数51i i-的虚部是12. 本题选择A 选项.【点睛】本题主要考查复数的运算法则,虚部的定义等知识,意在考查学生的转化能力和计算求解能力.9.A解析:A【分析】首先求得复数z ,然后求解其共轭复数并确定模即可.【详解】 由题意可得:2211i z i i i i i +=+=-++=-,则1,z i z =+=故选A .【点睛】本题主要考查复数的运算法则,复数的模的计算等知识,意在考查学生的转化能力和计算求解能力. 10.B解析:B设11i bi ai+=+,化简后利用复数相等列方程求解即可. 【详解】 设()1,,1i bi a b R ai+=∈+, 所以()11i bi ai ab bi +=⋅+=-+,所以11ab b -=⎧⎨=⎩, 解得11a b =-⎧⎨=⎩, 故选:B .【点睛】本题主要考查复数的乘法运算,考查复数相等的性质,属于基础题.11.A解析:A【分析】 根据1z =分析出z 在复平面内的轨迹方程,再根据12z i +-的几何意义以及圆外一点到圆上点的距离最小值求法求解出结果.【详解】因为|||i |1z x y =+==,所以221x y +=,即z 在复平面内表示圆O :221x y +=上的点;又|12i ||(1)(2)i |z x y +-=++-,所以|12i |z +-表示圆O 上的动点到定点(12)A -,的距离,所以min |12i |z +-为||1OA r -=,故选:A .【点睛】 关键点点睛:解答本题的关键是理解1z =对应的轨迹方程以及掌握12z i +-的几何意义,将复数模的最值问题转化为点到点的距离最值问题. 12.A解析:A【分析】先化简z ,求出a ,再判断即可.【详解】()()2202022211112121211222a i a a i a z i i i i i +=-=-=-=-----+,z 不是纯虚数,则21022a -≠,所以21≠a ,即1a ≠±, 所以1a ≠±是1a ≠的充分而不必要条件.故选:A .【点睛】本题主要考查根据复数的类型求参数,考查充分条件和必要条件的判断,考查逻辑思维能力和计算能力,属于常考题.二、填空题13.6【解析】分析:先找到复数z 对应的点的轨迹再求的最大值详解:设复数则所以复数对应的点的轨迹为(34)为圆心半径为1的圆所以的最大值是故答案为6点睛:(1)本题主要考查复数中的轨迹问题意在考查学生对这 解析:6【解析】分析:先找到复数z 对应的点的轨迹,再求z 的最大值.详解:设复数(,)z x yi x y R =+∈,则22341,(3)(4)1x yi i x y +--=∴-+-=, 所以复数对应的点的轨迹为(3,4)为圆心半径为1的圆,所以z 1516=+=.故答案为6点睛:(1)本题主要考查复数中的轨迹问题,意在考查学生对这些基础知识的掌握水平和数形结合的思想方法.(2)z a bi r ++=表示以点(a,b)为圆心r 为半径的圆,不要死记硬背,直接化成直角坐标,就一目了然. 14.【分析】首先设(且)代入方程化简为再分和两种情况求验证是否成立【详解】设(且)则原方程变为所以①且②;(1)若则解得当时①无实数解舍去;从而此时或3故满足条件;(2)若由②知或显然不满足故代入①得所 解析:74- 【分析】首先设z a bi =+ (a ,b ∈R 且221a b +=),代入方程,化简为()()222320ax ax bx bx i +++-=,再分0b =和0b ≠两种情况求,a x 验证是否成立.【详解】设z a bi =+,(a ,b ∈R 且221a b +=) 则原方程2230zx zx ++=变为()()222320ax ax bx bx i +++-=.所以2230ax ax ++=,①且220bx bx -=,②;(1)若0b =,则21a =解得1a =±,当1a =时①无实数解,舍去;从而1a =-,2230x x --=此时1x =-或3,故1z =-满足条件;(2)若0b ≠,由②知,0x =或2x =,显然0x =不满足,故2x =,代入①得38a =-,8b =±,所以838z =-±.综上满足条件的所以复数的和为3371884⎛⎫⎛⎫-+-++--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 故答案为:74-【点睛】思路点睛:本题考查复系数二次方程有实数根问题,关键是设复数z a bi =+后代入方程,再进行整理转化复数的代数形式,注意实部和虚部为0,建立方程求复数z . 15.【分析】利用的幂的性质化简即可得答案【详解】所以原式故答案为:【点睛】本题考查复数的计算合理利用常见结论可使计算简便如等等解析:1i --【分析】利用i 的幂的性质化简即可得答案.【详解】2019201633i i i i i =⋅==-,()1010202010102101010082222i 2i i i i 11i 2i 1i ⎡⎤⎛⎫-⎛⎫====⋅==-⎢⎥ ⎪ ⎪ ⎪+⎝⎭+⎢⎥⎝⎭⎣⎦,所以原式=1i --.故答案为:1i --.【点睛】 本题考查复数的计算.合理利用常见结论可使计算简便,如4i 1n =,41i i n +=,42i 1n +=-,43i i n +=-,()21i 2i +=,()21i 2i -=-,1i i=-等等. 16.【分析】根据复数几何意义列方程解方程得再根据共轭复数概念得结果【详解】解:由题意可得解得∴∴故答案为:【点睛】本题考查复数几何意义以及共轭复数概念考查基本分析求解能力属基础题解析:66i -【分析】根据复数几何意义列方程,解方程得9a =,再根据共轭复数概念得结果.【详解】解:由题意可得3a =-,解得9a =,∴66z i =+,∴66z i =-.故答案为:66i -【点睛】本题考查复数几何意义以及共轭复数概念,考查基本分析求解能力,属基础题. 17.②③【分析】根据新定义序的关系对四个命题逐一分析由此判断出真命题的序号【详解】对于①由于所以或且当满足但所以①错误对于②根据序的关系的定义可知复数的序有传递性所以②正确对于③设由所以或且可得或且即成解析:②③【分析】根据新定义“序”的关系,对四个命题逐一分析,由此判断出真命题的序号.【详解】对于①,由于12z z >,所以“12a a >”或“12a a =且12b b >”. 当121,2a a =-=-,满足12a a >但12z z <,所以①错误.对于②,根据“序”的关系的定义可知,复数的“序”有传递性,所以②正确.对于③,设z c di =+,由12z z >,所以“12a a >”或“12a a =且12b b >”,可得“12a c a c +>+”或“12a c a c +=+且12b d b d +>+”,即12z z z z +>+成立,所以③正确.对于④,当123,2,2z i z i z i ===时,126,4zz zz =-=-,12zz zz <,故④错误. 故答案为:②③【点睛】本小题主要考查新定义复数“序”的关系的理解和运用,考查分析、思考与解决问题的能力,属于基础题.18.【解析】【分析】根据复数的代数表示法及其几何意义可知集合A 表示的点的轨迹是以(01)为圆心半径为2的圆及内部;集合B 表示圆的圆心移动到了(11+b );两圆面有交点即可求解b 的取值范围【详解】由题意集解析:b ≤≤【解析】【分析】根据复数的代数表示法及其几何意义可知集合A 表示的点的轨迹是以(0,1)为圆心,半径为2的圆及内部;集合B 表示圆的圆心移动到了(1,1+b );两圆面有交点即可求解b 的取值范围.【详解】由题意,集合A 表示的点的轨迹是以(0,1)为圆心,半径为2的圆及内部; 集合B 表示点的轨迹为以(1,1+b )为圆心,半径为2的圆及内部∵A∩B≠∅,说明,两圆面有交点;∴4≤.可得:b ≤≤,故答案:b ≤≤,【点睛】本题考查复数几何意义,圆与圆的位置关系,体现了数学转化思想方法,明确A.B 集合的意义是关键,是中档题19.【分析】由题意可得a <0由|z|=2可得a 的方程解出即得【详解】∵z=a+i 在复平面内对应的点位于第二象限∴a <0由|z|=2得=2解得a=﹣1或1(舍去)∴z=﹣1+i 故答案为﹣1+i 【点睛】该题解析:【分析】由题意可得a <0,由|z|=2,可得a 的方程,解出即得.【详解】∵i 在复平面内对应的点位于第二象限,∴a <0,由|z|=2,解得a=﹣1或1(舍去),∴z=﹣.故答案为﹣【点睛】该题考查复数的模、复数代数形式的表示及其几何意义,属基础题.20.【解析】分析:先根据复数的模以及复数的虚部列不等式再根据扇形面积减去三角形面积得弓形面积详解:设则如图因此复平面内复数z 的对应点组成图形为两个弓形其面积为扇形面积减去三角形面积是点睛:本题重点考查复解析:2-32π 【解析】分析:先根据复数的模以及复数的虚部列不等式,再根据扇形面积减去三角形面积得弓形面积.详解:设(,)z x yi x y R =+∈11,2y ≤≥ ,如图,2.3AOB π∠=因此复平面内复数z 的对应点组成图形为两个弓形,其面积为扇形面积减去三角形面积是21212232(111sin )232332πππ⨯⋅-⨯⨯⨯=- 点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 22a b +(,)a b 、共轭为.-a bi三、解答题21.(1)6m =或1m =-(2)6m ≠且1m ≠-(3)4m =(4)46m <<【分析】由题意得解得22(34)(56)z m m m m i =--+--,(1)由2560m m --=,求出m 即可;(2)2560m m --≠,即可得出m ; (3)由22340560m m m m ⎧--=⎨--≠⎩,解得m 范围; (4)根据象限特征,由22340560m m m m ⎧-->⎨--<⎩,解得m 范围. 【详解】解:()()()21i 5i 346i z m m =+-+-+=()()223456i m m m m --+--, (1)由2560m m --=得6m =或1m =-,即当6m =或1m =-时,z 为实数;(2)由2560m m --≠得6m ≠且1m ≠-,即当6m ≠且1m ≠-时,z 为虚数;(3)由22340{560m m m m --=--≠,,得4m =, 即当4m =时,z 为纯虚数;(4)由22340{560m m m m -->--<,,解得46m <<, 即当46m <<时,z 在复平面内对应的点在第四象限.【点睛】本题考查复数的有关概念及其运算法则、方程与不等式的解法,考查推理能力与计算能力.22.(1)ω;(2)12a b =-⎧⎨=⎩【分析】(1)求出1z i =+的共轭复数,代入234z z ω=+-化简,再求ω; (2)根据2211z az b i z z ++=--+,得到()()21a b a i i +++=+,列方程组即可求解. 【详解】(1)已知1z i =+,1z i ∴=-,()()213141i i i ω=++--=--∴,ω∴=(2)()()22211a b a z az b i z z i i+++++==--+, ()()21a b a i i ∴+++=+,121a b a +=⎧∴⎨+=⎩,解得12a b =-⎧⎨=⎩. 【点睛】此题考查复数的基本运算,涉及共轭复数,复数的模长,根据两个复数相等列方程组求解. 23.(1) 12z i =-或2i z =-.(2) 3m =±,5n =.【分析】(1)利用已知条件,设出复数z ,通过225(,)a b a b +=∈Z 及所对点所在位置求出即可复数z ;(2)利用(1),结合复数的乘法运算求解m ,n 的值【详解】(1)设(,)z a bi a b =+∈Z ,则225(,)a b a b +=∈Z ,因为z 在复平面内对应的点位于第四象限,所以0a >,0b <,所以12a b =⎧⎨=-⎩或21a b =⎧⎨=-⎩, 所以12z i =-或2i z =-.(2)由(1)知12z i =-或2i z =-,当12z i =-时,234z i =--;当2i z =-时234z i =-.因为()22m m n i z --=,所以234m m n =±⎧⎨-=⎩,解得3m =±,5n =. 【点睛】本题考查复数的模长公式,考查复数的乘法运算,考查计算能力,是基础题24.(1)1i +或1i --;(2)1【分析】(1)设z =a +bi (a ,b ∈R ),由已知列关于a ,b 的方程组,求解可得复数z ; (2)分类求得A 、B 、C 的坐标,再由三角形面积公式求解.【详解】解:(1)设z =a +bi (a ,b ∈R ),由已知可得:22ab ==⎪⎩2221a b ab ⎧+=⎨=⎩, 解得11a b =⎧⎨=⎩或11a b =-⎧⎨=-⎩. ∴z =1+i 或z =﹣1﹣i ;(2)当z =1+i 时,z 2=2i ,z ﹣z 2=1﹣i ,∴A (1,1),B (0,2),C (1,﹣1),故△ABC 的面积S 12=⨯2×1=1; 当z =﹣1﹣i 时,z 2=2i ,z ﹣z 2=﹣1﹣3i ,∴A (﹣1,﹣1),B (0,2),C (﹣1,﹣3),故△ABC 的面积S 12=⨯2×1=1. ∴△ABC 的面积为1.【点睛】 本题考查复数的乘方和加减运算,考查复数相等的条件和复数的几何意义,以及三角形的面积的求法,考查运算能力,属于中档题.25.(1)42i +;(2)()2,2-.【分析】(1)根据2z i R +∈、2z R i∈-,结合复数的加法、除法运算即可求出z ,进而由共轭复数的概念求得z ;(2) 复数()2z mi +在复平面上对应的点在第四象限,即对应复数的实部、虚部都小于0,解不等式即可求得m 的范围【详解】(1)设(),z x yi x y R =+∈,则()22z i x y i +=++∵2z i R +∈∴2y =- 又22242255z x i x x i R i i -+-==+∈--, ∴4x = 综上,有42z i =- ∴42z i =+(2)∵m 为实数,且()()()()2224212482z mi m i m m m i +=+-=+-+-⎡⎤⎣⎦ ∴由题意得()21240820m m m ⎧+->⎪⎨-<⎪⎩,解得22m -<< 故,实数m 的取值范围是()2,2-【点睛】本题考查了复数,利用复数的四则运算及共轭复数的概念求复数,另外依据复数所处的象限求参数范围26.(1)3,1a b ==-(2【解析】分析:(1)由复数的四则运算可化简复数,再由复数相等可知实部与虚部都要相等,可求得,a b .(2)由复数的乘法运算可化简复数式为标准式,再由复数在第一、三象限的角平分线上可知复数实部等于虚部,求得参数y,再由复数模公式求得复数模.详解:(1)∵()()21253i i a bi i -+++=+ 1033i i==-+ , 又∵,a b R ∈ ∴3,1a b ==-(2)()()()31a bi z i yi +⋅=--+()()331y y i =-+++由题意可知:331y y -+=+,解得2y =-∴z ==点睛:本题主要考查复数四则运算与乘方综合运算和复数相等,及复数与坐标对应关系,及复数的模.。
数系的扩充和复数的概念单元测试姓名 座号 班级一、 选择题1. 下列说法正确的个数是( )①实数是复数; ②虚数是复数; ③实数集和虚数集的交集不是空集; ④实数集和虚数集的并集等于复数集; ⑤虚轴上的点表示的数都是虚数; ⑥实轴上的点表示的数都是实数;A 、3B 、4C 、5D 、62. 复数z满足方程1=+-z z z ,则z对应的点的轨迹是 ( )A 、直线B 、圆C 、两点D 、以上都不对3. 对于复数bi a +,下列结论正确的是( )A 、⇔=0a bi a +为纯虚数;B 、⇔=0b bi a +为实数;C 、i b a )1(-+=3+2i ⇔3=a ,3-=bD 、-1的平方等于i4. 下列说法正确的是( )A 、如果两个复数的实部的差和虚部的差都于0,那么这两个复数相等;B 、在复平面内复数bi a +对应的点为),(a bC 、如果复数yi x +是实数,则0=x ,0=y ;D 、复数i +3大于i +25. 2i i +在复平面内表示的点在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限6. 设全集I={复数},R={实数},M={纯虚数},则( )A 、I R M =B 、I R MC I = C 、R R M C I =D 、Φ=R C M I7. 以23-i 的虚部为实部,以i i 232+的实部为虚部的复数是( )A 、i 33-B 、i +3C 、i 22+-D 、i 22+8. 若(m 2-3m-4)+(m 2-5m-6)i 是纯虚数,则实数m 的值为 ( )A 、-1B 、4C 、-1或4D 、不存在9. 在复平面内,与复数z=-1-i 的共轭复数对应的点位于 ( )A 、第一象限B 、第二角限C 、第三象限D 、第四象限10. i 21i 2)i 1()i 31(63++-+++-的值是( ) i D i C B A 201、 、、 、 11. 若i 23+是关于x 的方程)R q ,p (0q px x 22∈=++的一个根,则q 的值为( )A 、26B 、13C 、 6 D、512. 221(1)(4),.z m m m m i m R =++++-∈23 2.z i =-则1m =是12z z =的( )条件A 、充分不必要B 、 必要不充分C 、 充要D 、既不充分又不必要二、填空题13. 若x 是实数,y 是纯虚数且满足y i x =+-212,则=x ,=y 。
一、选择题1.已知复数z 满足:21z -=,则1i z -+的最大值为( )A .2B 1C 1D .32.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=( )A .-16B .0C .16D .32 3.若复数()234sin12cos z i θθ=-++为纯虚数,()0,θπ∈,则θ=( ) A .6π B .3π C .23π D .3π或23π 4.若复数(1)(1)z m m m i =-+-是纯虚数,其中m 是实数,则1z =( ) A .i B .i - C .2i D .2i -5.若11z z -=+,则复数z 对应的点在( )A .实轴上B .虚轴上C .第一象限D .第二象限 6.已知复数1z ﹑2z 满足()120z z r r -=>,复数,*(1)i i n n N ω≤≤∈满足1i z r ω-=或者2i z r ω-=,且i j r ωω-≥对任意1i j n ≤<≤成立,则正整数n 的最大值为( )A .6B .8C .10D .12 7.复数252i +i z =的共轭复数z 在复平面上对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 8.已知复数1223,z i z a bi =+=+(,R,0a b b 且∈≠),其中i 为虚数单位,若12z z 为实数,则a b 的值为( ) A .32- B .23- C .23 D .329.已知复数z 满足()15i z i -+=,则z =( )A .23i +B .23i -C .32i +D .32i - 10.已知复数z 满足()12i z i -=+,则z 的共轭复数在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限 11.已知复数z 在复平面内对应的点的坐标为(1,2)-,则复数(1)z i -的虚部为( ) A .3-B .3C .3i -D .3i 12.若(),a bi a b i+∈R 与()21i +互为共轭复数,则+a b 的值为( ) A .2 B .2- C .3- D .3二、填空题13.已知复数1510z i =+ ,234z i =-,复数z 满足12111z z z =+,则z =_____________.14.复数31+i i 1i +-的值是______. 15.复数2018|(3)|z i i i =-+(i 为虚数单位),则||z =________.16.已知复数2i -(i 为虚数单位)是实系数一元二次方程20x bx c ++=的一个根,则b c +=_____.17.已知复数342i z i-=-(i 是虚数单位),则复数z 在复平面内对应的点位于第_____象限.18.在实数集R 中,我们定义的大小关系“>”为全体实数排了一个“序”.类似地,我们在复数集C 上也可以定义一个称为“序”的关系,记为“>”.定义如下:对于任意两个复数:()111222121212z a bi z a b i a a b b R z z =+=+∈,,,,,>当且仅当“12a a >”或“12a a =”且“12b b >”.按上述定义的关系“>”,给出以下四个命题:①若12z z >,则12z z >;②若1223z z z z >,>,则13z z >;③若12z z >,则对于任意12z C z z z z ∈++,>;④对于复数0z >,若12z z >,则12zz zz >.其中所有真命题的序号为______________.19.设b R ∈,i 是虚数单位,已知集合{}|2A z z i =-≤,{}11|1,B z z z bi z A ==++∈,若A B ⋂≠∅,则b 的取值范围是________. 20.已知,则 =____.三、解答题21.已知i 是虚数单位,设复数z 满足22z -=.(1)求14z i +-的最小值与最大值;(2)若4z z+为实数,求z 的值. 22.已知复数z 满足2z =,2z 的虚部为2,(1)求复数z ; (2)设22,,z z z z -在复平面上对应点分别为,,A B C ,求ABC ∆的面积.23.已知复数z 1=2+a i (其中a ∈R 且a >0,i 为虚数单位),且21z 为纯虚数.(1)求实数a 的值;(2)若11iz z =-,求复数z 的模||z . 24.已知复数z =22761a a a -+-2(56)i a a +--,a R ∈. (1)若复数z 为实数,求实数a 的值;(2)若复数z 为虚数,求实数a 的取值范围;(3)是否存在实数a ,使得复数z 为纯虚数?25.已知复数()()21,,z a i bi a b R =+-∈,其中i 是虚数单位.(1)若5z i =-,求a ,b 的值;(2)若z 的实部为2,且0a >,0b >,求证:214a b +≥.26.已知复数z 满足||z =2z 的虚部为2-,且z 在复平面内对应的点在第二象限. (1)求复数z ;(2)若复数ω满足1z z iω-≤+,求ω在复平面内对应的点的集合构成图形的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】复数方程|2|1z -=转化成实数方程()2221x y -+=,再由复数模定义|1|z i -+表示(1,1)-与圆上任一点(,)x y 间距离.【详解】解:设z x yi =+,由|2|1z -=得圆的方程()2221x y -+=,又|1|z i -+(1,1)-与圆上任一点(,)x y 间距离.则由几何意义得x ma |1|11z i -+==, 故选:B .【点睛】本题主要考查复数模的计算和几何意义,属于中档题. 2.B解析:B【分析】先求出(4,4)OA =,(4,4)OB =-,再利用平面向量的数量积求解.【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点.由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =,(4,4)OB =-,∴444(4)0OA OB ⋅=⨯+⨯-=.故选B【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.B解析:B【解析】分析:由题意得到关于sin ,cos θθ的方程组,求解方程组结合题意即可求得三角函数值,由三角函数值即可确定角的大小.详解:若复数()23412z sin cos i θθ=-++为纯虚数,则: 234sin 012cos 0θθ⎧-=⎨+≠⎩,即:23sin 41cos 2θθ⎧=⎪⎪⎨⎪≠-⎪⎩, 结合()0,θπ∈,可知:sin 1cos 2θθ⎧=⎪⎪⎨⎪=⎪⎩,故3πθ=. 本题选择B 选项.点睛:本题主要考查纯虚数的概率,三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.4.A解析:A【解析】因为复数()()11z m m m i =-+-是纯虚数,所以()1010m m m ⎧-=⎨-≠⎩,则m =0,所以z i =-,则11i z i==-. 5.B解析:B【分析】首先分析题目,设z x yi =+,将其代入11z z -=+进行化简可得0x =,从而可得结论.【详解】设z x yi =+,则11x yi x yi +-=++,即()()222211x y x y -+=++,解得0x =,所以z yi =,它对应的点在虚轴上.故选B.【点睛】本题主要考查复数的模以及复数的几何意义,属于中档题. 6.C解析:C【分析】用向量,OA OB 表示12,z z ,根据题意,可得OA OB BA r -==,因为1i z r ω-=或者2i z r ω-=,根据其几何意义可得i ω的终点的轨迹,且满足条件的终点个数即为n ,数形结合,即可得答案.【详解】用向量,OA OB 表示12,z z ,因为()120z z r r -=>,所以OA OB BA r -==,又,*(1)i i n n N ω≤≤∈满足1i z r ω-=或者2i z r ω-=,则i ω可表示以O 为起点,终点在以A 为圆心,半径为r 的圆上的向量,或终点在以B 为圆心,半径为r 的圆上的向量,则终点可能的个数即为n ,因为i j r ωω-≥,所以在同一个圆上的两个点,形成的最小圆心角为60︒,如图所示,则最多有10个可能的终点,即n =10.故选:C【点睛】解题的关键是根据所给条件的几何意义,得到i ω的终点轨迹,根据条件,数形结合,即可得答案,考查分析理解,数形结合的能力,属中档题.7.C解析:C【解析】【分析】根据复数的运算求得2i z =-+,得到z 2i =--,再根据复数的表示,即可求解,得到答案.【详解】由题意,根据复数的运算可得复数252i +i 2i z ==-+, 则z 2i =--,所以z 对应点(2,1)--在第三象限,故选C .【点睛】本题主要考查了复数的运算,以及复数的表示,其中解答中熟记复数的运算法则,以及复数的表示是解答的关键,着重考查了推理与运算能力,属于基础题.8.B解析:B【分析】先根据复数乘法计算,再根据复数概念求a,b 比值.【详解】因为()1223(z z i a bi =++)()23(32a b a b =-++) i , 所以320a b +=,因为0b ≠,所以23a b =-,选B. 【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为(,)a b 、共轭为.-a bi9.B解析:B【解析】【分析】根据复数的运算法则计算即可.【详解】()15i z i -+=,()()()()51523111i i i z i i i i +-+∴===+++-, 2 3.z i ∴=-故选B.【点睛】本题考查了复数的运算法则和共轭复数的概念,属于基础题 10.D解析:D【解析】()12i z i -=+,()()()()1i 1i 2+i 1i z ∴-+=+,13213i,i,22z z =+=+13i,22z z =-的共轭复数在复平面内对应点坐标为13,22⎛⎫-⎪⎝⎭,z 的共轭复数在复平面内对应的点在第四象限,故选D. 11.B解析:B【分析】由复数的几何意义,得到12z i =-+,再根据复数的运算法则,化简复数为(1)13z i i -=+,结合复数的概念,即可求解.【详解】由题意,复数z 在复平面内对应的点的坐标为(1,2)-, 可得12z i =-+,又由(1)(12)(1)13z i i i i -=-+-=+,所以复数(1)z i -的虚部为3.故选:B.12.A解析:A【分析】把两个复数都化为(,)a bi a b R +∈形式,然后由共轭复数定义求得,a b ,从而得结论.【详解】 因为()2i a bi a bi b ai i i++==-,()212i i +=,又1a bi +与()21i -互为共轭复数,所以0b =,2a =.则2a b +=.故选:A .二、填空题13.【分析】根据复数的四则运算公式求得再结合复数的模的计算公式即可求解【详解】由题意复数则所以所以故答案为:【点睛】本题主要考查了复数的四则运算以及复数模的计算其中解答中熟记复数的四则运算公式以及复数模【分析】 根据复数的四则运算公式,求得552z i =-,再结合复数的模的计算公式,即可求解. 【详解】由题意,复数1510z i =+ ,234z i =-, 则()()()()1211111510344251034510510343425i i i z z z i i i i i i -++=+=+=+=+-+--+, 所以()()()254225554242422i z i i i i ⨯-===-++-,所以z ==.故答案为:2. 【点睛】本题主要考查了复数的四则运算,以及复数模的计算,其中解答中熟记复数的四则运算公式,以及复数模的计算公式,准确运算是解答的关键,着重考查推理与运算能力. 14.0【分析】先利用复数的除法运算计算再计算相加即得解【详解】【点睛】本题考查了复数的四则运算考查了学生数学运算能力属于基础题解析:0【分析】 先利用复数的除法运算计算1+i 1i-,再计算3 i ,相加即得解. 【详解】 ()()()231i 1i 2i i i i 01i 1i 1i 2+++=-=-=--+.【点睛】本题考查了复数的四则运算,考查了学生数学运算能力,属于基础题.15.1【分析】由复数模的求法及虚数单位的性质化简求值【详解】解:由题得故答案为:1【点睛】本题考查复数模的求法考查虚数单位的性质是基础题 解析:1【分析】由复数模的求法及虚数单位i 的性质化简求值.【详解】解:由题得2|1|1211z i =+==-=,||1z ∴=.故答案为:1.【点睛】本题考查复数模的求法考查虚数单位i 的性质,是基础题.16.1【分析】的共轭复数是实系数一元二次方程的一个根利用一元二次方程的根与系数的关系求【详解】解:因为是实系数一元二次方程的一个根所以是实系数一元二次方程的一个根所以因此故答案为:1【点睛】本题考查了一 解析:1【分析】2i -的共轭复数2i +是实系数一元二次方程20x bx c ++=的一个根,利用一元二次方程的根与系数的关系求b 、c .【详解】解:因为2i -是实系数一元二次方程20x bx c ++=的一个根,所以2i +是实系数一元二次方程20x bx c ++=的一个根,所以[(2)(2)]4b i i =--++=-,(2)(2)5c i i =-⋅+=,因此451b c +=-+=.故答案为:1.【点睛】本题考查了一元二次方程的根与系数的关系,属于基础题.17.一【分析】化简得到得到复数对应象限【详解】复数在复平面内对应的点的坐标为(21)故复数在复平面内对应的点位于第一象限故答案为:一【点睛】本题考查了复数的模复数除法复数对应象限意在考查学生对于复数知识 解析:一【分析】化简得到2z i =+,得到复数对应象限.【详解】()()()3452522222i i z i i i i i -+====+---+,复数z 在复平面内对应的点的坐标为(2,1), 故复数z 在复平面内对应的点位于第一象限.故答案为:一.【点睛】本题考查了复数的模,复数除法,复数对应象限,意在考查学生对于复数知识的综合应用. 18.②③【分析】根据新定义序的关系对四个命题逐一分析由此判断出真命题的序号【详解】对于①由于所以或且当满足但所以①错误对于②根据序的关系的定义可知复数的序有传递性所以②正确对于③设由所以或且可得或且即成解析:②③【分析】根据新定义“序”的关系,对四个命题逐一分析,由此判断出真命题的序号.【详解】对于①,由于12z z >,所以“12a a >”或“12a a =且12b b >”. 当121,2a a =-=-,满足12a a >但12z z <,所以①错误.对于②,根据“序”的关系的定义可知,复数的“序”有传递性,所以②正确.对于③,设z c di =+,由12z z >,所以“12a a >”或“12a a =且12b b >”,可得“12a c a c +>+”或“12a c a c +=+且12b d b d +>+”,即12z z z z +>+成立,所以③正确.对于④,当123,2,2z i z i z i ===时,126,4zz zz =-=-,12zz zz <,故④错误. 故答案为:②③【点睛】本小题主要考查新定义复数“序”的关系的理解和运用,考查分析、思考与解决问题的能力,属于基础题.19.【解析】【分析】根据复数的代数表示法及其几何意义可知集合A 表示的点的轨迹是以(01)为圆心半径为2的圆及内部;集合B 表示圆的圆心移动到了(11+b );两圆面有交点即可求解b 的取值范围【详解】由题意集解析:b ≤≤【解析】【分析】根据复数的代数表示法及其几何意义可知集合A 表示的点的轨迹是以(0,1)为圆心,半径为2的圆及内部;集合B 表示圆的圆心移动到了(1,1+b );两圆面有交点即可求解b 的取值范围.【详解】由题意,集合A 表示的点的轨迹是以(0,1)为圆心,半径为2的圆及内部;集合B 表示点的轨迹为以(1,1+b )为圆心,半径为2的圆及内部∵A∩B≠∅,说明,两圆面有交点; ∴221(1b 1)4++-≤.可得:15b 15-≤≤, 故答案:15b 15-≤≤,【点睛】本题考查复数几何意义,圆与圆的位置关系,体现了数学转化思想方法,明确A.B 集合的意义是关键,是中档题20.-2-3i 【解析】分析:化简已知的等式即得a 的值详解:由题得(1-i)31+i-3i=a ∴a=(1-i)4(1+i)(1-i)-3i=-2i·-2i2-3i=-2-3i 故答案为-2-3i 点睛:(1)解析:-2-3i【解析】分析:化简已知的等式,即得 a 的值.详解:由题得,故答案为-2-3i 点睛:(1)本题主要考查复数的综合运算,意在考查学生对这些基础知识的掌握水平和基本的运算能力.(2)本题是一个易错题,已知没有说“a”是一个实数,所以它是一个复数,如果看成一个实数,解答就错了. 三、解答题21.(1)最大值为7,最小值为3.(2)见解析【分析】(1)根据题意22z -=,可知z 的轨迹为以(2,0)为圆心,以2为半径的圆,14z i +-表示点(,)x y 到(1,4)-的距离,结合几何意义求得结果;(2)根据4z z+为实数,列出等量关系式,求得结果. 【详解】(1)设z x yi =+,根据22z -=,所以有22(2)4x y -+=,所以z 的轨迹为以(2,0)为圆心,以2为半径的圆,所以2214(1)(4)(1)(4)z i x y i x y +-=++-=++-其表示点(,)x y 到(1,4)-的距离,所以其最大值为圆心(2,0)到(1,4)-的距离加半径,最小值为圆心(2,0)到(1,4)-的距离减半径,27=23=;(2)222222444()44()()x yi x y z x yi x yi x y i z x yi x y x y x y-+=++=++=++-++++, 因为4z z+为实数,所以2240y y x y -=+, 即224(1)0y x y-=+,所以0y =或224x y +=, 又因为22(2)4x y -+=,所以00x y =⎧⎨=⎩(舍去),40x y =⎧⎨=⎩,1x y =⎧⎪⎨=⎪⎩1x y =⎧⎪⎨=⎪⎩, 所以4z =或1z =+或1z =-.【点睛】该题考查的是有关复数的问题,涉及到的知识点有根据几何意义有模的最值,根据复数为实数求复数的值,属于简单题目.22.(1)1i +或1i --;(2)1【分析】(1)设z =a +bi (a ,b ∈R ),由已知列关于a ,b 的方程组,求解可得复数z ; (2)分类求得A 、B 、C 的坐标,再由三角形面积公式求解.【详解】解:(1)设z =a +bi (a ,b ∈R ),由已知可得:22ab ==⎪⎩2221a b ab ⎧+=⎨=⎩, 解得11a b =⎧⎨=⎩或11a b =-⎧⎨=-⎩. ∴z =1+i 或z =﹣1﹣i ;(2)当z =1+i 时,z 2=2i ,z ﹣z 2=1﹣i ,∴A (1,1),B (0,2),C (1,﹣1),故△ABC 的面积S 12=⨯2×1=1; 当z =﹣1﹣i 时,z 2=2i ,z ﹣z 2=﹣1﹣3i ,∴A (﹣1,﹣1),B (0,2),C (﹣1,﹣3),故△ABC 的面积S 12=⨯2×1=1. ∴△ABC 的面积为1.【点睛】 本题考查复数的乘方和加减运算,考查复数相等的条件和复数的几何意义,以及三角形的面积的求法,考查运算能力,属于中档题.23.(1)a =2.(2)|z |=2.【分析】(1)根据复数的运算,求得21z 244a ai =-+,由21z 为实数,列出方程组,即可求解; (2)化简复数得2z i =,利用复数的模的计算公式,即可求解.【详解】(1)z = (2 + a i)2 = 4-a 2 + 4a i ,因为z 为纯虚数, 所以解得a =2.(2)z 1=2+2i ,z ====2i , ∴|z |=2.【点睛】本题主要考查了复数的基本概念和复数的分类,其中解答中熟记复数的基本运算公式和复数的基本概念是解答此类问题的关键,着重考查了推理与运算能力,属于基础题. 24.(1)6;(2)(,1)(1,1)(1,6)(6,)-∞--+∞;(3)不存在实数a 使得复数z为纯虚数.【分析】根据z a bi =+为实数、虚数和纯虚数的条件,列方程,解方程求得a 的值.【详解】由于210a -≠,所以1a ≠±.(1)当z 为实数时,2560a a --=,解得6a =.(2)当z 为虚数时2560a a --≠,结合1a ≠±可知,a 的取值范围是()()()(),11,11,66,-∞-⋃-⋃⋃+∞.(3)当z 为纯虚数时,2227601560a a a a a ⎧-+=⎪-⎨⎪--≠⎩,方程227601a a a -+=-解得6a =,2560a a --≠解得1a ≠-且6a ≠,两者没有公共元素,故不存在实数a 使得复数z 为纯虚数.【点睛】本小题主要考查复数z a bi =+是实数、虚数和纯虚数的条件,属于基础题.25.(1)31a b =⎧⎨=⎩或232a b =⎧⎪⎨=⎪⎩;(2)见解析. 【分析】(1)由复数的乘法可得()22z a b ab i =+--,由5z i =-可知2521a b ab +=⎧⎨-=⎩,从而可求出a ,b 的值;(2)由z 的实部为2可得22a b +=,结合“1”的代换可知211442a b a b b a ⎛⎫+=++ ⎪⎝⎭,由基本不等式可证明214a b +≥. 【详解】 (1)解:由()()()21225z a i bi a b ab i i =+-=+--=-,则2521a b ab +=⎧⎨-=⎩, 解得31a b =⎧⎨=⎩或232a b =⎧⎪⎨=⎪⎩(2)证明:由题意知,22a b +=,所以()21121142422a b a b a b a b b a ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭, 因为0a >,0b >,所以4424a b a b b a b a +≥⋅=, 当且仅当4a b b a =,即11,2a b == 时等号成立,则()2114442a b +≥⨯+=. 【点睛】本题考查了复数的乘法运算,考查了基本不等式,考查了复数的定义.运用基本不等式求最值时,注意一正二定三相等.26.(1)1z i =-+;(2)25π 【分析】(1)设出复数z ,利用已知列出方程组,求解可得复数z ; (2)把复数1i z =-+代入iz z +,利用复数代数形式的乘除运算化简,由复数求模公式计算i z z +,由复数ω满足1015ω-≤,由复数的几何意义得出ω在复平面内对应的点的集合构成图形是什么,从而计算出对应面积.【详解】(1)设z=x+yi(x,y ∈R),则z 2=x 2-y 2+2xyi,由|z|=,z 2的虚部为-2,且z 在复平面内对应的点在第二象限, 得解得 ∴z=-1+i.(2)由(1)知,z=-1+i,∴i z z +====-+i,∴i z z +==, ∴复数ω满足|ω-1|≤. 由复数的几何意义,得ω在复平面内对应的点的集合构成的图形是以(1,0)为圆心,为半径的圆面,∴其面积为π·=. 【点睛】 本题主要考查的是复数的乘法、除法运算,属于中档题.复数的模的几何意义是复平面内两点间的距离,所以若z x yi =+,则z a bi -+表示点(),x y 与点(),a b 的距离,z a bi r -+=表示以(),a b 为圆心,以r 为半径的圆.。
一、选择题1.已知复数z 满足()20161i z i -=(其中i 为虚数单位),则z 的虚部为( )A .12B .12-C .12i D .12i -2.若a b 、为非零实数,则以下四个命题都成立:①10a a+≠;②()2222a b a ab b +=++;③若a b ,=则a b =±;④若2a ab =,则a b ,=则对于任意非零复数a b 、,上述命题中仍为真命题的个数为( )个. A .1 B .2 C .3 D .43.设i 为虚数单位,复数z 满足21ii z=-,则复数z 的共轭复数等于( )A .1-iB .-1-iC .1+iD .-1+i 4.已知复数23i -是方程220x px q ++=的一个根,则实数p ,q 的值分别是( ) A .12,26B .24,26C .12,0D .6,85.设x ∈R ,则“1x =”是“复数()()211z x x i =-++为纯虚数”的( )A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件6.已知复数()()31z m m i m Z =-+-∈在复平面内对应的点在第二象限,则1z=( )A B .2C .2D .127.,A B 分别是复数12,z z 在复平面内对应的点,O 是原点,若1212z z z z +=-,则OAB ∆一定是A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形 8.若复数z 满足232,z z i +=-其中i 为虚数单位,则z=A .1+2iB .1-2iC .12i -+D .12i --9.已知复数z 满足()()()1212i z i i -=++,则z 的共轭复数为( )A .1i --B .1i +C .55i + D .55i - 10.已知复数z 满足()211i i z+=-(i 为虚数单位),则复数z =( )A .1i +B .1i -+C .1i -D .1i --11.已知复数21aiz i+=-是纯虚数,则实数a 等于( )A B .2C D12.若32a ii-+为纯虚数,则实数a 的值为( ) A .32-B .23-C .23D .32二、填空题13.设z 为复数,且1z =,当23413z z z z ++++取得最小值时,则此时复数z =______.14.化简:202020191z i i ⎛⎫=+=⎪ ⎪+⎝⎭________.15.化简2012221i ⎛⎫+= ⎪+⎝⎭________.点集{||1|1,}D z z z C =++=∈,则||z 的最小值_____和最大值________.16.若复数z 满足111,arg 23z z z z π--⎛⎫== ⎪⎝⎭,则z 的代数形式是z =_____________. 17.若复数z满足5z z +=,则复数z =________________.18.设1x ,2x 是实系数一元二次方程20ax bx c ++=的两个根,若1x 是虚数,212x x 是实数,则24816321111112222221x x x x x x S x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭______.19.如果虚数z 满足38z =,那么3222z z z +++的值是________.20.关于x 的不等式mx 2-nx+p>0(m ,n ,p ∈R)的解集为(-1,2),则复数m+p i 所对应的点位于复平面内的第____象限.三、解答题21.复数1z 、2z 满足120z z ⋅≠,1212||||z z z z +=-,证明:21220z z <.22.设复数12i z a =+(其中a R ∈),234z i =-. (Ⅰ)若12z z +是实数,求12z z ⋅的值;(Ⅱ)若12z z 是纯虚数,求1z .23.已知复数z=(m ﹣1)+(2m+1)i (m ∈R ) (1)若复数z 为纯虚数,求实数m 的值;(2)若复数z 在复平面内的对应点位于第二象限,求 |z| 的最小值. 24.已知复数1z a i =+,21z i =-,a R ∈.(Ⅰ)当1a =时,求12z z ⋅的值; (Ⅱ)若12z z -是纯虚数,求a 的值;(Ⅲ)若12z z 在复平面上对应的点在第二象限,求a 的取值范围.25.i 是虚数单位,且2(1)2(5)3i i a bi i-+++=+(,a b ∈R ).(1)求,a b 的值;(2)设复数1()z yi y R =-+∈,且满足复数()a bi z +⋅在复平面上对应的点在第一、三象限的角平分线上,求||z .26.已知复数()()21,,z a i bi a b R =+-∈,其中i 是虚数单位. (1)若5z i =-,求a ,b 的值;(2)若z 的实部为2,且0a >,0b >,求证:214a b+≥.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 根据题意求出1122z i =+,即可得到z ,得出虚部. 【详解】20164504=⨯,201641i i ∴==.111122z i i ∴==+-,1122z i ∴=-,z ∴的虚部为12-.故选:B. 【点睛】此题考查复数的运算和概念辨析,易错点在于没能弄清虚部的概念导致选错.2.B解析:B 【解析】 【分析】根据复数的概念和性质,利用复数的代数形式的运算法则,即可得出正确选项. 【详解】解:对于①,当a i =时,10a a+=,即①不成立, 对于②,根据复数代数形式的运算法则,满足乘法公式,即②在正确, 对于③,在复数C 中,1i =,则1,a b i ==时,a b ≠±,即③错误, 对于④,根据复数代数形式的运算法则可得,若2a ab =,则a b ,=即④正确, 综上可得上述命题中仍为真命题的序号为②④, 故选B. 【点睛】本题考查了复数的概念和性质及复数的代数形式的运算法则,属基础题.3.B解析:B 【分析】利用复数的运算法则解得1z i =-+,结合共轭复数的概念即可得结果. 【详解】 ∵复数z 满足21ii z=-,∴()()()2121111i i i z i i i i +===---+, ∴复数z 的共轭复数等于1i --,故选B. 【点睛】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.4.A解析:A 【分析】复数23i -是方程的根,代入方程,整理后利用复数的相等即可求出p,q 的值. 【详解】因为23i -是方程220x px q ++=的一个根,所以22(23)(23)0i p i q -+-+=, 即(224)3100p i p q --++=,所以22403100p p q -=⎧⎨-++=⎩,解得12,26p q ==,故选A.【点睛】本题主要考查了复数方程及复数相等的概念,属于中档题.5.A解析:A 【解析】分析:先化简“复数()()211z x x i =-++为纯虚数”,再利用充要条件的定义判断.详解:因为复数()()211z x x i =-++为纯虚数,所以210, 1.10x x x ⎧-=∴=⎨+≠⎩ 因为“x=1”是“x=1”的充要条件,所以“1x =”是“复数()()211z x x i =-++为纯虚数”的充分必要条件.故答案为A.点睛:(1)本题主要考查纯虚数的概念,考查充要条件的判断,意在考查学生对这些知识的掌握水平.(2) 复数(,)z a bi a b R =+∈为纯虚数0,0a b =⎧⇔⎨≠⎩不要把下面的b≠0漏掉了. 6.C解析:C 【解析】分析:由题意得到关于m 的不等式组,求解不等式组确定m 的范围,然后结合题意即可求得最终结果.详解:由题意可得:3010x m m Z -<⎧⎪->⎨⎪∈⎩,即13m <<且m Z ∈,故2m =,则:1z i =-+,由复数的性质1122z z ===. 本题选择C 选项.点睛:本题主要考查复数的运算法则,复数的综合运算等知识,意在考查学生的转化能力和计算求解能力.7.C解析:C 【解析】因为1212z z z z +=-,所以22||OA OB OA OB OA OB OA OB +=-∴+=- , 因此0OA OB OA OB ⋅=∴⊥ ,即OAB 一定是直角三角形,选C.8.B解析:B 【解析】试题分析:设i z b a =+,则23i 32i z z a b +=+=-,故,则12i z =-,选B.【考点】注意共轭复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一.9.A解析:A 【分析】化简得到1z i =-+,再计算共轭复数得到答案. 【详解】()()()1212i z i i -=++,故()()()()()()()()()121212131211212125i i i i i i i z i i i i +++++++====-+--+,故1z i =--.故选:A . 【点睛】本题考查了复数的化简,共轭复数,意在考查学生的计算能力.10.B解析:B 【解析】因为()211i i z+=-,所以22(1)112i iz i i i ==+=-- ,选B. 11.B解析:B 【分析】化简复数2222a a z i -+=+,根据复数z 是纯虚数,得到202a -=且202a+≠,即可求解. 【详解】由题意,复数()()()()2122211122ai i ai a az i i i i +++-+===+--+, 因为复数z 是纯虚数,可得202a -=且202a+≠,解得2a =, 所以实数a 等于2. 故选:B. 【点睛】本题主要考查了复数的除法运算,以及复数的基本概念的应用,其中解答中熟记复数的运算法则,结合复数的基本概念求解是解答的关键,着重考查推理与运算能力.12.C解析:C 【分析】先化简复数,再利用纯虚数的定义求解. 【详解】由题得()(32)(32)(23)32(32)(32)13a i a i i a a ii i i -----+==++-, 因为32a ii-+为纯虚数, 则320(23)0a a -=⎧⎨-+≠⎩,所以23a =.故选:C 【点睛】结论点睛:复数(,)z a bi a b R =+∈则0a =且0b ≠,不要漏掉了0b ≠.二、填空题13.【分析】设复数的辐角为将用表示出来再利用二倍角公式二次函数性质求最小值可得与的值即可得复数【详解】设复数的辐角为所以所以故答案为:【点睛】本题主要考查了复数的三角形形式涉及三角恒等变换及二次函数性质解析:144-±【分析】设复数z 的辐角为θ,将23413z z z z ++++用θ表示出来,再利用二倍角公式,二次函数性质求最小值,可得cos θ与sin θ的值,即可得复数z . 【详解】设复数z 的辐角为θ,23413z z z z ++++==2cos22cos 3θθ=++ 24cos 2cos 1θθ=++ 21334cos 444θ⎛⎫=++≥ ⎪⎝⎭所以1cos 4θ=-,sinθ= 所以14z=-±, 故答案为:14- 【点睛】本题主要考查了复数的三角形形式,涉及三角恒等变换及二次函数性质,属于中档题.14.【分析】利用的幂的性质化简即可得答案【详解】所以原式故答案为:【点睛】本题考查复数的计算合理利用常见结论可使计算简便如等等 解析:1i --【分析】利用i 的幂的性质化简即可得答案. 【详解】2019201633i i i i i =⋅==-,()1010202010102101010082222i 2i i i i 11i 2i 1i ⎡⎤⎛⎫-⎛⎫====⋅==-⎢⎥ ⎪ ⎪ ⎪+⎝⎭+⎢⎥⎝⎭⎣⎦,所以原式=1i --. 故答案为:1i --. 【点睛】 本题考查复数的计算.合理利用常见结论可使计算简便,如4i 1n =,41i i n +=,42i 1n +=-,43i i n +=-,()21i 2i +=,()21i 2i -=-,1i i=-等等.15.13【分析】根据复数的代数形式的除法乘方运算法则计算可得根据复数的几何意义得到的轨迹即可得到的最值;【详解】解:设因为即根据复数的几何意义可知表示以为圆心为半径的圆上的点集则故答案为:;;【点睛】本解析:1- 1 3 【分析】根据复数的代数形式的除法、乘方运算法则计算可得,根据复数的几何意义得到z 的轨迹,即可得到||z 的最值; 【详解】解:2012221i ⎛⎫+ ⎪ ⎪+⎝⎭)()()201222111i i i ⎡⎤-=⎢⎥+-⎢⎥⎣⎦20120⎫=+⎪⎪⎝⎭2012022⎛⎫=-+ ⎪ ⎪⎝⎭1006222⎡⎤⎛⎫⎢⎥=- ⎪ ⎪⎢⎥⎝⎭⎣⎦()100610062514221i i i i ⨯+=-====-设(),z x yi x y R =+∈,因为{||1|1,}D z z z C =++=∈即11x yi +++=根据复数的几何意义可知{||1|1,}D z z z C =+=∈表示以(1,-为圆心,1为半径的圆上的点集,则max13z ==,min 11z ==,故答案为:1-;1;3. 【点睛】本题考查了复数代数形式的乘除运算,也考查了复数模的求法与几何意义,是中档题.16.【分析】先写出的三角形式再进行化简整理即可【详解】设则∴∴解得故答案为:【点睛】本题考查复数三角形式的定义属基础题解析:1+【分析】先写出1z z-的三角形式,再进行化简整理即可. 【详解】设01z z z -=,则001,arg 23z z π==,∴011cos sin 2334z ππ⎛⎫+= ⎪⎝⎭=,∴1144z z -=+,解得13z i =+.故答案为:1+. 【点睛】本题考查复数三角形式的定义,属基础题.17.【分析】由一定为实数由题可知的虚部为设进而求解即可【详解】因为所以的虚部为设则解得所以故答案为:【点睛】本题考查相等复数考查复数的模的应用解析:115【分析】由z 一定为实数,由题可知z 设()a a R z =∈,进而求解即可 【详解】因为5z z +=+,所以z设()a a R z =∈,则5a =,解得115a =,所以115z =, 故答案为:115【点睛】本题考查相等复数,考查复数的模的应用18.-2【分析】设(s )则则利用是实数可得于是取则代入化简即可得出【详解】设(s )则则∵是实数∴∴∴∴∴取则∴则故答案为:【点睛】本题考查了实系数一元二次方程的虚根成对定理考查了复数的概念考查了复数的性解析:-2 【分析】设1i x s t =+(s ,t ∈R ,0t ≠).则2i x s t =-.则122x x s +=,2212x x s t =+.利用212x x 是实数,可得223s t =.于是122x x s +=,2212x x s t =+.2112210x x x x ⎛⎫++= ⎪⎝⎭,取12x x ω=,则210ωω++=,31ω=.代入化简即可得出. 【详解】设1i x s t =+(s ,t ∈R ,0t ≠).则2i x s t =-.则122x x s +=,2212x x s t =+.∵()223223122222i 33i i s t x s st s t t x s t s t s t+--==+-++是实数, ∴2330s t t -=, ∴223s t =.∴122x x s +=,2212x x s t =+.∴()22221212121242s x x x x x x x x =+=++=,∴122110x x x x ++=, 取12x x ω=, 则210ωω++=, ∴31ω=. 则2481632248163211111122222211x x x x x x S x x x x x x ωωωωωω⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++=++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 220ωωωω=++++2=-.故答案为:2-.【点睛】本题考查了实系数一元二次方程的虚根成对定理,考查了复数的概念,考查了复数的性质210ωω++=,属于中档题.19.6【分析】利用立方差公式由得再将所求式子进行等价变形为最后利用整体代入计算求值【详解】由得又z 为虚数得∴故答案为:6【点睛】本题考查立方差公式的应用复数的四则运算考查转化与化归思想考查逻辑推理能力和 解析:6【分析】利用立方差公式,由38z =,得()2(2)240z z z -++=,再将所求式子进行等价变形为()323222242z z z z z z +++=+++-,最后利用整体代入计算求值.【详解】由38z =,得()2(2)240z z z -++=.又z 为虚数,得2240z z ++=.∴()3232222428026z z z z z z +++=+++-=+-=.故答案为:6【点睛】本题考查立方差公式的应用、复数的四则运算,考查转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意整体代入法的灵活运用. 20.二【解析】分析:先根据x 的不等式mx2-nx+p>0(mnp ∈R)的解集为(-12)得到再分析出m<0p>0再确定复数m+pi 所对应的点位于复平面内的第二象限详解:∵mx2-nx+p>0(mnp ∈R解析:二.【解析】分析:先根据x 的不等式mx 2-nx+p>0(m,n,p ∈R)的解集为(-1,2)得到0,n -12,m p -12,m m ⎧⎪<⎪⎪+=⎨⎪⎪⨯=⎪⎩()()再分析出m<0,p>0,再确定复数m+pi 所对应的点位于复平面内的第二象限.详解:∵mx 2-nx+p>0(m,n,p ∈R)的解集为(-1,2),0,n (-1)2,m p (-1)2,m m ⎧⎪<⎪⎪∴+=⎨⎪⎪⨯=⎪⎩即m<0,p>0.故复数m+pi 所对应的点位于复平面内的第二象限.故答案为二.点睛:(1)本题主要考查复数的几何意义和一元二次不等式的解法,意在考查学生对这些知识的掌握水平.(2)已知一元二次不等式的解集,一般要想到韦达定理.三、解答题21.见解析.【分析】通过复数的模相等,判断两个复数对应的向量垂直,然后设出复数比证明即可.【详解】设复数1z 、2z 在复平面上对应的点为1Z 、2Z ,由1212||||z z z z +=-知,以1OZ 、2OZ 为邻边的平行四边形为矩形,∴12OZ OZ ⊥,故可设12z ki z =(k ∈R 且0k ≠),∴22221220z k i k z ==-<. 【点睛】本题关键之处在于模长相等的处理,可以得到1OZ 、2OZ 为邻边的平行四边形为矩形. 22.(Ⅰ)22+4i (Ⅱ)152z =【分析】(Ⅰ)利用复数z 1+z 2是实数,求得a =4,之后应用复数乘法运算法则即可得出结果; (Ⅱ)利用复数的除法运算法则,求得12z z ,利用复数是纯虚数的条件求得a 的值,之后应用复数模的公式求得结果【详解】(Ⅰ)∵z 1+z 2=5+(a -4)i 是实数,∴a =4,z 1=2+4i ,∴z 1z 2=(2+4i )(3-4i )=22+4i ;(Ⅱ)∵()()12643823425a a i z ai z i -+++==-是纯虚数, ∴133,222a z i ==+,故195442z =+=. 【点睛】 该题考查的是有关复数的问题,涉及到的知识点有复数是实数的条件,复数的乘法运算法则,复数的除法运算,复数的模,属于简单题目.23.(1)m=1;(2)355 . 【解析】分析:(1)利用纯虚数的定义即可得出.(2)利用复数模的计算公式、几何意义即可得出.详解:(1)∵z=(m ﹣1)+(2m+1)i (m ∈R )为纯虚数,∴m ﹣1=0且2m+1≠0∴m=1(2)z 在复平面内的对应点为(m ﹣1,2m+1))由题意:,∴. 即实数m 的取值范围是.而|z|=()()22121m m -++==, 当时,=. 点睛:本题考查了纯虚数的定义、复数模的计算公式、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题.24.(Ⅰ)2i ;(Ⅱ)1;(Ⅲ)(1,1)-.【分析】(Ⅰ)写出共轭复数2z ,由复数乘法法则计算;(Ⅱ)由复数的概念可求;(Ⅲ)计算出12z z 的代数形式,得对应点坐标,由点在第二象限可得a 的范围. 【详解】(Ⅰ)由题意12z z ⋅2(1)(1)122i i i i i =++=++=; (Ⅱ)由题意12(1)2z z a i -=-+为纯虚数,则10a -=,所以1a =;(Ⅲ)212()(1)111(1)(1)222z a i a i i a ai i i a a i z i i i ++++++-+====+--+,对应点11(,)22a a -+,它是第二象限点,则102102a a -⎧<⎪⎪⎨+⎪>⎪⎩,解得11a -<<.故a 的范围是(1,1)-. 【点睛】本题考查考查的乘法和除法运算,考查复数的概念,共轭复数的概念,考查复数的几何意义.掌握复数的运算法则是解题关键.25.(1)3,1a b ==-(2【解析】分析:(1)由复数的四则运算可化简复数,再由复数相等可知实部与虚部都要相等,可求得,a b .(2)由复数的乘法运算可化简复数式为标准式,再由复数在第一、三象限的角平分线上可知复数实部等于虚部,求得参数y,再由复数模公式求得复数模.详解:(1)∵()()21253i i a bi i -+++=+ 1033i i==-+ , 又∵,a b R ∈ ∴3,1a b ==-(2)()()()31a bi z i yi +⋅=--+()()331y y i =-+++由题意可知:331y y -+=+,解得2y =- ∴z ==点睛:本题主要考查复数四则运算与乘方综合运算和复数相等,及复数与坐标对应关系,及复数的模.26.(1)31a b =⎧⎨=⎩或232a b =⎧⎪⎨=⎪⎩;(2)见解析. 【分析】(1)由复数的乘法可得()22z a b ab i =+--,由5z i =-可知2521a b ab +=⎧⎨-=⎩,从而可求出a ,b 的值;(2)由z 的实部为2可得22a b +=,结合“1”的代换可知211442a b a b b a ⎛⎫+=++ ⎪⎝⎭,由基本不等式可证明214a b+≥. 【详解】 (1)解:由()()()21225z a i bi a b ab i i =+-=+--=-,则2521a b ab +=⎧⎨-=⎩,解得31a b =⎧⎨=⎩或232a b =⎧⎪⎨=⎪⎩(2)证明:由题意知,22a b +=,所以()21121142422a b a b a b a b b a ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭, 因为0a >,0b >,所以44a b b a +≥=, 当且仅当4a b b a =,即11,2a b == 时等号成立,则()2114442a b +≥⨯+=. 【点睛】本题考查了复数的乘法运算,考查了基本不等式,考查了复数的定义.运用基本不等式求最值时,注意一正二定三相等.。
第七章复数单元测试一、单选题(共8小题)1.已知a∈R,若复数z=a2+2a+ai是纯虚数,则a=()A.0B.2C.−1D.−22.已知复数z=1+3i,i为虚数单位,则|z|=()1−iA.√2B.√5C.√10D.2√53.若复数z=(1+ai)⋅(1−i)的模等于2,其中i为虚数单位,则实数a的值为()A.−1B.0C.1D.±14.设复数z=i,则复数z的共轭复数z̅在复平面内对应的点位于()1+iA.第一象限B.第二象限C.第三象限D.第四象限5.已知z=1+i,则z(z+1)=()A.3+i B.3−i C.1+i D.1−i6.已知复数z=(3−4i)(2−i),则z的虚部为()A.2B.11C.−11D.−11i7.若z=2−i,则z2−4z=()A.-5B.-3C.3D.58.在复平面内,复数z1,z2所对应的点关于虚轴对称,若z1=1+2i,则复数z2=()A.−1−2i B.−1+2iC.1−2i D.2+i二、多选题(共4小题)9.已知复数z=1+i(其中i为虚数单位),则以下说法正确的有()A.复数z的虚部为i B.|z|=√2C.复数z的共轭复数z=1−i D.复数z在复平面内对应的点在第一象限10.下列命题中,真命题为()A.复数z=a+bi为纯虚数的充要条件是a=0B.复数z=1−3i的共轭复数为z=1+3iC.复数z=1−3i的虚部为−3D.复数√2z=1+i,则z2=i=i,则下列结论正确的是()11.已知复数z满足z+1zA .复数z 的共轭复数为−12+12iB .z 的虚部为12C .在复平面内z 对应的点在第二象限D .|z |=√2212.下列命题中正确的是( )A .已知平面向量a ⃑满足|a ⃑|=1,则a ⃑⋅a ⃑=1B .已知复数z 满足|z |=1,则z ⋅z =1C .已知平面向量a ⃑,b ⃑⃑满足|a ⃑+b ⃑⃑|=|a ⃑−b ⃑⃑|,则a ⃑⋅b ⃑⃑=0D .已知复数z 1,z 2满足|z 1+z 2|=|z 1−z 2|,则z 1⋅z 2=0三、填空题(共4小题)13.已知复数z 满足z ⋅(1−2i )=|3+4i |,则z =___________. 14.已知i 为虚数单位,则i 2020+i 2021=___________.15.复数4+3i 与-2-5i 分别表示向量OA ⃑⃑⃑⃑⃑ 与OB ⃑⃑⃑⃑⃑ ,则向量AB ⃑⃑⃑⃑⃑ 表示的复数是________. 16.已知1+2i 是方程x 2-mx +2n =0(m ,n ∈R )的一个根,则m +n =____.四、解答题(共5小题) 17.计算:(1)(1−4i )(1+i )+2+4i3+4i;(2)(1+i )51−i+(1−i )51+i;(3)(1+2i)2+3(1−i)2+i.18. 已知复数z =m 2−2m −15+(m 2−9)i ,其中m ∈R ,i 为虚数单位. (1)若z 为实数,求m 的值; (2)若z 为纯虚数,求z1+i 的虚部.19.已知复数z =(m 2−2m −3)+(m 2+m −2)i ,(m ∈R). (1)若z >0,求m 的值; (2)若z 是纯虚数,求z ⋅z̅的值.⃑⃑⃑⃑⃑ 对应的复数为1+2i,20.已知复平面内平行四边形ABCD,A点对应的复数为2+i,向量BA⃑⃑⃑⃑⃑ 对应的复数为3−i,求:向量BC(1)点D对应的复数;(2)平行四边形ABCD的面积.−isinθ,其中i为虚数单位,θ∈R.求|z1⋅z2|的21.已知复数z1=3cosθ+isinθ,z2=√24值域.22.已知复数z=3x−(x2−x)i(x∈R)的实部与虚部的差为f(x).(1)若f(x)=8,且x>0,求复数iz的虚部;(2)当f(x)取得最小值时,求复数z的实部.1+2i第七章 复数单元测试一、单选题(共8小题)1.已知a ∈R ,若复数z =a 2+2a +ai 是纯虚数,则a =( ) A .0 B .2 C .−1 D .−2【答案】D【分析】结合复数的概念得到{a 2+2a =0a ≠0,解之即可求出结果.【详解】∵z =a 2+2a +ai 是纯虚数,∴{a 2+2a =0,a ≠0,解得a =−2. 故选:D.2.已知复数z =1+3i 1−i,i 为虚数单位,则|z |=( ) A .√2 B .√5C .√10D .2√5【答案】B【分析】利用复数除法运算进行化简,再求得|z |. 【详解】z =(1+3i )(1+i )(1−i )(1+i )=−2+4i 2=−1+2i ,∴|z |=√(−1)2+22=√5. 故选:B3.若复数z =(1+ai)⋅(1−i)的模等于2,其中i 为虚数单位,则实数a 的值为( ) A .−1 B .0 C .1 D .±1【答案】D【分析】先根据复数的乘法法则得z =(1+a)+(a −1)i ,再根据模的公式列方程求解即可. 【详解】∵z =(1+ai)⋅(1−i)=1−i +ai −ai 2=(1+a)+(a −1)i 则|z|=√(1+a)2+(a −1)2=√2a 2+2=2,解得:a =±1. 故选:D. 4.设复数z =i1+i ,则复数z 的共轭复数z̅在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D【分析】先求出z ,再求出z ̅,直接得复数z ̅在复平面内对应的点. 【详解】z =i 1+i=i (1-i )(1+i )(1-i )=12+12i ,则z =12−12i ,∴z ̅在复平面内对应的点为(12,−12),位于第四象限;故选:D.5.已知z =1+i ,则z (z +1)=( ) A .3+i B .3−iC .1+iD .1−i【答案】B【分析】根据复数的四则运算法则计算即可.【详解】z ̅(z +1)=(1−i)(1+i +1)=(1−i)(2+i)=3−i ,故选:B. 6.已知复数z =(3−4i)(2−i),则z 的虚部为( )A.2B.11C.−11D.−11i【答案】C【分析】利用复数乘法求出z,即可确定其虚部.【详解】∵z=(3−4i)(2−i)=2−11i,∴z的虚部−11,故选:C7.若z=2−i,则z2−4z=()A.-5B.-3C.3D.5【答案】A【分析】依据复数的运算法则直接求解即可;【详解】z2−4z=z(z−4)=(2−i)⋅(−2−i)=i2−4=−5,故选:A8.在复平面内,复数z1,z2所对应的点关于虚轴对称,若z1=1+2i,则复数z2=()A.−1−2i B.−1+2iC.1−2i D.2+i【答案】B【分析】根据对应的点的特征直接求出即可.【详解】∵z1=1+2i对应的点为(1,2),z1,z2所对应的点关于虚轴对称,∴z2对应的点为(−1,2),∴z2=−1+2i. 故选:B.二、多选题(共4小题)9.已知复数z=1+i(其中i为虚数单位),则以下说法正确的有()A.复数z的虚部为i B.|z|=√2C.复数z的共轭复数z=1−i D.复数z在复平面内对应的点在第一象限【答案】BCD【分析】根据复数的概念判定A错,根据复数模的计算公式判断B正确,根据共轭复数的概念判断C正确,根据复数的几何意义判断D正确.【详解】∵复数z=1+i,∴其虚部为1,即A错误;|z|=√12+12=√2,故B正确;复数z的共轭复数z=1−i,故C正确;复数z在复平面内对应的点为(1,1),显然位于第一象限,故D正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.11.下列命题中,真命题为()A.复数z=a+bi为纯虚数的充要条件是a=0B.复数z=1−3i的共轭复数为z=1+3iC.复数z=1−3i的虚部为−3D .复数√2z =1+i ,则z 2=i 【答案】BCD【分析】对A,根据纯虚数的定义,可知a =0,b ≠0,故A 错.根据共轭复数,虚部的定义,可判断B,C.运用复数的四则运算,可判断D. 【详解】复数z =a +bi 为纯虚数的充要条件是a =0,b ≠0,故A 错. 复数z =1−3i 的共轭复数为z =1+3i ,复数z =1−3i 的虚部为−3,故B,C 对. 复数√2z =1+i ,则z =√2,z 2=(√2)2=2i 2=i ,故D 对.故选:BCD 11.已知复数z 满足z+1z=i ,则下列结论正确的是( )A .复数z 的共轭复数为−12+12i B .z 的虚部为12 C .在复平面内z 对应的点在第二象限 D .|z |=√22【答案】AD【分析】先由已知求出复数z ,然后再逐个分析判断即可 【详解】由z+1z=i ,得z +1=zi ,∴z =−11−i =−(1+i)(1−i)(1+i)=−12−12i , ∴复数z 的共轭复数为−12+12i ,复数z 的虚部为−12,复数z 在复平面内对应的点在第三象限,|z |=√(−12)2+(−12)2=√22,∴AD 正确,BC 错误,故选:AD 12.下列命题中正确的是( )A .已知平面向量a ⃑满足|a ⃑|=1,则a ⃑⋅a ⃑=1B .已知复数z 满足|z |=1,则z ⋅z =1C .已知平面向量a ⃑,b ⃑⃑满足|a ⃑+b ⃑⃑|=|a ⃑−b ⃑⃑|,则a ⃑⋅b ⃑⃑=0D .已知复数z 1,z 2满足|z 1+z 2|=|z 1−z 2|,则z 1⋅z 2=0 【答案】ABC【分析】结合选项逐个验证,向量的模长运算一般利用平方处理,复数问题一般借助复数的运算来进行.【详解】∵a ⃑⃑⋅a ⃑⃑=|a ⃑⃑|2=1,∴A 正确;设z =a +bi ,则z =a −bi ,∵|z |=1,∴a 2+b 2=1, ∴z ⋅z =(a +bi )(a −bi )=a 2+b 2=1,∴B 正确;∵|a ⃑⃑+b ⃑⃑|=|a ⃑⃑−b ⃑⃑|,∴a ⃑⃑2+2a ⃑⃑⋅b ⃑⃑+b ⃑⃑2=a ⃑⃑2−2a ⃑⃑⋅b ⃑⃑+b ⃑⃑2,即a ⃑⃑⋅b ⃑⃑=0,∴C 正确; ∵|1+i |=|1−i |,然而1⋅i =i ≠0,∴D 不正确. 故选:ABC.三、填空题(共4小题)13.已知复数z 满足z ⋅(1−2i )=|3+4i |,则z =___________. 【答案】1+2i【分析】根据复数的四则运算进行整理化简即可. 【详解】解:∵z ⋅(1−2i )=|3+4i |=5 ∴z =51−2i=5(1+2i )(1−2i )⋅(1+2i )=1+2i ,故答案为:1+2i.14.已知i 为虚数单位,则i 2020+i 2021=___________. 【答案】1+i【分析】根据i n 的周期性求得正确结论. 【详解】i 2020+i 2021=i 4×505+i 4×505+1=1+i . 故答案为:1+i15.复数4+3i 与-2-5i 分别表示向量OA ⃑⃑⃑⃑⃑ 与OB ⃑⃑⃑⃑⃑ ,则向量AB ⃑⃑⃑⃑⃑ 表示的复数是________. 【答案】-6-8i【分析】由复数的几何意义得出向量OA ⃑⃑⃑⃑⃑ 与OB ⃑⃑⃑⃑⃑ 的坐标,再由向量的运算得出AB ⃑⃑⃑⃑⃑ 的坐标,进而得出其复数.【详解】∵复数4+3i 与-2-5i 分别表示向量OA⃑⃑⃑⃑⃑ 与OB ⃑⃑⃑⃑⃑ ,∴OA ⃑⃑⃑⃑⃑ =(4,3),OB ⃑⃑⃑⃑⃑ =(−2,−5) 又AB ⃑⃑⃑⃑⃑ =OB ⃑⃑⃑⃑⃑ −OA ⃑⃑⃑⃑⃑ =(−2,−5)−(4,3)=(−6,−8),∴向量AB ⃑⃑⃑⃑⃑ 表示的复数是-6-8i . 故答案为:-6-8i16.已知1+2i 是方程x 2-mx +2n =0(m ,n ∈R )的一个根,则m +n =____. 【答案】92【分析】将x =1+2i 代入方程,根据复数的乘法运算法则,得到(−3−m +2n )+(4−2m )i =0,再由复数相等的充要条件得到方程组,解得即可;【详解】解:将x =1+2i 代入方程x2-mx +2n =0,有(1+2i)2-m(1+2i)+2n =0,即1+4i −4−m −2mi +2n =0,即(−3−m +2n )+(4−2m )i =0, 由复数相等的充要条件,得{−3−m +2n =04−2m =0解得{n =52m =2 ,故m +n =2+52=92. 故答案为:92 四、解答题(共5小题) 17.计算:(1)(1−4i )(1+i )+2+4i3+4i;(2)(1+i )51−i+(1−i )51+i;(3)(1+2i)2+3(1−i)2+i.【答案】(1)1−i ;(2)0;(3)15+25i 【分析】根据复数四则运算法则计算即可. 【详解】(1)原式=5−3i+2+4i 3+4i=7+i3+4i =(7+i )(3−4i )(3+4i )(3−4i )=25−25i 25=1−i .(2)原式=(1+i )6+(1−i )6(1−i )(1+i )=[(1+i )2]3+[(1−i )2]32=(2i )3+(−2i )32=−8i+8i2=0.(3)(1+2i)2+3(1−i)2+i=−3+4i+3−3i2+i=i 2+i=i(2−i)5=15+25i18. 已知复数z =m 2−2m −15+(m 2−9)i ,其中m ∈R ,i 为虚数单位. (1)若z 为实数,求m 的值; (2)若z 为纯虚数,求z1+i 的虚部. 【答案】(1)m =±3;(2)8【分析】(1)由题意得m 2−9=0,求解即可;(2)先由题意求得z =16i ,再根据复数的除法法则化简复数z 1+i,由此可求得答案.(1)解:若z 为实数,则m 2−9=0,解得m =±3. (2)解:由题意得{m 2−2m −15=0,m 2−9≠0,解得m =5,∴z =16i ,故z 1+i=16i 1+i=16i (1−i )(1+i )(1−i )=8+8i ,∴z1+i的虚部为8.19.已知复数z =(m 2−2m −3)+(m 2+m −2)i ,(m ∈R). (1)若z >0,求m 的值; (2)若z 是纯虚数,求z ⋅z̅的值. 【答案】(1)m =−2;(2)4或100【分析】(1)根据复数z >0,可知z 为实数,列出方程,解得答案;(2)根据z 是纯虚数,列出相应的方程或不等式,再结合共轭复数的概念以及复数的乘法运算,求得答案. 【详解】(1)∵z >0,∴z ∈R ,∴m 2+m −2=0,∴m =−2或m =1. ①当m =−2时,z =5>0,符合题意; ②当m =1时,z =−4<0,舍去. 综上可知:m =−2.(2)∵z 是纯虚数,∴{m 2−2m −3=0m 2+m −2≠0,∴m =−1或m =3,∴z =−2i ,或z =10i ,∴z ⋅z ̅=−2i ×2i =4或z ⋅z ̅=10i ×(−10i)=100, ∴z ⋅z ̅=4或100.20.已知复平面内平行四边形ABCD ,A 点对应的复数为2+i ,向量BA ⃑⃑⃑⃑⃑ 对应的复数为1+2i ,向量BC⃑⃑⃑⃑⃑ 对应的复数为3−i ,求: (1)点D 对应的复数; (2)平行四边形ABCD 的面积. 【答案】(1)5;(2)7【分析】(1)根据复数与向量间的关系运算得BD ⃑⃑⃑⃑⃑ =(4,1),OB ⃑⃑⃑⃑⃑ =(1,−1),则OD ⃑⃑⃑⃑⃑ =OB ⃑⃑⃑⃑⃑ +BD ⃑⃑⃑⃑⃑ =(5,0),从而得到其对应的复数; (2)cosB =BA⃑⃑⃑⃑⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ |BA⃑⃑⃑⃑⃑⃑ ||BC ⃑⃑⃑⃑⃑ |=5√2,则sinB =5√2,利用平行四边形面积公式即可得到答案.【详解】(1)∵向量BA ⃑⃑⃑⃑⃑ 对应的复数为1+2i ,∴向量BA ⃑⃑⃑⃑⃑ =(1,2), BC⃑⃑⃑⃑⃑ 对应的复数为3−i ,∴向量BC ⃑⃑⃑⃑⃑ =(3,−1), BD ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ +BC ⃑⃑⃑⃑⃑ =(1,2)+(3,−1)=(4,1), OB⃑⃑⃑⃑⃑ =OA ⃑⃑⃑⃑⃑ −BA ⃑⃑⃑⃑⃑ =(2,1)−(1,2)=(1,−1), ∴OD ⃑⃑⃑⃑⃑ =OB ⃑⃑⃑⃑⃑ +BD ⃑⃑⃑⃑⃑ =(1,−1)+(4,1)=(5,0), ∴点D 对应的复数为5 .(2)∵BA ⃑⃑⃑⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ =|BA ⃑⃑⃑⃑⃑ ||BC ⃑⃑⃑⃑⃑ |cosB ,∴cosB =BA⃑⃑⃑⃑⃑⃑ ⋅BC ⃑⃑⃑⃑⃑ |BA⃑⃑⃑⃑⃑⃑ ||BC ⃑⃑⃑⃑⃑ |=√5×√10=5√2, ∵B ∈[0,π],∴sinB =5√2,∴S =|BA⃑⃑⃑⃑⃑ ||BC ⃑⃑⃑⃑⃑ |sinB =√5×√10×5√2=7.故平行四边形ABCD 面积为7.21.已知复数z 1=3cosθ+isinθ,z 2=√24−isinθ,其中i 为虚数单位,θ∈R .求|z 1⋅z 2|的值域. 【答案】[3√24,5√24] 【分析】由复数模的定义,结合三角函数值域的求法即可求解.【详解】|z 1⋅z 2|=|(3cosθ+isinθ)⋅(√24−isinθ)|=|(3cosθ+isinθ)||(√24−isinθ)| =√(1+8cos 2θ)(18+sin 2θ)=√18+sin 2θ+cos 2θ+8sin 2θcos 2θ=√98+2sin 22θ. ∵sin 22θ∈[0,1],∴ √98+2sin 22θ∈[3√24,5√24],即|z 1⋅z 2|∈[3√24,5√24]. 22.已知复数z =3x −(x 2−x )i(x ∈R)的实部与虚部的差为f(x). (1)若f(x)=8,且x >0,求复数iz 的虚部; (2)当f(x)取得最小值时,求复数z 1+2i的实部.【答案】(1)6;(2)−75【分析】(1)由复数的实部、虚部的运算,可得f(x)=x 2+2x ,再结合题意可得x =2,再确定iz 在复平面内对应的点的坐标即可;(2)先求出函数取最小值时x 对应的值,再结合复数的除法运算即可得解.【详解】(1)由题意可得f(x)=3x +(x 2−x )=x 2+2x , ∵f(x)=8,∴x 2+2x =8, 又x >0,∴x =2,即z =6−2i , 则iz =i(6−2i)=2+6i , ∴复数iz 的虚部为6.(2)∵f(x)=x 2+2x =(x +1)2−1,∴当x =−1时,f(x)取得最小值, 此时,z =−3−2i ,则z 1+2i=−3+2i 1+2i=−(3+2i)(1−2i)5=−75+45i ,∴z1+2i 的实部为−75.。
高一数学(必修二)第五章 复数 单元测试卷及答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足i 3i z z -=+,则复数z 的实部为( )A.1B.3C.-1D.-32.在复平面内,复数11i 5z =,24i 25z =-,12z z z =+,则复数z 对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知复数z 满足4i 63i z +=+,则z 在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限4.当12m <<时,复数()()2i 4i m +-+在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限5.已知复数z 满足()()()293i z a a a =-++∈R ,若z 为纯虚数,则a =( )A.-3B.3±C.3D.06.若,a b ∈R ,i 是虚数单位,i 20212i a b +=-,则2i a b +等于( )A.20212i +B.20214i +C.22021i +D.42021i -7.已知纯虚数,其中i 为虚数单位,则实数m 的值为( )A.1B.3C.1或3D.08.已知复数z 满足,则z =( )A.3i --B.3i -+C.D.二、多选题(本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,有选错的得0分,部分选对的得2分。
)9.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( ) A.||5z =B.复数z 的实部是2C.复数z 的虚部是1D.复数在复平面内对应的点位于第一象限10.设m ∈R ,复数,则z 在复平面内对应的点可能在( ) ()()21i 4i 3z m m =+-++(3i)10z -=3i -3i +z 2352(1)i z m m m =-++-A.第一象限B.第二象限C.第三象限D.第四象限11.对于复数(,)z a bi a b R =+∈,下列结论错误的是( )A.若,则a bi +为纯虚数B.若32a bi i -=+,则 3,2a b ==C.若0b =,则a bi +为实数D.纯虚数z 的共轭复数是z - 12.复数z 满足23i 3i 232iz -⋅-=+,则下列说法正确的是( ) A.z 的实部为3 B.z 的虚部为2 C.32i z =-+ D.13z =三、填空题:本题共4小题,每小题5分,共20分.13.已知1z 、2z ∈C ,且12i z =+,234i z =-(其中i 为虚数单位),则12z z -=______.14.已知1z 、2z ∈C ,且12i z =+,234i z =-(其中i 为虚数单位),则12z z -=____________.15.复数1i -的虚部的平方是_________________. 16.已知3i 1ia ++(i 为虚数单位,∈R )为纯虚数,则a =____________. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. (10分)已知复数(3)(3)i z m m m =-+-,其中i 为虚数单位.若z 满足下列条件,求实数m 的值:(1)z 为实数;(2)z 为纯虚数;(3)z 在复平面内对应的点在直线y x =上.18. (12分)已知复数13i 22z =-+,i 为虚数单位. (1)求3z 的值;(2)类比数列的有关知识,求220191z z z ++++的值. 19. (12分)已知复数()()2223232i z m m m m =--+-+.当实数m 取什么值时,复数z 是:(1)实数;(2)纯虚数;20. (12分)复数名12334i,0,(26)i z z z c c =+==+-在复平面内对应的点分别为A ,B ,C ,若BAC∠是钝角,求实数c 的取值范围.21. (12分)已知(){}221,2,3156i ,{1,3},{3}A a a a a B A B =--+--=-⋂=,求实数a 的值.22. (12分)设实部为正数的复数z ,满足||10z =,且复数(12i)z +在复平面内对应的点在第0a =一、三象限的角平分线上.(1)求复数z ;(2)若i ()1im z m -+∈+R 为纯虚数,求实数m 的值.参考答案及解析1.答案:A解析:解法一 设复数i z x y =+,x ,y ∈R ,因为i 3i z z -=+,所以i (i)i 3i x y x y +-+=+,即()i 3i x y y x ++-=+,根据复数相等的充要条件,可得3,1,x y y x +=⎧⎨-=⎩解得1,2,x y =⎧⎨=⎩故复数z 的实部为1,选A.解法二 因为i 3i z z -=+,所以3i (3i)(1i)12i 1i (1i)(1i)z +++===+--+,复数z 的实部为1,故选A. 2.答案:B 解析:因为1214i i 22i 55z z z =+=+-=-+,所以实部小于0,虚部大于0,故复数z 对应的点位于第二象限,故选:B.3.答案:D解析:依题意得,6i z =-,对应复平面的点是(6,1)-,在第四象限. 故选:D.4.答案:B解析:()()2i 4i (24)(1)i z m m m +--+-=+=,若12m <<,则240m -<,10m ->,所以复数z 在复平面内对应的点位于第二象限.故选:B.解析:因为()()()293i z a a a =-++∈R 为纯虚数,所以290a -=且30a +≠,所以3a =. 故选:C.6.答案:D解析:因为i 20212i a b +=-,所以2a =,2021b -=,即2a =,2021b =-,所以2i 42021i a b +=-.故选:D.7.答案:B解析:因为()()21i 4i 3z m m =+-++为纯虚数,故()224i 3m m m z m -++-=,则224300m m m m ⎧-+=⎨-≠⎩,解得3m =. 故选:B.8.答案:D 解析:1010(3i)3i 3i (3i)(3i)z +===+--+. 故选:D.9.答案:ABD解析:(1i)3i z +=+,3i (3i)(1i)42i 2i 1i (1i)(1i)2z ++--∴====-++-,||5z ∴=A 正确;复数z 的实部是2,故选项B 正确;复数z 的虚部是-1,故选项C 错误;复数2i z =+在复平面内对应的点为(2,1),位于第一象限,故选项D 正确.故选ABD.10.答案:ABD解析:由题意得,复数z 在复平面内对应的点为()2352,1m m m -+-. 当10m ->,即1m <时,二次函数2352(32)(1)y m m m m =-+=--的取值有正有负,故z 在复平面内对应的点可以在第一、二象限.当10m -<,即1m >时,二次函数2352(32)(1)0y m m m m =-+=-->,故z 在复平面内对应的点可以在第四象限.故z 在复平面内对应的点一定不在第三象限.故选ABD.解析:解:因为(,)z a bi a b R =+∈当0a =且0b ≠时复数为纯虚数,此时z bi z =-=-,故A 错误,D 正确; 当0b =时,复数为实数,故C 正确;对于B :32a bi i -=+,则32a b =⎧⎨-=⎩即32a b =⎧⎨=-⎩,故B 错误; 故错误的有AB ;故选:AB.12.答案:BD 解析:由23i 3i 232iz -⋅-=+得,(23i)(32i)13i 13i (23i)i(23i)32i 23i 23i (23i)(23i)z ++⋅+====+=-+---+ 所以z 的实部为-3,虚部为2,,13z =,故选BD.13.答案:15i -+解析:122i 34i 15i z z -=+-+=-+.故答案为:15i -+.14.答案:15i -+解析:122i 34i 15i z z -=+-+=-+.故答案为:15i -+.15.答案:1解析:复数1i -的虚部为-1,则其平方为1. 故答案为:1.16.答案:-3 解析:()()()()()()3i 1i 33i 33i 3i 1i 1i 1i 222a a a a a a +⋅-++--++===+++⋅- 因为复数为纯虚数,所以302a +=,3a =-. 故答案为:-3.17.答案:(1)(2)0m =(3)1m =或3m = 32i z =--3m =解析:(1)z 为实数,30m ∴-=,解得:3m =;(2)z 为纯虚数,(3)0030m m m m -=⎧⇒=⎨-≠⎩;(3)z 在复平面内对应的点在直线y x =上, ∴()331m m m m -=-⇒=或3m =.18、(1)答案:31z = 解析:复数13i 22z =-+(i 为虚数单位), 222113313()2()i (i)i 222222z ∴=-+⨯-⨯+=--, 322131313i)(i)i 12222(44z z z ∴=---+==-=⋅, (2)答案:1解析:202022013673911()111z z z z z z z z++++--⋅==-- 111z z-==- 19.答案:(1) 即1m =或2m =时,复数z 为实数(2) 12m =-复数z 为纯虚数解析:(1)当2320m m -+=时,即1m =或2m =时,复数z 为实数;(2)若z 为纯虚数,则222320320m m m m ⎧--=⎨-+≠⎩,解得1 2212m m m m ⎧=-=⎪⎨⎪≠≠⎩或且, 12m ∴=-,即12m =-时,复数z 为纯虚数; 20.答案:49911c c c ⎧⎫>≠⎨⎬⎩⎭∣,且 解析:在复平面内三点坐标为(3,4),(0,0),(,26)A B C c c -, 由BAC ∠为钝角得cos 0BAC ∠<,且A ,B ,C 不共线.(3,4),(3,210),0AB AC c c AB AC =--=--⋅<,且不共线,得c 的取值范围是49911c c c ⎧⎫>≠⎨⎬⎩⎭∣,且. 21.答案:1a =-解析:由题意知,()223156i 3()a a a a a --+--=∈R ,所以22313,560,a a a a ⎧--=⎨--=⎩即 所以1a =-.22.答案:(1)(2)5m =-解析:(1)设,a ,b ∈R ,0a >, 由题意知,2210a b +=.①(12i)(12i)(i)2(2)i z a b a b a b +=++=-++, 得22a b a b -=+.②①②联立,解得3a =,1b =-, 得3i z =-.(2), 所以1302m -+=且, 解得5m =-. 4 1,6 1,a a a a ==-⎧⎨==-⎩或或3i z =-i z a b =+i (i)(1i)113i 31i 1i 222m m m m z ----+⎛⎫+=++=++- ⎪+⎝⎭1102m +-≠。
一、选择题1.复数z 满足5(3)2i z i ⋅+=-,则z 的虚部是( )A .12B .12- C .12i - D .12i 2.下列各式的运算结果为纯虚数的是A .(1+i)2B .i 2(1-i)C .i(1+i)2D .i(1+i) 3.若复数z 满足12z i i •=+,则z 的共轭复数的虚部为( )A .iB .i -C .1-D .1 4.欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,e 2i 表示的复数在复平面中对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 5.已知集合,()(){}221,3156M m m m m i =--+--,{}1,3N =,{}1,3M N ⋂=,则实数m 的值为 ( )A .4B .-1C .4或-1D .1或6 6.若C z ∈,且22i 1z +-=,则22i z --的最小值是( )A .2B .3C .4D .57.已知复数1z i =-(i 为虚数单位)是关于x 的方程20x px q ++=(p ,q 为实数)的一个根,则p q +的值为( )A .4B .2C .0D .2-8.已知下列三个命题:①若复数z 1,z 2的模相等,则z 1,z 2是共轭复数;②z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数;③复数z 是实数的充要条件是z z =.则其中正确命题的个数为( )A .0个B .1个C .2个D .3个9.复数z 满足()234(i z i i --=+为虚数单位),则(z = )A .2i -+B .2i -C .2i --D .2i +10.在复平面内,复数201812z i i =++对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限 11.已知复数123,,z z z 满足:1233421, 41, 1z i z i z z i +-=-=-=-,那么3132+z z z z --的最小值为( )A .2B .C .2D .12.设i 为虚数单位,a R ∈,“复数2202021a i z i=--不是纯虚数“是“1a ≠”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件第II 卷(非选择题) 请点击修改第II 卷的文字说明参考答案二、填空题13.已知复数z 满足||1z =,则|i ||i |z z ++-的最大值是__________.14.从集合{}0,1,2,3,4,5,6中任取两个互不相等的数a ,b ,组成复数i a b +,其中虚数有______个.15.设复数z 满足1z =,且使得关于x 的方程2230zx zx ++=有实根,则这样的复数z 的和为______.16.i 表示虚数单位,则201211i i +⎛⎫= ⎪-⎝⎭______.17.设i 为虚数单位,复数z 满足()()2133i z i +=-+,则z =______. 18.已知1cos z isin αα=+,2cos z isin ββ=-,α,β为实数,i 为虚数单位,且125121313z z i -=+,则cos()αβ+的值为_______. 19.设b R ∈,i 是虚数单位,已知集合{}|2A z z i =-≤,{}11|1,B z z z bi z A ==++∈,若A B ⋂≠∅,则b 的取值范围是________. 20.已知|z|=3,且z+3i 是纯虚数,则z=________.三、解答题21.已知复数z 满足:||13z i z =+-,求22(1)(34)2i i z++的值. 22.已知:复数1z 与2z 在复平面上所对应的点关于y 轴对称,且12(1)(1)z i z i -=+(i 为虚数单位),|1z |=2.(I )求1z 的值;(II )若1z 的虚部大于零,且11m z n i z +=+(m ,n ∈R ),求m ,n 的值. 23.已知复数12z i =-+,1255z z i =-+(其中为虚数单位)(1)求复数2z ;(2)若复数()()()2323231z z m m m i ⎡⎤=---+-⎣⎦所对应的点在第四象限,求实数m 的取值范围.24.已知i 是虚数单位,复数11()z ai a R =-∈,复数2z 的共轭复数234z i =-. (1)若12z z R +∈,求实数a 的值;(2)若12z z 是纯虚数,求1z . 25.已知复数z =22761a a a -+-2(56)i a a +--,a R ∈. (1)若复数z 为实数,求实数a 的值;(2)若复数z 为虚数,求实数a 的取值范围;(3)是否存在实数a ,使得复数z 为纯虚数?26.已知关于x 的方程2(21)30x i x m i --+-=有实数根,求实数m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】 通过5(3)2i z i ⋅+=-计算出z ,从而得到z ,根据虚部的概念即可得结果.【详解】 ∵5(3)2i z i ⋅+=-,∴()()()()5232211333322i i i i z i i i i i ----====-+++-, ∴1122z i =+,即z 的虚部是12,故选A. 【点睛】 本题主要考查了复数除法的运算,共轭复数的概念,复数的分类等,属于基础题. 2.A解析:A【分析】利用复数的四则运算,再由纯虚数的定义,即可求解.【详解】由题意,对于A 中,复数2(1)2i i +=为纯虚数,所以正确;对于B 中,复数2(1)1i i i ⋅-=-+不是纯虚数,所以不正确;对于C 中,复数2(1)2i i ⋅+=-不是纯虚数,所以不正确;对于D 中,复数(1)1i i i ⋅+=-+不是纯虚数,所以不正确,故选A.【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其四则运算技巧和常规思路. 其次要熟悉复数相关基本概念是解答此类问题的关键,着重考查了推理与计算能力,属于基础题.3.D解析:D【解析】【分析】利用复数的运算法则、共轭复数的定义、虚部的定义即可得出.【详解】12iz i =+,()12i iz i i ∴-⋅=-+,2z i =-+则z 的共轭复数2z i =+的虚部为1.故选D .【点睛】本题考查了复数的运算法则、共轭复数的定义、虚部的定义,考查了推理能力与计算能力,属于基础题.4.B解析:B【分析】由题意得2cos 2sin 2i e i =+,得到复数在复平面内对应的点(cos 2,sin 2),即可作出解答.【详解】由题意得,e 2i =cos 2+isin 2,∴复数在复平面内对应的点为(cos 2,sin 2).∵2∈,∴cos 2∈(-1,0),sin 2∈(0,1),∴e 2i 表示的复数在复平面中对应的点位于第二象限,故选B.【点睛】本题主要考查了复数坐标的表示,属于基础题.5.B解析:B【分析】根据交集的定义可得()()2231563m m m m i --+--=,由复数相等的性质列方程求解即可.【详解】因为()(){}221,3156M m m m m i =--+--,{}1,3N =,{}1,3M N ⋂=,所以()()2231563m m m m i --+--=, 可得223131560m m m m m ⎧--=⇒=-⎨--=⎩,故选B. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算.6.B解析:B【分析】由复数的模的几何意义,可得z 在复平面的轨迹是以()2,2-为圆心,以1为半径的圆,根据圆的几何性质可得结果.【详解】设i z x y =+(),x y ∈R ,则()22i 22i 1z x y +-=++-=,所以()()22221x y ++-=,表示圆心为()2,2-,半径为1r =的圆.()()22i 22i z x y --=-+-=,表示点(),x y 和()2,2之间的距离, 故()min 22i 22413z r --=---=-=.故选:B.【点睛】本题考查复数的模的几何意义,考查圆的性质,考查学生的计算求解能力,属于中档题. 7.C解析:C【分析】根据实系数一元二次方程的根与系数的关系,求出p ,q 即可求解.【详解】因为复数1z i =-(i 为虚数单位)是关于x 的方程20x px q ++=(p ,q 为实数)的一个根,所以1z i =+也是方程的一个根,故z z p z z q +=-⎧⎨⋅=⎩,即22p q =-⎧⎨=⎩, 所以0p q +=,故选:C【点睛】本题主要考查了实系数一元二次方程的根,根与系数的关系,属于中档题.8.C解析:C【分析】运用复数的模、共轭复数、虚数等知识对命题进行判断.【详解】对于①中复数1z 和2z 的模相等,例如1=1+z i ,2z ,则1z 和2z 是共轭复数是错误的;对于②1z 和2z 都是复数,若12+z z 是虚数,则其实部互为相反数,则1z 不是2z 的共轭复数,所以②是正确的;对于③复数z 是实数,令z a =,则z a =所以z z =,反之当z z =时,亦有复数z 是实数,故复数z 是实数的充要条件是z z =是正确的.综上正确命题的个数是2个.故选C【点睛】本题考查了复数的基本概念,判断命题是否正确需要熟练掌握基础知识,并能运用举例的方法进行判断,本题较为基础.9.C解析:C【解析】【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.【详解】由()2345i z i --=+=,得()()()5252222i z i i i i -+===-+-----+, 2z i ∴=--.故选C .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.10.C解析:C【解析】 因为201812z i i =++()()22231122555i i i i i i --=+=-=--+- ,复数201812z i i=++对应的点的坐标为31,55⎛⎫-- ⎪⎝⎭ ,故复数201812z i i=++对应的点位于第三象限,故选C. 11.A解析:A【分析】先求出复数123,,z z z 对应的点的轨迹,再利用数形结合分析得解.【详解】1421, z i +-=表示1z 的轨迹是以A (4,2)-为圆心,以1为半径的圆;2 41, z i -=表示2z 的轨迹是以B (0,4)为圆心,以1为半径的圆;331z z i -=-,表示3z 的轨迹是直线y x =,如图所示:3132+z z z z --表示直线y x =上的点C 到圆A 和圆B 上的点的距离,先作出点B (0,4)关于直线y x =的对称点D (4,0),连接AD , 与直线y x =交于点C . 3132+z z z z --的最小值为2||||||2(44)222172CE CF AD +=-=++=. 故选:A【点睛】关键点点睛:解答本题的关键是能由复数方程得到复数对应的点的轨迹,通过数形结合分析得到动点处于何位置时,3132+z z z z --取到最小值.意在考查学生对复数的轨迹问题的理解掌握水平.12.A解析:A【分析】先化简z ,求出a ,再判断即可.【详解】()()2202022211112121211222a i a a i a z i i i i i +=-=-=-=-----+, z 不是纯虚数,则21022a -≠,所以21≠a ,即1a ≠±, 所以1a ≠±是1a ≠的充分而不必要条件.故选:A .【点睛】本题主要考查根据复数的类型求参数,考查充分条件和必要条件的判断,考查逻辑思维能力和计算能力,属于常考题.二、填空题13.【分析】设则化简可得;然后分类讨论去绝对值在根据三角函数的性质即可求出结果【详解】设则当时所以的最大值是;当时所以的最大值是;当时所以综上的最大值是故答案为:【点睛】本题考查复数的代数表示法及其几何解析:【分析】设cos sin (,0)2z i θθθπ=+≤<,则化简可得cos cos 2222z i z i θθθθ++-=++-;然后分类讨论去绝对值,在根据三角函数的性质,即可求出结果.【详解】设cos sin (,0)2z i θθθπ=+≤< .则z i z i ++-===cos cos 2222θθθθ=++-. 02θπ≤<,02θπ∴≤<.当0,24θπ⎡⎤∈⎢⎥⎣⎦时,0sin cos 122θθ≤≤≤≤,所以2z i z i θ+-=+,z i z i ++-的最大值是当3,244θππ∈⎛⎤ ⎥⎝⎦时,cos sin 12222θθ-≤<<≤,所以2z i z i θ++-=,z i z i ++-的最大值是;当3,24θππ∈⎛⎫ ⎪⎝⎭时,1cos sin 2222θθ-<<-<<,所以sin cos 22θθ<,2z i z i θ++-=-,z i z i ++-<.综上,z i z i ++-的最大值是故答案为:【点睛】本题考查复数的代数表示法及其几何意义,考查复数模的求法,训练了利用三角函数求最值,是中档题.14.36【分析】若复数为虚数则分两种情况讨论即得解【详解】从集合中任取两个互不相等的数组成复数当时对应的有6个值;当取123456时对应的只有5个值所以虚数有(个)故答案为:36【点睛】本题考查了虚数的解析:36【分析】若复数i a b +为虚数,则0,0a b =≠,分0,0a a =≠两种情况讨论即得解.【详解】从集合{}0,1,2,3,4,5,6中任取两个互不相等的数a ,b ,组成复数i a b +,当0a =时,对应的b 有6个值;当a 取1,2,3,4,5,6时,对应的b 只有5个值.所以虚数有66536+⨯=(个).故答案为:36.【点睛】本题考查了虚数的定义,考查了学生概念理解,数学运算,分类讨论的能力,属于基础题. 15.【分析】首先设(且)代入方程化简为再分和两种情况求验证是否成立【详解】设(且)则原方程变为所以①且②;(1)若则解得当时①无实数解舍去;从而此时或3故满足条件;(2)若由②知或显然不满足故代入①得所 解析:74- 【分析】首先设z a bi =+ (a ,b ∈R 且221a b +=),代入方程,化简为()()222320ax ax bx bx i +++-=,再分0b =和0b ≠两种情况求,a x 验证是否成立.【详解】设z a bi =+,(a ,b ∈R 且221a b +=) 则原方程2230zx zx ++=变为()()222320ax ax bx bx i +++-=.所以2230ax ax ++=,①且220bx bx -=,②;(1)若0b =,则21a =解得1a =±,当1a =时①无实数解,舍去;从而1a =-,2230x x --=此时1x =-或3,故1z =-满足条件;(2)若0b ≠,由②知,0x =或2x =,显然0x =不满足,故2x =,代入①得38a =-,b =所以838z =-±.综上满足条件的所以复数的和为3371884⎛⎫⎛⎫-+-++--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 故答案为:74-【点睛】思路点睛:本题考查复系数二次方程有实数根问题,关键是设复数z a bi =+后代入方程,再进行整理转化复数的代数形式,注意实部和虚部为0,建立方程求复数z .16.1【分析】利用复数代数形式的乘除运算化简再利用复数的乘法计算可得【详解】解:且……故答案为:【点睛】本题考查复数的代数形式的乘除运算以及复数的乘方属于基础题解析:1【分析】 利用复数代数形式的乘除运算化简11i i+-,再利用复数的乘法计算可得. 【详解】 解:()()()211111i i i i i i ++==--+ 且1i i =,21i =-,3i i =-,41i =,5i i =…… 2012201245034111i i i i i ⨯+⎛⎫∴==== ⎪-⎝⎭ 故答案为:1【点睛】本题考查复数的代数形式的乘除运算以及复数的乘方,属于基础题.17.【分析】根据复数的除法运算化简求得再结合复数的模的运算公式即可求解【详解】由则所以故答案为:【点睛】本题主要考查了复数的除法运算以及复数的模的运算其中解答中熟记复数的运算法则以及复数模的计算公式是解 解析:2【分析】根据复数的除法运算,化简求得1z =-,再结合复数的模的运算公式,即可求解. 【详解】由()222(2i i =-+=-,则21z ====-,所以12z =-=.故答案为:2.【点睛】本题主要考查了复数的除法运算,以及复数的模的运算,其中解答中熟记复数的运算法则,以及复数模的计算公式是解答的关键,着重考查推理与运算能力.18.【分析】根据复数减法和复数相等的条件列方程组结合两角和的余弦公式化简求得的值【详解】得即故答案为:【点睛】本小题主要考查复数减法和复数相等的条件考查两角和的余弦公式考查化归与转化的数学思想方法属于基 解析:12【分析】根据复数减法和复数相等的条件列方程组,结合两角和的余弦公式,化简求得cos()αβ+的值.【详解】1cos sin z i αα=+,2cos sin z i ββ=-,12512(cos cos )(sin sin )1313z z i i αβαβ∴-=-++=+,5cos cos ,1312sin sin ,13αβαβ⎧-=⎪⎪∴⎨⎪+=⎪⎩①② 22+①②,得22cos()1αβ-+=,即1cos()2αβ+=. 故答案为:12【点睛】 本小题主要考查复数减法和复数相等的条件,考查两角和的余弦公式,考查化归与转化的数学思想方法,属于基础题.19.【解析】【分析】根据复数的代数表示法及其几何意义可知集合A 表示的点的轨迹是以(01)为圆心半径为2的圆及内部;集合B 表示圆的圆心移动到了(11+b );两圆面有交点即可求解b 的取值范围【详解】由题意集解析:b ≤≤【解析】【分析】根据复数的代数表示法及其几何意义可知集合A 表示的点的轨迹是以(0,1)为圆心,半径为2的圆及内部;集合B 表示圆的圆心移动到了(1,1+b );两圆面有交点即可求解b 的取值范围.【详解】由题意,集合A 表示的点的轨迹是以(0,1)为圆心,半径为2的圆及内部; 集合B 表示点的轨迹为以(1,1+b )为圆心,半径为2的圆及内部∵A∩B≠∅,说明,两圆面有交点;∴4≤.可得:b ≤≤,故答案:b ≤≤,【点睛】本题考查复数几何意义,圆与圆的位置关系,体现了数学转化思想方法,明确A.B 集合的意义是关键,是中档题20.3i 【解析】设z=a+bi(ab ∈R)因为|z|=3所以a2+b2=9又z+3i=a+bi+3i=a+(b+3)i 为纯虚数所以即又a2+b2=9所以a=0b=3所以z=3i解析:3i【解析】设z=a+bi(a,b ∈R),因为|z|=3,所以a 2+b 2=9.又z+3i=a+bi+3i=a+(b+3)i 为纯虚数,所以a 0,b 30,=⎧⎨+≠⎩即a 0,b 3.=⎧⎨≠-⎩又a 2+b 2=9,所以a=0,b=3,所以z=3i.三、解答题21.34i +【分析】先根据复数相等解得z ,再根据复数运算法则求解【详解】设,(,)z a bi a b R =+∈,而||13z i z =+-130i a bi -++=则410{,43330a a z ib b =--=⇒=-+=-= 所以2222(1)(34)2(34)2(34)3422(43)2(34)i i i i i i i z i i i ++++===+-++ 【点睛】本题考查复数相等以及复数运算法则,考查基本分析求解能力,属基础题.22.(I )11z i =-或11z i =-+(II )4,1m n =-=【分析】(I )设1z x yi =+,得出2z 的表达式,根据12(1)(1)z i z i -=+和1z =方程组求得,x y 的值,进而求得1z 的值.(II )根据(I )的结论确定1z 的值.代入11m z n i z +=+运算化简,根据复数相等的条件列方程组,解方程组求得,m n 的值. 【详解】解:(I )设1z x yi =+(x ,y ∈R ),则2z =-x+yi ,∵z 1(1-i )=2z (1+i ),|1z |=2,∴22()(1)()(1)2x yi i x yi i x y +-=-++⎧⎨+=⎩, ∴11x y =⎧⎨=-⎩或11x y =-⎧⎨=⎩,即11z i =-或11z i =-+ (II )∵1z 的虚部大于零,∴11z i =-+,∴11z i =--,则有(1)1m i n i i +--=+-+,∴12112m n m ⎧--=⎪⎪⎨⎪--=⎪⎩,∴41m n =-⎧⎨=⎩. 【点睛】 本小题主要考查复数的概念,考查复数的模、复数相等、复数的虚部等知识,属于基础题. 23.(1)23z i =-;(2)11m -<<【解析】试题分析:(1)根据复数的四则运算即可求得;(2)将23Z i =-代入得()()23123Z m m m i =--+--,由复数的概念和几何意义得()210230m m m ⎧-->⎨--<⎩,解得11m -<<.试题(1)1255z z i =-+,21555532i i z i z i-+-+===--+ (2)()()()2323231z z m m m i ⎡⎤=---+-⎣⎦()()2231i m m m i ⎡⎤=--+-⎣⎦ ()()2123m m m i =--+--由于3z 所对应的点在第四象限,,所以实数m 的取值范围是24.(1)4;(2)54. 【分析】(1)先求出124(4)z +z =+a i -,再根据12z z R +∈,求出实数a 的值;(2)由已知得1234(34)25z a a i z --+=,再根据12z z 是纯虚数求出a 的值即得解. 【详解】223434z i z i =-∴=+(1)由已知得12(1)(34)4(4)z +z =ai ++i =+a i --12,40z z R a +∈-=∴4a ∴=(2)由已知得121(1)(34)34(34)34(34)(34)25z ai ai i a a i z i i i -----+===++- 12z z 是纯虚数,340340a a -=⎧∴⎨+≠⎩, 解得34a =,135144z i ∴=-==. 【点睛】本题主要考查复数的计算和复数的概念,考查复数模的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.25.(1)6;(2)(,1)(1,1)(1,6)(6,)-∞--+∞;(3)不存在实数a 使得复数z为纯虚数.【分析】根据z a bi =+为实数、虚数和纯虚数的条件,列方程,解方程求得a 的值.【详解】由于210a -≠,所以1a ≠±.(1)当z 为实数时,2560a a --=,解得6a =.(2)当z 为虚数时2560a a --≠,结合1a ≠±可知,a 的取值范围是()()()(),11,11,66,-∞-⋃-⋃⋃+∞.(3)当z 为纯虚数时,2227601560a a a a a ⎧-+=⎪-⎨⎪--≠⎩,方程227601a a a -+=-解得6a =,2560a a --≠解得1a ≠-且6a ≠,两者没有公共元素,故不存在实数a 使得复数z 为纯虚数.【点睛】本小题主要考查复数z a bi =+是实数、虚数和纯虚数的条件,属于基础题.26.112m =【解析】 分析:先设方程的实根为0x ,再整理原方程为()()20003210x x m x i ++-+=,再根据复数相等的概念求m 的值.详解:设方程的实根为0x ,则()2002130x i x m i --+-=, 因为0x m R ∈、,所以方程变形为()()20003210x x m x i ++-+=,由复数相等得200030210x x m x ⎧++=⎨+=⎩,解得012112x m ⎧=-⎪⎪⎨⎪=⎪⎩, 故112m =. 点睛:(1)本题主要考查复数方程的解法,意在考查学生对该知识的掌握水平和分析转化的能力.(2) 关于x 的方程()22130x i x m i --+-=,由于x 是复数,不一定是实数,所以不能直接利用求根公式求解.。
一、选择题1.已知复数1z ,2z 满足()1117i z i +=-+,21z =,则21z z -的最大值为( ) A .3 B .4C .5D .6 2.已知复数z 满足2||230z z --=的复数z 的对应点的轨迹是( ) A .1个圆 B .线段 C .2个点 D .2个圆 3.在复平面内,复数1i +与13i +分别对应向量OA 和OB ,其中O 为坐标原点,则AB =( )AB C .2 D .4 4.213(1)i i +=+( ) A .3122i - B .3122i + C .3122i -- D .3122i -+ 5.设x ∈R ,则“1x =”是“复数()()211z x x i =-++为纯虚数”的( ) A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件 6.若复数()234sin12cos z i θθ=-++为纯虚数,()0,θπ∈,则θ=( ) A .6π B .3π C .23π D .3π或23π 7.若复数z 满足(1)|1|z i i i -=-+,则z 的实部为( )A B 1 C .1 D 8.“复数3i ia z -=在复平面内对应的点在第三象限”是“0a ≥”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 9.已知i 为虚数单位,复数32i 2i z +=-,则以下命题为真命题的是( ) A .z 的共轭复数为74i 55- B .z 的虚部为75- C .3z = D .z 在复平面内对应的点在第一象限 10.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由著名数学家欧拉发明的,他将指数函数定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式,若将2i e π表示的复数记为z ,则(12)z i +的值为( )A .2i -+B .2i --C .2i +D .2i -11.已知i 为虚数单位,(1+i )x =2+yi ,其中x ,y ∈R ,则|x +yi |=A .B .2C .4 D12.已知复数 1cos isin z αα=+ 和复数2cos isin z ββ=+,则复数12z z ⋅的实部是( ) A .()sin αβ- B .()sin αβ+ C .()cos αβ- D .()cos αβ+二、填空题13.已知11z i --=,则z i +的取值范围是_____________;14.若复数z 满足0z z z z ⋅++=,则复数12z i --的最大值为______.15.若复数z 满足12i z i ⋅=+,其中i 是虚数单位,则z 的虚部为________.16.复数3(2) i (,)z x y x y =++-∈R ,且||2z =,则点(,)x y 的轨迹是_____________.17.复数z 及其共轭复数z 满足(1+i )z ﹣2z =2+3i ,其中i 为虚数单位,则复数z =_____ 18.已知复数z 满足43(z i i i+=为虚数单位),则z 的共轭复数z =____. 19.复数(1)(z i i i =-为虚数单位)的共轭复数为________.20.若复数 z =21i i-,则3z i + =__________ 三、解答题21.(11010112i i ⎛⎫⎛++-+ ⎪ ⎪ -⎝⎭⎝⎭;(2)若复数z 满足112z z -=,1arg 3z z π-⎛⎫= ⎪⎝⎭,求复数3(2||)2z z z --的三角形式.22.设虚数z 满足2510z z +=+.(1)求z 的值;(2)若()12i z -在复平面上对应的点在第一、第三象限的角平分线上,求复数z . 23.写出下列复数的实部与虚部,并指出哪些是实数,哪些是虚数,哪些是纯虚数.4,23i -,0,12i 23-+,5+,7i . 24.已知复数z 在复平面上对应的点在第二象限,且满足2z z =.(Ⅰ)求复数z ;(Ⅱ)设z ,2z ,3z 在复平面上对应点分别为A ,B ,C ,求ABC ∆的面积. 25.已知关于x 的方程2(21)30x i x m i --+-=有实数根,求实数m 的值.26.若z C ∈,42i z z +=,sin sin i ωθθ=-(θ为实数),i 为虚数单位. (1)求复数z ;(2)求z ω-的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先求得1z ,设出2z ,然后根据几何意义求得21z z -的最大值.【详解】 由()()()()11711768341112i i i i z i i i i -+--++====+++-,令2z x yi =+,x ,y R ∈,由222||11z x y =⇒+=,()()2134z z x y i -=-+-=2z 对应点在单位圆上,所以21z z -表示的是单位圆上的点和点()3,4的距离,()3,4到圆心()0,05=,单位圆的半径为1,所以21max 516z z -=+=.故选:D【点睛】 本小题主要考查复数除法运算,考查复数模的最值的计算.2.A解析:A【详解】因为2||230z z --=,所以3z =,3z = (负舍)因此复数z 的对应点的轨迹是以原点为圆心以3为半径的圆,选A.3.C解析:C【分析】利用复数的几何意义、向量的模长公式和坐标运算,即可求解,得到答案.【详解】因为复数1i +与13i +分别对应向量OA 和OB ,所以向量(1,1)OA =和(1,3)OB =,所以(0,2)AB OB OA =-=,则202AB AB ===,故选C .【点睛】本题主要考查了复数的几何意义、向量的模长计算和坐标运算,着重考查了推理能力和计算能力,属于基础题.4.A解析:A【分析】首先计算2(1)i +,之后应用复数的除法运算法则,求得结果.【详解】()21313312221ii i i i ++==-+, 故选A.【点睛】该题考查的是有关复数的运算,属于简单题目.5.A解析:A【解析】分析:先化简“复数()()211z x x i =-++为纯虚数”,再利用充要条件的定义判断. 详解:因为复数()()211z x x i =-++为纯虚数, 所以210, 1.10x x x ⎧-=∴=⎨+≠⎩因为“x=1”是“x=1”的充要条件,所以“1x =”是“复数()()211z x x i =-++为纯虚数”的充分必要条件. 故答案为A.点睛:(1)本题主要考查纯虚数的概念,考查充要条件的判断,意在考查学生对这些知识的掌握水平.(2) 复数(,)z a bi a b R =+∈为纯虚数0,0a b =⎧⇔⎨≠⎩不要把下面的b≠0漏掉了. 6.B解析:B【解析】分析:由题意得到关于sin ,cos θθ的方程组,求解方程组结合题意即可求得三角函数值,由三角函数值即可确定角的大小.详解:若复数()23412z sin cos i θθ=-++为纯虚数,则:234sin 012cos 0θθ⎧-=⎨+≠⎩,即:23sin 41cos 2θθ⎧=⎪⎪⎨⎪≠-⎪⎩, 结合()0,θπ∈,可知:sin 21cos 2θθ⎧=⎪⎪⎨⎪=⎪⎩,故3πθ=. 本题选择B 选项.点睛:本题主要考查纯虚数的概率,三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.7.A解析:A【解析】【详解】∵()11z i i i i -=-+,∴)()()()11111122i i i z i ii i +===+--+,则z的实部为12,故选A. 8.A解析:A【详解】 因为33ai z a i i-==--,所以由题设可得00a a -<⇒>,因此0a >是0a ≥的充分不必要条件,故应选答案A . 9.D解析:D【分析】 利用复数的除法运算,化简32i 2iz +=-,利用共轭复数,虚部,模长的概念,运算求解,进行判断即可.【详解】 ()()()()32i 2i 32i 47i 2i 2i 2i 55z +++===+--+, z ∴的共扼复数为47i 55-,z 的虚部为75,z ==,z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,在第一象限. 故选:D.【点睛】本题考查了复数的四则运算,共轭复数,虚部,模长等概念,考查了学生概念理解,数学运算的能力,属于基础题.10.A解析:A【分析】 根据欧拉公式求出2cossin 22iz e i i πππ==+=,再计算(12)z i +的值. 【详解】 ∵2cos sin 22i z e i i πππ==+=,∴(12)(12)2z i i i i +=+=-+.故选:A.【点睛】此题考查复数的基本运算,关键在于根据题意求出z .11.A解析:A【解析】【分析】首先求得x ,y 的值,然后求解复数的模即可.【详解】由题意可得:2x xi yi +=+,结合复数的充分必要条件可知:2x x y =⎧⎨=⎩,则2x y ==,22x yi i +=+==本题选择A 选项.【点睛】本题主要考查复数相等的充分必要条件,复数模的求解等知识,意在考查学生的转化能力和计算求解能力. 12.D解析:D【解析】分析:利用复数乘法运算法则化简复数,结合两角和的正弦公式、两角和的余弦公式求解即可.详解:()()12cos cos cos cos z z isin isin ααββαβ⋅=++=()()2cos cos cos i sin isin i sin sin isin αβαβαβαβαβ+++=+++,∴实部为()cos αβ+,故选D.点睛:本题主要考查的是复数的乘法,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++运算的准确性,否则很容易出现错误.二、填空题13.【分析】利用复数的几何意义求解表示复平面内到点距离为1的所有复数对应的点表示复平面内到点的距离结合两点间距离公式可求范围【详解】因为在复平面内表示复平面内到点距离为1的所有复数对应的点即复数对应的点解析:1]【分析】 利用复数的几何意义求解,11z i --=表示复平面内到点(1,1)距离为1的所有复数对应的点,z i +表示复平面内到点(0,1)-的距离,结合两点间距离公式可求范围.【详解】 因为在复平面内,11z i --=表示复平面内到点(1,1)距离为1的所有复数对应的点,即复数z 对应的点都在以(1,1)为圆心,半径为1的圆上;z i +表示复平面内的点到点(0,1)-11=,11=,所以z i +的取值范围是1].故答案为:1]-.【点睛】 结论点睛:本题考查复数的模,复数的几何意义,复数的几何意义是复平面内两点之间的距离公式,若z x yi =+,则z a bi --表示复平面内点(,)x y 与点(,)a b 之间的距离,z a bi r --=表示以(,)a b 为圆心,以r 为半径的圆上的点.14.【分析】设()结合条件得在复平面内对应点的轨迹再由的几何意义求解即可【详解】解:设()则由得即复数在复平面内对应点的轨迹是以为圆心以1为半径的圆如图:表示复数在复平面内对应点到点的距离所以最大值为故解析:1【分析】设z a bi =+,(,a b ∈R ),结合条件0z z z z ⋅++=得z 在复平面内对应点的轨迹,再由12z i --的几何意义求解即可.【详解】解:设z a bi =+,(,a b ∈R )则由0z z z z ⋅++=,得2220a b a ++=,即()2211a b ++=.复数z 在复平面内对应点的轨迹是以(1,0)A -为圆心,以1为半径的圆,如图:2212(1)(2)z i a b --=-+-z 在复平面内对应点到点(1,2)P 的距离 所以12z i --最大值为22||1(11)(02)1212PA +=--+-=. 故答案为:221.【点睛】本题考查复平面内复数对应的点的轨迹问题,复数模长的几何意义,是中档题. 15.-1【分析】利用复数的运算法则求出根据虚部的概念即可得出【详解】∴的虚部为故答案为【点睛】本题考查了复数的运算法则复数的分类考查了推理能力与计算能力属于基础题解析:-1【分析】利用复数的运算法则求出z ,根据虚部的概念即可得出.【详解】()()212122i i i z i i i +-+===--, ∴z 的虚部为1-,故答案为1-.【点睛】 本题考查了复数的运算法则、复数的分类,考查了推理能力与计算能力,属于基础题. 16.以为圆心2为半径的圆【分析】根据复数模的定义确定复数对应点满足条件化简即得轨迹【详解】解:∵∴即点的轨迹是以为圆心2为半径的圆故答案为:以为圆心2为半径的圆【点睛】本题考查复数模的定义以及圆的方程含 解析:以(3,2)-为圆心,2为半径的圆【分析】根据复数模的定义确定复数对应点满足条件,化简即得轨迹.【详解】解:∵||2z =,∴22(3)(2)4x y ++-=,即点(,)x y 的轨迹是以(3,2)-为圆心,2为半径的圆.故答案为:以(3,2)-为圆心,2为半径的圆本题考查复数模的定义以及圆的方程含义,考查基本分析求解能力,属基础题. 17.【分析】设代入题目所给已知条件利用复数相等的条件列方程组解方程组求得的值【详解】设则于是有解得即【点睛】本小题主要考查复数的乘法运算考查复数相等的概念考查方程的思想属于基础题 解析:9522i -+ 【分析】设,(,)z a bi a b R =+∈,代入题目所给已知条件,利用复数相等的条件列方程组,解方程组求得z 的值.【详解】设,(,)z a bi a b R =+∈,则()()()1223i a bi a bi i ++--=+,()()323a b a b i i --++=+,于是有233a b a b --=⎧⎨+=⎩ 解得9252a b ⎧=-⎪⎪⎨⎪=⎪⎩, 即9522z i =-+. 【点睛】 本小题主要考查复数的乘法运算,考查复数相等的概念,考查方程的思想,属于基础题. 18.【分析】利用复数的运算法则共轭复数的定义即可得出结果【详解】由可得即所以故答案是:【点睛】该题考查的是有关复数的问题涉及到的知识点有复数的运算法则以及共轭复数的概念属于简单题目解析:34i -+【分析】利用复数的运算法则、共轭复数的定义即可得出结果.【详解】 由43z i i +=可得34z i i=-,即23434z i i i =-=--, 所以34z i =-+,故答案是:34i -+.【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的运算法则以及共轭复数的概念,属于简单题目.19.【分析】根据复数的乘法运算可求z 写出其共轭复数即可【详解】因为所以故填【点睛】本题主要考查了复数的运算共轭复数属于中档题解析:1i -根据复数的乘法运算可求z,写出其共轭复数即可.【详解】因为()1z i i =-1i =+,所以 1z i =-,故填1i -【点睛】本题主要考查了复数的运算,共轭复数,属于中档题.20.【解析】分析:先化简复数z 再求再求 的值详解:由题得所以故答案为:点睛:(1)本题主要考查复数的运算共轭复数和复数的模的计算意在考查学生对这些知识的掌握水平和基本的运算能力(2)复数的共轭复数【解析】分析:先化简复数z,再求3z i +,再求3z i + 的值. 详解:由题得2i 2i(1i)22i 1i 1i (1i)(1i)2z +-+====-+--+,所以31312,3z i i i i z i +=--+=-+∴+==点睛:(1)本题主要考查复数的运算、共轭复数和复数的模的计算,意在考查学生对这些知识的掌握水平和基本的运算能力.(2) 复数(,)z a bi a b R =+∈的共轭复数,z a bi =-||z =三、解答题21.(112-;(222sin )33i ππ+; 【分析】(1)cos sin 44i i ππ+=+,1cos()sin()233i i ππ-+=-+-,结合复数的三角形式的乘方运算即可求值;(2)由题意得11(cos sin )233z i z ππ-=+,进而得到z 、z 代入目标式化简后转化为三角形式即可.【详解】(11010101011)22i i i i ⎛⎫⎛++-+=-+++- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭,而101010101)(cos sin )[cos()sin()]24433i i i i i i ππππ⎫⎛-+++-+=-+++-+-⎪ ⎪ ⎝⎭⎝⎭∴原式551010221(cossin )[cos()sin()]cos sin 22333322i i i i i i ππππππ=-+++-+-=-+++=-; (2)由题意知:11(cos sin )233z i z ππ-=+,所以sin )33z i ππ=+,(cos sin )333z i ππ=-,∴322(2||)3sin )233z z i i z ππ--+=-=+ 【点睛】本题考查了复数的三角形式,利用复数三角形式的乘方运算化简求值,并由已知复数的模、复角求目标复数的三角形式.22.(1)5;(2或. 【分析】(1)设z x yi =+(x 、y R ∈,i 为虚数单位),根据条件2510z z +=+得出x 、y 所满足的关系式,从而可得出z 的值;(2)将复数()12i z -表示为一般形式,然后由题意得出实部与虚部相等,并结合2225x y +=,求出x 、y 的值,即可得出复数z .【详解】(1)设z x yi =+(x 、y R ∈,i 为虚数单位),则()25252z x yi +=++,()1010z x yi +=++, 由2510z z +=+=2225x y +=,因此,5z ==; (2)()()()()()121222i z i x yi x y y x i -=-+=++-,由于复数()12i z -在复平面上对应的点在第一、第三象限的角平分线上,则22x y y x +=-,所以22325y x x y =-⎧⎨+=⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩x y ⎧=⎪⎪⎨⎪=⎪⎩.因此,i 22z =-或22i -+. 【点睛】 本题考查复数模的计算,同时也考查了复数的几何意义,解题时要结合已知条件将复数表示为一般形式,考查运算求解能力,属于中等题.23.见解析【分析】形如(,)a bi a b R +∈的数叫复数,其中,a b 分别是它的实部和虚部,据此可得到各个复数的实部和虚部;(,)a bi a b R +∈,若0b =,则a bi +为实数,若0b ≠,则a bi +是虚数,若0,0a b =≠,则a bi +为纯虚数.【详解】4,23i -,0,1122-+i ,5+,7i 的实部分别是4,2,0,12-,5,0;4,23i -,0,1122-+i ,5+,7i 的虚部分别是0,3-,0,127. 其中,4,0是实数;23i -,1122-+i ,5,7i 是虚数; 7i 是纯虚数.【点睛】该题主要考查的是复数的基本概念,解答该题的关键是熟悉复数的概念.24.(1)12z =-+.(2)ABC S ∆=. 【解析】 分析:(Ⅰ)设(0,0)z a bi a b =+<>,则z a bi =-,由题2z z =,列出方程即可求解;(Ⅱ)由(Ⅰ),根据复数的表示,得到z ,2z ,3z 在复平面上对应点A ,B ,C ,利用三角形的面积公式,即可求解.详解:(Ⅰ)设()0,0z a bi a b =+,则z a bi =-, 故2222z a b abi z a bi =-+==-.所以22a b a -=,2ab b =-.又0a <,0b >,解得12a =-,b =,12z =-+.(Ⅱ)由(Ⅰ),得12z =-,212z =--,31z =.z ,2z ,3z 在复平面上对应点A ,B ,C ,如图所示:故1233311sin 234ABC S π∆=⨯⨯⨯⨯=. 点睛:本题主要考查了复数的四则运算及复数的表示,其中熟记复数的基本概念和复数的四则运算是解答的关键,着重考查了推理与运算能力.25.112m =【解析】 分析:先设方程的实根为0x ,再整理原方程为()()20003210x x m x i ++-+=,再根据复数相等的概念求m 的值.详解:设方程的实根为0x ,则()2002130x i x m i --+-=, 因为0x m R ∈、,所以方程变形为()()20003210x x m x i ++-+=, 由复数相等得200030210x x m x ⎧++=⎨+=⎩,解得012112x m ⎧=-⎪⎪⎨⎪=⎪⎩, 故112m =. 点睛:(1)本题主要考查复数方程的解法,意在考查学生对该知识的掌握水平和分析转化的能力.(2) 关于x 的方程()22130x i x m i --+-=,由于x 是复数,不一定是实数,所以不能直接利用求根公式求解.26.(1)31i 2z =+;(2)[]0,2. 【分析】(1)设(),z a bi b a =+∈R ,根据复数相等,得出关于实数a 、b 的方程组,解出这两个未知数,即可得出复数z 的值;(2)利用复数的模长公式以及辅助角公式得出22sin 6z πωθ⎛⎫-=-- ⎪⎝⎭,利用正弦函数的值域可求出z ω-的取值范围.【详解】(1)设(),z a bi b a =+∈R ,则z a bi =-,()()42a bi a bi i ++-=∴,即62a bi i +=,所以621a b ⎧=⎪⎨=⎪⎩12a b ⎧=⎪⎪⎨⎪=⎪⎩,12z i ∴=+; (2)()11sin cos sin cos 22z i i i ωθθθθ⎫⎛⎫⎪ ⎪⎪=⎝⎭⎝-=+⎭---+=== 1sin 16πθ⎛⎫ ≤⎝--⎪⎭≤,022sin 46πθ≤--⎛⎫ ⎪⎝⎭≤∴, 02z ω∴≤-≤,故z ω-的取值范围是[]0,2.【点睛】本题考查复数的求解,同时也考查了复数模长的计算,涉及复数相等以及辅助角公式的应用,考查计算能力,属于中等题.。
数学复数单元测试题及答案一、选择题(每题2分,共10分)1. 复数 \( z = 3 + 4i \) 的模是:A. 5B. 7C. √7D. √292. 复数 \( z = 2 - i \) 的共轭复数是:A. 2 + iB. -2 + iC. -2 - iD. 2 - i3. 如果 \( z = a + bi \) 且 \( \bar{z} = a - bi \),那么复数\( z \) 的实部是:A. aB. bC. a + bD. a - b4. 复数 \( z = 1 + i \) 的辐角主值是:A. 0B. π/4C. π/2D. π5. 以下哪个表达式是正确的:A. \( (1+i)^2 = 1 - 1i \)B. \( (1+i)^2 = 2i \)C. \( (1+i)^2 = 0 \)D. \( (1+i)^2 = 2 \)二、填空题(每空3分,共15分)6. 复数 \( z = -3 + 4i \) 的模是 ______ 。
7. 如果复数 \( z \) 的模为 5,且 \( \text{Im}(z) = 4 \),那么\( \text{Re}(z) \) 是 ______ 。
8. 复数 \( z = 5 - 12i \) 的辐角主值是 ______ 弧度。
9. 复数 \( z = 3 + 4i \) 与 \( w = 2 - i \) 的和是 ______ 。
10. 复数 \( z = 2 + 3i \) 除以 \( w = 1 - i \) 的结果是______ 。
三、简答题(每题5分,共20分)11. 请解释什么是复数的模,并给出计算公式。
12. 什么是复数的辐角主值?它有哪些性质?13. 如何将复数 \( z = a + bi \) 转换为极坐标形式 \( r(\cos \theta + i\sin \theta) \)?14. 复数的共轭有哪些应用?四、计算题(每题10分,共20分)15. 计算复数 \( z_1 = 2 + 3i \) 和 \( z_2 = 1 - 4i \) 的乘积\( z_1 \cdot z_2 \)。
一、复数选择题1.复数11z i=-,则z 的共轭复数为( ) A .1i - B .1i + C .1122i + D .1122i - 2.设复数(,)z a bi a R b R =+∈∈,它在复平面内对应的点位于虚轴的正半轴上,且有1z =,则a b +=( )A .-1B .0C .1D .2 3.若复数1z i i ⋅=-+,则复数z 的虚部为( ) A .-1B .1C .-iD .i 4.在复平面内复数Z=i (1﹣2i )对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 5.已知复数21i z i =-,则复数z 在复平面内对应点所在象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.已知i 为虚数单位,复数12i 1i z +=-,则复数z 在复平面上的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限7.若复数1z i =-,则1z z=-( )A B .2 C .D .4 8.若复数1211i z i +=--,则z 在复平面内的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 9.满足313i z i ⋅=-的复数z 的共扼复数是( )A .3i -B .3i --C .3i +D .3i -+ 10.已知复数202111i z i-=+,则z 的虚部是( ) A .1- B .i - C .1 D .i11.设复数z 满足方程4z z z z ⋅+⋅=,其中z 为复数z 的共轭复数,若z 的实部为,则z 为( )A .1BC .2D .412.( )A .i -B .iC .iD .i -13.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3 B .5 C .6 D .814.已知i 为虚数单位,则43i i =-( ) A .2655i + B .2655i - C .2655i -+ D .2655i -- 15.复数12z i =-(其中i 为虚数单位),则3z i +=( )A .5BC .2D 二、多选题16.已知复数202011i z i+=-(i 为虚数单位),则下列说法错误的是( )A .z 的实部为2B .z 的虚部为1C .z i =D .||z =17.已知复数z 满足220z z +=,则z 可能为( ).A .0B .2-C .2iD .2i+1-18.已知复数(),z x yi x y R =+∈,则( )A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =19.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足|1|||z z i -=-,下列结论正确的是( )A .0P 点的坐标为(1,2)B .复数0z 的共轭复数对应的点与点0P 关于虚轴对称C .复数z 对应的点Z 在一条直线上D .0P 与z 对应的点Z 间的距离的最小值为20.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限21.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( ) A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 22.下列说法正确的是( )A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件 23.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限24.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( )A .2ωω=B .31ω=-C .210ωω++=D .ωω>25.已知1z ,2z 为复数,下列命题不正确的是( )A .若12z z =,则12=z zB .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >26.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:()()()n cos sin co i s s nn n z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( )A .22z z =B .当1r =,3πθ=时,31z =C .当1r =,3πθ=时,122z =-D .当1r =,4πθ=时,若n 为偶数,则复数n z 为纯虚数27.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z = 28.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是( )A .z 的虚部为1-B .||z =C .2z 为纯虚数D .z 的共轭复数为1i -- 29.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( ) A .1 B .4- C .0 D .530.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( )A .z 不可能为纯虚数B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题1.D【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果.【详解】因为,所以其共轭复数为.故选:D.解析:D【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果.【详解】 因为()()11111111222i i z i i i i ++====+--+, 所以其共轭复数为1122i -. 故选:D.2.C【分析】根据复数的几何意义得.【详解】∵它在复平面内对应的点位于虚轴的正半轴上,∴,又,∴,∴.故选:C .解析:C【分析】根据复数的几何意义得,a b .【详解】∵z 它在复平面内对应的点位于虚轴的正半轴上,∴0a =,又1z =,∴1b =,∴1a b +=.故选:C .3.B【分析】,然后算出即可.【详解】由题意,则复数的虚部为1故选:B解析:B【分析】1i z i-+=,然后算出即可. 【详解】 由题意()11111i i i i z i i i i -+-+--====+⋅-,则复数z 的虚部为1 故选:B 4.A【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z 化为a=bi (a ,b ∈R )的形式,分析实部和虚部的符号,即可得到答案.解:∵复数Z=i (1﹣2i )=2+i∵复数Z 的实部2>0,虚解析:A【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z 化为a=bi (a ,b ∈R )的形式,分析实部和虚部的符号,即可得到答案.解:∵复数Z=i (1﹣2i )=2+i∵复数Z 的实部2>0,虚部1>0∴复数Z 在复平面内对应的点位于第一象限故选A点评:本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z 化为a=bi (a ,b ∈R )的形式,是解答本题的关键.5.B【分析】对复数进行化简,再得到在复平面内对应点所在的象限.【详解】,在复平面内对应点为,在第二象限.解析:B【分析】对复数z 进行化简,再得到z 在复平面内对应点所在的象限.【详解】21i z i =-()()()2111i i i i +=+-()1+1+i i i ==-,z 在复平面内对应点为()1,1-,在第二象限. 故选:B.6.C【分析】利用复数的除法法则化简,再求的共轭复数,即可得出结果.【详解】因为,所以,所以复数在复平面上的对应点位于第三象限,故选:C.解析:C【分析】利用复数的除法法则化简z ,再求z 的共轭复数,即可得出结果.【详解】 因为212(12)(1)11i i i z i i +++==-- 1322i =-+, 所以1322z i =--, 所以复数z 在复平面上的对应点13(,)22--位于第三象限,故选:C. 7.A【分析】将代入,利用复数的除法运算化简,再利用复数的求模公式求解.【详解】由,得,则,故选:A.解析:A将1z i =-代入1z z-,利用复数的除法运算化简,再利用复数的求模公式求解. 【详解】 由1z i =-,得2111z i i i i z i i---===---,则11z i z=--==-,故选:A. 8.B【分析】利用复数的运算法则和复数的几何意义求解即可【详解】,所以,在复平面内的对应点为,则对应点位于第二象限故选:B解析:B【分析】 利用复数的运算法则和复数的几何意义求解即可 【详解】()()12i 1i 12i 33i 33i 111i 2222z +++-+=-=-==-+-, 所以,z 在复平面内的对应点为33,22⎛⎫-⎪⎝⎭,则对应点位于第二象限 故选:B9.A【分析】根据,利用复数的除法运算化简复数,再利用共扼复数的概念求解.【详解】因为,所以,复数的共扼复数是,故选:A解析:A【分析】根据313i z i ⋅=-,利用复数的除法运算化简复数,再利用共扼复数的概念求解.【详解】因为313i z i ⋅=-, 所以()13133i z i i i i-==-=+-, 复数z 的共扼复数是3z i =-,故选:A10.C【分析】求出,即可得出,求出虚部.【详解】,,其虚部是1.故选:C.解析:C【分析】求出z ,即可得出z ,求出虚部.【详解】()()()220211i 1i i 1i 1i 1i z --===-++-,i z ∴=,其虚部是1. 故选:C. 11.B【分析】由题意,设复数,根据共轭复数的概念,以及题中条件,即可得出结果.【详解】因为的实部为,所以可设复数,则其共轭复数为,又,所以由,可得,即,因此.故选:B.解析:B【分析】由题意,设复数(),z yi x R y R =∈∈,根据共轭复数的概念,以及题中条件,即可得出结果.【详解】因为z ,所以可设复数(),z yi x R y R =∈∈,则其共轭复数为z yi =,又z z =,所以由4z z z z ⋅+⋅=,可得()4z z z ⋅+=,即4z ⋅=,因此z =故选:B.12.B【分析】首先,再利用复数的除法运算,计算结果. 【详解】复数.故选:B解析:B【分析】首先3i i=-,再利用复数的除法运算,计算结果.【详解】133i ii+====.故选:B13.D【分析】利用复数的乘法运算及复数相等求得a,b值即可求解【详解】,故则故选:D解析:D【分析】利用复数的乘法运算及复数相等求得a,b值即可求解【详解】()312++=+a i i bi,故332a i bi-+=+则32,38a b a b-==∴+=故选:D14.C【分析】对的分子分母同乘以,再化简整理即可求解.【详解】,故选:C解析:C【分析】对43ii-的分子分母同乘以3i+,再化简整理即可求解.【详解】()()()434412263331055i i i i i i i i +-+===-+--+, 故选:C15.B【分析】首先求出,再根据复数的模的公式计算可得;【详解】解:因为,所以所以.故选:B.解析:B【分析】首先求出3z i +,再根据复数的模的公式计算可得;【详解】解:因为12z i =-,所以31231z i i i i +=-+=+所以3z i +==故选:B . 二、多选题16.AC【分析】根据复数的运算及复数的概念即可求解.【详解】因为复数,所以z 的虚部为1,,故AC 错误,BD 正确.故选:AC解析:AC【分析】根据复数的运算及复数的概念即可求解.【详解】 因为复数2020450511()22(1)11112i i i z i i i i +++=====+---,所以z 的虚部为1,||z =故AC 错误,BD 正确.故选:AC17.AC【分析】令,代入原式,解出的值,结合选项得出答案.【详解】令,代入,得,解得,或,或,所以,或,或.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.解析:AC【分析】令()i ,z a b a b R =+∈,代入原式,解出,a b 的值,结合选项得出答案.【详解】令()i ,z a b a b R =+∈,代入220z z +=,得222i 0a b ab -+=,解得00a b =⎧⎨=⎩,或02a b =⎧⎨=⎩,或02a b =⎧⎨=-⎩, 所以0z =,或2i z =,或2i z =-.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.18.CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误;解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D 选项,z =D 选项正确.故选:CD.【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题. 19.ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C 选项的正确解析:ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出z ,利用|1|||z z i -=-,结合复数模的运算进行化简,由此判断出Z 点的轨迹,由此判读C 选项的正确性.结合C 选项的分析,由点到直线的距离公式判断D 选项的正确性.【详解】复数012z i =+在复平面内对应的点为0(1,2)P ,A 正确;复数0z 的共轭复数对应的点与点0P 关于实轴对称,B 错误;设(,)z x yi x y R =+∈,代入|1|||z z i -=-,得|(1)(1)i|x yi x y -+=+-,即=y x =;即Z 点在直线y x =上,C 正确; 易知点0P 到直线y x =的垂线段的长度即为0P 、Z 之间距离的最小值,结合点到直线的距=,故D 正确. 故选:ACD【点睛】本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题. 20.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.21.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误;当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.22.AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误; 当时解析:AD【分析】由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.23.BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.24.AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】本题主要考查复数的有关概念解析:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵12ω=-所以12ω=--,∴2131442ωω=--=--=,故A 正确,3211131222244ωωω⎛⎫⎛⎫⎛⎫==---+=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,2111102222ωω++=---++=,故C 正确, 虚数不能比较大小,故D 错误,故选:AC .【点睛】本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.25.BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确; 当两个复数的模相等时,复数不一定相等, 比如11i i -=+,但是11i i -≠+,所以B 项是错误的;因为当两个复数相等时,模一定相等,所以A 项正确;故选:BCD.【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.26.AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数,可判断C 选项的正误;计算出,可判断D 选项的正误.【详解】对于A 选项,,则,可得解析:AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数z ,可判断C 选项的正误;计算出4z ,可判断D 选项的正误.【详解】对于A 选项,()cos sin z r i θθ=+,则()22cos2sin 2z r i θθ=+,可得()222cos 2sin 2z r i r θθ=+=,()222cos sin z r i r θθ=+=,A 选项正确; 对于B 选项,当1r =,3πθ=时,()33cos sin cos3sin3cos sin 1z i i i θθθθππ=+=+=+=-,B 选项错误;对于C 选项,当1r =,3πθ=时,1cos sin 3322z i ππ=+=+,则12z =,C 选项正确;对于D 选项,()cos sin cos sin cos sin 44n n n n z i n i n i ππθθθθ=+=+=+, 取4n =,则n 为偶数,则4cos sin 1z i ππ=+=-不是纯虚数,D 选项错误.故选:AC.【点睛】本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.27.AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是选项C:解析:AB【分析】利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z =224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A : 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.28.ABC【分析】首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为,对于A :的虚部为,正确;对于B :模长,正确;对于C :因为,故为纯虚数,解析:ABC【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.【详解】 因为()()()2122211i 1i 12i i z i i --====-++-, 对于A :z 的虚部为1-,正确;对于B :模长z =对于C :因为22(1)2z i i =-=-,故2z 为纯虚数,正确;对于D :z 的共轭复数为1i +,错误.故选:ABC .【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.29.ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误. 故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。
第七章 复数单元测试卷一、单选题1.(辽宁省葫芦岛市2021-2022学年高三上学期期末数学试题)已知i 为虚数单位,则复数()i 12i z =-的虚部是( ) A .i B .1 C .2 D .2i【答案】B 【分析】化简复数2i z =+即得解. 【详解】解:由题得()i i 122i z =-=+, 所以复数的虚部为1. 故选:B2.(山东省德州市2021-2022学年高三上学期期末数学试题)已知复数z 满足()121i iz +=-,其中i 为虛数单位,则复数z 在复平面内所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【分析】根据复数的模长公式以及四则运算得出55z =,最后确定复数z 在复平面内所对应的点的象限. 【详解】 221i 22|2i |2(1)5i i +=+=-=+-=,55(1i)55z +=== 则复数z 在复平面内所对应的点坐标为55⎝⎭,在第一象限.故选:A3.(山东省淄博市2021-2022学年高三上学期期末数学试题)已知复数z 是纯虚数,11i z+-是实数,则z =( )A .-iB .iC .-2iD .2i【答案】B 【分析】由题意设i()z b b R =∈,代入11iz+-中化简,使其虚部为零,可求出b 的值,从而可求出复数z ,进而可求得其共轭复数 【详解】由题意设i()z b b R =∈, 则11i (1i)(1i)(1)(1)i1i 1i (1i)(1i)2z b b b b ++++-++===---+, 因为11iz+-是实数,所以10b +=,得1b =-, 所以i z =-, 所以i z =, 故选:B4.(2022·广东茂名·一模)已知,a b 为实数,且2ii 1ib a +=++(i 为虚数单位),则i a b +=( ) A .34i + B .12i + C .32i -- D .32i +【答案】A 【分析】利用复数的乘除运算化简,再利用复数相等求得,a b ,进而得解. 【详解】()()2i 1i 2i 22i i 22i 1i 2222b b b b b b +-+-+++-===++ 由题意知222=12b a b +⎧=⎪⎪⎨-⎪⎪⎩,解得34a b =⎧⎨=⎩,所以i 34i a b +=+故选:A5.(2022·江苏无锡·高三期末)已知3i1ia ++(i 为虚数单位,a ∈R )为纯虚数,则=a ( ) A .1- B .1C .3-D .3【答案】C 【分析】先利用复数除法法则进行化简,结合纯虚数条件列出方程,求出a 的值. 【详解】3i (3i)(1i)i 3i+31i 22a a a a ++--+==+3(3)i2a a ++-=为纯虚数, 30a ∴+=,3a ∴=-,故选:C.6.(2022·内蒙古包头·高二期末(文))对于非零实数a ,b ,以下四个式子均恒成立,对于非零复数a ,b ,下列式子仍然恒成立的是( ) A .||||||ab a b = B .10a a+≠ C .()20a b +≥D .22a a =【答案】A 【分析】对于选项A :结合复数的乘法和模长公式即可判断;选项B :计算1a a+,然后根据复数运算结果举出反例即可;选项CD :复数的平方可能为虚部不为0的复数,而虚部不为0的复数与实数既不能比较大小也不相等. 【详解】不妨令11i a x y =+,22i b x y =+,选项A :112212121221(i)(i)()i ab x y x y x x y y x y x y =++=-++,从而222222121212211122||()()||||ab x x y y x y x y x y x y a b =-++++,故A 正确; 选项B :111111222211111111i ()i i x y a x y x y a x y x y x y +=++=++-+++, 当10x =,11y =时,10a a+=,故B 错误; 因为复数的平方可能还是虚部不为0的复数,而虚部不为0的复数不能与实数比较大小且不等于实数,故CD 错误. 故选:A7.(2022·湖北·武钢三中高三阶段练习)已知202120221i i 1i z +⎛⎫=+ ⎪-⎝⎭,则在复平面内,复数z 所对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B 【分析】先利用复数的除法和乘方化简复数z ,再利用复数的几何意义求解. 【详解】21i 12i i i 1i 2+++==-,且i 的乘方运算是以4为周期的运算 所以202120222021202221i i 1i 1i i i i i z +⎛⎫=+++ ===-⎝-⎪+⎭,所以复数z 所对应的点()1,1-,在第二象限. 故选:B8.(2022·全国·高一)复数()()cos2isin3cos isin θθθθ+⋅+的模为1,其中i 为虚数单位,[]0,2πθ∈,则这样的θ一共有( )个. A .9 B .10 C .11 D .无数【答案】C 【分析】先根据复数()()cos2isin3cos isin θθθθ+⋅+的模为1及复数模的运算公式,求得22cos 2sin 31θθ+=即22cos 2cos 3θθ=,接下来分cos2cos3θθ=与cos2cos3θθ=-两种情况进行求解,结合[]0,2πθ∈,求出θ的个数. 【详解】()()cos2isin3cos isin =cos2isin3cos isin 1θθθθθθθθ+⋅++⋅+=,其中cos isin 1θθ+=,所以cos2isin31θθ+=,即22cos 2sin 31θθ+=,222cos 21sin 3cos 3θθθ=-=,当cos2cos3θθ=时,①1232πk θθ=+,1k Z ∈,所以12πk θ=-,1k Z ∈,因为[]0,2πθ∈,所以0θ=或2π;②2232πk θθ=-+,2k Z ∈,所以22π5k θ=,2k Z ∈,因为[]0,2πθ∈,所以0θ=,2π5,4π5,6π5,8π5或2π;当cos2cos3θθ=-时,①()32321πk θθ=++,3k Z ∈,即()321πk θ=-+,3k Z ∈,因为[]0,2πθ∈,所以πθ=,②()42321πk θθ=-++,4k Z ∈,即()421π5k θ+=,4k Z ∈,因为[]0,2πθ∈,所以π5θ=,3π5,π,7π5,9π5,综上:π5mθ=,0,1,10m =,一共有11个. 故选:C二、多选题9.(2022·广东东莞·高三期末)已知复数123,,z z z ,1z 是1z 的共轭复数,则下列结论正确的是( ) A .若120z z +=,则12=z zB .若21z z =,则12=z zC .若312z z z =,则312z z z =D .若1211z z +=+,则12=z z【答案】ABC 【分析】若i z a b =+ ,则i z a b =-,22z z a b ==+,利用复数代数运算,可以判断AB ;利用复数的三角运算,可以判断C ;利用数形结合,可以判断D. 【详解】 对于A :若120z z += ,则12z z =-,故122z z z =-=, 所以A 正确; 对于B :若21z z =,则12=z z , 所以B 正确; 对于C :设11(cos i sin )z r αα=+ ,22(cos i sin )z r ββ=+则()()31212cos()i sin z z z r r αβαβ==+++ ,故312z z z = , 所以C 正确; 对于D :如下图所示,若11OA z =+ ,21OB z =+,则1OC z =,2OD z =,故12z z ≠ , 所以D 错误.故选:ABC10.(2022·江西·高三阶段练习(理))已知复数z 满足()12i 5z -=(其中i 为虚数单位),则下列选项正确的是( ) A .5z =B .复数z 的共轭复数为12i z =+C .复数z 在复平面表示的点位于第一象限D .复数z 的虚部为2 【答案】CD 【分析】利用复数代数形式的乘除运算求出复数z ,然后逐一核对四个选项即可得出答案. 【详解】解:因为()12i 5z -=,所以()()()512i 512i 12i 12i 12i z +===+--+, 所以145z +A 错误; 复数z 的共轭复数为12i z =-,故B 错误;复数z 在复平面表示的点的坐标为()1,2,位于第一象限,故C 正确; 复数z 的虚部为2,故D 正确. 故选:CD.11.(2021·福建福州·高三期中)复数132z =-,其中i 为虚数单位,则下列结论正确的有( )A .1z z ⋅=B .210z z ++=C .21z z= D .2021132z = 【答案】ABC 【分析】根据共轭复数的概念,复数的运算法则,逐一求解验证即可. 【详解】解:因为132z =-,所以132z =-,对于A : 2131313i 12244z z ⎛⎫⎛⎫⋅=-+-=-= ⎪⎪ ⎪⎪⎝⎭⎝⎭,故A 正确; 对于B :22201131313133i 222414z z ⎛⎫⎛⎫--=+= ⎪ ⎪ ⎭⎛⎫++⎪ ⎪⎝⎝+=++⎝⎭⎭ ⎪ ⎪,故B 正确; 对于C :2131132213213i i44z -===---+,2221313313i 2442z ⎛⎫-=+=- ⎪ ⎪⎝=⎭, 所以21z z=,即选项C 正确;对于D :132z =-+,2132z -=,2231313131222z ⎛⎫⎛⎫⎫⎛⎫-⋅-+=--= ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭=⎭⎝,4z z =,所以20212132z z -==,故D 错误.故选:ABC .12.(2021·重庆·万州纯阳中学校高二阶段练习)欧拉公式i cos isin x e x x =+是由瑞士著名数学家欧拉创立,该公式将指数函数的定义域扩大到复数,建立了三角函数与指数函数的关联,在复变函数论里面占有非常重要的地位,被誉为数学中的天骄,依据欧拉公式,下列选项正确的是( ) A .复数2i e 对应的点位于第二象限 B .i 2e π为纯虚数C i 3ix +12D .i 6e π的共轭复数为132-【答案】ABC【分析】利用欧拉公式把选项A ,B ,D 化成复数的代数形式即可计算判断;利用欧拉公式把选项C 的分子化成复数的代数形式,再进行除法运算判断即得. 【详解】对于A ,2i cos 2isin 2e =+,因22ππ<<,即cos20,sin20<>,复数2i e 对应的点位于第二象限,A 正确;对于B ,i2cos isini 22e πππ=+=,i 2e π为纯虚数,B 正确;对于C i (cos isin )(3i)3cos sin 3sin cos 3i 3i(3i)(3i)x x x x x x x+-+-+++-,于是得i 223cos sin 3sin cos 1()()4423ix x x x x +-++,C 正确; 对于D ,6i31cos isini 662e πππ=+=31i 2,D 不正确. 故选:ABC三、填空题13.(2021·天津市第四中学高三阶段练习)已知方程()20R x x m m ++=∈有两个虚根α,β,若3αβ-=,则m 的值是___________. 【答案】52【分析】由已知结合实系数一元二次方程两个虚根互为共轭复数,设出α的代数形式,代入计算作答. 【详解】因α,β是方程()20R x x m m ++=∈有两个虚根,设i(,R)a b a b α=+∈,则i a b β=-,由3αβ-=得:|i (i)||2|3a b a b b +--==,解得3||2b =, 又2(i)(i)0a b a b m ++++=,即22()(2)i 0a b a m ab b -++++=,因R m ∈,于是得:22020a b a m ab b ⎧-++=⎨+=⎩,解得12a =-,52m =,所以m 的值是52.故答案为:5214.(2021·上海长宁·一模)在复平面xoy 内,复数12z ,z 所对应的点分别为12Z Z 、,对于下列四个式子:(1)2211 z z =;(2)1212z z z z ⋅=⋅;(3)2211OZ OZ =;(4)1212OZ OZ OZ OZ ⋅=⋅,其中恒成立的是____________(写出所有恒成立式子的序号) 【答案】(2)(3) 【分析】结合复数运算对四个式子进行分析,由此确定正确答案. 【详解】221111i,2i,2z z z =+==,所以(1)错误.()()121,1,1,1Z Z -,12120,2OZ OZ OZ OZ ⋅=⋅=,所以(4)错误.设()()1212i,i,,,,z a b z c d Z a b Z c d =+=+,()()()2212i z z ac bd ad bc ac bd ad bc ⋅=-++=-++22222222a c b d a d b c =+++22222222222212z z a b c d a c b d a d b c ⋅+++++2)正确.222211OZ OZ a b ==+,所以(3)正确. 故答案为:(2)(3)15.(2021·浙江·模拟预测)已知平面直角坐标系xOy 中向量的旋转和复数有关,对于任意向量x →=(a ,b ),对应复数z =a +ib ,向量x 逆时针旋转一个角度θ,得到复数'(i )(cos isin )cos sin i(sin cos )z a b a b a b θθθθθθ=++=-++,于是对应向量'(cos sin ,sin cos )x a b a b θθθθ→=-+.这就是向量的旋转公式.根据此公式,已知正三角形ABC 的两个顶点坐标是A (1,2),B (3,4),则C 的坐标是___________.(任写一个即可) 【答案】(23,33)-(答案不唯一) 【分析】首先设出C 的坐标,然后分别写出AB →,AC →,利用向量的旋转公式即可求解. 【详解】不妨设C 的坐标为00(,)x y ,且AC →是AB →逆时针旋转60得到, 因为A (1,2),B (3,4),所以(2,2)AB →=,00(1,2)AC x y →=--, 从而AB →对应的复数为22i z =+,AC →对应的复数为'(22i)(cos 60isin 60)13(13)i z =++=-,所以00(1,2)(13,13)AC x y →=--=+,解得023x =033y = 故C 的坐标是(23,33). 故答案为:(23,33).16.(2021·福建·厦门市湖滨中学高三期中)若复数z 满足32i 1z -+=,则62i z --的最小值为__________. 【答案】4 【分析】根据复数模的几何意义得出复数z 对应的点Z 的轨迹是以()3,2C -为圆心,半径为1的圆,然后再根据62i z --的几何意义求最小值即可.【详解】因为复数z 满足32i 1z -+=,则复数z 对应的点Z 的轨迹是以()3,2C -为圆心,半径为1的圆, 又62i z --表示复数z 对应的点Z 与点()6,2P 之间的距离, 所以62i z --的最小值为()()22163221514PC -=-++=-=.故答案为:4.四、解答题17.(2021·贵州遵义·高三阶段练习)已知复数i()z b b =∈R ,31iz +-是实数. (1)求复数z ;(2)若复数2()8m z m --在复平面内所表示的点在第二象限,求实数m 的取值范围. 【答案】 (1)3i z =-(2)(0,9)【分析】 (1)先将i z b =代入31iz +-化简,再由其虚部为零可求出b 的值,从而可求出复数z , (2)先对2()8m z m --化简,再由题意可得2890,60,m m m ⎧--<⎨>⎩从而可求得结果 (1) 因为i z b =,所以33i (3i)(1i)3(3)i 1i 1i 22z b b b b ++++-++===--, 因为31iz +-是实数,所以30b +=,解得3b =-. 故3i z =-.(2)因为3i z =-,所以()222()8(3i)8896i m z m m m m m m --=+-=--+.因为复数2()8m z m --所表示的点在第二象限,所以2890,60,m m m ⎧--<⎨>⎩解得09m <<,即实数m 的取值范围是(0,9).18.(2021·全国·高一课时练习)求复数1i +,1i --2,2i -的辐角主值.【答案】π4,5π4,0,3π2 【分析】计算12r =11cos 2sin 2θθ⎧=⎪⎪⎨⎪⎪⎩结合102πθ≤<,得到辐角主值,同理可得其他答案. 【详解】设这4个复数的模分别为1r ,2r ,3r ,4r ,辐角主值分别为1θ,2θ,3θ,4θ.因为221112r =+11cos 2sin 2θθ⎧=⎪⎪⎨⎪⎪⎩,又102πθ≤<,故1π4θ=. 同理,可以求得:5π5π1i 2cos isin 44⎫--=+⎪⎭, )22cos0isin 0+,3π3π2i 2cos isin 22⎫-=+⎪⎭, 故4个复数的辐角主值分别为π4,5π4,0,3π2. 19.(2021·西藏·拉萨那曲高级中学高二期中(理))已知复数11i z =+,23i z =-.(1)求21z z ; (2)若4i()z a a R =+∈满足2z z +为纯虚数,求||z .【答案】(1)12i -(2)5【分析】(1)根据复数代数形式的运算法则即可求出;(2)根据纯虚数的概念即可求出参数a ,再根据复数模的计算公式即可求出.(1)213i (3i)(1i)33i i 112i 1i (1i)(1i)2z z ------====-++-. (2)因为2(3)3i z z a +=++为纯虚数,∴30a +=,∴3a =-.即34i z =-+,22||(3)45z =-+=.20.(2021·全国·高一课时练习)在复数范围内分解因式:(1)28x +;(2)223x x -+;(3)2321x x -+.【答案】(1)28(22i)(22i)x x x +=+-(2)223(12i)(12i)x x x x -+=--- (3)212123213((x x x x -+-+=) 【分析】利用完全平方公式平方差公式将所给的表达式分解因式. (1)2228=8i (2i)(2i)x x x x +-=+- (2)()22223=12i (12i)(12i)x x x x x -+--=-- (3)∵ 22222112321=3)3[()i ]3339x x x x x -+-+=--( ∴ 212123213[()33x x x x -+=-- ∴ 212123213((x x x x -+-+=) 21.(2021·湖北·高一期末)已知12i +是关于x 的方程20(,)x px q p q R ++=∈的一个根,其中i 为虚数单位. (1)求,p q 的值;(2)记复数i z p q =+,求复数1iz +的模. 【答案】(1)2,5p q =-=(258【分析】(1)由题知()()212i 12i 0p q ++++=,即()()342i 0p q p +-++=,再根据复数相等求解即可; (2)由(1)得25i z =-+,故37i 1i 2z +=+,再求模即可. (1)解:知12i +是关于x 的方程20(,)x px q p q R ++=∈的一个根, 所以()()212i 12i 0p q ++++=,即()()342i 0p q p +-++=, 所以30420p q p +-=⎧⎨+=⎩,解得2,5p q =-=. 所以2,5p q =-=(2)解:由(1)得复数25i z =-+, 所以()()()()25i 1i 25i 37i 1i 1i 1i 1i 2z -+--++===+++- 所以复数1i z +9495844+= 22.(2021·全国·高一课时练习)已知复数()31i 1i z =-. (1)求1arg z 及1z ;(2)当复数z 满足1z =,求1z z -的最大值.【答案】(1)17arg 4z π=,122z = (2)221【分析】(1)化简复数为代数形式后,再化为三角形式,即可求解. (2)z 设为三角形式,和复数1z 的代数形式,共同代入1z z -,化简后可求最大值. (1)解:()31i 1i 22i z =-=-,将1z 化为三角形式,得1772cos isin 44z ππ⎫⎪=⎭+, ∴17arg 4z π=,122z = (2) 解:由于复数z 满足1z =,设cos isin z αα=+,则()()1cos 2sin 2i z z αα-=-++, ()()2221cos 2sin 2924z z πααα⎛⎫-=-++=+- ⎪⎝⎭,当sin 14πα⎛⎫-= ⎪⎝⎭时,21z z -取得最大值942+ 所以1z z -的最大值为221.。
2021年人教A版(2019)必修第二册数学第七章复数单元测试卷含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 12 小题,每题 5 分,共计60分,)1. 已知复数z满足iz=2+i(i为虚数单位),则z在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限2. 在复平面内,设z=1+i(i是虚数单位),则复数2z+z2对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3. 已知复数z=(1−i)22+i,则|z|=( )A.6 5B.45C.√2D.2√554. 设z¯=1+i(i是虚数单位),则在复平面内,z−+2|z¯|对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限5. 复数21−i(i为虚数单位)的共轭复数是()A.1+iB.1−iC.−1+iD.−1−i6. 计算1−ii+3i=()A.1+2iB.1−2iC.−1+2iD.−1−2i7. 若复数z满足(3+4i)z=1+i,则z=( )A.7 5−15i B.725−125i C.−125−125i D.75+15i8. 已知复数z满足z(1−i2)=1+i(i为虚数单位),则|z|为( )A.1 2B.√22C.√2D.19. 复数z的共轭复数为z¯,z+z¯=0是z为纯虚数的( )条件.A.充要B.充分不必要C.必要不充分D.既不充分也不必要10. z=11−i−i,则|z|=( )A.√102B.√22C.52D.1211. 若复数z满足(3−4i)z=|4+3i|,则z的虚部为( )A.−4B.−45C.4 D.4512. 已知复数z满足|z|=1,则|z+1−2i|的最小值为( )A.√5−1B.√5C.3D.2二、填空题(本题共计 4 小题,每题 5 分,共计20分,)13. 若z=4+3i,则z|z|=________.14. 复数1+i3+4i的共轭复数为________.15. i是虚数单位,复数2−i3−4i=________.16. 设复数z1,z2满足|z1|=|z2|=2,z1−z2=√3+i,则|z1+z2|=________.三、解答题(本题共计 6 小题,每题 11 分,共计66分,)17. 已知复数z=(m2+2m−8)+(m2−2m)i,m∈R,其中i为虚数单位.(1)若复数z是实数,求m的值;(2)若复数z是纯虚数,求m的值.18. 解答下面两个问题:(1)已知复数z=−12+√32i,其共轭复数为z¯,求|1z|+(z¯)2;(2)复数z1=2a+1+(1+a2)i,z2=1−a+(3−a)i,a∈R,若z1+z2¯是实数,求a的值.19. 已知复数z=2+i(i是虚数单位)是关于x的实系数方程x2+px+q=0在复数范围内的一个根.(1)求p+q的值;(2)复数w满足z⋅w是实数,且|w|=2√5,求复数w.20. 已知复数z=(m2+3m−10)+(2m2−3m−2)i(m∈R) .(1)若复数z是纯虚数,求m的值;(2)若复数z在复平面内对应的点在第二象限,求m的取值范围.21. 已知复数z1,z2满足(1+i)z1=−1+5i,z2=a−2−i,其中i为虚数单位,a∈R.(1)求z1;(2)若|z1−z2¯|<|z1|,求a的取值范围.22. 设复数z满足4z+2z¯=3√3+i,求复数z.参考答案与试题解析2021年人教A版(2019)必修第二册数学第七章复数单元测试卷含答案一、选择题(本题共计 12 小题,每题 5 分,共计60分)1.【答案】D【考点】复数代数形式的乘除运算复数的基本概念【解析】无【解答】解:∵iz=2+i,∴z=2+ii =(2+i)(−i)i(−i)=1−2i,∴z在复平面内对应点的坐标为(1,−2),位于在第四象限.故选D.2.【答案】A【考点】复数代数形式的混合运算复数的代数表示法及其几何意义【解析】此题暂无解析【解答】解:∵z=1+i,∴2z +z2=21+i+(1+i)2=2(1−i)(1+i)(1−i)+1+2i+i2=2(1−i)2+2i=1−i+2i=1+i,∴复数2z+z2对应的点的坐标为(1,1),落在第一象限. 故选A.3.【答案】D【考点】复数的模复数代数形式的混合运算【解析】先利用复数的四则运算化简复数,再利用复数的模的公式求解. 【解答】 解:z =(1−i )22+i=−2i 2+i =−2i(2−i)(2+i)(2−i)=−25−4i5,故|z|=√(−25)2+(−45)2=2√55. 故选D .4. 【答案】 A【考点】复数代数形式的混合运算复数的代数表示法及其几何意义 【解析】由z ¯=1+i 求出|z ¯|,然后代入z ¯+2|z ¯|化简计算求出在复平面内对应的点的坐标,则答案可求. 【解答】 解:由z ¯=1+i , 得|z ¯|=√2. 则z ¯+2|z|¯=1+i √2=1+√2+i ,∴ 在复平面内,z ¯+2|z ¯|对应的点的坐标为:(1+√2, 1),位于第一象限.故选:A . 5.【答案】 B【考点】 共轭复数复数代数形式的乘除运算【解析】化简已知复数z ,由共轭复数的定义可得. 【解答】解:21−i =2(1+i)(1−i)(1+i)=1+i , 故共轭复数为1−i . 故选B . 6. 【答案】C【考点】复数代数形式的混合运算 【解析】利用复数的运算法则即可得出. 【解答】 解:原式=(1−i)i i 2+3i =−i −1+3i =−1+2i .故选C . 7. 【答案】 B【考点】复数代数形式的乘除运算 【解析】【解答】解:由已知可得z =1+i3+4i =(1+i )(3−4i )25=725−125i .故选B . 8.【答案】 B【考点】 复数的模复数代数形式的乘除运算 虚数单位i 及其性质 【解析】 此题暂无解析 【解答】解:原式可化简为 (−2i)z =1+i ; 即z =1+i−2i =−12+i 2.|z|=√(−12)2+(12)2=√22. 故选B . 9.【答案】C【考点】必要条件、充分条件与充要条件的判断 复数的基本概念结合纯虚数的定义,利用充分条件和必要条件的定义进行判断. 【解答】解:若 z +z ¯=0 可以有 z =0 ,不是纯虚数, 若z 为纯虚数,则 z +z ¯=0 成立,所以"z +z ¯=0 "是“z 为纯虚数”的必要不充分条件. 故选C . 10. 【答案】 B【考点】复数代数形式的混合运算 复数的模【解析】先化简复数,再利用复数的模进行求解即可. 【解答】解:z =11−i −i=1+i(1−i )(1+i )−i =12−12i ,则|z |=√(12)2+(−12)2=√22.故选B . 11.【答案】 D【考点】 复数的模复数代数形式的乘除运算 复数的基本概念 【解析】 由题意可得z =|4+3i|3−4i=53−4i,再利用两个复数代数形式的乘除法法则化简为35+45i ,由此可得z 的虚部. 【解答】解:∵ 复数z 满足(3−4i)z =|4+3i|, ∴ z =|4+3i|3−4i=53−4i =5(3+4i)25=35+45i ,故z 的虚部等于45. 故选D . 12. 【答案】 A复数的代数表示法及其几何意义两点间的距离公式复数的模【解析】此题暂无解析【解答】解:因为|z|=|x+yi|=√x2+y2=1,所以x2+y2=1,即z在复平面内表示圆O:x2+y2=1上的点;又|z+1−2i|=|(x+1)+(y−2)i|=√(x+1)2+(y−2)2,所以|z+1−2i|表示圆O上的动点到定点A(−1,2)的距离,所以|z+1−2i|min为|OA|−r=√5−1.故选A.二、填空题(本题共计 4 小题,每题 5 分,共计20分)13.【答案】4 5+3 5i【考点】复数的模复数的运算【解析】此题暂无解析【解答】解:已知z=4+3i,则|z|=√42+32=5,故z|z|=4+3i5=45+35i .故答案为:45+35i.14.【答案】7 25+1 25i【考点】复数代数形式的混合运算共轭复数【解析】利用复数代数形式的乘除运算化简,再由共轭复数的概念得答案.【解答】解:∵1+i3+4i =(1+i)(3−4i)(3+4i)(3−4i)=725−125i,∴z¯=725+125i.故答案为:725+125i.15.2 5+1 5i【考点】复数代数形式的乘除运算【解析】此题暂无解析【解答】解:2−i3−4i =(2−i)(3+4i)(3−4i)(3+4i)=25+15i.故答案为:25+15i.16.【答案】2√3【考点】复数的模复数代数形式的加减运算【解析】【解答】解:设z1=a+bi,(a∈R,b∈R),z2=c+di,(c∈R,d∈R),∴z1−z2=a−c+(b−d)i=√3+i,∴{a−c=√3,b−d=1.又|z1|=|z2|=2,∴a2+b2=4,c2+d2=4,∴(a−c)2+(b−d)2=a2+c2+b2+d2−2(ac+bd)=4,∴ac+bd=2,∴|z1+z2|=|(a+c)+(b+di)|=√(a+c)2+(b+d)2=√8+2(ac+bd)=√8+4=2√3.故答案为:2√3.三、解答题(本题共计 6 小题,每题 11 分,共计66分)17.【答案】解:(1)若复数z是实数,则m2−2m=0,解得m=0或m=2.(2)若复数z是纯虚数,则{m2−2m≠0,m2+2m−8=0,解得m=−4.【考点】复数的基本概念【解析】无无解:(1)若复数z 是实数,则m 2−2m =0, 解得m =0或m =2. (2)若复数z 是纯虚数, 则{m 2−2m ≠0,m 2+2m −8=0, 解得m =−4. 18. 【答案】解:(1)∵ z =−12+√32i ,∴ z ¯=−12−√32i . ∴ |1z |=|−12−√32i|=12)√32)=1.(z ¯)2=(−12−√32i)2=−12+√32i , ∴ |1z |+(z ¯)2=1−12+√32i =12+√32i ; (2)z 1+z ¯2=2a +1+(1+a 2)i +1−a −(3−a)i =a +2+(a 2+a −2)i ∵ z 1+z ¯2是实数,∴ a 2+a −2=0,解得a =1,或a =−2, 故a =1,或a =−2. 【考点】复数代数形式的混合运算 【解析】(1)由复数z =−12+√32i ,求出|1z |和(z ¯)2,代入|1z |+(z ¯)2计算得答案;(2)把z 1,z 2¯代入z 1+z 2¯化简,再结合已知条件即可求出a 的值. 【解答】解:(1)∵ z =−12+√32i ,∴ z ¯=−12−√32i . ∴ |1z |=|−12−√32i|=12)√32)=1.(z ¯)2=(−12−√32i)2=−12+√32i , ∴ |1z |+(z ¯)2=1−12+√32i =12+√32i ; (2)z 1+z ¯2=2a +1+(1+a 2)i +1−a −(3−a)i =a +2+(a 2+a −2)i ∵ z 1+z ¯2是实数,∴ a 2+a −2=0,解得a =1,或a =−2, 故a =1,或a =−2. 19. 【答案】解:(1)∵ 在复数范围内实系数方程x 2+px +q =0的两个根是互为共轭复数的, ∴ 实系数方程x 2+px +q =0在复数范围内的另一个根是2−i ,故{2−i +(2+i )=−p,(2−i )(2+i )=q,解得{p =−4,q =5,∴ p +q =1.(2)设复数w =a +bi (a,b ∈R ),∴ z ⋅w =(2+i )⋅(a +bi )=(2a −b )+(a +2b )i ,∵ z ⋅w 是实数,∴ a +2b =0,即a =−2b .①又∵ |w |=2√5,∴ a 2+b 2=20,②联立①②,解得{a =4,b =−2,或{a =−4,b =2,∴ 复数w =4−2i 或w =−4+2i .【考点】复数的模复数代数形式的混合运算【解析】此题暂无解析【解答】解:(1)∵ 在复数范围内实系数方程x 2+px +q =0的两个根是互为共轭复数的, ∴ 实系数方程x 2+px +q =0在复数范围内的另一个根是2−i ,故{2−i +(2+i )=−p,(2−i )(2+i )=q,解得{p =−4,q =5,∴ p +q =1.(2)设复数w =a +bi (a,b ∈R ),∴ z ⋅w =(2+i )⋅(a +bi )=(2a −b )+(a +2b )i ,∵ z ⋅w 是实数,∴ a +2b =0,即a =−2b .①又∵ |w |=2√5,∴ a 2+b 2=20,②联立①②,解得{a =4,b =−2,或{a =−4,b =2,∴ 复数w =4−2i 或w =−4+2i .20.【答案】解:(1)由题意可得{m 2+3m −10=0,2m 2−3m −2≠0,即{(m +5)(m −2)=0,(2m +1)(m −2)≠0,解得m =−5 .(2)由题意可知复数z 在复平面内对应的点为Z (m 2+3m −10,2m 2+3m −2) , 则{m 2+3m −10<0,2m 2−3m −2>0,解得−5<m <−12 ,即m 的取值范围为(−5,−12). 【考点】复数的基本概念复数的代数表示法及其几何意义【解析】无无【解答】解:(1)由题意可得{m 2+3m −10=0,2m 2−3m −2≠0,即{(m +5)(m −2)=0,(2m +1)(m −2)≠0,解得m =−5 .(2)由题意可知复数z 在复平面内对应的点为Z (m 2+3m −10,2m 2+3m −2) , 则{m 2+3m −10<0,2m 2−3m −2>0,解得−5<m <−12 , 即m 的取值范围为(−5,−12).21.【答案】解:(1)z 1=−1+5i 1+i =(−1+5i )(1−i )(1+i )(1−i )=2+3i .(2)由(1)得,|z 1|=√22+32=√13,又∵ |z 1−z 2¯|=|2+3i −(a −2+i )|=|4−a +2i|=√(4−a )2+4,∴ 由|z 1−z 2¯|<|z 1|,得√(4−a )2+4<√13 化简得a 2−8a +7<0, 解得1<a <7,故a 的取值范围是(1,7).【考点】复数代数形式的混合运算 复数的模【解析】此题暂无解析【解答】解:(1)z 1=−1+5i 1+i =(−1+5i )(1−i )(1+i )(1−i )=2+3i .(2)由(1)得,|z 1|=√22+32=√13, 又∵ |z 1−z 2¯|=|2+3i −(a −2+i )| =|4−a +2i|=√(4−a )2+4, ∴ 由|z 1−z 2¯|<|z 1|, 得√(4−a )2+4<√13 化简得a 2−8a +7<0, 解得1<a <7,故a 的取值范围是(1,7). 22.【答案】解:设复数z =a +bi ,则z ¯=a −bi , ∵ 4z +2z ¯=3√3+i , ∴ 4a +4bi +2a −2bi =3√3+i , 整理得:6a +2bi =3√3+i , ∴ {6a =3√3,2b =1,即a =√32,b =12, ∴ 复数z =√32+12i . 【考点】共轭复数复数相等的充要条件复数的基本概念【解析】通过设复数z =a +bi ,则z ¯=a −bi ,代入4z +2z ¯=3√3+i ,计算整理即可.【解答】解:设复数z =a +bi ,则z ¯=a −bi ,∵ 4z +2z ¯=3√3+i , ∴ 4a +4bi +2a −2bi =3√3+i , 整理得:6a +2bi =3√3+i , ∴ {6a =3√3,2b =1,即a =√32,b =12,∴ 复数z =√32+12i。
一、选择题1.设i 为虚数单位,复数z 满足21i i z =-,则复数z 的共轭复数等于( ) A .1-i B .-1-i C .1+i D .-1+i2.“1x >”是“复数2(1)()z x x x i x R =-+-∈在复平面内对应的点在第一象限”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.设复数z 满足()13i z i +=+,则z =( )A B .2 C .D 4.已知z 是纯虚数,21z i +-是实数,那么z 等于 ( ). A .2i B .i C .-i D .-2i5.已知集合,()(){}221,3156M m m m m i =--+--,{}1,3N =,{}1,3M N ⋂=,则实数m 的值为 ( )A .4B .-1C .4或-1D .1或6 6.已知复数1z i =-(i 为虚数单位)是关于x 的方程20x px q ++=(p ,q 为实数)的一个根,则p q +的值为( )A .4B .2C .0D .2-7.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由著名数学家欧拉发明的,他将指数函数定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式,若将2i e π表示的复数记为z ,则(12)z i +的值为( )A .2i -+B .2i --C .2i +D .2i - 8.已知复数1223,z i z a bi =+=+(,R,0a b b 且∈≠),其中i 为虚数单位,若12z z 为实数,则a b 的值为( ) A .32- B .23- C .23 D .329.已知复数z 满足()15i z i -+=,则z =( )A .23i +B .23i -C .32i +D .32i -10.若复数2(1)34i z i+=+,则z =( )A .45B .35C .25D 11.若复数z 满足(12)5z i +=,则它的共轭复数z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 12.对于给定的复数0z ,若满足042z i z z -+-=的复数z 对应的点的轨迹是椭圆,则01z -的取值范围是( )A.)2B.)1C.)2- D.)1- 二、填空题13.设为虚数单位,(12)|34|i z i -=+,则复数z 的虚部为________.14.复数2018|)|z i i i =+(i 为虚数单位),则||z =________.15.若z C ∈且1z =,那么2z i +-的最小值为_______________.16.i 表示虚数单位,则201211i i +⎛⎫= ⎪-⎝⎭______. 17.若有两个数,它们的和是4,积为5,则这两个数是________. 18.已知复数()22356()=-+-+∈z k k k k i k R ,且0z <,则k =________.19.在复平面内,三点A 、B 、C 分别对应复数A z 、B z 、C z ,若413B A C A z z i z z -=+-,则ABC ∆的三边长之比为________20.设z 是复数,()a z 表示满足1n z =时的最小正整数n ,i 是虚数单位,则1i ()1ia +=-________. 三、解答题21.复数2(1)32z i a i =--++(α∈R ).(1)若z 为纯虚数求实数a 的值,及z 在复平面内对应的点的坐标;(2)若z 在复平面内对应的点位于第三象限,求实数a 的取值范围.22.当实数m 取什么值时,复数224(6)Z m m m i =-+--分别满足下列条件? (1)复数Z 实数;(2)复数Z 纯虚数;(3)复平面内,复数Z 对应的点位于直线y x =-上.23.(1)已知z C ∈,解关于z 的方程(3)13z i z i -⋅=+;(2)已知32i +是关于x 的方程220x ax b ++=在复数集内的一个根,求实数a ,b 的值. 24.i 为虚数单位,(,)z a bi a b R =+∈是虚数, 1z zω=+是实数,且12ω-<<,11z u z-=+. (1)求||z 及a 的取值范围;(2)求2u ω-的最小值.25.已知i 为虚数单位,当实数m 取何值时,复平面内,复数22(4)(6)i z m m m m =-+--的对应点满足下列条件?(1)在第三象限;(2)在虚轴上;(3)在直线30x y -+=上.26.设复数z :满足432243z i z i +--=-+-,求z 的最大值和最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用复数的运算法则解得1z i =-+,结合共轭复数的概念即可得结果.【详解】∵复数z 满足21i i z=-,∴()()()2121111i i i z i i i i +===---+, ∴复数z 的共轭复数等于1i --,故选B.【点睛】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.2.C解析:C【分析】根据充分必要条件的定义结合复数与复平面内点的对应关系,从而得到答案.【详解】若复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限,则20,10x x x ⎧->⎨->⎩ 解得1x >,故“1x >”是“复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限”的充要条件.故选C.【点睛】本题考查了充分必要条件,考查了复数的与复平面内点的对应关系,是一道基础题. 3.D解析:D【解析】分析:先根据复数除法得z ,再根据复数的模求结果.详解:因为()13i z i +=+,所以31(3)(1)212i z i i i i +==+-=-+, 因此5,z =选D.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为22a b +、对应点为(,)a b 、共轭为.-a bi4.D解析:D【分析】根据复数的运算,化简得到21[(2)(2)]12z b b i i +=-++-,再由复数为实数,即可求解. 【详解】设z =b i (b ∈R ,且b ≠0),则=== [(2-b )+(2+b )i]. ∵∈R , ∴2+b =0,解得b =-2,∴z =-2i.故选D.【点睛】本题主要考查了复数的基本运算和复数的基本概念的应用,其中熟记复数的四则运算法则和复数的基本分类是解答的关键,着重考查了推理与计算能力,属于基础题.5.B解析:B【分析】根据交集的定义可得()()2231563m m m m i --+--=,由复数相等的性质列方程求解即可.【详解】因为()(){}221,3156M m m m m i =--+--,{}1,3N =,{}1,3M N ⋂=, 所以()()2231563m m m m i --+--=,可得223131560m m m m m ⎧--=⇒=-⎨--=⎩,故选B. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算.6.C解析:C【分析】根据实系数一元二次方程的根与系数的关系,求出p ,q 即可求解.【详解】因为复数1z i =-(i 为虚数单位)是关于x 的方程20x px q ++=(p ,q 为实数)的一个根, 所以1z i =+也是方程的一个根, 故z z p z z q +=-⎧⎨⋅=⎩,即22p q =-⎧⎨=⎩, 所以0p q +=,故选:C【点睛】本题主要考查了实系数一元二次方程的根,根与系数的关系,属于中档题.7.A解析:A【分析】 根据欧拉公式求出2cossin 22iz e i i πππ==+=,再计算(12)z i +的值. 【详解】 ∵2cos sin 22i z e i i πππ==+=,∴(12)(12)2z i i i i +=+=-+.故选:A.【点睛】此题考查复数的基本运算,关键在于根据题意求出z .8.B解析:B【分析】先根据复数乘法计算,再根据复数概念求a,b 比值.【详解】因为()1223(z z i a bi =++)()23(32a b a b =-++) i ,所以320a b +=,因为0b ≠,所以23a b =-,选B. 【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为(,)a b 、共轭为.-a bi9.B解析:B【解析】【分析】根据复数的运算法则计算即可.【详解】()15i z i -+=,()()()()51523111i i i z i i i i +-+∴===+++-, 2 3.z i ∴=-故选B.【点睛】本题考查了复数的运算法则和共轭复数的概念,属于基础题10.C解析:C【分析】先求出8625i z -=,再求出||z 得解. 【详解】 由题得()()()()212342863434343425i i i i i z ii i i +-+====+++-,所以102255z ===. 故选:C11.A解析:A【分析】 根据复数的除法运算法则,可得12z i =-,求得12z i =+,结合复数的几何意义,即可求解.【详解】由题意,复数z 满足(12)5z i +=,可得51212z i i ==-+, 所以12z i =+,它在复平面内对应的点为(1,2)在第一象限. 故选:A. 【点睛】本题主要考查了复数的除法运算法则,以及共轭复数的概念和复数的几何意义,其中解答中熟记复数的除法的运算法则,准确化简、运算是解答的关键,着重考查推理与运算能力. 12.A解析:A【分析】根据条件可得042z i -<,即复数0z 对应的点在以()0,4为圆心,2为半径的圆内部. 01z -表示复数0z 对应的点到()1,0的距离,由圆的性质可得答案.【详解】因为042z i z z -+-=的复数z 对应的点的轨迹是椭圆,所以042z i -<由复数的几何意义可知042z i -<表示复数0z 对应的点到()0,4的距离小于2. 即复数0z 对应的点在以()0,4为圆心,2为半径的圆内部.01z -表示复数0z 对应的点到()1,0的距离.如图,设()0,4C ,1,0A221417AC =+=则0212AC z AC -<-<+,即01721172z -<-<+故选:A【点睛】本题考查椭圆的定义的应用,考查复数的几何意义的应用和利用圆的性质求范围,属于中档题.二、填空题13.2【分析】首先将题中所给的式子进行化简求得从而得到其虚部的值【详解】根据可得所以所以复数的虚部为故答案为:2【点睛】该题考查的是有关复数的问题涉及到的知识点有复数的除法运算复数的模复数的虚部属于简单 解析:2【分析】首先将题中所给的式子进行化简,求得12z i =+,从而得到其虚部的值.【详解】根据(12)|34|i z i -=+,可得(12)5i z -==, 所以2255(12)12121(2)i z i i +===+-+-, 所以复数z 的虚部为2,故答案为:2.【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的除法运算,复数的模,复数的虚部,属于简单题目.14.1【分析】由复数模的求法及虚数单位的性质化简求值【详解】解:由题得故答案为:1【点睛】本题考查复数模的求法考查虚数单位的性质是基础题 解析:1【分析】由复数模的求法及虚数单位i 的性质化简求值.【详解】解:由题得2|1|1211z i =+==-=,||1z ∴=.故答案为:1.【点睛】本题考查复数模的求法考查虚数单位i 的性质,是基础题.15.【分析】复数满足表示以为圆心1为半径的圆表示圆上的点与点的距离求出即可得出结果【详解】复数满足表示以为圆心1为半径的圆表示圆上的点与点的距离∵∴的最小值是故答案为【点睛】本题考查了复数的运算法则复数1【分析】复数z 满足1z =,表示以()0,0O 为圆心,1为半径的圆,2z i +-表示圆上的点与点()2,1M -的距离,求出1OM -即可得出结果.【详解】复数z 满足1z =,表示以()0,0O 为圆心,1为半径的圆,2z i +-表示圆上的点与点()2,1M -的距离.∵OM ==∴2z i +-11.【点睛】本题考查了复数的运算法则、复数的几何意义、圆的方程,考查了推理能力与计算能力,属于中档题.16.1【分析】利用复数代数形式的乘除运算化简再利用复数的乘法计算可得【详解】解:且……故答案为:【点睛】本题考查复数的代数形式的乘除运算以及复数的乘方属于基础题解析:1【分析】 利用复数代数形式的乘除运算化简11i i+-,再利用复数的乘法计算可得. 【详解】 解:()()()211111i i i i i i ++==--+ 且1i i =,21i =-,3i i =-,41i =,5i i =…… 2012201245034111i i i i i ⨯+⎛⎫∴==== ⎪-⎝⎭故答案为:1【点睛】本题考查复数的代数形式的乘除运算以及复数的乘方,属于基础题.17.【分析】设利用列方程组解方程组求得题目所求两个数【详解】设依题意有即所以将代入得;将代入解得;将代入得结合解得或所以对应的数为故答案为:【点睛】本小题主要考查复数运算属于中档题解析:2i ±【分析】设()12,,,,z a bi z c di a b c d R =+=+∈,利用12124,5z z z z +=⋅=列方程组,解方程组求得题目所求两个数.【详解】设()12,,,,z a bi z c di a b c d R =+=+∈,依题意有12124,5z z z z +=⋅=,即()()45a c b d i ac bd ad bc i ⎧+++=⎪⎨-++=⎪⎩,所以405a cb d ac bd ad bc +=⎧⎪+=⎪⎨-=⎪⎪+=⎩.将=-b d 代入0ad bc +=,得a c =;将a c =代入4a c +=,解得2a c ==;将2a c ==代入5ac bd -=,得1bd =-,结合=-b d 解得11b d =⎧⎨=-⎩或11b d =-⎧⎨=⎩.所以对应的数为2i +、2i -.故答案为:2i ±【点睛】本小题主要考查复数运算,属于中档题.18.2【分析】由知为实数且的实部小于零由此可构造方程求得结果【详解】解得:故答案为:【点睛】本题考查根据复数为实数求解参数值的问题关键是能够明确复数只有在虚部为零即为实数时才可以比较大小解析:2.【分析】由0z <知z 为实数且z 的实部小于零,由此可构造方程求得结果.【详解】0z < z R ∴∈ 2256030k k k k ⎧-+=∴⎨-<⎩,解得:2k = 故答案为:2【点睛】本题考查根据复数为实数求解参数值的问题,关键是能够明确复数只有在虚部为零,即为实数时才可以比较大小.19.3:4:5【分析】设对应的复数计算对应的复数从而得出再根据与的比值得出答案【详解】设表示的复数为表示的复数为则所以所以表示的复数为所以所以又所以又则所以的三边长之比为:故答案为:【点睛】本题考查了复 解析:3:4:5【分析】设AB 、AC 对应的复数,计算BC 对应的复数,从而得出AC BC ⊥,再根据AB 与AC 的比值得出答案.【详解】设AB 表示的复数为a bi +,AC 表示的复数为i c d +, 则444()(1)()()333a bi c di i c d d c i +=++=-++, 所以43a c d =-,43b dc =+, 所以BC 表示的复数为44()()33AC AB c a bd i d ci -=-+-=-, 所以44(,)(,)033AC BC c d d c ⋅=⋅-=, 所以AC BC ⊥, 又B A C A z z AB AC z z -=-,所以45133AB i AC =+==,又AC BC ⊥,则433BC AC ==, 所以ABC ∆的三边长之比为:3:4:5,故答案为:3:4:5.【点睛】本题考查了复数的运算,重点考查了复数模的运算,考查了推理能力,属中档题.20.4【解析】∵∴∵表示满足的最小正整数∴当时满足第一次成立∴故答案为 解析:4【解析】 ∵21(1)1211(1)(1)11i i i i i i i +++-===--++ ∴1()()1i a a i i+=- ∵()a z 表示满足1n z =的最小正整数n ∴当4n =时满足1n i =第一次成立∴()4a i =故答案为4.三、解答题21.(1)23a =,(0,1)-;(2)2(,)3+∞. 【分析】(1)先化简出z 的代数形式,再根据题意求实数a 的值和z 在复平面内对应的点的坐标; (2)先化简出z 的代数形式,再根据题意建立不等式求实数a 的取值范围即可.【详解】解:因为2(1)32z i a i =--++,所以2(1)32(23)z i a i a i =--++=-- (1)若z 为纯虚数,则230a -=,解得:23a =, 此时z i =-,z 在复平面内对应的点的坐标为:(0,1)-, 所以z 为纯虚数时实数23a =,z 在复平面内对应的点的坐标为:(0,1)- (2)若z 在复平面内对应的点位于三象限, 则23010a -<⎧⎨-<⎩,解得23a > 所以z 在复平面内对应的点位于第三象限,则实数a 的取值范围:2(,)3+∞.【点睛】本题考查复数的代数形式、利用复数的几何意义求对应的点的坐标与求参数、利用复数的分类求参数的范围,是基础题.22.(1)2m =-或3m =;(2)2m =;(3)2m =-或52m =. 【分析】(1)由虚部为0,求解m 值;(2)由实部为0且虚部不为0,列式求解m 值;(3)由实部与虚部的和为0,列式求解m 值.【详解】解:由题可知,复数224(6)Z m m m i =-+--,(1)当Z 为实数时,则虚部为0,由260m m --=,解得:2m =-或3m =;(2)当Z 纯虚数时,实部为0且虚部不为0, 由224060m m m ⎧-=⎨--≠⎩,解得:2m =; (3)当Z 对应的点位于直线y x =-上时,则0x y +=,即:实部与虚部的和为0,由224(6)0m m m -+--=,解得:2m =-或52m =. 【点睛】本题考查复数的基本概念,以及复数的代数表示法及其几何意义,属于基础题. 23.(1)1z =-或13i -+;(2)12,26a b =-=.【分析】(1)设,z a bi z a bi =+=-,代入(3)13z i z i -⋅=+,化简后利用向量相等的知识列方程组,解方程组求得,a b 的值,由此求得z .(2)根据虚根成对以及根与系数关系列方程组,解方程组求得,a b 的值.【详解】(1)设z a bi =+,则(3)()13a bi i a bi i +--=+,即223313a b b ai i +--=+ ∴223133a b b a ⎧+-=⎨-=⎩,解得10a b =-⎧⎨=⎩,或13a b =-⎧⎨=⎩∴1z =-或13i -+; (2)由题知方程在复数集内另一根为32i -,故323262(32)(32)132a i ib i i ⎧-=++-=⎪⎪⎨⎪=+-=⎪⎩, 即12,26a b =-=.【点睛】本小题主要考查复数运算,考查复数相等的概念,属于中档题.24.(1)||1z =;112a -<<;(2)1. 【分析】 (1)化简ω得到22221()a b z a b i z a b a bω=+=++-++,利用ω是实数,得到220b b a b-=+,解得0b ≠,得到221a b +=,从而求得||1z =,进而求得12z a zω=+=, 根据12ω-<<,得到112a -<<; (2)各年级题意可知2121a u a aω--=++,进一步转化,利用基本不等式求得其最值. 【详解】(1)22221()a b z a b i z a b a b ω=+=++-++,因为ω是实数, 所以220b b a b-=+,又0b ≠,所以221a b +=,所以||1z = 因为12z a z ω=+=,且12ω-<<,所以112a -<<. (2)由题意知111a bi bi u a bi a ---==+++, 所以2222211222(1)(1)1b a a u a a a a a a ω---=+=+=++++ 12(1)311a a =++-≥+,当且仅当0a =时,等号成立, 所以2u ω-的最小值为1.【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的分类,复数的乘法除法运算,基本不等式求最值,属于简单题目.25.(1)(0,3);(2)0m =或4;(3)3m =.【分析】(1)根据复数对应的点在第三象限,得到实部和虚部都小于0,得到不等式组解之得结果;(2)根据复数对应的点在虚轴上,得到实部等于0,解方程得结果;(3)根据复数对应的点在直线30x y -+=上,得到实部和虚部满足此方程,由此解得m 的值.【详解】复数22(4)(6)i z m m m m =-+--对应点的坐标为22(4,6)Z m m m m ---.(1)因为点Z 在第三象限,所以224060m m m m ⎧-<⎨--<⎩,解得0423m m <<⎧⎨-<<⎩, 所以03m <<,故实数m 的取值范围为(0,3).(2)因为点Z 在虚轴上,所以240m m -=,解得0m =或4m =.(3)因为点Z 在直线30x y -+=上,所以22(4)(6)30m m m m ----+=,即390m -+=,解得3m =.【点睛】该题考查的是有关复数在复平面内对应的点所处的位置的问题,要明确虚轴是y 轴,属于简单题目.26.最大值7;最小值3.【分析】先根据绝对值定义得不等式,再根据绝对值三角不等式求最值.【详解】由已知等式得()4320z i --+-≤ ()|||43|4322||523||7z i z i z z ∴--+≤--+≤∴-≤-≤∴≤≤ 所以z 最大值为7; z 最小值为3.【点睛】本题考查复数模、绝对值三角不等式,考查基本分析求解能力,属中档题.。
复数选择题专项训练单元测试附解析一、复数选择题1.若()211z i =-,21z i =+,则12z z 等于( )A .1i +B .1i -+C .1i -D .1i -- 答案:D【分析】由复数的运算法则计算即可.【详解】解:,.故选:D.解析:D【分析】由复数的运算法则计算即可.【详解】解:()2211122z i i i i =-=-+=-,()()212222(1)2222111112z i i i i i i i z i ii i --⨯--+--∴=====--++--.故选:D.2.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( )A .第一象限B .第二象限C .第三象限D .第四象限 答案:D【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项.【详解】由已知得,所以复数z 在复平面上所对应的点为,在第四象限,故选:D.解析:D【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项.【详解】 由已知得()()()()312317171+21+212555i i i iz i i i i ----====--,所以复数z 在复平面上所对应的点为17,55⎛⎫-⎪⎝⎭,在第四象限, 故选:D. 3.已知a 为正实数,复数1ai +(i 为虚数单位)的模为2,则a 的值为( )A B .1 C .2 D .3答案:A【分析】利用复数的模长公式结合可求得的值.【详解】,由已知条件可得,解得.故选:A.解析:A【分析】利用复数的模长公式结合0a >可求得a 的值.【详解】0a >,由已知条件可得12ai +==,解得a =故选:A.4.若复数()()24z i i =--,则z =( )A .76i --B .76-+iC .76i -D .76i + 答案:D【分析】由复数乘法运算求得,根据共轭复数定义可求得结果.【详解】,.故选:.解析:D【分析】由复数乘法运算求得z ,根据共轭复数定义可求得结果.【详解】()()2248676z i i i i i =--=-+=-,76z i ∴=+.故选:D .5.已知复数z 满足()311z i i +=-,则复数z 对应的点在( )上A .直线12y x =-B .直线12y x =C .直线12x =-D .直线12y 答案:C【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可.【详解】解:因为,所以复数对应的点是,所以在直线上.故选:C.【点睛】本题考查复数的乘方和除法运解析:C【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可.【详解】 解:因为33111(1)1(1)2(1)2i i z i i z i i --+=-⇔===-+-,所以复数z 对应的点是1,02⎛⎫- ⎪⎝⎭,所以在直线12x =-上. 故选:C.【点睛】本题考查复数的乘方和除法运算,复数的坐标表示,属基础题.注意:()()()()()3211i 12121i i i i i +=++=-+=-. 6.若复数1z i =-,则1z z =-( )A B .2C .D .4 答案:A【分析】将代入,利用复数的除法运算化简,再利用复数的求模公式求解.【详解】由,得,则,故选:A.解析:A【分析】将1z i =-代入1z z-,利用复数的除法运算化简,再利用复数的求模公式求解. 【详解】由1z i =-,得2111z i i i i z i i---===---,则11z i z =--=- 故选:A.7.若复数z 满足421i z i +=+,则z =( ) A .13i + B .13i - C .3i + D .3i - 答案:C【分析】首先根据复数的四则运算求出,然后根据共轭复数的概念求出.【详解】,故.故选:C. 解析:C【分析】首先根据复数的四则运算求出z ,然后根据共轭复数的概念求出z .【详解】()()()()421426231112i i i i z i i i i +-+-====-++-,故3z i =+. 故选:C. 8.若复数z 满足()322i z i i-+=+,则复数z 的虚部为( ) A .35 B .35i - C .35 D .35i 答案:A【分析】由复数的除法法则和乘法法则计算出,再由复数的定义得结论.【详解】由题意,得,其虚部为,故选:A.解析:A【分析】由复数的除法法则和乘法法则计算出z ,再由复数的定义得结论.【详解】由题意,得()()()()()23343313343434552i i ii z i i i i i ----====-++-+, 其虚部为35, 故选:A. 9.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ⋅④z z ,其结果一定是实数的是( )A .①②B .②④C .②③D .①③ 答案:D【分析】设,则,利用复数的运算判断.【详解】设,则,故,,,.故选:D.解析:D【分析】设(),z a bi a b R =+∈,则z a bi =-,利用复数的运算判断.【详解】设(),z a bi a b R =+∈,则z a bi =-,故2z z a R +=∈,2z z bi -=,22222z a bi a b abi z a bi a b+-+==-+,22z z a b ⋅=+∈R . 故选:D.10.复数112z i =+,21z i =+(i 为虚数单位),则12z z ⋅虚部等于( ). A .1- B .3 C .3i D .i -答案:B【分析】化简,利用定义可得的虚部.【详解】则的虚部等于故选:B解析:B【分析】化简12z z ⋅,利用定义可得12z z ⋅的虚部.【详解】()()1212113z z i i i ⋅=+⋅+=-+则12z z ⋅的虚部等于3故选:B11.在复平面内,复数z 对应的点的坐标是(1,1),则z i =( ) A .1i -B .1i --C .1i -+D .1i + 答案:A【分析】根据复数对应的点的坐标是,得到,再利用复数的除法求解.【详解】因为在复平面内,复数对应的点的坐标是,所以,所以,故选:A解析:A【分析】根据复数z 对应的点的坐标是(1,1),得到1z i =+,再利用复数的除法求解.【详解】因为在复平面内,复数z 对应的点的坐标是(1,1),所以1z i =+, 所以11i i i z i+==-, 故选:A12.设复数202011i z i+=-(其中i 为虚数单位),则z 在复平面内对应的点所在象限为( )A .第四象限B .第三象限C .第二象限D .第一象限 答案:A【分析】根据复数的运算,先将化简,求出,再由复数的几何意义,即可得出结果.【详解】因为,所以,其在复平面内对应的点为,位于第四象限.故选:A.解析:A【分析】根据复数的运算,先将z 化简,求出z ,再由复数的几何意义,即可得出结果.【详解】 因为()()()()4202050550512111121111111i i i z i i i i i i i ++++======+-----+, 所以1z i =-,其在复平面内对应的点为()1,1-,位于第四象限.故选:A.13.已知复数21i z i =-,则复数z 在复平面内对应点所在象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:B【分析】对复数进行化简,再得到在复平面内对应点所在的象限.【详解】,在复平面内对应点为,在第二象限.故选:B.解析:B【分析】对复数z 进行化简,再得到z 在复平面内对应点所在的象限.【详解】21i z i =-()()()2111i i i i +=+-()1+1+i i i ==-,z 在复平面内对应点为()1,1-,在第二象限. 故选:B.14.已知复数z 满足22z z =,则复数z 在复平面内对应的点(),x y ( ) A .恒在实轴上B .恒在虚轴上C .恒在直线y x =上D .恒在直线y x=-上 答案:A【分析】先由题意得到,然后分别计算和,再根据得到关于,的方程组并求解,从而可得结果.【详解】由复数在复平面内对应的点为得,则,,根据得,得,.所以复数在复平面内对应的点恒在实轴上,故解析:A【分析】先由题意得到z x yi =+,然后分别计算2z 和2z ,再根据22z z =得到关于x ,y 的方程组并求解,从而可得结果.【详解】由复数z 在复平面内对应的点为(),x y 得z x yi =+,则2222z x y xyi =-+,222z x y =+, 根据22z z =得222220x y x y xy ⎧-=+⎨=⎩,得0y =,x ∈R . 所以复数z 在复平面内对应的点(),x y 恒在实轴上,故选:A .15.复数z 满足22z z i +=,则z 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案:B【分析】先设复数,根据复数模的计算公式,以及复数相等,求出,得出复数,再由复数的几何意义,即可得出结果.【详解】设复数,由得,所以,解得,因为时,不能满足,舍去;故,所以,其对应的解析:B【分析】先设复数(),z x yi x R y R =+∈∈,根据复数模的计算公式,以及复数相等,求出,x y ,得出复数,再由复数的几何意义,即可得出结果.【详解】设复数(),z x yi x R y R =+∈∈,由22z z i +=得222x yi i ++=,所以2022x y ⎧⎪+=⎨=⎪⎩,解得31x y ⎧=±⎪⎨⎪=⎩,因为1x y ⎧=⎪⎨⎪=⎩时,不能满足20x +=,舍去;故1x y ⎧=⎪⎨⎪=⎩z i =+,其对应的点⎛⎫ ⎪ ⎪⎝⎭位于第二象限, 故选:B.二、复数多选题16.i 是虚数单位,下列说法中正确的有( )A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限答案:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+,所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( )A .z =-1+2iB .|z |=5C .12z i =+D .5z z ⋅= 答案:AD【分析】因为复数Z 在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z 在复平面上对应的向量,所以,,|z|=,,故选:AD解析:AD【分析】因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.【详解】因为复数Z 在复平面上对应的向量(1,2)OZ =-,所以12z i =-+,12z i =--,|z 5z z ⋅=,故选:AD18.已知复数z 满足220z z +=,则z 可能为( ).A .0B .2-C .2iD .2i+1- 答案:AC【分析】令,代入原式,解出的值,结合选项得出答案.【详解】令,代入,得,解得,或,或,所以,或,或.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.解析:AC【分析】令()i ,z a b a b R =+∈,代入原式,解出,a b 的值,结合选项得出答案.【详解】令()i ,z a b a b R =+∈,代入220z z +=,得222i 0a b ab -+=,解得00a b =⎧⎨=⎩,或02a b =⎧⎨=⎩,或02a b =⎧⎨=-⎩, 所以0z =,或2i z =,或2i z =-.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.19.下面是关于复数21i z =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1- 答案:ABCD【分析】先根据复数的除法运算计算出,再依次判断各选项.【详解】,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD.【点睛】本题考查复数的除法解析:ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题.20.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案:BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.21.下列说法正确的是( )A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件 答案:AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误;当时解析:AD【分析】 由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.22.若复数z 满足()1z i i +=,则( ) A .1z i =-+B .z 的实部为1C .1z i =+D .22z i =答案:BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由,得,所以z 的实部为1,,,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭 解析:BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由()1z i i +=,得2(1)2(1)1(1)(1)2i i z i i i --====-+-, 所以z 的实部为1,1z i =+,22z i =-,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题23.下列关于复数的说法,其中正确的是( )A .复数(),z a bi a b R =+∈是实数的充要条件是0b =B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠C .若1z ,2z 互为共轭复数,则12z z 是实数D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称答案:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于:复数是实数的充要条件是,显然成立,故正确;对于:若复数是纯虚数则且,故错误;对于:若,互为共轭复数解析:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确;对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误; 对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确; 对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误;故选:AC【点睛】本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.24.下列结论正确的是( )A .已知相关变量(),x y 满足回归方程ˆ9.49.1yx =+,则该方程相应于点(2,29)的残差为1.1B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好C .若复数1z i =+,则2z =D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥答案:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A 正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当2x =时,ˆ9.429.127.9y=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;1z i =-,z =C 错误;由否定的定义可知,D 正确;故选:ABD【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题.25.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A .若0m =,则共轭复数1z = B .若复数2z =,则m =C .若复数z 为纯虚数,则1m =±D .若0m =,则2420z z ++= 答案:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m =时,1z =-+,则1z =-,故A 错误;对于B ,若复数2z =,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m =B 正确; 对于C ,若复数z为纯虚数,则满足(()21010m m m ⎧-=⎪⎨-≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-,()()221420412z z ++=+--+=,故D 正确.故选:BD.【点睛】 本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.26.以下为真命题的是( )A .纯虚数z 的共轭复数等于z -B .若120z z +=,则12z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数 答案:AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若为纯虚数,可设,则,即纯虚数的共轭复数等于,故A 正确;对于B解析:AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若z 为纯虚数,可设()0z bi b =≠,则z bi z =-=-,即纯虚数z 的共轭复数等于z -,故A 正确;对于B ,由120z z +=,得出12z z =-,可设11z i =+,则21z i =--, 则21z i =-+,此时12z z ≠,故B 错误;对于C ,设12,z a bi z c di =+=+,则()()12a c b d i R z z =++++∈,则0b d +=, 但,a c 不一定相等,所以1z 与2z 不一定互为共轭复数,故C 错误;对于D ,120z z -=,则12z z =,则1z 与2z 互为共轭复数,故D 正确. 故选:AD.【点睛】本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题.27.复数21i z i +=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i +C .z 的实部与虚部之和为2D .z 在复平面内的对应点位于第一象限 答案:CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】 由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.28.复数z 满足233232i z i i+⋅+=-,则下列说法正确的是( )A .z 的实部为3-B .z 的虚部为2C .32z i =-D .||z =答案:AD【分析】由已知可求出,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由知,,即,所以的实部为,A 正确;的虚部为-2,B 错误;,C 错误;,D 正确;故选:A解析:AD【分析】由已知可求出32z i =--,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】 解:由233232i z i i +⋅+=-知,232332i z i i +⋅=--,即()()()2233232232313i i i z i i ---=-=+ 39263213i i --==--,所以z 的实部为3-,A 正确;z 的虚部为-2,B 错误;32z i =-+,C 错误;||z ==D 正确; 故选:AD.【点睛】 本题考查了复数的除法运算,考查了复数的概念,考查了共轭复数的求解,考查了复数模的求解,属于基础题.29.已知i 为虚数单位,则下列选项中正确的是( )A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =-D .对任意的复数z ,都有20z答案:AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题.30.下列命题中,正确的是( )A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数 答案:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与解析:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +, 故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C 错.对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .【点睛】本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.。
一、选择题1.12i 12i+=- A .43i 55-- B .43i 55-+ C .34i 55-- D .34i 55-+ 2.设()()2225322z t t t t i =+-+++,其中t ∈R ,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 对应的点在实轴的下方D .z 一定为实数 3.复数z 满足5(3)2i z i ⋅+=-,则z 的虚部是( )A .12B .12- C .12i - D .12i 4.“1x >”是“复数2(1)()z x x x i x R =-+-∈在复平面内对应的点在第一象限”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.已知方程()()2440x i x ai a R ++++=∈有实根b ,且z a bi =+,则复数z 等于( )A .22i -B .22i +C .22i -+D .22i --6.已知复数122z =--,则z z +=( )A .12--B .12-+C .12+D .12- 7.若复数(1)(1)z m m m i =-+-是纯虚数,其中m 是实数,则1z =( ) A .i B .i - C .2i D .2i -8.已知复数1z ﹑2z 满足()120z z r r -=>,复数,*(1)i i n n N ω≤≤∈满足1i z r ω-=或者2i z r ω-=,且i j r ωω-≥对任意1i j n ≤<≤成立,则正整数n 的最大值为( )A .6B .8C .10D .129.若C z ∈,且22i 1z +-=,则22i z --的最小值是( )A .2B .3C .4D .510.已知复数z 满足33z -=,则4z i -(i 为虚数单位)的取值范围为( )A .[]28,B .3⎤⎦C .[]1,9D .[]3,8 11.复数z 满足(12)3z i i +=+,则z =( )A .15i +B .1i -C .15i -D .1i +12.已知复数21ai z i +=-是纯虚数,则实数a 等于( ) A .5 B .2 C .3 D .2 二、填空题13.下列命题(i 为虚数单位)中:①已知,a b ∈R 且a b =,则()()a b a b i -++为纯虚数;②当z 是非零实数时,12z z+≥恒成立;③复数3(1)z i =-的实部和虚部都是-2;④如果|2||2|a i i +<-+,则实数a 的取值范围是11a -<<;⑤复数1z i =-,则13122z i z +=+;其中正确的命题的序号是__________. 14.已知复数2i -(i 为虚数单位)是实系数一元二次方程20x bx c ++=的一个根,则b c +=_____.15.若复数z 满足||1z =,则()()z i z i +-的最大值是________.16.如果虚数z 满足38z =,那么3222z z z +++的值是________.17.已知复数(,是虚数单位)的对应点在第四象限,且,那么点在平面上形成的区域面积等于____18.若实数,m n 满足20212(4)(2)i mi n i ⋅+=+,且z m ni =+,则||z =_____. 19.如果复数z 的模不大于1,而z 的虚部的绝对值不小于,则复平面内复数z 的对应点组成图形的面积是___.20.若|z -2|=|z +2|,则|z -1|的最小值是________.参考答案三、解答题21.当实数m 取什么值时,复数224(6)Z m m m i =-+--分别满足下列条件? (1)复数Z 实数;(2)复数Z 纯虚数;(3)复平面内,复数Z 对应的点位于直线y x =-上.22.(1)已知21i -(i 是虚数单位)是关于x 的方程10mx n +-=的根,m 、n ∈R ,求m n +的值;(2)已知21i -(i 是虚数单位)是关于x 的方程210x mx n ++-=的一个根,m 、n ∈R ,求m n +的值.23.已知复数1z mi =+(i 是虚数单位,m R ∈),且(3)z i ⋅+为纯虚数(z 是z 的共轭复数).(1)设复数121m i z i+=-,求1z ; (2)设复数20172a i z z-=,且复数2z 所对应的点在第一象限,求实数a 的取值范围. 24.当实数m 为何值时,复数()22656z m m m m i =--+++分别是(1)虚数;(2)纯虚数;(3)实数.25.计算下列各题: (1)55(1)(1)11i i i i +-+-+;(2)201920191111i i i i +-⎛⎫⎛⎫- ⎪ ⎪-+⎝⎭⎝⎭;;(4) 23201920202320192020i i i i i +++++.26.已知关于x 的方程x 2+kx+k 2﹣2k=0有一个模为1的虚根,求实数k 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:根据复数除法法则化简复数,即得结果. 详解:212(12)341255i i i i ++-+==∴-选D. 点睛:本题考查复数除法法则,考查学生基本运算能力.2.C解析:C【分析】根据()2222110t t t ++=++>,2253t t +-可正可负也可为0,即可判定.【详解】 ()2222110t t t ++=++>,z ∴不可能为实数,所以D 错误; z ∴对应的点在实轴的上方,又z 与z 对应的点关于实轴对称,z 对应的点在实轴的下方,所以C 正确;213,25302t t t -<<+-<,z 对应的点在第二象限,所以A 错误;21,25302t t t =+-=,z 可能为纯虚数,所以B 错误; ∴C 项正确.故选:C【点睛】此题考查复数概念的辨析,关键在于准确求出实部和虚部的取值范围.3.A解析:A【解析】【分析】 通过5(3)2i z i ⋅+=-计算出z ,从而得到z ,根据虚部的概念即可得结果.【详解】 ∵5(3)2i z i ⋅+=-,∴()()()()5232211333322i i i i z i i i i i ----====-+++-, ∴1122z i =+,即z 的虚部是12,故选A. 【点睛】 本题主要考查了复数除法的运算,共轭复数的概念,复数的分类等,属于基础题. 4.C解析:C【分析】根据充分必要条件的定义结合复数与复平面内点的对应关系,从而得到答案.【详解】若复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限,则20,10x x x ⎧->⎨->⎩ 解得1x >,故“1x >”是“复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限”的充要条件.故选C.【点睛】本题考查了充分必要条件,考查了复数的与复平面内点的对应关系,是一道基础题. 5.A解析:A【解析】【详解】由b 是方程()()2440x i x ai a R ++++=∈的根可得()2440b i b ai ++++=, 整理可得:()()2440b a i b b ++++=,所以20440b a b b +=⎧⎨++=⎩,解得22a b =⎧⎨=-⎩,所以22z i =-,故选A . 6.C解析:C【解析】分析:首先根据题中所给的复数z ,可以求得其共轭复数,并且可以求出复数的模,代入求得122z z i +=+,从而求得结果.详解:根据12z =-,可得12z =-+,且1z ==,所以有11122z z +=-++=+,故选C. 点睛:该题考查的是有关复数的问题,涉及到的知识点有复数的共轭复数、复数的模、以及复数的加法运算,属于基础题目.7.A解析:A【解析】因为复数()()11z m m m i =-+-是纯虚数,所以()1010m m m ⎧-=⎨-≠⎩,则m =0,所以z i =-,则11i z i==-. 8.C解析:C【分析】用向量,OA OB 表示12,z z ,根据题意,可得OA OB BA r -==,因为1i z r ω-=或者2i z r ω-=,根据其几何意义可得i ω的终点的轨迹,且满足条件的终点个数即为n ,数形结合,即可得答案.【详解】用向量,OA OB 表示12,z z ,因为()120z z r r -=>,所以OA OB BA r -==,又,*(1)i i n n N ω≤≤∈满足1i z r ω-=或者2i z r ω-=,则i ω可表示以O 为起点,终点在以A 为圆心,半径为r 的圆上的向量,或终点在以B 为圆心,半径为r 的圆上的向量,则终点可能的个数即为n ,因为i j r ωω-≥,所以在同一个圆上的两个点,形成的最小圆心角为60︒,如图所示,则最多有10个可能的终点,即n =10.故选:C【点睛】解题的关键是根据所给条件的几何意义,得到i ω的终点轨迹,根据条件,数形结合,即可得答案,考查分析理解,数形结合的能力,属中档题.9.B解析:B【分析】由复数的模的几何意义,可得z 在复平面的轨迹是以()2,2-为圆心,以1为半径的圆,根据圆的几何性质可得结果.【详解】设i z x y =+(),x y ∈R ,则()22i 22i 1z x y +-=++-=,所以()()22221x y ++-=,表示圆心为()2,2-,半径为1r =的圆. ()()()()2222i 22i 22z x y x y --=-+-=-+-,表示点(),x y 和()2,2之间的距离, 故()min 22i 22413z r --=---=-=.故选:B.【点睛】本题考查复数的模的几何意义,考查圆的性质,考查学生的计算求解能力,属于中档题. 10.A解析:A【分析】利用复数模长的三角不等式可求得4z i -的取值范围. 【详解】()()4334z i z i -=-+-,由复数模长的三角不等式可得()()334334334z i z i z i ---≤-+-≤-+-, 即35435z i -≤-≤+,即248z i ≤-≤, 因此,4z i -的取值范围是[]28,.故选:A.【点睛】本题考查复数模长的取值范围的计算,考查三角不等式的应用,考查计算能力,属于中等题.11.D解析:D【分析】把已知等式变形,利用复数代数形式的乘除运算化简求得1i z =-,利用共轭复数的定义可得结论.【详解】()12i 3i z +=+,()()()()3i 12i 3i 55i 1i 12i 12i 12i 5z +-+-∴====-++-, 所以1z i =+,故选D.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.12.B解析:B【分析】 化简复数2222a a z i -+=+,根据复数z 是纯虚数,得到202a -=且202a +≠,即可求解.【详解】 由题意,复数()()()()2122211122ai i ai a a z i i i i +++-+===+--+, 因为复数z 是纯虚数,可得202a -=且202a +≠,解得2a =, 所以实数a 等于2.故选:B.【点睛】本题主要考查了复数的除法运算,以及复数的基本概念的应用,其中解答中熟记复数的运算法则,结合复数的基本概念求解是解答的关键,着重考查推理与运算能力.二、填空题13.②③④【分析】①当时不是纯虚数;②根据基本不等式的性质知恒成立;③化简复数得的实部和虚部都是;④根据模长公式得关于的不等式求解即可;⑤根据复数代数运算法则化简计算即可【详解】对于①且若时则不是纯虚数解析:②③④【分析】①当0a b 时,()()0a b a b i -++=不是纯虚数;②根据基本不等式的性质知1||2z z +恒成立; ③化简复数z ,得z 的实部和虚部都是2-;④根据模长公式得关于a 的不等式,求解即可;⑤根据复数代数运算法则,化简计算即可.【详解】 对于①,a ,b R ∈且a b =,若0a b 时,则()()a b a b i -++不是纯虚数,①错误;对于②,当z 是非零实数时,根据基本不等式的性质知1||2z z +恒成立,②正确; 对于③,复数3(1)22z i i =-=--,z ∴的实部和虚部都是2-,③正确;对于④,如果|2||2|a i i +<-+,则2441a +<+,解得11a -<<,所以实数a 的取值范围是11a -<<,④正确;对于⑤,复数1z i =-,则1131(1)122z i i z i +=+-=--,∴⑤错误. 综上,正确的命题的序号是②③④.故答案为:②③④.【点睛】本题考查复数的概念与应用问题,考查逻辑推理能力,是综合题. 14.1【分析】的共轭复数是实系数一元二次方程的一个根利用一元二次方程的根与系数的关系求【详解】解:因为是实系数一元二次方程的一个根所以是实系数一元二次方程的一个根所以因此故答案为:1【点睛】本题考查了一 解析:1【分析】2i -的共轭复数2i +是实系数一元二次方程20x bx c ++=的一个根,利用一元二次方程的根与系数的关系求b 、c .【详解】解:因为2i -是实系数一元二次方程20x bx c ++=的一个根,所以2i +是实系数一元二次方程20x bx c ++=的一个根,所以[(2)(2)]4b i i =--++=-,(2)(2)5c i i =-⋅+=,因此451b c +=-+=.故答案为:1.【点睛】本题考查了一元二次方程的根与系数的关系,属于基础题.15.【分析】设求出后再求其模利用可求模的最大值【详解】设则故其中当时故答案为:2【点睛】本题考查复数的乘法共轭复数以及复数的模处理复数的模的问题有两个思路:(1)利用复数的几何意义求解;(2)复数问题实 解析:2【分析】设,,z a bi a b R =+∈,求出()()z i z i +-后再求其模,利用221a b +=可求模的最大值.【详解】设,,z a bi a b R =+∈,则()()()22()()111z i z i a b i a b i a b +-=+-+-=+-⎡⎤⎡⎤⎣⎦⎣⎦,故()()z i z i +-==[]1,1b ∈-. 当1b =-时,max ()()2z i z i +-=,故答案为:2.【点睛】本题考查复数的乘法、共轭复数以及复数的模,处理复数的模的问题有两个思路:(1)利用复数的几何意义求解;(2)复数问题实数化即把复数的模的问题归结实部和虚部的问题(即实数范围内的问题),本题属于中档题.16.6【分析】利用立方差公式由得再将所求式子进行等价变形为最后利用整体代入计算求值【详解】由得又z 为虚数得∴故答案为:6【点睛】本题考查立方差公式的应用复数的四则运算考查转化与化归思想考查逻辑推理能力和 解析:6【分析】利用立方差公式,由38z =,得()2(2)240z z z -++=,再将所求式子进行等价变形为()323222242z z z z z z +++=+++-,最后利用整体代入计算求值.【详解】由38z =,得()2(2)240z z z -++=.又z 为虚数,得2240z z ++=.∴()3232222428026z z z z z z +++=+++-=+-=.故答案为:6【点睛】本题考查立方差公式的应用、复数的四则运算,考查转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意整体代入法的灵活运用.17.π【分析】先把复数分母有理化再根据z在第四象限和|z|≤2可得关于xy的不等式组进而可得点P在平面上形成的区域面积【详解】由题得z=x+yi1+i=x+y+(y-x)i2z在第四象限则有x+y2>0解析:【分析】先把复数分母有理化,再根据z在第四象限和,可得关于x,y的不等式组,进而可得点P在平面上形成的区域面积.【详解】由题得,z在第四象限,则有,整理得,由得,化简得,则点在不等式组所表示的平面区域内,如图阴影部分:则其面积.【点睛】本题考查复数的运算和复数的模,与线性规划相结合,有一定综合性.18.【分析】先通过复数代数形式的四则运算法则对等式进行运算再利用复数相等求出最后由复数的模的计算公式求出【详解】因为所以已知等式可变形为即解得【点睛】本题主要考查复数代数形式的四则运算法则复数相等的概念10【分析】先通过复数代数形式的四则运算法则对等式进行运算,再利用复数相等求出,m n ,最后由复数的模的计算公式求出z . 【详解】 因为2021i i =,所以已知等式可变形为2(4)44i mi n ni +=+-, 即2444m i n ni -+=+-,2444m n n ⎧-=-⎨=⎩ 解得31m n =⎧⎨=⎩ ,3i z =+ 9110z ∴=+=.【点睛】本题主要考查复数代数形式的四则运算法则,复数相等的概念以及复数的模的计算公式的应用.19.【解析】分析:先根据复数的模以及复数的虚部列不等式再根据扇形面积减去三角形面积得弓形面积详解:设则如图因此复平面内复数z 的对应点组成图形为两个弓形其面积为扇形面积减去三角形面积是点睛:本题重点考查复 解析:23-3π 【解析】分析:先根据复数的模以及复数的虚部列不等式,再根据扇形面积减去三角形面积得弓形面积.详解:设(,)z x yi x y R =+∈,则2211,2x y y +≤≥ ,如图,2.3AOB π∠=因此复平面内复数z 的对应点组成图形为两个弓形,其面积为扇形面积减去三角形面积是21212232(111sin )232332πππ⨯⋅-⨯⨯⨯=- 点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 22a b +(,)a b 、共轭为.-a bi20.1【解析】由|z -2|=|z +2|知z 对应点的轨迹是到(20)与到(-20)距离相等的点即虚轴|z -1|表示z 对应的点与(10)的距离∴|z -1|min =1点睛:要熟悉复数相关基本概念如复数的实部为解析:1【解析】由|z -2|=|z +2|,知z 对应点的轨迹是到(2,0)与到(-2,0)距离相等的点,即虚轴. |z -1|表示z 对应的点与(1,0)的距离.∴|z -1|min =1.点睛:要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为(,)a b 、共轭为.-a bi三、解答题21.(1)2m =-或3m =;(2)2m =;(3)2m =-或52m =. 【分析】(1)由虚部为0,求解m 值;(2)由实部为0且虚部不为0,列式求解m 值;(3)由实部与虚部的和为0,列式求解m 值.【详解】解:由题可知,复数224(6)Z m m m i =-+--,(1)当Z 为实数时,则虚部为0,由260m m --=,解得:2m =-或3m =;(2)当Z 纯虚数时,实部为0且虚部不为0, 由224060m m m ⎧-=⎨--≠⎩,解得:2m =; (3)当Z 对应的点位于直线y x =-上时,则0x y +=,即:实部与虚部的和为0,由224(6)0m m m -+--=,解得:2m =-或52m =. 【点睛】本题考查复数的基本概念,以及复数的代数表示法及其几何意义,属于基础题. 22.(1)1;(2)8.【分析】(1)将21x i =-代入方程10mx n +-=,将等式左边的复数化为一般形式, 利用复数的虚部和实部均为零得出关于m 、n 的方程组,解出这两个未知数,即可求出m n +的值; (2)解法一:将21x i =-代入方程210x mx n ++-=,将等式左边的复数化为一般形式, 利用复数的虚部和实部均为零得出关于m 、n 的方程组,解出这两个未知数,即可求出m n +的值;解法二:由题意可知,关于x 的二次方程210x mx n ++-=的两根分别为21i -和21i --,利用韦达定理可求出m 、n 的值,由此可计算出m n +的值.【详解】(1)由已知得()2110m i n -+-=,()120n m mi ∴--+=,1020n m m --=⎧∴⎨=⎩,解得10n m =⎧⎨=⎩,1m n ∴+=; (2)解法一:由已知得()()2212110i m i n -+-+-=,()()4240n m m i ∴--+-=, 40240n m m --=⎧∴⎨-=⎩,62n m =⎧∴⎨=⎩,8m n ∴+=; 解法二:21i -是实系数方程21=0x mx n ++-的根,–12i ∴-也是此方程的根,因此()()()()121212121i i m i i n ⎧-++--=-⎪⎨-+--=-⎪⎩,解得26m n =⎧⎨=⎩,8m n ∴+=. 【点睛】本题考查虚根与方程之间的关系求参数,一般将虚根代入方程,利用虚数相等列方程组求解是解题的关键,考查计算能力,属于中等题.23.(1)1z =2)13a > 【分析】(1)先根据条件得到13z i =-,进而得到15122z i =--,由复数的模的求法得到结果;(2)由第一问得到2(3)(31)10a a i z ++-=,根据复数对应的点在第一象限得到不等式30310a a +>⎧⎨->⎩,进而求解. 【详解】∵1z mi =+,∴1z mi =-.∴(3)(1)(3)(3)(13)z i mi i m m i ⋅+=-+=++-.又∵(3)z i ⋅+为纯虚数,∴30130m m +=⎧⎨-≠⎩,解得3m =-.∴13z i =-.(1)13251122i z i i -+==---,∴12z =; (2)∵13z i =-,∴2(3)(31)1310a i a a i z i -++-==-, 又∵复数2z 所对应的点在第一象限,∴30310a a +>⎧⎨->⎩,解得:13a >. 【点睛】如果Z 是复平面内表示复数z a bi =+(),a b ∈R 的点,则①当0a >,0b >时,点Z 位于第一象限;当0a <,0b >时,点Z 位于第二象限;当0a <,0b <时,点Z 位于第三象限;当0a >,0b <时,点Z 位于第四象限;②当0b >时,点Z 位于实轴上方的半平面内;当0b <时,点Z 位于实轴下方的半平面内.24.(1)m≠-2且m≠ -3; (2)m=3; (3)m=-2或m=-3.【分析】由已知条件分别得到(1)虚数:得到 256m m ++≠0;(2)纯虚数:得到 26m m --=0并且256m m ++≠0(3)实数;2 56m m ++=0;分别解之即可.【详解】复数()22656z m m m m i =--+++是:(1)虚数:得到 256m m ++≠0,解得m≠-2且m≠ -3;(2)纯虚数: 得到 26m m --=0并且256m m ++≠0解得m=3(3)实数:2 56m m ++=0解得m=-2或m=-3故答案为m≠-2且m≠ -3; m=3; m=-2或m=-3.【点睛】本题考查了复数的基本概念;关键是由题意,得到复数的实部和虚部的性质.25.(1)0;(2)2i -;(3)516;(4)10101010i - 【分析】根据复数的乘除运算法则及乘方运算,即可计算出(1)(2)的值;利用复数模的运算性质可求出(3)的值;利用分组求和及i 的运算性质可求出(4)的值.【详解】 (1) 5566232322(1)(1)(1)(1)[(1)][(1)]11(1)(1)(1)(1)11i i i i i i i i i i i i i i +-+-+-+=+=+-+-++--- 3333(2)(2)44022i i i i -=+=-=. (2)因为21(1)21(1)(1)2i i i i i i i ++===--+,21(1)21(1)(1)2i i i i i i i ---===-++-, 所以20192019201945043201920319111(22221)i i i i i i i i i i ⨯+-=--==+-⎛⎫⎛⎫ ⎪ ⎪-+=⎝⎭=-⎝⎭.==5454845252516⨯====⨯. (4) 23201920202320192020i i i i i +++++(234)(5678)(2017201820192020)i i i i i i =--++--+++--+(22)(22)(22)+i i i =-+-+-505(22)i =⨯-10101010i =-.【点睛】本题主要考查复数的乘除运算,乘方运算,复数的模的运算性质及i 的运算性质,属于中档题.26.1【解析】分析:设两根为1z 、2z ,则21=z z , 21==1z z ,得12=1z z ⋅,利用韦达定理列方程可求得k 的值,结合判别式小于零即可得结果.详解:由题意,得()222423800k k k k k k ∆=--=-+<⇒<或83k >, 设两根为1z 、2z ,则21=z z , 21==1z z ,得12=1z z ⋅,212=2z z k k ⋅- 221k k ⇒-= 1211k k ⇒==.所以1k =点睛:本题考查复数代数形式乘除运算,韦达定理的使用,实系数方程有虚数根的条件,共轭复数的性质、共轭复数的模,意在考查基础知识的掌握与综合应用,属于中档题.。
一、选择题1.复数()()2222z a a a a i =-+--对应的点在虚轴上,则( )A .2a ≠,或1a ≠B .2a ≠,且1a ≠C .2a =,或0a =D .0a = 2.已知平面直角坐标系中O 是原点,向量OA ,OB 对应的复数分别为23i -,32i -+,那么向量BA 对应的复数是( )A .55i -+B .55i -C .55i +D .55i -- 3.复数z 满足23z z i +=-,则z =( )A .1i +B .1i -C .3i +D .3i - 4.若复数z 满足22iz i =-(i 为虚数单位),则z 的共轭复数z 在复平面内对应的点所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 5.已知(,)a bi a b R +∈是11i i +-的共轭复数,则a b +=( ) A .1- B .12- C .12 D .16.复数252i +i z =的共轭复数z 在复平面上对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.设3i z i +=,i 是虚数单位,则z 的虚部为( ) A .1B .-1C .3D .-3 8.复数21i z i+=-,i 是虚数单位,则下列结论正确的是A .z =B .z 的共轭复数为31+22iC .z 的实部与虚部之和为1D .z 在复平面内的对应点位于第一象限 9.已知复数z 满足()2z i i i -=+,则z =( )A B C D 10.若32a i i -+为纯虚数,则实数a 的值为( ) A .32- B .23- C .23 D .3211.若(),a bi a b i +∈R 与()21i +互为共轭复数,则+a b 的值为( ) A .2 B .2- C .3- D .312.若复数z 满足(12)5z i +=,则它的共轭复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限二、填空题13.已知复数1510z i =+ ,234z i =-,复数z 满足12111z z z =+,则z =_____________.14.设为虚数单位,(12)|34|i z i -=+,则复数z 的虚部为________.15.若z C ∈且1z =,那么2z i +-的最小值为_______________.16.化简20122221117i i⎛⎫+= ⎪+-⎝⎭________.点集{||13|1,}D z z i z C =++=∈,则||z 的最小值_____和最大值________.17.已知复数[(1)]z a ai i =++(i 是虚数单位)是虚数,且||1z =,则实数a 的值是______18.若复数214t z t i +=-+在复平面内对应的点位于第四象限,则实数t 的取值范围是____. 19.已知,则 =____.20.给出下列四种说法:①-2i 是虚数,但不是纯虚数;②两个复数互为共轭复数,当且仅当其和为实数;③已知 x y R ,∈,则 x i 1i y +=+ 的充要条件为x y 1==;④如果让实数a 与 ai 对应,那么实数集与纯虚数集一一对应.其中正确说法的为 __________.三、解答题21.当实数m 取什么值时,复数224(6)Z m m m i =-+--分别满足下列条件? (1)复数Z 实数;(2)复数Z 纯虚数;(3)复平面内,复数Z 对应的点位于直线y x =-上.22.已知m R ∈,复数2(1i)(5i 3)(46i)z m m =+-+-+,当m 为何值时,(1)z 为实数?(2)z 为虚数?(3)z 为纯虚数?(4)z 在复平面内对应的点在第四象限?23.已知复数1z mi =+(i 是虚数单位,m R ∈),且(3)z i ⋅+为纯虚数(z 是z 的共轭复数).(1)设复数121m i z i+=-,求1z ; (2)设复数20172a i z z-=,且复数2z 所对应的点在第一象限,求实数a 的取值范围. 24.复数z 满足||1z =,且2120z z z ++<.求z . 25.已知z 为虚数,42z z +-为实数. (1)若2z -为纯虚数,求虚数z ;(2)求|4|z -的取值范围.26.已知复数()()227656z a a a a i a R =-++--∈,求a 分别为何值时, (1)z 是实数;(2)z 是纯虚数;(3)当6z a =-z 的共轭复数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用复数的运算性质和几何意义即可得出.【详解】解:由于复数()()2222z a a a a i =-+--对应的点在虚轴上,因此, 220a a -=,解得2a =,或0a =故选C【点睛】熟练掌握复数的运算性质和几何意义是解题的关键. 2.B解析:B【分析】由向量减法的坐标运算可得向量(5,5)BA OA OB =-=-,根据复数与复平面内的点一一对应,即可得结果.【详解】向量OA ,OB 对应的复数分别为23i -,32i -+,根据复数与复平面内的点一一对应,可得向量(2,3)OA =-,(3,2)OB =-.由向量减法的坐标运算可得向量(5,5)BA OA OB =-=-,根据复向量、复数与复平面内的点一一对应,可得向量BA 对应的复数是55i -,故选B .【点睛】解决复数与平面向量一一对应的题目时,一般以复数与复平面内的点一一对应为工具,实现复数、复平面内的点、向量之间的转化.3.A解析:A【解析】 令22()331,1z a bi z z a bi a bi a bi i a b =+∴+=++-=-=-∴==4.B解析:B【解析】分析:直接利用复数代数形式的乘除运算化简复数,然后求z 的共轭复数,即可得到z 在复平面内对应的点所在的象限. 详解:由题意,()()()222222,i i i z i i i i -⋅--===--⋅- 22,z i ∴=-+ 则z 的共轭复数z 对应的点在第二象限.故选B.点睛:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题. 5.A解析:A【解析】【分析】 先利用复数的除法运算法则求出11i i+-的值,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b .【详解】 ()()21(1)21112i i i i i i ++===-+-i , ∴a +bi =﹣i ,∴a =0,b =﹣1,∴a +b =﹣1,故选:A .本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题. 6.C解析:C【解析】【分析】根据复数的运算求得2i z =-+,得到z 2i =--,再根据复数的表示,即可求解,得到答案.【详解】由题意,根据复数的运算可得复数252i +i 2i z ==-+, 则z 2i =--,所以z 对应点(2,1)--在第三象限,故选C .【点睛】本题主要考查了复数的运算,以及复数的表示,其中解答中熟记复数的运算法则,以及复数的表示是解答的关键,着重考查了推理与运算能力,属于基础题.7.D解析:D【解析】因为z=3i i+13i =-∴z 的虚部为-3,选D. 8.D解析:D【分析】 利用复数的四则运算,求得1322z i =+,在根据复数的模,复数与共轭复数的概念等即可得到结论.【详解】 由题意()()()()22121313111122i i i i z i i i i i ++++====+--+-,则22z ==,z 的共轭复数为1322z i =-, 复数z 的实部与虚部之和为2,z 在复平面内对应点位于第一象限,故选D .【点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为a bi -.9.A【分析】首先求得复数z ,然后求解其共轭复数并确定模即可.【详解】 由题意可得:2211i z i i i i i +=+=-++=-,则1,z i z =+=故选A .【点睛】本题主要考查复数的运算法则,复数的模的计算等知识,意在考查学生的转化能力和计算求解能力. 10.C解析:C【分析】先化简复数,再利用纯虚数的定义求解.【详解】 由题得()(32)(32)(23)32(32)(32)13a i a i i a a i i i i -----+==++-, 因为32a i i-+为纯虚数, 则320(23)0a a -=⎧⎨-+≠⎩,所以23a =. 故选:C【点睛】结论点睛:复数(,)z a bi a b R =+∈则0a =且0b ≠,不要漏掉了0b ≠.11.A解析:A【分析】把两个复数都化为(,)a bi a b R +∈形式,然后由共轭复数定义求得,a b ,从而得结论.【详解】 因为()2i a bi a bi b ai i i ++==-,()212i i +=,又1a bi +与()21i -互为共轭复数,所以0b =,2a =.则2a b +=.故选:A .12.A解析:A【分析】根据复数的除法运算法则,可得12z i =-,求得12z i =+,结合复数的几何意义,即可【详解】由题意,复数z 满足(12)5z i +=,可得51212z i i==-+, 所以12z i =+,它在复平面内对应的点为(1,2)在第一象限. 故选:A.【点睛】本题主要考查了复数的除法运算法则,以及共轭复数的概念和复数的几何意义,其中解答中熟记复数的除法的运算法则,准确化简、运算是解答的关键,着重考查推理与运算能力.二、填空题13.【分析】根据复数的四则运算公式求得再结合复数的模的计算公式即可求解【详解】由题意复数则所以所以故答案为:【点睛】本题主要考查了复数的四则运算以及复数模的计算其中解答中熟记复数的四则运算公式以及复数模【分析】 根据复数的四则运算公式,求得552z i =-,再结合复数的模的计算公式,即可求解. 【详解】由题意,复数1510z i =+ ,234z i =-, 则()()()()1211111510344251034510510343425i i i z z z i i i i i i -++=+=+=+=+-+--+, 所以()()()254225554242422i z i i i i ⨯-===-++-,所以z ==.故答案为:2. 【点睛】本题主要考查了复数的四则运算,以及复数模的计算,其中解答中熟记复数的四则运算公式,以及复数模的计算公式,准确运算是解答的关键,着重考查推理与运算能力. 14.2【分析】首先将题中所给的式子进行化简求得从而得到其虚部的值【详解】根据可得所以所以复数的虚部为故答案为:2【点睛】该题考查的是有关复数的问题涉及到的知识点有复数的除法运算复数的模复数的虚部属于简单 解析:2【分析】首先将题中所给的式子进行化简,求得12z i =+,从而得到其虚部的值.【详解】根据(12)|34|i z i -=+,可得(12)5i z -==, 所以2255(12)12121(2)i z i i +===+-+-, 所以复数z 的虚部为2,故答案为:2.【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的除法运算,复数的模,复数的虚部,属于简单题目.15.【分析】复数满足表示以为圆心1为半径的圆表示圆上的点与点的距离求出即可得出结果【详解】复数满足表示以为圆心1为半径的圆表示圆上的点与点的距离∵∴的最小值是故答案为【点睛】本题考查了复数的运算法则复数1【分析】复数z 满足1z =,表示以()0,0O 为圆心,1为半径的圆,2z i +-表示圆上的点与点()2,1M -的距离,求出1OM -即可得出结果.【详解】复数z 满足1z =,表示以()0,0O 为圆心,1为半径的圆,2z i +-表示圆上的点与点()2,1M -的距离.∵OM ==∴2z i +-11.【点睛】本题考查了复数的运算法则、复数的几何意义、圆的方程,考查了推理能力与计算能力,属于中档题.16.13【分析】根据复数的代数形式的除法乘方运算法则计算可得根据复数的几何意义得到的轨迹即可得到的最值;【详解】解:设因为即根据复数的几何意义可知表示以为圆心为半径的圆上的点集则故答案为:;;【点睛】本 解析:1- 1 3【分析】根据复数的代数形式的除法、乘方运算法则计算可得,根据复数的几何意义得到z 的轨迹,即可得到||z 的最值;【详解】解:2012221i ⎛⎫+ ⎪ ⎪+⎝⎭)()()201222111i i i ⎡⎤-=⎢⎥+-⎢⎥⎣⎦2012022⎛⎫=-+ ⎪ ⎪⎝⎭2012022⎛⎫=-+ ⎪ ⎪⎝⎭1006222⎡⎤⎛⎫⎢⎥=- ⎪ ⎪⎢⎥⎝⎭⎣⎦()100610062514221i i i i ⨯+=-====-设(),z x yi x y R =+∈,因为{||1|1,}D z z z C =++=∈即11x yi +++=根据复数的几何意义可知{||1|1,}D z z z C =+=∈表示以(1,-为圆心,1为半径的圆上的点集, 则max 13z ==,min 11z ==,故答案为:1-;1;3.【点睛】本题考查了复数代数形式的乘除运算,也考查了复数模的求法与几何意义,是中档题. 17.【解析】【分析】计算复数根据结合模长公式即可解出实数的值【详解】由题:复数是虚数则即解得或(舍)所以故答案为:【点睛】此题考查复数的运算和模长的计算并求参数取值注意概念辨析一个复数是虚数则虚部不为零 解析:0【解析】【分析】计算复数2[(1)](1)(1)z a ai i a i ai a a i =++=++=-++,根据||1z =,结合模长公式即可解出实数a 的值.【详解】由题:复数2[(1)](1)(1)z a ai i a i ai a a i =++=++=-++,是虚数,则10a +≠, ||1z ==,即2220a a +=,解得0a =或1a =-(舍)所以0a =.故答案为:0【点睛】此题考查复数的运算和模长的计算并求参数取值,注意概念辨析,一个复数是虚数,则虚部不为零,此题的易错点在于漏掉考虑为虚数的限制条件.18.【分析】直接由复数代数形式的乘除运算化简复数再由复数在复平面内对应的点位于第四象限列出不等式组求解即可得结论【详解】在复平面内对应的点位于第四象限解得实数的取值范围是故答案为【点睛】复数是高考中的必 解析:()1,2-【分析】直接由复数代数形式的乘除运算化简复数z ,再由复数214t z t i+=-+在复平面内对应的点位于第四象限列出不等式组,求解即可得结论.【详解】 ()()2222i 114441i i i t t z t t t t ⎡⎤-++=-+=-+=--+⎢⎥-⎣⎦, 在复平面内对应的点位于第四象限,24010t t ⎧->∴⎨--<⎩,解得12t -<<, ∴实数t 的取值范围是()1,2-,故答案为()1,2-.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.19.-2-3i 【解析】分析:化简已知的等式即得a 的值详解:由题得(1-i)31+i-3i=a ∴a=(1-i)4(1+i)(1-i)-3i=-2i·-2i2-3i=-2-3i 故答案为-2-3i 点睛:(1)解析:-2-3i【解析】分析:化简已知的等式,即得 a 的值.详解:由题得,故答案为-2-3i点睛:(1)本题主要考查复数的综合运算,意在考查学生对这些基础知识的掌握水平和基本的运算能力.(2)本题是一个易错题,已知没有说“a”是一个实数,所以它是一个复数,如果看成一个实数,解答就错了. 20.③【解析】分析:①根据纯虚数的定义可判断;②根据共轭复数的定义可判断;③根据复数相等的性质可判定;④根据纯虚数的定义可判断详解:①因为是虚数也是纯虚数错误;②两个复数的和为实数时这两个复数不一定是共解析:③.【解析】分析:①根据纯虚数的定义可判断;②根据共轭复数的定义可判断;③根据复数相等的性质可判定;④根据纯虚数的定义可判断.详解:①因为2i -是虚数也是纯虚数,错误;②两个复数的和为实数时,这两个复数不一定是共轭复数,如1i -和3i +,这两个复数的和为实数,但这两个复数不是共轭复数,错误;③已知,x y R ∈,则i 1i x y +=+的充要条件为1x y ==,正确;④如果让实数a 与i a 对应,那么实数集与纯虚数集不是一一对应的,如当0a =时,错误,故答案为③.点睛:本题主要通过对多个命题真假的判断,主要综合考查复数的基本概念,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.三、解答题21.(1)2m =-或3m =;(2)2m =;(3)2m =-或52m =. 【分析】(1)由虚部为0,求解m 值;(2)由实部为0且虚部不为0,列式求解m 值;(3)由实部与虚部的和为0,列式求解m 值.【详解】解:由题可知,复数224(6)Z m m m i =-+--,(1)当Z 为实数时,则虚部为0,由260m m --=,解得:2m =-或3m =;(2)当Z 纯虚数时,实部为0且虚部不为0, 由224060m m m ⎧-=⎨--≠⎩,解得:2m =; (3)当Z 对应的点位于直线y x =-上时,则0x y +=,即:实部与虚部的和为0,由224(6)0m m m -+--=,解得:2m =-或52m =. 【点睛】本题考查复数的基本概念,以及复数的代数表示法及其几何意义,属于基础题. 22.(1)6m =或1m =-(2)6m ≠且1m ≠-(3)4m =(4)46m <<【分析】由题意得解得22(34)(56)z m m m m i =--+--,(1)由2560m m --=,求出m 即可;(2)2560m m --≠,即可得出m ; (3)由22340560m m m m ⎧--=⎨--≠⎩,解得m 范围; (4)根据象限特征,由22340560m m m m ⎧-->⎨--<⎩,解得m 范围. 【详解】解:()()()21i 5i 346i z m m =+-+-+=()()223456i m m m m --+--,(1)由2560m m --=得6m =或1m =-,即当6m =或1m =-时,z 为实数;(2)由2560m m --≠得6m ≠且1m ≠-,即当6m ≠且1m ≠-时,z 为虚数;(3)由22340{560m m m m --=--≠,,得4m =, 即当4m =时,z 为纯虚数;(4)由22340{560m m m m -->--<,,解得46m <<, 即当46m <<时,z 在复平面内对应的点在第四象限.【点睛】本题考查复数的有关概念及其运算法则、方程与不等式的解法,考查推理能力与计算能力.23.(1)1z =2)13a > 【分析】(1)先根据条件得到13z i =-,进而得到15122z i =--,由复数的模的求法得到结果;(2)由第一问得到2(3)(31)10a a i z ++-=,根据复数对应的点在第一象限得到不等式30310a a +>⎧⎨->⎩,进而求解. 【详解】∵1z mi =+,∴1z mi =-.∴(3)(1)(3)(3)(13)z i mi i m m i ⋅+=-+=++-.又∵(3)z i ⋅+为纯虚数,∴30130m m +=⎧⎨-≠⎩,解得3m =-.∴13z i =-.(1)13251122i z i i -+==---,∴12z =; (2)∵13z i =-,∴2(3)(31)1310a i a a i z i -++-==-, 又∵复数2z 所对应的点在第一象限,∴30310a a +>⎧⎨->⎩,解得:13a >. 【点睛】如果Z 是复平面内表示复数z a bi =+(),a b ∈R 的点,则①当0a >,0b >时,点Z 位于第一象限;当0a <,0b >时,点Z 位于第二象限;当0a <,0b <时,点Z 位于第三象限;当0a >,0b <时,点Z 位于第四象限;②当0b >时,点Z 位于实轴上方的半平面内;当0b <时,点Z 位于实轴下方的半平面内.24.1z =-或12z =-± 【分析】由题意可知设复数cos sin z i αα=+,计算出2z ,2z ,1z ,代入2120z z z++<中可得cos 23cos 02sin cos sin 0ααααα+<⎧⎨+=⎩可求得复数z . 【详解】由题意可知:cos sin z i αα=+,则222cos sin 2sin cos z i αααα=-+,22cos 2sin z i αα=+,1cos sin i zαα=-, ∴212(cos23cos )(2sin cos sin )0z z i zααααα++=+++<, ∴cos 23cos 02sin cos sin 0ααααα+<⎧⎨+=⎩,即()cos 23cos 0sin 2cos 10αααα+<⎧⎨+=⎩, 若sin 0α=,则cos21α=,由cos23cos 0αα+<得cos 1α=-,所以1z =-,若1cos 2α=-,则1cos 2cos 23cos 02ααα=-+<,,得122z =-±,∴1z =-或122z =-±. 【点睛】本题考查复数的计算,关键在于设出复数z 的三角形式进行运算,理解复数小于零的含义,属于中档题.25.(1)22z i =+或22z i =-;(2)()0,4.【分析】(1)由于z 为虚数,可设(z x yi x =+,y R ∈,0)y ≠,根据2z -为纯虚数,求得x 的值,再由42z z +-为实数求出y 的值,即得虚数z ; (2)由42z z +-为实数且0y ≠,可得22(2)4x y -+=,根据2204(2)y x =-->,求得x的范围,根据复数的模的定义,化简为4z -=的范围,即可得出|4|z -的取值范围.【详解】解:由于z 为虚数,可设(z x yi x =+,y R ∈,0)y ≠,(1)则22z x yi -=-+,由2z -为纯虚数,得2x =,2z yi ∴=+, 又因为42z z +-为实数, 则(442)242z yi y i R z yi y +=++=+-∈-, 得40y y-=,2y =±, 所以22z i =+或22z i =-. (2)2222(4442)4[]22(2)(2)x y z x yi x y i R z x yi x y x y -+=++=++-∈-+--+-+, 因为42z z +-为实数, ∴2240(2)y y x y -=-+, 0y ≠,22(2)4x y ∴-+=,224(2)0y x =-->∴,则2(2)4x -<,解得:(0,4)x ∈,∴|4||4|z x yi -=+-由于(0,4)x ∈,则016416x <-<,所以04<<,即0|4|4z <-<,所以|4|z -的取值范围为()0,4.【点睛】本题考查复数的基本概念,两个复数代数形式的除法以及复数求模,考查运算求解能力. 26.(1)61a a ==-或;(2)1a =;(3)见解析.【解析】【详解】试题分析:(1)根据题意得到要求虚部位0即可;(2)要求实部位0且虚部不为0即可,2760a a -+=,且2560a a --≠,得1a =;(2)()()11a a i -++=()()221110a a -++=,得2a =±,进而得到结果.(1)z 是实数,2560a a --=,得61a a ==-或(2)z 是纯虚数,2760a a -+=,且2560a a --≠,得1a =(3)当6z a =-()()11a a i -++= 得()()221110a a -++=,得2a =±当2a =时,412z i =--,得412z i =-+;当2a =-时,248z i =+,得248z i =-点睛:这个题目考查了复数的几何意义,复数分为虚数和实数,虚数又分为纯虚数和非纯虚数,需要注意的是已知数的性质求参时,会出增根,比如纯虚数,既要求实部为0,也要求虚部不为0.。
《复数》单元测试题
班级_________姓名
座位号______成绩______
一、选择题:本大题共10小题,每小题
5分,共50分
1.计算1i 1i
的结果是(
)
A .i B
.i
C
.2
D
.2
2.若复数
i m m m m z
)23(2322
2是纯虚数,则实数
m 的值为
(
)A .21或 B .
22
1或 C
.
2
1 D
.2
3.
13
()i i 的虚部为 ( )
A .8i
B .
8i C .8 D
.
8
4.适合方程
02i
z z 的复数z 是 ( )
A .
i 2
16
3 B
.
i 2
16
3 C
.
i 2
16
3 D
.
i
2
16
35.100
3
2
i i i i …··…··= ( )
A .1
B .-1
C .i
D .
i
6.在复平面内,复数2
(13)1i i i 对应的点位于 ( )
A.第一象限
B.
第二象限 C.
第三象限 D.
第四象限
7.若实数y x,,满足2)1()1(y i x
i ,则xy 的值是 ( )
A. 1
B. 2
C.-2
D.
-3
8.已知复数z 满足
,1
1i z
z 则z 1= ( )
A .1 B. 0 C. 2 D. 2
9.如果复数3
z ai 满足条件2
2z ,那么实数a 的取值范围为 ( ) A .(2222), B.
(22)
, C.
(11),
D.
(
33)
,10.如果复数z 满足21i
z ,那么i z
2的最大值是 ( ) A .5 B.i
32
C.
213 D.
4
13
二、填空题:本大题共
4小题,每小题5分,共20分
11.复数z=3-2i 的共轭复数为_________________ 12.若z= a+bi ,则
z z =____________,z z =____________.
13.已知复数z 1=3+4i ,z 2=t+i ,且21z z 是实数,则实数
t 等于__________
14.已知2
,ai b i 是实系数一元二次方程
2
0x
px q 的两根,则,p q 的值为___ ____
15.在复平面内,平行四边形ABCD 的三个顶点A 、B 、C 对应的复数分别是
1+3i,-i,2+i,
则点D 对应的复数为。
三、解答题:本大题共3题,共30分。
解答写出文字说明、证明过程或演算步骤
16.已知复数
R
m i m m
m m z ,)2()232(2
2
根据下列条件,求m 值。
(1)z 是实数;(2)z 是虚线;(3)z 是纯虚数;(4)z =0。
17.实数m 分别取什么数时,复数
)156()25()1(2
i m i m
i z
是:
(1)对应点在第三象限;(2)对应点在直线
05
y
x
上;(3)共轭复数的虚部为
12.
18.已知关于x 的方程02)2(2
ki x i k x
有实根,求这个实数根以及实数
k 的值。