直线的一般式方程Word版
- 格式:doc
- 大小:118.50 KB
- 文档页数:4
高教版中职数学(基础模块)下册8.3《两条直线的位置关系》word教【课题】8.3 两条直线的位置关系(二)【教学目标】知识目标:(1)掌握两条直线平行的条件;(2)能应用点到直线的距离公式解题.能力目标:培养学生的数学思维及分析问题和解决问题的能力.【教学重点】两条直线的位置关系,点到直线的距离公式.【教学难点】两条直线的位置关系的判断及应用.【教学设计】与倾角的定义相类似,本教材将两条直线夹角的定义建立在任意角定义的基础上.两条直线相交所形成的最小正角叫做这两条直线的夹角.同时规定,两条直线平行或重合时两条直线的夹角为零角,这样两条直线的夹角的范围是?0,90?.??教材采用“数形结合”、“看图说话”的方法,导入两条直线垂直的条件,过程简单易懂.两条直线垂直的实质就是这两条直线的夹角为90.运用垂直条件时,要注意斜率不存在的情况.例4是巩固性题目.属于基础性题.首先将直线的方程化为斜截式方程,再根据斜率判断两条直线垂直是本套教材判断两条直线垂直的主要方法.例5是利用垂直条件求直线的方程的题目,属于基础性题.首先利用垂直条件求出直线的斜率,然后写出直线的点斜式方程,最后将方程化为一般式方程.这一系列解题程序,蕴含着“解析法”的思想方法.需要强调,点到直线的距离公式中的直线方程必须是一般式方程.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教学过程 *揭示课题教师学生教学时行为行为意图间介绍质疑引导分析了解思考启发学生思考 0 5 8.3 两条直线的位置关系(二) *创设情境兴趣导入【问题】平面内两条既不重合又不平行的直线肯定相交.如何求交点的坐标呢?图8-12 *动脑思考探索新知如图8-12所示,两条相交直线的交点P0,既在l1上,又在l2上.所以P因0的坐标(x0,y0)是两条直线的方程的公共解.讲解说明思考思考带领学生分析带领学生分析此解两条直线的方程所组成的方程组,就可以得到两条直线交点的坐标.观察图8-13,直线l1、l2相交于点P,如果不研究终边相同的角,共形成四个正角,分别为?1、?2、?3、?4,其中 0?1与?3,?2与?4为对顶角,而且?1+?2?180.讲解说明教学过程教师学生教学时行为行为意图间引领分析理解思考理解记忆引导式启发学生得出结果 20 25 图8-13 我们把两条直线相交所成的最小正角叫做这两条直线的夹角,记作?.规定,当两条直线平行或重合时,两条直线的夹角为零角,因此,两条直线夹角的取值范围为[0,90].显然,在图8-13中,?1(或?3)是直线l1、l2的夹角,即???1.当直线l与直线l的夹角为直角时称直线l与直线l垂 1212仔细分析讲解关键词语直,记做l1?l2.观察图8-14,显然,平行于x轴的直线l1与平行于y轴的直线l2垂直,即斜率为零的直线与斜率不存在的直线垂直.图8-14 *创设情境兴趣导入【问题】如果两条直线的斜率都存在且不为零,如何判断这两条直线垂直呢? *动脑思考探索新知【新知识】质疑思考带领学生分析教学过程设直线l1与直线l2的斜率分别为k1和k2(如图8-15),若教师学生教学时行为行为意图间讲解说明思考理解记忆带领学生分析引导式启发学生得出结果观察思考主动求解通过例题进一步领会35 l1?l2,则 l2 l1 引领分析仔细分析 8-15 BC,k1?tan?1?ABk2?tan?2?tan(180??3)??tan?3??即 k1?k2??1. AB. BC上面的过程可以逆推,即若k1?k2??1,则l1?l2.由此得到结论(两条直线垂直的条件):讲解(1)如果直线l1与直线l2的斜率都存在且不等于0,那么关键l1?l2?k1?k2??1.词语(2)斜率不存在的直线与斜率为0的直线垂直. *巩固知识典型例题例3 求直线x?2y?1?0与直线y?x?2交点的坐标.说明 ?x?2y?1?0,解解方程组? x?y?2?0,?强调引领讲解说明得 ?x?1, ?y??1,?所以两条直线的交点坐标为(1,?1).【试一试】已知直线3x?4y?a与直线2x?5y?10的交点在x轴上,你是否能确定a的值,并求出交点的坐标?教学过程例4 判断直线y?解设直线y?教师学生教学时行为行为意图间说明强调引领讲解说明引领讲解说明观察思考主动求解思考主动求解通过例题进一步领会注意观察学生是否理解知识点 452x与直线6x?4y?1?0是否垂直. 32x的斜率为k1,则 32k1?. 3直线6x?4y?1?0的斜率为k2.由6x?4y?1?0有 31y??x?, 24故 3k2??. 2由于k1k2??1,所以l1与l2垂直.【试一试】请你判断,直线x?2y?1?0与直线x?y?1是否垂直?【知识巩固】例5 已知直线l经过点M(2,?1),且垂直于直线2x?y?1?0,求直线l方程.解设直线2x?y?1?0的斜率为k1,则k1??2.设直线l的斜率为k.由于l1?l2,故k1k??1,即 ?2k??1,由此得 1 k?. 2又直线l过点M(2,?1),故其方程为 1 y?1?(x?2),2即 x �C 2y �C 4 = 0. *运用知识强化练习 1.判断下列各对直线是否相交,若相交,求出交点坐标:(1)l1:x?2y?0,与 l2:2x?y?1?0;(2)l1:y??x?1,与l2:x?y?4?0;提问巡视指导思考求解及时了解学生知识掌握得情感谢您的阅读,祝您生活愉快。
高三数学平面解析几何部分直线的方程知识精讲一. 本周教学内容:平面解析几何部分:直线的方程二. 教学目的:掌握直线方程的几种形式及其相关应用三. 教学重点、难点: 重点:(1)直线的斜率与倾斜角;(2)直线方程的几种形式及求法;(3)两直线的位置关系;(4)点到直线的距离;(5)有关对称问题. 难点:(1)注意斜率与倾斜角的区别:每条直线都有倾斜角,其X 围是0°≤θ<180°,但并不是每条直线都有斜率.(2)直线方程的五种形式之间要熟练转化,在使用直线方程时,要注意方程表示直线的“局限性”.(3)判断两条直线平行或垂直时,不要忘记考虑两条直线中有一条或两条直线均无斜率的情形.(4)在运用公式=d 求平行直线间的距离时,一定要把,x y 项的系数化成相等.(5)中点坐标公式和两条直线垂直的条件是解决对称问题的重要工具,解析几何中的中心对称和轴对称问题最终都归结为关于点的对称问题加以解决.四. 知识分析: 【知识梳理】1. 直线的斜率与倾斜角(1)已知两点1122(,),(,)P x y Q x y ,如果12≠x x ,那么直线PQ 的斜率为2121-=-y y k x x 。
(2)在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的角度,称为这条直线的倾斜角,由定义可知倾斜角的取值X 围是[)0,π。
2. 两条直线平行或垂直的判定(1)两条直线平行对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//⇔=l l k k 。
(2)两条直线垂直如果两条直线都有斜率,且它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即12121⊥⇔⋅=-l l k k 。
3. 直线的点斜式方程如果直线l 经过点000(,)P x y ,且斜率为k ,则把方程00()-=-y y k x x 叫做直线的点斜式方程。
必修2知识点归纳第一章 空间几何体1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。
简单组合体的构成形式:一种是由简单几何体拼接而成,例如课本图1.1-11中(1)(2)物体表示的几何体; 一种是由简单几何体截去或挖去一部分而成,例如课本图1.1-11中(3)(4)物体表示的几何体。
⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
1、空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。
(1)定义:正视图:光线从几何体的前面向后面正投影得到的投影图; 侧视图:光线从几何体的左面向右面正投影得到的投影图; 俯视图:光线从几何体的上面向下面正投影得到的投影图。
几何体的正视图、侧视图和俯视图统称为几何体的三视图。
(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.3、斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x O y ∠,使'''xOy∠=450(或1350),注意它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半;一般地,原图的面积是其直观图面积的22倍,即22S S 原图直观=4、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面⑶圆台侧面积:l R lr S ⋅⋅+⋅⋅=ππ侧面⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体;()13V h S S S S =+⋅+下下台体上上⑸球的表面积和体积:32344R V R S ππ==球球,.一般地,面积比等于相似比的平方,体积比等于相似比的立方。
中职数学常用公式及常用结论1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆ U A C B ⇔=ΦU C A B R ⇔=4.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.5.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 6.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}m in m a x m ax ()(),()(),()2b f x f f x f p f qa=-=;[]q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p abx ,2∈-=,则{}m i n()m i n (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.7.一元二次方程的实根分布 8充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 9.函数的单调性(1)任取 []2121,,,x x b a x x ≠∈那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.10.如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.11.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.12.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 13.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=- 14.两个函数图象的对称性15.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;16.几个常见的函数方程 (1)正比例函数()f x cx =,(2)指数函数()xf x a =,. (3)对数函数()log a f x x =,. (4)幂函数()f x x α=,(5)余弦函数()cos f x x =,正弦函数()sin g x x =,17.分数指数幂(1)m na =(0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).18.根式的性质(1)na =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.19.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈. (3)()(0,0,)rr rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.20.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.21.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).22.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N =-; (3)log log ()na a M n M n R =∈.23. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.24.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).25.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-. 26.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.27.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 28.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s ()2(1)s i n ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩29.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).30.二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 31.三角函数的周期公式函数sin()y x ωϕ=+, x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=.32.正弦定理2sin sin sin a b cR A B C===. 33.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.34.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.35.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 36.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 37.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a //b(b ≠0)12210x y x y ⇔-=.38. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 39.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212x x y y +. 40.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).41.平面两点间的距离公式||AB =11(,)x y ,B 22(,)x y ).42.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=.43.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.44.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.45.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩46.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).47直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0).48.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=;49.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.50.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).51. 圆的2种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0). 52.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.53.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;54.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x轴上,0<λ,焦点在y 轴上).55.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a--; 56.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y p x p => (2)点00(,)P x y 在抛物线22(0)y p x p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->.57.直线与圆锥曲线相交的弦长公式 AB =AB =A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).58.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.59.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.60.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.61.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 62.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 63.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直. 向向量)64.直线AB 与平面所成角 65.二面角l αβ--的平面角 66.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=..67.点B 到平面α的距离68.分类计数原理(加法原理) 12n N m m m =+++.69.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯. 70.排列数公式m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. 71.组合数公式mnC =m n m mA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤).72.组合数的两个性质 (1)mn C =mn nC - ; (2) m n C +1-m n C =mn C 1+.注:规定10=n C .(6)nn n r n n n n C C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n n C C C C C C .73.排列数与组合数的关系m m n n A m C =⋅! .74.二项式定理n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ;二项展开式的通项公式r r n r n r b a C T -+=1)210(n r ,,, =.75.等可能性事件的概率()m P A n=. 76.互斥事件A ,B 分别发生的概率的和 P(A +B)=P(A)+P(B).77.n 个互斥事件分别发生的概率的和P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ). 78.独立事件A ,B 同时发生的概率 P(A ·B)= P(A)·P(B).79.n 次独立重复试验中某事件恰好发生k 次的概率()(1).k kn k n n P k C P P -=-80.离散型随机变量的分布列的两个性质(1)0(1,2,)i P i ≥=; (2)121P P ++=.。
矣于圆与方程的知识点整理一、标准方程:(x-rt)0+(y-b)・=厂 二一般方程:A"+r+Dx+£y + F = 0(D - +F--4F>0)1・ AF + By- + + Dx+Ey+F = 0 表示圆方程则「A — B 工 O O <5 U - O2 _ 4 F > O [Q 2 + £2 _ 4 A F > O 2•求圆的一般方程一般可采用待定系数法。
3・D" + £- -4F > 0常可用来求有关参数的范帀 三'点与圆的位g 矢系1・判断方法:点到圆心的距离d 与半径『的大小:〃<厂=> 点在圆内:d = r=>点在圆上:J>r=>点在圆外2•涉及最值:(1)圆外一点圆上一动点P,讨论|PB|的最值max四、S 线与圆的位置矣系L 判断方法(d 为圆心到宜线的距离〉:(1)柑离O 没有公共点=>△< OodAr : (2)相切O 只有一 个公共点oA = 0od = r : (3)柑交O 有两个公共点>0od<r 。
这一知识点可以出如此题型:告诉你直线与圜相交让你求有关参数的范围.2 •宜线均圆相切(1)知识要点:①基本图形②主要元素:切点坐标、切线方程、切线长等问题:直线/与圆C 相切意味着什么?圜心C 到直线/的距离恰好等于半径r (2) 常见题型一一求过世点的切线方程① 切线条数:点在圆外一两条:点在圆上……一条:点在圆内……无 ② 求切线方程的方法及注意点f n 、 2 "E 、k V z+ TV I z 『3 仁=|BN| = |BC|-r卜 |BC|+厂讨谐中的最值U - Oi)点在圆外J 如泄点 P(X ,)* 圆:(x-aY +(y-hy =r . [(x -aY+(y -/?)" >r-] 0 0 0 0第一步:设切线/方程y-yo = k (兀一小):第二步:通过〃 =『=>«,从而得到切线方程 特別I 注意:以上解题步骤仅对k 存在有效,当k 不存在时,应补上……千万不要漏了! 如:过点P (l, 1)作圆F + r — 4x — 6y+12 = 0的切线,求切线方程.ii )点在圆上J <1)若点(xo, yo )在阿x+j = r 上,则切线方程为x x + yy = r^■ ■ ■ ■U 0(2)若点 a ,y )在圆(.<-«)■ +(y-/?)' = r 则切线方程为 a -")(兀 一 ")+(y -方)(,一方)=八由上述分析:过一定点求某圆的切线方程,非常磴要的第一步——判断点与圆的位置关系,得出切线的条数. 件Jf AC\= r求切点坐标:利用两个关系列出两个方程<' 如心=-1J (l + P )[(西+£)2-4 气 xj(2) 判断直线与圆相交的一种特殊方法:直线过定点,而;1^点恰好在圆内. (3) 关于点的个数问题例:若E^(.v-3/+(y + 5/ = r 上有且仅有两个点到直线4%-3>'-2 = 0的距离为1,则半径厂的取值范用是4•直线与圆相离:会对宜线与圆相离作出判断(特别是涉及一些参数时)五、対称间题1. 若圆疋+尸+(川2 -l )x + 2加$—加=0,关于直线X — y + l = 0,则实数加的值为答案:3 (注意:m = -\时,D- + £--4F<0.故舍去)变式:已知点A 是圆C:“+r + ar + 4y -5 = 0匕任意一点・A 点关于宜线x + 2y-\ =0的对称点在圆C 上,则实数《= _________ ・2•圆(x-l/+(y-3/= 1关于宜线x + y = 0对称的曲线方程是 变式:已知圆(x-4)2+(y-2)2 = I 与圆C2: (x-2/+(y-4)'= 1关于宜线/对称,则直线/的方程为 3•圆(—3)2+0 + 1)2 =1关于点(2. 3)对称的曲线方程是, 4•已知直线y = x + h^圆C : F+r=l,问:是否存在实数b 使自A (3,3)发出的光线被直线/反射后与③求切线长:利用基本图形,AP-=|CPF CP"-r-3 •直线与圆相交 (1)求弦长及弦长的应用问题:垂径定理及勾股定理——常用弦长公式:/=ViTPiv'■/f 24 7、 B ' .1?若存在,求出b 的值:若不存在,试说明理由.1 25 25 I 丿方法主要有三种:(1)数形结合:(2〉代换:(3)参数方程(1) 丄 的最大值和最小值:一一看作斜率 (2) y-X 的报小值;一一截距(线性规划) X-5(3) X- + y-的最大值和最小值.一一两点间的距离的平方 2•已知 AAOB 中,\OB\ = 3 , \OA\ = 4. \AB\ = 5 •点 P 是AAOB 内切圆上一点,求以 pA|, |PB|, pO|为直径的三个圆而枳之和的最大值和最小值.数形结仟和参数方程两种方法均可!3 •设P (x. y )为圆x-+{y-\Y = 1上的任一点,欲使不等式犬+ y + c>0恒成立,则e 的取值范用是,■答案:(数形结合和参数方程两种方法均可!)L 若直线"u ・ + 2ny — 4 = 0 ( m , neR 始终平分圆,+ y2-4x-2y-4 = 0的周长,则的取值范围是2. 已知圆C : x-+r _2x + 4y-4 = 0.问:是否存在斜率为1的宜线/,使/被圆C 截得的弦为AB .以AB为直径的圆经过原点,若存在,写出宜线/的方程,若不存在,说明理由. 提示:XX +3' y =0或弦长公式d = Jj+ E2 -v 一X3•已知圆C : (x-3/+(y-4/=b 点A((U). 3(0.1),设P 点是圆C 上的动点,d = \PA\"+\PB\\ 求 d的最值及对应的P 点坐标.4 •已知圆 C J (X-1)'+(3'-2)" =25 r 宜线 / :(2加 + 1)兀+ (w + l)y-7〃?一4 = 0 (weR) (1) 证明:不论也取什么值,宜线/与圆C 均有两个交点; (2) 求苴中弦长最短的直线方程.5•若宜线y = -x + k^曲线x = -/-f 恰有一个公共点,则R 的取值范I 利.6 •已知圆£ + y2+x-6y +加=0与宜线x + 2y-3 = 0交于P. 0两点,O 为坐标原点,问:是否存在实数也,使OP 丄OQ,若存在,求出W 的值;若不存在,说明理由.圆c 相切于点 L 已知实数X, y 满足方程宀严一4兀+1=0,求:七'圆的参数方程r...Z c\ |x=/・cos X ・+y ・=/*-(r>0)Oy =为参数:(%-«) +(y-h) =r (r>0)o1 M Jx=a+rcos y = b + rsin为参・答案J x-y+1 = 0或大一y — 4 = 0I •判断方法:几何法(d 为圆心距):(1) dA 打+厂20外离 (3) |打一巧[vdv 斤+巧0相交 (4) t/= r-zs O 内切 2 •两圆公共弦所在直线方程圆C : }r+y-+Dx+Ey + F=0.圆C : jr+y^+Dx + Ey + F =0,I I I I 2 2 2 2则(D,-D2)x + (£,-£2)y + (F,-F2)= 0为两相交圆公共弦方程.补充说明:若G 与C2相切,则表示其中一条公切线方程:若G 与C2相离,则表示连心线的中垂线方程.3圆系问题(1)过两圆 C J jr+y- + Dx + Ey + F = 0 和 C J X - +y- + D X + E y + F =0 交点的圆系方程为 J I I I 2 22 2 F + ))2 + Dj.v + 耳y + 斤+ (“+>^ + D;v + gy + g)=0 ( H-说明:1)上述圆系不包括C2 : 2)当 =-1时,表示过谢圆交点的直线方程(公共弦)(2)过宜线?b ・+B.\・+C=0打圆 十Dx+£> + F = 0交点的圆系方程 x-+y^+Dx+Ey+F+ (Ax+By + C)= Q(3)两圆公切线的条数问题:①相内切时,有一条公切线:②相外切时,有三条公切线:③相交时,有两条公切线:④相离时,有四条公切线 十、轨迹方程(1) 世义法(圆的定义)(2) 直接法:通过已知条件直接得出某种等量关系,利用这种等量关系,建立起动点坐标的关系式…轨迹方程•例:过圆F + y? =1外一点人(2, 0)作圆的割线,求割线被圆截得的弦的中点的轨迹方程.(3)相关点法(平移转换法):一点随列一点的变动而变动 特点为:主动点一宦在某一已知菇亘所表示的(固崔)轨迹上运动.例1 •如图,已知定点A (2,0),点2是圆F+r= I 上的动点,ZA0Q 的平分线交AS 于当0点在圆上 移动时,求动点M 的轨迹方程.分析:角平分线;^^理和泄比分点公式・例2 •已知圆O : x-+y-=9,点A (3,0), B 、C 是圆Ot:的两个动点,A 、B 、C 呈逆时针方向排列,且(2) </ =八+^0外切(5) d< n -ri o 内含分析:|0円'+4"|=4^2|AABAC = _ ,求MBC的重心G的轨迹方程. 3法I:-ZBAC=-, :.\BC\为定长且等于3^/3X A+X B +X C 3 +X B +X Cx =——3 ----- =——3——Xi+Vfl+yc^yB+Jc3 3「33) (2厂31取BC的中点为址€|-一卩£€| -込」IL24 丿 1 4 2J94••• \OE" + \CE" = ]pC : /.兀£ + >£'"=(1)XB + XC 尸—2- y+y >■ =^- £ 23 + 2XE 兀=—3—J XB + XC=2XE n I y+y =2y,••(3x-3"\ (3 V 93x-3富=—-3 \y =_yI E 2故由(1)得: ____ I +1 I =_n(Z)I 2丿l2丿4 + r =1 xe 0,3、-,y €2)-邑112 I法2:(参数法) 2设B(3cos Jsin )•由ZBOC=2ZBAC= _3C 3cos|\ I 2 ) ( + L3sin| + '丿VX + X + Xy- A B C_A ——(2 }3 + 3cos +3cos . + — II 3(2、=I + cos +cos|「+ 」•••(!)3(2_'3s】n +3sin|l+ 3 丿.• ( “ /八y =〉l +)4+)S = ----------- --------- = sin +sin | + —・・「・(2)2 22 「3、+(2)得:(X-1) +y = 1 xe 0,-」€-2^3 12 I参数法的本质是将动点坐标(x,y)中的X和y都用第三个变量(即参数)表示,通过消参得到动点轨迹方程, 通过参数的范围得出X , y的范(4) 求轨迹方程常用到得知识心 + XB + XCIX = ________ 4 ___ .②中点I匕分点公式:磊 ⑤韦达世理•高中数学圜的方程典型例题类型一:圓的方程例1求过两点A(l,4)、8(3,2)且圆心在直线j = 0 I;的圆的标准方程并判断点P(2,4)与圆的关系.圆的方程为(X+1)2+),2 =20:点P 在圆外.例2求半径为4.与圆* + y2-4x-2y-4 = 0相切,且和直线y = 0相切的圆的方程.圆的方程为(兀一2 — 2^/^)2+0 + 4)2 =42,或(x-2 + 275)2 + (y + 4)2 = 42 . 例3求经过点A(0,5),且与宜线x-2y = 0和2兀+ y = 0都相切的圆的方程.分析:欲确世圆的方程.需确崔圆心坐标与半径,由于所求圆过世点A ,故只需确;^^圆心坐标・又圆与两 已知宜线相切,故圆心必在它们的交角的平分线上・解:•「圆和直线x-2y = (Pj2x+y = 0相切• •••圆心C 在这两条直线的交角平分线上.又圆心到两直线X -2y = 0和2x+y = 0的距离相等.•••两直线交角的平分线方程是x + 3y = 0或3x-y =0.又T 圆过点4(0,5),•••圆心C 只能在直线3»•-y = 0③内角平分线世理:BD\ _ \AB\x-2y x+2y r ■75・XI +X2上.设圆心C{t, 3r)V C到宜线2x + y = 0的距离等于AC\二1?£^ =护+(3一5)2 . v5化简整理得t--6t + 5 =0-解得:21或f = 5•••圆心是(1,3),半径必或圆心是(5.15),半径为5j^・•••所求圆的方程为(X-1)2+0-3)2 = 5 或(兀一5)2+0-15)2= 125 ・说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确;4^圆心坐标得到圆的方程, 这是过;^点且与两已知直线相切的圆的方程的常规求法• 例4 -设圆满足:(1)截y轴所得弦长为2: (2)被兀轴分成两段弧,其弧长的比为3:1,在满足条件⑴⑵的所有圆中,求圆心到直线X-2y = 0的距离最小的圆的方程.分析:要求圆的方程.只须利用条件求出圆心坐标和半径,便可求得圆的标准方程-满足两个条件的圆有无数个•其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确世圆的半径,求出圆的方程•解法一:设圆心为P(« ■ h),半径为I 则P到X轴、y轴的距离分卩1为PI和由题设知:圆截X轴所得劣弧所对的圆心角为90。
高考数学公式大全 一、集合1.集合的运算符号:交集“ ”,并集“ ”补集“C ”子集“⊆”2.非空集合的子集个数:n 2(n 是指该集合元素的个数)3.空集的符号为∅ 二、函数1.定义域(整式型:R x ∈;分式型:分母0≠;零次幂型:底数0≠;对数型:真数0>;根式型:被开方数0≥)2.偶函数:)()(x f x f -= 奇函数:0)()(=-+x f x f 在计算时:偶函数常用:)1()1(-=f f奇函数常用:0)0(=f 或0)1()1(=-+f f3.单调增函数:当在x 递增,y 也递增;当x 在递减,y 也递减 单调减函数:与增函数相反4.指数函数计算:nm nmaa a +=⋅;nm n m aa a -=÷;nm n m aa ⋅=)(;m n mn a a=;10=a指数函数的性质:x a y =;当1>a 时,x a y =为增函数; 当10<<a 时,x a y =为减函数 指数函数必过定点)1,0(5.对数函数计算:1l o g =aa ;0log 1=a ;nm ana ma ⋅=+log log log ;nma na m a log log log =-; ma m an nl o g l o g =;ma mannlog 1log =对数的性质:xa y log = ;当10<<a 时,xa y log =为减函数.当1>a 时,xa y log =为增函数对数函数必过定点)0,1( 6.幂函数:a x y =7.函数的零点:①)(x f y =的零点指0)(=x f②)(x f y =在),(b a 内有零点;则0)()(<∙b f a f三、三角函数①计算:1cos sin 22=+αα;θθθtan cos sin = ②正负符号判断:“一全正,二正弦,三切,四余弦” ③和差公式:βαβαβαsin cos cos sin )sin(±=± βαββαsin sin cos cos )cos( a =± βαβαβαtan tan 1tan tan )tan(∙±=±④二倍角公式:αααcos sin 22sin ∙=;ααααα2222sin cos sin 211cos 22cos -=-=-=ααα2tan 1tan 2)2tan(-=;⑤特殊角00 030 045 060 0900120 0135 0150 0180sin0 212223 123 22 21 0 cos1 2322 21 0 21-22-23-1-tan0 3313不存在3-1-33- 0⑥诱导公式口诀“奇变偶不变;符号看象限。
高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。
2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。
若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-. 4、几种常见函数的导数①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧xx 1)(ln '= 5、导数的运算法则 (1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v-=. 6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x .当()00f x '=时:① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 7、分数指数幂(1)m na =.(2)1m nm naa-==.8、根式的性质(1)na =.(2)当n为奇数时,a =;当n为偶数时,,0||,0a a a a a ≥⎧==⎨-<⎩. 9、有理指数幂的运算性质(1)r s r sa a a+⋅=;(2)()r s rsa a =;(3)()r r rab a b =.10、对数公式(1)指数式与对数式的互化式: log b a N b a N =⇔=。
上海市建平中学2018-2019学年高二上期末考试数学试题一、选择题(本大题共4小题,共12.0分) 1. 直线l :2x -y -1=0的倾斜角为( )A. arctan2B. arctan(−2)C. π−arctan2D. π+arctan22. 参数方程{y =−cosαx=3cosα+1(α为参数)对应的普通方程为( )A. x +3y +1=0B. x +3y −1=0C. x +3y −1=0(−2≤x ≤4)D. x +3y −1=0(−1≤x ≤1)3. 已知椭圆C :x 29+y 28=1,对于任意实数k ,下列直线中被椭圆C 截得的弦长与直线l :y =kx +2被椭圆C 截得的弦长一定相等的是( )A. kx −y +1=0B. kx +y −1=0C. kx +y −2=0D. kx −y −3=0 4. 已知抛物线y 2=8x 的焦点是F ,点A 、B 、C 在抛物线上,O 为坐标原点,若点F 为△ABC 的重心,△OFA 、△OFB 、△OFC 面积分别记为S 1、S 2、S 3,则S 12+S 22+S 32的值为( ) A. 16 B. 48 C. 96 D. 192 二、填空题(本大题共12小题,共36.0分) 5. 已知向量a ⃗ =(2,1),b ⃗ =(m ,−2),且a ⃗ ⊥b ⃗ ,则实数m =______.6. 已知直线l 的一个方向向量为d ⃗ =(3,−4),则直线l 的斜率为______.7. 双曲线x 29−y 2=1的渐近线方程为______.8. 已知椭圆的参数方程为{y =2sinθx=3cosθ(θ为参数),则该椭圆的长轴长为______. 9. 已知△ABC 中,点D 为线段BC 的中点,记AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ ,则向量AD ⃗⃗⃗⃗⃗⃗ 可用a ⃗ 、b⃗ 表示为______.10. 已知抛物线y 2=4x 的焦点为F ,该抛物线上点P 的横坐标为2,则|PF |=______. 11. 已知关于x 、y 的线性方程组的增广矩阵为(1122−11),则该方程组的解为______.12. 已知圆x 2+y 2=6,点M (√2,−2),则过点M 的圆的切线方程为______.13. 已知实数x 、y 满足线性约束条件{x ≥1y ≥−1x +y ≤4,则目标函数z =2x +y 的最大值是______.14. 与椭圆x 29+y 25=1有两个相同的焦点,且经过点(√2,√3)的双曲线的标准方程是______.15. 曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x +1的距离等于C 2:(x −2)2+y 2=2到直线l :y =x +1的距离,则实数a =______.16. 设直线l 与抛物线y 2=4x 相交于A 、B 两点,与圆(x -4)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有2条,则r 的取值集合是______. 三、解答题(本大题共5小题,共60.0分)17. 已知向量a ⃗ 、b ⃗ 的夹角为π3,且|a ⃗ |=1,|b ⃗ |=3. (1)求|a ⃗ +b⃗ |的值; (2)求a ⃗ 与a ⃗ +b ⃗ 的夹角.18.已知直线l:y=2x+1,及两点A(-2,3)、B(1,6),点P在直线l上.(1)若点P到A、B两点的距离相等,求点P的坐标;(2)求|PA|+|PB|的最小值.19.已知圆C:(x+2)2+y2=9及点P(0,1),过点P的直线与圆交于A、B两点.(1)若弦长|AB|=4√2,求直线AB的斜率;(2)求△ABC面积的最大值,及此时弦长|AB|.20.设椭圆C:x2+y2=1(a>0)的两个焦点是F1(-c,0)和F2(-c,0)(c>0).a2(1)若椭圆C与圆x2+y2=c2有公共点,求实数a的取值范围;(2)若椭圆C上的点到焦点的最短距离为2−√3,求椭圆C的方程;)(k≠0)与C交于不同的两点M、N,(3)对(2)中的椭图C,直线l:y=k(x+53若线段MN的垂直平分线恒过点A(0,1),求实数k的值.21.已知曲线Γ:2(a-2)x-by2+2b-4=0(a,b∈R).(1)若a=4,b=2,求出该曲线的对称轴方程、顶点坐标、焦点坐标、及x、y的取值范围;(2)若a=3,b=2,求经过点(-1,0)且与曲线Γ只有一个公共点的直线方程;(3)若a=3,请在直角坐标平面内找出纵坐标不同的两个点,此两点满足条件:无论b如何变化,这两点都不在曲线Γ上.答案和解析1.【答案】A【解析】解:直线l:2x-y+1=0的方程可化为y=2x+1,∴直线l的斜率为2,设倾斜角为α,∴tanα=2,∴倾斜角α为arctan2,故选:A.化直线的方程为斜截式,可得直线的斜率,由斜率和倾斜角的关系可得.本题考查直线的一般式方程,涉及直线的斜率和倾斜角,属基础题.2.【答案】C【解析】解:∵参数方程,∴普通方程为x=-3y+1,即x+3y-1=0(-2≤x≤4).故选:C.利用参数方程、普通方程的互化公式直接求解.本题考查曲线的普通方程的求法,考查直角坐标方程、参数方程、极坐标方程等基础知识,考查运算求解能力,是普通题.3.【答案】C【解析】解:直线kx+y-2=0的斜率为-k,在y轴上的截距为2,这直线与直线l:y=kx+2关于y轴对称,故这两直线被椭圆C所截得的弦长相等.故选:C.直线kx+y-2=0的斜率为-k,在y轴上的截距为2,这直线与直线l:y=kx+2关于y轴对称,故这两直线被椭圆C所截得的弦长相等.本题考查了直线与椭圆的位置关系,直线的对称性,属于中档题.4.【答案】B【解析】解:设A、B、C三点的坐标分别为(x1,y1),(x2,y2),(x3,y3),∵抛物线y2=8x的焦点F的坐标为(2,0),∴S1=×|y1|×2=|y1|,S2=×|y2|×2=|y2|,S3=×|y3|×2=|y3|,∴S12+S22+S32=y12+y22+y32=8(x1+x2+x3);∵点F是△ABC的重心,∴(x1+x2+x3)==2,∴(x1+x2+x3)=6;∴S12+S22+S32=6×8=48.故选:B.确定抛物线y2=8x的焦点F的坐标,求出S12+S22+S32,利用点F是△ABC的重心,计算求得结论.本题考查抛物线的定义与性质的应用问题,也考查了三角形重心的性质,是中档题.5.【答案】1【解析】解:∵向量,且,∴=2m-2=0,解得实数m=1.故答案为:1.利用向量垂直的性质直接求解.本题考查实数值的求法,考查向量垂直的性质等基础知识,考查运算求解能力,是基础题.6.【答案】-43【解析】解:由于直线l的一个方向向量为=(3,-4),则直线的斜率为-,故答案为:-.直接根据直线的方向向量即可求出直线的斜率.本题是一个基础题,正确理解直线的斜率与方向向量的关系是解题的关键.7.【答案】y=±1x3【解析】解:双曲线的a=3,b=1,可得渐近线方程为y=±x,故答案为:y=±x.由双曲线的标准方程的渐近线方程为y=±x,求得a,b,即可得到渐近线方程.本题考查双曲线的渐近线方程的求法,注意运用双曲线的性质,考查运算能力,属于基础题.8.【答案】6【解析】解:∵椭圆的参数方程为,∴椭圆的普通方程为+=1,∴该椭圆的长轴长为:2×3=6.故答案为:6.椭圆的参数方程消去参数求出椭圆的普通方程为+=1,由此能求出该椭圆的长轴长.本题考查椭圆的长轴长的求法,考查直角坐标方程、参数方程、极坐标方程等基础知识,考查运算求解能力,是基础题.9.【答案】AD ⃗⃗⃗⃗⃗⃗ =12a ⃗ +12b ⃗ 【解析】解:由三角形法则:有=(+),又,所以:=+,故答案为:=+. 由三角形法则:有=(+),故得解本题考查了平面向量的基本定理,属简单题 10.【答案】3【解析】解:抛物线y 2=4x 的准线方程为:x=-1,∵P 到焦点F 的距离等于P 到准线的距离,P 的横坐标是2, ∴|PF|=2+1=3. 故答案为:3.确定抛物线y 2=4x 的准线方程,利用P 到焦点F 的距离等于P 到准线的距离,即可求得结论.本题考查抛物线的性质,利用抛物线定义是解题的关键,属于基础题. 11.【答案】{y =1x=1【解析】解:由题意,可根据增广矩阵的定义将关于x 、y 的线性方程组还原为:,解得:.故答案为:.本题可根据增广矩阵的定义将关于x 、y 的线性方程组还原,然后解关于x 、y的二元一次方程组即可得到结果.本题主要考查增广矩阵的定义及相对应的线性方程组的求解.本题属基础题.12.【答案】√2x-2y-6=0【解析】解:根据题意,圆x2+y2=6,点M,有2+4=6,即M在圆上,则K OM==-,则切线的斜率k=,则切线的方程为y+2=(x-),变形可得x-2y-6=0;故答案为:x-2y-6=0.根据题意,分析可得点M在圆上,求出OM的斜率,即可得切线的斜率,由直线的点斜式方程分析可得答案.本题考查圆的切线方程,注意分析点M与圆的关系,属于基础题.13.【答案】9【解析】解:先根据实数x、y满足线性约束条件画出可行域,然后平移直线0=2x+y,当直线z=2x+y过点(5,-1)时,z最大值为9.故答案为:9.先根据约束条件画出可行域,再利用几何意义求最值,只需求出直线z=2x+y过点(5,-1)时,z最大值即可.本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.14.【答案】x2-y2=13【解析】解:设双曲线的方程为-=1∵椭圆的焦点坐标为(±2,0)∴双曲线中的c2=4,①∵双曲线过点,∴②∵c2=a2+b2③解①②③得a2=1,b2=3,∴双曲线的方程为x2-=1.故答案为:x2-=1.利用椭圆的三个参数的关系求出椭圆的焦点坐标,设出双曲线的方程,将已知点的坐标代入双曲线方程得到双曲线的三个参数的一个关系,再利用双曲线本身具有的关系,求出a,b,c的值,即得到双曲线的方程.求圆锥曲线的方程一般利用待定系数法,要注意圆锥曲线中的三个参数关系的区别,双曲线中有c2=a2+b2而椭圆中有a2=c2+b2.15.【答案】174【解析】解:圆的圆心为(2,0),半径为,圆心到直线y=x+1的距离为:=,∴曲线C2:(x-2)2+y2=2到直线l:y=x+1的距离为:.则曲线C1:y=x2+a到直线l:y=x+1的距离等于,令y′=2x=1解得x=,故切点为(,+a),切线方程为y-(+a)=x-,即x-y-+a=0,由题意可知x-y-+a=0与直线y=x+1的距离为:,即=解得a=或-.当a=-时直线y=x与曲线C1:y=x2+a相交,故不符合题意,舍去.故答案为:.先根据定义求出曲线C2:x2+(y+4)2=2到直线l:y=x的距离,然后根据曲线C1:y=x2+a的切线与直线y=x平行时,该切点到直线的距离最近建立等式关系,解之即可.本题主要考查了利用导数研究曲线上某点切线方程,以及点到直线的距离的计算,同时考查了分析求解的能力,属于中档题.16.【答案】(0,2]【解析】解:设A(x1,y1),B(x2,y2),M(x0,y0),可得2x0=x1+x2,2y0=y1+y2,斜率存在时,设斜率为k,k=,则y12=4x1,y22=4x2,相减得(y1+y2)(y1-y2)=4(x1-x2),当l的斜率存在时,利用点差法可得ky0=2,因为直线与圆相切,所以=-,所以x0=2,即M的轨迹是直线x=2.将x=2代入y2=4x,得y2=8,∴-2<y0<2,∵M在圆上,∴(x0-4)2+y02=r2,∴r 2=y 02+4<12+4=16, ∵直线l 恰有2条,若r=2相切,直线的斜率不存在,与圆两个交点, 若0<r <2时,直线与圆没有交点. 故0<r≤2时,直线l 有2条; 故答案为:(0,2].先确定M 的轨迹是直线x=3,代入抛物线方程可得y=±2,求得r 2=y 02+4<12+4=16,考虑直线的斜率不存在的情况,即可得出结论.本题考查直线与抛物线、圆的位置关系,考查点差法,考查学生分析解决问题的能力,属于中档题.17.【答案】解:(1)由向量a ⃗ 、b ⃗ 的夹角为π3,且|a ⃗ |=1,|b ⃗ |=3.得:a ⃗ •b ⃗ =|a ⃗ ||b ⃗ |cosθ=1×3×12=32, 所以|a ⃗ +b ⃗ |2=a ⃗ 2+b ⃗ 2+2a ⃗ •b ⃗ =1+9+3=13,即|a ⃗ +b⃗ |=√13, (2)a ⃗ •(a ⃗ +b ⃗ )=a ⃗ 2+a ⃗ •b ⃗ =52,设a ⃗ 与a ⃗ +b ⃗ 的夹角为θ. 则cosθ=a ⃗ ⋅(a ⃗ +b ⃗ )|a ⃗ ||a ⃗ +b ⃗ |=521×√13=5√1326, 又θ∈[0,π] 即θ=arccos 5√1326. 【解析】(1)由向量的数量积公式得:•=||||cosθ=1×=,由向量模长公式得:||2=2+2•=1+9+3=13;(2)由两向量的夹角公式可得:cosθ===,又θ∈[0,π]即θ=arccos,故得解.本题考查了向量的数量积公式、向量模长公式、两向量的夹角公式及反三角,属中档题.18.【答案】解:(1)线段AB 的中点为(−12,92),k AB =3−6−2−1=1.∴线段AB 的垂直平分线方程为:y -92=-(x +12), 化为:x +y -4=0.联立{y =2x +1x+y−4=0,解得x =1,y =3.∴P (1,3).(2)设点A (-2,3)关于直线l 的对称点为A ′(a ,b ),则{3−b−2−a ×2=−13+b2=2×−2+a 2+1,解得a =145,b =-85.则|PA |+|PB |≥|A ′B |=√(145−1)2+(−85−6)2=11√55.【解析】(1)线段AB 的中点为,k AB ==1.可得线段AB 的垂直平分线方程,再与直线l 的方程联立即可得出.(2)设点A (-2,3)关于直线l 的对称点为A′(a ,b ),可得,解得a ,b .可得|PA|+|PB|≥|A′B|.本题考查了直线方程、对称性、中点坐标公式、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于基础题. 19.【答案】解:(1)当直线AB 垂直于x 轴时,不合题意;当直线AB 斜率存在时,设直线方程为y =kx +1,即kx -y +1=0. 圆心(-2,0)到直线的距离d =√k 2+1,则|AB |=2√9−(1−2k)2k 2+1=4√2,即k =0或k =43; (2)当直线AB 垂直于x 轴时,直线方程为x =0,与圆C :(x +2)2+y 2=9联立,可得|AB |=2√5,S △ABC =12×2√5×2=2√5;当直线AB 斜率存在时,S =12×2√9−(1−2k)2k 2+1√k 2+1=√9−(√k 2+1)2×√k 2+1. 令√k 2+1=t (t ≥0), 则S =√(9−t 2)⋅t 2≤9−t 2+t 22=92.当且仅当t 2=92,即(1−2k)2k 2+1=92,即k =-1或k =7.此时弦长|AB |=2√9−92=3√2.【解析】(1)当直线AB 垂直于x 轴时,不合题意;当直线AB 斜率存在时,设直线方程为y=kx+1,即kx-y+1=0.利用点到直线距离公式求出圆心到直线的距离,再由弦长公式求解;(2)当直线AB 垂直于x 轴时,直线方程为x=0,求出△ABC 面积;当直线斜率存在时,写出三角形面积,换元后了由基本不等式求最值,从而可得△ABC 面积的最大值,并求此时弦长|AB|.本题考查直线与圆位置关系的应用,考查分类讨论的数学思想方法,考查计算能力,是中档题.20.【答案】解:(1)由已知,a >1,∴方程组{x 2a 2+y 2=1x 2+y 2=c 2有实数解,从而(1-1a 2)x 2=c 2-1,故c 2≥1,所以a 2≥2,即a 的取值范围是(√2,+∞)(2)设椭圆上的点P (x ,y )到一个焦点F 2(c ,0)的距离为d 2=(x -c )2+y 2=x 2-2cx +c 2+1-x 2a2=c 2a2x 2-2cx +c 2+1=c 2a2(x -a 2c)2.(-a ≤x ≤a ).∵a 2c>a∴当x =a 时,d min =a -c ,(可以直接用结论) 于是,{a −c =2−√3a 2−c 2=1,解得a =2,c =√3. 所求椭圆方程为x 24+y 2=1.(3)由{y =k(x +53)x 24+y 2=1得(4k 2+1)x 2+40k 23x +100k 29-4=0, 设M (x 1,y 1)、N (x 2,y 2), ∴x 1+x 2=-40k 23(1+4k 2),∴线段MN 的中点为(-20k 23(1+4k 2),5k3(1+4k 2)), 又∵线段MN 的垂直平分线恒过点A (0,1),∴5k3(1+4k 2)−1−20k 23(1+4k 2)−0=-1k, 整理可得4k 2+5k +1=0, 解得k =-1,或k =-14, 故实数k 的值为-1或-14. 【解析】(1)由已知,a >1,方程组有实数解,从而,由此能得到a 的取值范围. (2)设椭圆上的点P (x ,y )到一个焦点F 2(c ,0)的距离为d ,则d 2=(x-)2.(-a≤x≤a )当x=a 时,d min =a-c ,于是,由此能导出所求椭圆方程. (3)由得(4k 2+1)x 2+x+-4=0,根据根与系数的关系,和中点坐标,以及直线的斜率即可求出k 的值.本题考查圆锥曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的灵活运用是,属于中档题.21.【答案】解:(1)当a =4,b =2,则曲线为4x -2y 2+4-4=0,即y 2=2x ,则该曲线的对称轴方程为y =0,定点坐标为(0,0),焦点坐标为(12,0),x ∈[0,+∞),y ∈R ,(2)a =3,b =2时,则曲线Γ:2x -2y 2+2×2-4=0,即y 2=x , 显然直线的斜率存在,设经过点(-1,0)的直线方程为y =k (x +1), 联立方程组可得{y 2=x y=k(x+1),消x 可得ky 2-y +k =0,当k =0时,y =0,此时满足经过点(-1,0)的直线与曲线Γ只有一个公共点, 当k ≠0时,△=1-4k 2=0,解得k =±12, 此时直线方程为y =±12(x +1), 故满足条件的直线方程为y =0,x -2y +1=0,x +2y +1=0,(3)当a =3时,曲线Γ:2x -by 2+2b -4=0,即为by 2=2x +2b -4, 当b =0时,x =2,当b ≠0时,y 2=2b x +2-4b ,∴4b ≠0,∴无论b 如何变化,曲线都不可能为y 2=2,∴两点可以是(p,2)和(q,2),p≠2,q≠2【解析】(1)代值可得曲线为y2=2x,根据抛物线的性质即可求出;(2)设直线y=k(x+1),代入抛物线的方程,运用判别式为0,解方程可得所求直线方程;(2)讨论b是否为0,可取(p,2)和(q,2),即可得证.本题考查抛物线的方程和直线方程联立,运用判别式为0,考查分类讨论思想方法和数形结合思想,注意运用几何意义,属于综合题.。
高中数学公式大全(最全面,最详细)高中数学公式大全抛物线:y = ax *+ bx + c就是y等于ax 的平方加上bx再加上ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积=4/3(pi)(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。
常数为体,公式为用。
椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)八倍角公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍角公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)十倍角公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10) ·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac<0 注:方程有共轭复数根公式分类公式表达式圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h图形周长面积体积公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)| a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积=长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形a—边长C=4aS=a2长方形a和b-边长C=2(a+b)S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2 s=l×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
第1讲 直线与圆高考定位 1.直线方程、圆的方程、两直线的平行与垂直、直线与圆的位置关系是本讲高考的重点;2.考查的主要内容包括求直线(圆)的方程、点到直线的距离、直线与圆的位置关系推断、简洁的弦长与切线问题,多为选择题、填空题.真 题 感 悟1.(2022·全国Ⅱ卷)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( ) A.-43B.-34C. 3D.2解析 圆x 2+y 2-2x -8y +13=0化为标准方程为(x -1)2+(y -4)2=4,故圆心为(1,4). 由题意得d =|a +4-1|a 2+1=1,解得a =-43. 答案 A2.(2022·山东卷)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A.内切 B.相交 C.外切D.相离解析 圆M :x 2+y 2-2ay =0(a >0)可化为x 2+(y -a )2=a 2, 由题意,d =a2,所以有a 2=a 22+2,解得a =2.所以圆M :x 2+(y -2)2=22,圆心距为2,半径和为3,半径差为1,所以两圆相交. 答案 B3.(2022·全国Ⅰ卷)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.解析 圆C 的标准方程为x 2+(y -a )2=a 2+2,圆心为C (0,a ),点C 到直线y =x +2a 的距离为d =|0-a +2a |2=|a |2.又由|AB |=23,得⎝ ⎛⎭⎪⎫2322+⎝ ⎛⎭⎪⎫|a |22=a 2+2,解得a 2=2,所以圆C 的面积为π(a 2+2)=4π.答案 4π4.(2021·天津卷)设抛物线y 2=4x 的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若∠FAC =120°,则圆的方程为________.解析 由题意知该圆的半径为1,设圆心C (-1,a )(a >0),则A (0,a ). 又F (1,0),所以AC → =(-1,0),AF →=(1,-a ).由题意知AC → 与AF → 的夹角为120°,得cos 120°=-11×1+a2=-12,解得a = 3. 所以圆的方程为(x +1)2+(y -3)2=1. 答案 (x +1)2+(y -3)2=1 考 点 整 合1.两条直线平行与垂直的判定若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在. 2.两个距离公式(1)两平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2.(2)点(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.3.圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2(r >0),圆心为(a ,b ),半径为r .(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),圆心为⎝ ⎛⎭⎪⎫-D 2,-E 2,半径为r =D 2+E 2-4F 2.4.直线与圆的位置关系的判定(1)几何法:把圆心到直线的距离d 和半径r 的大小加以比较:d <r ⇔相交;d =r ⇔相切;d >r ⇔相离. (2)代数法:将圆的方程和直线的方程联立起来组成方程组,利用判别式Δ来争辩位置关系:Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离.热点一 直线的方程【例1】 (1)设a ∈R ,则“a =-2”是直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件(2)(2021·山东省试验中学二模)过点P (2,3)的直线l 与x 轴、y 轴正半轴分别交于A ,B 两点,O 为坐标原点,则S △OAB 的最小值为________.解析 (1)当a =-2时,l 1:-2x +2y -1=0,l 2:x -y +4=0,明显l 1∥l 2. 当l 1∥l 2时,由a (a +1)=2且a +1≠-8得a =1或a =-2, 所以a =-2是l 1∥l 2的充分不必要条件.(2)依题意,设直线l 的方程为x a +yb=1(a >0,b >0). ∵点P (2,3)在直线l 上.∴2a +3b=1,则ab =3a +2b ≥26ab ,故ab ≥24,当且仅当3a =2b (即a =4,b =6)时取等号. 因此S △AOB =12ab ≥12,即S △AOB 的最小值为12.答案 (1)A (2)12探究提高 1.求解两条直线平行的问题时,在利用A 1B 2-A 2B 1=0建立方程求出参数的值后,要留意代入检验,排解两条直线重合的可能性.2.求直线方程时应依据条件选择合适的方程形式利用待定系数法求解,同时要考虑直线斜率不存在的状况是否符合题意.【训练1】 (1)(2021·贵阳质检)已知直线l 1:mx +y +1=0,l 2:(m -3)x +2y -1=0,则“m =1”是“l 1⊥l 2”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是________.解析 (1)“l 1⊥l 2”的充要条件是“m (m -3)+1×2=0⇔m =1或m =2”,因此“m =1”是“l 1⊥l 2”的充分不必要条件.(2)当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大. ∵A (1,1),B (0,-1),∴k AB =-1-10-1=2.∴两平行直线的斜率k =-12.∴直线l 1的方程是y -1=-12 (x -1),即x +2y -3=0.答案 (1)A (2)x +2y -3=0 热点二 圆的方程【例2-1】 (1)(2022·天津卷)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________.(2)(2021·全国Ⅰ卷)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.解析 (1)∵圆C 的圆心在x 的正半轴上,设C (a ,0),且a >0. 则圆心C 到直线2x -y =0的距离d =|2a -0|5=455,解得a =2.∴圆C 的半径r =|CM |=(2-0)2+(0-5)2=3,因此圆C 的方程为(x -2)2+y 2=9.(2)由题意知,椭圆顶点的坐标为(0,2),(0,-2),(-4,0),(4,0).由圆心在x 轴的正半轴上知圆过顶点(0,2),(0,-2),(4,0). 设圆的标准方程为(x -m )2+y 2=r 2,则有⎩⎪⎨⎪⎧m 2+4=r 2,(4-m )2=r 2,解得⎩⎪⎨⎪⎧m =32,r 2=254,所以圆的标准方程为⎝ ⎛⎭⎪⎫x -322+y 2=254.答案 (1)(x -2)2+y 2=9 (2)⎝ ⎛⎭⎪⎫x -322+y 2=254探究提高 1.直接法求圆的方程,依据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.2.待定系数法求圆的方程:(1)若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;(2)若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值. 温馨提示 解答圆的方程问题,应留意数形结合,充分运用圆的几何性质.【训练2】 (1)(2021·河南部分重点中学联考)圆心在直线x =2上的圆与y 轴交于两点A (0,-4),B (0,-2),则该圆的标准方程为________________.(2)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得的弦的长为23,则圆C 的标准方程为________.解析 (1)易知圆心的纵坐标为-4+(-2)2=-3,所以圆心坐标为(2,-3).则半径r =(2-0)2+[(-3)-(-2)]2=5, 故所求圆的标准方程为(x -2)2+(y +3)2=5. (2)设圆心⎝ ⎛⎭⎪⎫a ,a 2(a >0),半径为a .由勾股定理得(3)2+⎝ ⎛⎭⎪⎫a 22=a 2,解得a =2.所以圆心为(2,1),半径为2,所以圆C 的标准方程为(x -2)2+(y -1)2=4.答案 (1)(x -2)2+(y +3)2=5 (2)(x -2)2+(y -1)2=4. 热点三 直线与圆的位置关系 命题角度1 圆的切线问题【例3-1】 (2021·郑州调研)在平面直角坐标系xOy 中,以点A (1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的全部圆中,半径最大的圆的标准方程为________.解析 直线mx -y -2m -1=0恒过定点P (2,-1),当AP 与直线mx -y -2m -1=0垂直,即点P (2,-1)为切点时,圆的半径最大,∴半径最大的圆的半径r =(1-2)2+(0+1)2= 2. 故所求圆的标准方程为(x -1)2+y 2=2. 答案 (x -1)2+y 2=2命题角度2 圆的弦长相关计算【例3-2】 (2021·全国Ⅲ卷)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题: (1)能否消灭AC ⊥BC 的状况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. (1)解 不能消灭AC ⊥BC 的状况,理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2满足方程x 2+mx -2=0, 所以x 1x 2=-2. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能消灭AC ⊥BC 的状况.(2)证明 BC 的中点坐标为⎝ ⎛⎭⎪⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝ ⎛⎭⎪⎫x -x 22.由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2.联立⎩⎪⎨⎪⎧x =-m2, ①y -12=x 2⎝ ⎛⎭⎪⎫x -x 22, ②又x 22+mx 2-2=0,③由①②③解得x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝ ⎛⎭⎪⎫-m 2,-12,半径r =m 2+92.故圆在y 轴上截得的弦长为2r 2-⎝ ⎛⎭⎪⎫m 22=3, 即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.探究提高 1.争辩直线与圆的位置关系最常用的解题方法为几何法,将代数问题几何化,利用数形结合思想解题.2.与弦长有关的问题常用几何法,即利用圆的半径r ,圆心到直线的距离d ,及半弦长l2,构成直角三角形的三边,利用其关系来处理.【训练3】 (1)(2021·泉州质检)过点P (-3,1),Q (a ,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为______.(2)(2022·全国Ⅲ卷) 已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.解析 (1)点P (-3,1)关于x 轴的对称点为P ′(-3,-1), 所以直线P ′Q 的方程为x -(a +3)y -a =0. 依题意,直线P ′Q 与圆x 2+y 2=1相切. ∴|-a |12+(a +3)2=1,解得a =-53. (2)由圆x 2+y 2=12知圆心O (0,0),半径r =23, ∴圆心(0,0)到直线x -3y +6=0的距离d =61+3=3,|AB |=212-32=2 3.过C 作CE ⊥BD 于E .如图所示,则|CE |=|AB |=2 3. ∵直线l 的方程为x -3y +6=0,∴直线l 的倾斜角∠BPD =30°,从而∠BDP =60°,因此|CD |=|CE |sin 60°=23sin 60°=4.答案 (1)-53(2)41.解决直线方程问题应留意:(1)要留意几种直线方程的局限性.点斜式、两点式、斜截式要求直线不能与x 轴垂直.而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线. (2)求直线方程要考虑直线斜率是否存在.(3)求解两条直线平行的问题时,在利用A 1B 2-A 2B 1=0建立方程求出参数的值后,要留意代入检验,排解两条直线重合的可能性.2.求圆的方程两种主要方法:(1)直接法:利用圆的性质、直线与圆、圆与圆的位置关系,数形结合直接求出圆心坐标、半径,进而求出圆的方程.(2)待定系数法:先设出圆的方程,再由条件构建系数满足的方程(组)求得各系数,进而求出圆的方程. 3.直线与圆相关问题的两个关键点(1)三个定理:切线的性质定理、切线长定理和垂径定理.(2)两个公式:点到直线的距离公式d =|Ax 0+By 0+C |A 2+B 2,弦长公式|AB |=2r 2-d 2(弦心距d ). 4.直线(圆)与圆的位置关系的解题思路(1)争辩直线与圆及圆与圆的位置关系时,要留意数形结合,充分利用圆的几何性质查找解题途径,削减运算量.争辩直线与圆的位置关系主要通过圆心到直线的距离与半径的比较来实现,两个圆的位置关系的推断依据是两圆心距离与两半径差与和的比较.(2)直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立切线斜率的等式,所以求切线方程时主要选择点斜式,过圆外一点求解切线段长可转化为圆心到圆外点距离,利用勾股定理计算.一、选择题1.(2021·昆明诊断)已知命题p :“m =-1”,命题q :“直线x -y =0与直线x +m 2y =0相互垂直”,则命题p 是命题q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要解析 “直线x -y =0与直线x +m 2y =0相互垂直”的充要条件是1×1+ (-1)·m 2=0⇔m =±1.∴命题p 是命题q 的充分不必要条件. 答案 A2.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A.2x +y -5=0 B.2x +y -7=0 C.x -2y -5=0D.x -2y -7=0解析 依题意知,点(3,1)在圆(x -1)2+y 2=r 2上,且为切点. ∵圆心(1,0)与切点(3,1)连线的斜率为12,所以切线的斜率k =-2.故圆的切线方程为y -1=-2(x -3),即2x +y -7=0. 答案 B3.(2021·济南调研)若直线x -y +m =0被圆(x -1)2+y 2=5截得的弦长为23,则m 的值为( ) A.1 B.-3 C.1或-3D.2解析 ∵圆(x -1)2+y 2=5的圆心C (1,0),半径r = 5. 又直线x -y +m =0被圆截得的弦长为2 3. ∴圆心C 到直线的距离d =r 2-(3)2=2, 因此|1-0+m |12+(-1)2=2,∴m =1或m =-3.答案 C4.(2021·全国Ⅱ卷)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53 B.213C.253D.43解析 设圆的一般方程为x 2+y 2+Dx +Ey +F =0,∴⎩⎨⎧1+D +F =0,3+3E +F =0,7+2D +3E +F =0,∴⎩⎪⎨⎪⎧D =-2,E =-433,F =1,∴△ABC 外接圆的圆心为⎝⎛⎭⎪⎫1,233,因此圆心到原点的距离d =12+⎝ ⎛⎭⎪⎫2332=213.答案 B5.(2021·衡水中学模拟)已知圆C :(x -1)2+y 2=25,则过点P (2,-1)的圆C 的全部弦中,以最长弦和最短弦为对角线的四边形的面积是( ) A.1031B.921C.1023D.911解析 易知最长弦为圆的直径10,又最短弦所在直线与最长弦垂直,且|PC |=2,∴最短弦的长为2r 2-|PC |2=225-2=223, 故所求四边形的面积S =12×10×223=1023.答案 C 二、填空题6.(2021·广安调研)过点(1,1)的直线l 与圆(x -2)2+(y -3)2=9相交于A ,B 两点,当|AB |=4时,直线l 的方程为________.解析 易知点(1,1)在圆内,且直线l 的斜率k 存在,则直线l 的方程为y -1=k (x -1),即kx -y +1-k =0.又|AB |=4,r =3,∴圆心(2,3)到l 的距离d =32-22= 5. 因此|k -2|k 2+(-1)2=5,解得k =-12.∴直线l 的方程为x +2y -3=0. 答案 x +2y -3=07.(2021·北京卷)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO → ·AP →的最大值为________. 解析 法一 由题意知,AO → =(2,0),令P (cos α,sin α),则AP →=(cos α+2, sin α).AO → ·AP → =(2,0)·(cos α+2,sin α)=2cos α+4≤6,故AO → ·AP →的最大值为6. 法二 由题意知,AO →=(2,0),令P (x ,y ),-1≤x ≤1,则AO → ·AP → =(2,0)·(x +2,y )=2x +4≤6,故AO → ·AP →的最大值为6. 答案 68.(2021·菏泽二模)已知圆C 的方程是x 2+y 2-8x -2y +8=0,直线l :y =a (x -3)被圆C 截得的弦长最短时,直线l 方程为________.解析 圆C 的标准方程为(x -4)2+(y -1)2=9, ∴圆C 的圆心C (4,1),半径r =3. 又直线l :y =a (x -3)过定点P (3,0),则当直线y =a (x -3)与直线CP 垂直时,被圆C 截得的弦长最短. 因此a ·k CP =a ·1-04-3=-1,∴a =-1.故所求直线l 的方程为y =-(x -3),即x +y -3=0.答案 x +y -3=0 三、解答题9.已知点A (3, 3),B (5,2)到直线l 的距离相等,且直线l 经过两直线l 1:3x -y -1=0和l 2:x +y -3=0的交点,求直线l 的方程.解 解方程组⎩⎪⎨⎪⎧3x -y -1=0,x +y -3=0,得交点P (1,2).①若点A ,B 在直线l 的同侧,则l ∥AB . 而k AB =3-23-5=-12,由点斜式得直线l 的方程为y -2=-12(x -1),即x +2y -5=0.②若点A ,B 分别在直线l 的异侧,则直线l 经过线段AB 的中点⎝ ⎛⎭⎪⎫4,52, 由两点式得直线l 的方程为y -2x -1=52-24-1,即x -6y +11=0.综上所述,直线l 的方程为x +2y -5=0或x -6y +11=0.10.(2021·全国Ⅰ卷)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM → ·ON →=12,其中O 为坐标原点,求|MN |. 解 (1)由题设,可知直线l 的方程为y =kx +1, 由于l 与C 交于两点,所以|2k -3+1|1+k 2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1, 整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k2.OM → ·ON →=x 1x 2+y 1y 2 =(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8. 由题设可得4k (1+k )1+k 2+8=12,解得k =1, 所以l 的方程为y =x +1. 故圆心C 在l 上,所以|MN |=2.11.(2022·江苏卷节选)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且|BC |=|OA |,求直线l 的方程. 解 (1)圆M 的标准方程为(x -6)2+(y -7)2=25, 所以圆心M (6,7),半径为5,(1)由圆心N 在直线x =6上,可设N (6,y 0). 由于圆N 与x 轴相切,与圆M 外切, 所以0<y 0<7,圆N 的半径为y 0, 从而7-y 0=5+y 0,解得y 0=1.因此,圆N 的标准方程为(x -6)2+(y -1)2=1.(2)由于直线l ∥OA , 所以直线l 的斜率为4-02-0=2.设直线l 的方程为y =2x +m , 即2x -y +m =0, 则圆心M 到直线l 的距离d =|2×6-7+m |5=|m +5|5. 由于|BC |=|OA |=22+42=25,又|MC |2=d 2+⎝ ⎛⎭⎪⎫|BC |22,所以25=(m +5)25+5,解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0.。
2020年高三物理寒假攻关---备战一模第一部分考向精练 专题02 匀变速直线运动的规律一、匀变速直线运动的基本规律 1.匀变速直线运动的条件物体所受合力为恒力,且与速度方向共线. 2.匀变速直线运动的基本规律 速度公式:v =v 0+at . 位移公式:x =v 0t +12at 2.速度和位移公式的推论:v 2-v 02=2ax . 中间时刻的瞬时速度:2t v =x t =v 0+v2.任意两个连续相等的时间间隔内的位移之差是一个恒量,即Δx =x n +1-x n =a ·(Δt )2. 二、匀变速直线运动的基本规律应用的技巧方法(1)匀变速直线运动的基本公式(v -t 关系、x -t 关系、x -v 关系)原则上可以解决任何匀变速直线运动问题.因为那些导出公式是由它们推导出来的,在不能准确判断用哪些公式时可选用基本公式. (2)未知量较多时,可以对同一起点的不同过程列运动学方程.(3)运动学公式中所含x 、v 、a 等物理量是矢量,应用公式时要先选定正方向,明确已知量的正负,再由结果的正负判断未知量的方向.(3)v=ΔxΔt=v0+v2=vt2.(2)已知某段时间内的位移、初末速度可求平均速度,应用平均速度公式往往会使解题过程变的非常简捷.(4)多过程问题一般是两段或多段匀变速直线运动的组合.各阶段运动之间的“转折点”的速度是关键物理量,它是前一段的末速度,又是后一段的初速度,是两段运动共有的一个物理量,用它来列方程能减少解题的复杂程度.【例1】(2019·广东揭阳市第二次模拟)瑞士阿尔卑斯山的劳特布伦嫩跳伞区是全球最美的跳伞地之一,每年都吸引了无数跳伞爱好者汇聚此地.某日一跳伞爱好者以5 m/s的速度竖直匀速降落,在离地面h=10 m时掉了一颗扣子,则跳伞爱好者比扣子晚着陆的时间为(扣子受到的空气阻力可忽略,g取10 m/s2)() A.2 s B. 2 s C.1 s D.(2-2) s【答案】 C【解析】由题意知,扣子做初速度为5 m/s、加速度为重力加速度的匀加速直线运动,落地时位移为10 m,根据位移时间关系x=v0t+12gt2,代入数据有:10 m=5 m/s·t1+12×10 m/s2×t12,求得扣子落地时间:t1=1 s;跳伞爱好者匀速运动,根据位移时间关系知,跳伞爱好者落地时间t2=hv=105s=2 s,所以跳伞爱好者比扣子晚着陆的时间为Δt=t2-t1=1 s,故选C.【例2】(2019·广东惠州二模)近几年,国家取消了7座及以下小车在法定长假期间的高速公路收费,给自驾出行带来了很大的实惠,但车辆的增多也给道路的畅通增加了压力,因此交管部门规定,上述车辆通过收费站口时,在专用车道上可以不停车拿(交)卡而直接减速通过。
1.直线xsin π7+ycos π7=0的倾斜角α是( )A .-π7 B.π7 C.5π7 D.6π7【答案】D2.设直线ax +by +c =0的倾斜角为α,且sin α+cos α=0,则a ,b 满足( ) A .a +b =1 B .a -b =1 C .a +b =0 D .a -b =0 【答案】D【解析】由sin α+cos α=0,得sin αcos α=-1,即tan α=-1.又因为tan α=-a b ,所以-ab=-1,则a =b.3.如图,在同一直角坐标系中,表示直线y =ax 与y =x +a 正确的是( )AB D【答案】C【解析】当a >0时,直线y =ax 的倾斜角为锐角,直线y =x +a 在y 轴上的截距为a >0,A 、B 、C 、D 都不成立;当a =0时,直线y =ax 的倾斜角为0°,A 、B 、C 、D 都不成立;当a <0时,直线y =ax 的倾斜角为钝角,直线y =x +a 在y 轴上的截距为a <0,只有C 成立。
4.直线l 1:3x -y +1=0,直线l 2过点(1,0),且它的倾斜角是l 1的倾斜角的2倍,则直线l 2的方程为( )A .y =6x +1B .y =6(x -1)C .y =34(x -1)D .y =-34(x -1)【答案】D5.若直线(2m 2+m -3)x +(m 2-m )y =4m -1在x 轴上的截距为1,则实数m 是( ) A .1 B .2 C .-12 D .2或-12【答案】D【解析】当2m 2+m -3≠0时,在x 轴上截距为4m -12m 2+m -3=1,即2m 2-3m -2=0,∴m =2或m =-12。
6.函数y =a sin x -b cos x (ab ≠0)的一条对称轴的方程为x =π4,则以向量c =(a ,b )为方向向量的直线的倾斜角为( )A .45° B.60° C .120° D.135° 【答案】D【解析】由f (x )=a sin x -b cos x 关于x =π4对称,得f (0)=f ⎝ ⎛⎭⎪⎫π2,代入得a =-b , ∴向量c =(a ,b )=(a ,-a )=a (1,-1), ∴直线的斜率为k =-1, 即倾斜角α=135°。
三角函数①合角公式②倍角公式③半角公式④万能公式⑤和差化积⑥积化和差⑦辅助角公式⑧诱导公式sin →cos 和tan →cot是加减的关系,若原来的角加减后的角的新函数值与原来的符号不同,则要加负号⑨其它⑩三角函数的图像对称轴对称中心增区间减区间对称轴对称中心增区间减区间对称中心增区间⑾正弦定理⑿余弦定理不等式对称性传递性推论推论已知,,,求范围?均值不等式①②当为定值时,当且仅当时,③当为定值时,当且仅当时,④时取等号若②③中不能取到等号则用调和函数注:,再根据x的值域来确定定义域平面向量三点共线①②三线共点因为A、G、D共线因为C、G、E共线基底不平行,任意存在唯一实数使(向量关于的分解式)①②若,则③④若则空间向量共面向量三点共线四点共面直线方程①点斜式已知过,斜率为k②斜截式已知截距为b,斜率为k③截距式若则,④一般式平行②③且垂直①且②③相交①②④重合②③且圆锥曲线弦长公式椭圆一个动点到两个定点的距离之和为定值的点形成的轨迹为椭圆。
通径准线焦半径共焦点椭圆系当三角形PF 1F 2面积最大时,P 为短轴端点双曲线一个动点到两个定点的距离之差为定值2a的点形成的轨迹为双曲线。
离心率越大,开口越大。
|PF1|-|PF2|=2a渐近线共焦点双曲线系共渐近线双曲线系抛物线一个动点到一个定点的距离等于这个动点到定直线的距离的点形成的轨迹为抛物线。
焦半径(抛物线上任意一点到F 的距离)过焦点的通径最短圆(弧度)圆心半径r一般式圆—线相交 相切相离弦长圆—圆(此式为两圆的交点所在的直线的方程)①当时,表示过两圆交点的所有圆的方程 ②当时,表示过两圆交点的弦的直线方程(若两圆相切,则表示两圆的内公切线)解析平面几何k 不存在距离::点—线线—线(此处为平行的两个式子x 、y 的系数都相等的时候)对称: ::点—点点—线线—点 ①直线上任取两点A 、B ,找到它们关于P 的对称点C 、D ,求出过这两点的直线②P 到两直线距离相等③所求直线上任取一点,找到它关于在已知直线上的对称点则(P 为A 、B 中点)代入已知直线线—线 求出与的焦点,在上任取一点,找到A 关于的对称点则,P 、B 都在所求直线上中心直线系: :与的焦点为P ,则表示过P 的所有直线(表示不了)到角将逆时针绕P 旋转到,则所旋转的角θ叫做到的角——到角与的夹角解析空间几何①关于x 轴对称②关于y 轴对称③关于z 轴对称④关于xOy 对称⑤关于yOz 对称⑥关于xOz对称⑦关于原点对称和的中点距离点—点点—线取直线方向向量通过求通过求线—线 平移使两异面直线相交,并确定一个平面,则直线被平移前直线与所成平面的距离即为 线线间距离线—面 在l 上任取一点A A 与平面任意一点B 连线平面单位法向量为立体几何直棱柱正棱锥正棱台球圆柱圆锥圆台空间位置平行线—面线平行于面内任意直线面—面相交直线两两平行垂直线—面线垂直面内两相交直线面—面线垂直面则过线的面垂直面交角线—面面—面三垂线定理cos∠AOC=cos∠AOB∙cos∠BOC证明线—面点—线(三点共线)不重合的两个平面一个公共点,那它们只有一条过这点的公共直线数列求通项公式an①观察法②已知S n求a nn=1 a1=S1n≥2 a n=S n-S n-1③递推公式法1、a n+1-a n=d2、3、叠加法(a1已知)a2-a1=a3-a2=a4-a3=a5-a4=a6-a5=……a n -a n-1= 叠加之后得 a n -a 1=a 1已知 所以a n =4、已知a n+1=Pa n +q 倒成(a n+1+x)=P(a n +x) 所以a n+1= Pa n +px-x 令q=px-x 可求出xb n = a n +x 为等比数列,公比p求前n项和Sn①公式法Sn=12+22+32+……+(n-1)2+n 2=②倒序相加(乘)法(乘用于等比数列且已知x 1 x n ) P n =x 1∙x 2∙x 3∙……∙x n-1∙x n P n = x n ∙x n-1∙……∙x 3 ∙x 2∙x 1P n 2= x 1 x n ∙x 2 x n-1∙x 3 x n-2∙……∙x n-1 x 2∙x n x 1=( x 1 ∙x n )n =(ab)n P n =③分组求和④错位相减(等差{a n }等比{b n }求{a n b n }的{S n }) ⑤裂项相消求S nSn=a 1+a 2+a 3+……+a n-1+a n其它 等差数列若,则等差数列中S k ,S 2k -S k ,S 3k -S 2kn=成等差数列,公差k 2d若共有2n 项,则若共有2n+1项,则等比数列若,则若a 、G 、b 成等比数列,则等比数列中S k ,S 2k -S k ,S 3k -S 2k 成等比数列,公比q k推理与证明推理不等式证明比较法 ①作差 ②作商综合法 由已知条件推出结论分析法 从结论入手,找出成立的条件 要证A 只需证B ……Z 显然成立 ∴A反证法已知A ,求证B 假设⇁B 为真…… 即C 矛盾(不符已知条件或已知公理或已证过结论) ∴原命题正确 换元法 构造函数缩放法证……不等式解法一元一次一元二次①求∆,并判断正负 ②③借图像用根解题 分式移项→同分→化积 高次 ①因式分解 ②等于零的根③数轴(从右边起,右在上) ④解题有平方时含有绝对值 平方无理数被开方数中有未知数指数有意义、底不同化同底、分情况讨论对数有意义、底不同化同底、分情况讨论线性规划线定界 点定域(ABC 三个域)含直线时用实线否则用虚线数学归纳法适用于与正整数有关的命题 格式 1)当时带入已知式子,并计算时命题正确2)可使时命题正确k 带入已知式子得到有k 的式子A 3)那么,当时k+1带入已知式子得到有k 的式子B ,利用A也就是当时,命题正确综合(1)(2)知对于命题正确常用逻辑用语命题 可以判断真假的语句开语句(条件命题) 含有变量的语句 全称命题 针对全体对象的命题 存在性命题 对象中部分 且 p ∩q p 、q 同时为真,命题为真 或 p ∪q p 、q 至少有一个为真,命题为真 非 ⇁p p 的否定全称命题的非是存在性命题 存在性命题的非是全称命题原命题 若p 则q 否命题 若⇁p 则⇁q 逆命题 若q 则p 逆否命题 若⇁q 则⇁p 原命题的否定 若p则⇁q导数求过某点的切线方程设切点求并去将已知点代入求出则方程可求四则运算特殊的函数的导数幂函数指数函数对数函数三角函数常函数复合函数定积分f(x) 被积函数a积分下限b 积分上限定积分有正负,转化成面积的时候要注意。
中职直线方程与圆的方程教学设计下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!1. 导入环节。
1.1 引入相关背景知识。
1线性方程组1. 三种行初等变换倍加变换(某一行的倍数加到另一行)对换变换(两行交换)倍乘变换(某一行所有元素乘以同一个非零数)2. 行等价一个矩阵可经过一系列初等行变换成为另一个矩阵。
行变换可逆。
3。
若两个线性方程组的增广矩阵行等价,则它们有相同的解集。
4. 简化行阶梯矩阵a)非零行的先导元素为0b) 先导元素1是该元素所在列的唯一非零元素一个矩阵的简化行阶梯矩阵唯一。
5。
对应于主元列的变量称基本变量,其他变量称自由变量。
6。
向量的平行四边形法则若R2中的向量u,v用平面上的点表示,则u+v对应于u,v,0为三个顶点的平行四边形的第四个顶点。
[思考:即使u,v不是R2而是R3甚至R n中的向量,上述结论是否仍然成立?]7。
向量方程x1a1+x2a2+。
.。
+x n a n=b和增广矩阵如下的线性方程组[a1a2.。
. a n b]和矩阵方程Ax=b有相同的解集。
8. 方程Ax=b有解的条件:b是A的各列的线性组合。
9。
设A为mxn矩阵,以下命题等价:a) 对R m中每个b,Ax=b有解b) R m中的每个b都是A的列的一个线性组合c) A的各列生成R m(R m= Span{A各列})d) A在每一行都有一个主元位置(注意是A的每一行,*不*是A的增广矩阵的每一行)10。
方程Ax=0有非平凡解的条件:至少有一个自由变量。
11. 如果非齐次方程有多个解,其解可表示为一个向量(这个向量也是非齐次方程的特解)加上相应的齐次方程的解。
或者说:非齐次方程解=该方程特解+对应的齐次方程的通解12. 若一组向量v1,v2,。
..,v n组成的向量方程x1v1+x2v2+.。
+x n v n= 0仅有平凡解,则这些向量线性无关;否则这些向量线性相关。
同样,仅当矩阵方程Ax=0仅有平凡解,A的各列线性无关。
13. 单个的零向量线性相关,因为0x=0有非平凡解;同理,单个的非零向量线性无关.含有零向量的向量组必定线性相关。
高等数学公式汇总第一章 一元函数的极限与连续1、一些初等函数公式:sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβαβαβαβαβαββααβαβαβαβαβαβ±=±±=±±=⋅⋅±=±±=±±=±和差角公式:sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=和差化积公式: 1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式:2222222222sin 22sin cos cos22cos 112sin cos sin2tan tan 21tan cot1cot 22cot 2221221sh sh ch ch sh ch ch sh αααααααααααααααααααααα==-=-=-=--===+==-=+倍角公式:22222222sin cos 1;tan 1sec ;cot 1csc ;1sin 2cos 21cos sin tan 2sin 1cos 1cos sin cot2sin 1cos x x x x ch x sh x αααααααααααααα+=+=+=-===-==++===-半角公式:::ln(2::ln(211::ln21x xx xx x x x e e shx arshx x e e chx archx x shx e e xthx arthx chx e e x-----==+==±-+===+-双曲正弦;反双曲正弦双曲余弦;反双曲余弦双曲正切;反双曲正切3322()()()a b a b a ab b ±=±+,222(1)(21)126n n n n +++++=22333(1)124n n n ++++=2、极限➢常用极限:1,lim 0n n q q →∞<=;1,1n a >=;1n =➢ ln(1())limln(1())~()()lim[()()]1/()()0,(),lim[1()]f x f x f x g x f x g x g x f x g x f x ee ++±→→∞±=−−−−−−→若则➢ 两个重要极限100sin sin 1lim 1,lim 0;lim(1)lim(1)x x x x x x x x e x x x x→→∞→∞→==+==+ ➢:常用等价无穷小2111cos ~; ~sin ~arcsin ~arctan 1~;2 1~ln ; ~1;(1)~1; ln(1)~x x a x x x x x x x n a x a e x x ax x x--++++3、连续:定义:000lim 0;lim ()() x x x y f x f x ∆→→∆==00lim ()lim ()()()x x x x f x f x f x f x -+-+→→⇔==极限存在或 第二章 导数与微分1、 基本导数公式:00000000()()()()()limlim lim tan x x x x f x x f x f x f x yf x x x x x α∆→∆→→+∆--∆'====∆∆-_0+0()()f x f x -+''⇔=导数存在1220; (); (sin )cos ; (cos )sin ; (tan )sec ; (cot )csc ;(sec )sec tan ; (csc )csc ; ()ln ;();11(log ); (ln ); (arcsin ) (arccos )ln a a x x x x a C x ax x x x x x x x x x x x x x ctgx a a a e e x x x x x a x -''''''======-''''=⋅=-⋅==''''====222211(arctan ); (cot ); ();();1111(); () ())1x arc x shx hx chx shx x x thx arshx archx arthx ch x x ''''==-==++''''====-2、高阶导数:()()()()!()()!; ()ln ()()!n k n k n n x n x n x n x n x x x n a a a e e n k -=⇒==⇒=-()()()1111(1)!1(1)!1!(); (); ()()()n n n n n n n n n n n x x x a x a a x a x +++--===++-- ()()(sin )sin(); (cos )cos();22n n n n kx k kx n kx k kx n ππ=⋅+⋅=⋅+⋅()1()(1)1(1)!1(1)[ln()]()(1)()n n n n n n nn n a x x a x x x -----+=-⇒==-+ 牛顿-莱布尼兹公式:()()()0()(1)(2)()()()()(1)(1)(1)2!!nn k n k k n k n n n n k k n uv C u v n n n n n k u v nu v u v u v uv k -=---=---+'''=++++++∑3、微分:0()()(); =()();y f x x f x dy o x dy f x x f x dx ''∆=+∆-=+∆∆=⇒⇔⇒连续极限存在收敛有界;=⇔⇔⇒可微可导左导右导连续;⇒不连续不可导第三章微分中值定理与微分的应用1、基本定理()()()(),(,)()()(),(,)()()()F()f b f a f b a a b f b f a f a b F b F a F x x ξξξξξ'-=-∈'-=∈'-=拉格朗日中值定理:柯西中值定理:当时,柯西中值定理就是拉格朗日中值定理。
第2节匀变速直线运动的规律一、匀变速直线运动的基本规律1.概念:沿一条直线且加速度不变的运动。
2.分类(1)匀加速直线运动:a与v方向相同。
(2)匀减速直线运动:a与v方向相反。
3.基本规律二、匀变速直线运动的重要关系式1.两个导出式2.三个重要推论(1)位移差公式:Δx=x2-x1=x3-x2=…=x n-x n-1=aT2,即任意两个连续相等的时间间隔T内的位移之差为一恒量。
可以推广到x m-x n=(m-n)aT2。
(2)中间时刻速度v t2=v=v0+v2,即物体在一段时间内的平均速度等于这段时间中间时刻的瞬时速度,还等于初、末时刻速度矢量和的一半。
(3)位移中点的速度v x2=v20+v22。
3.初速度为零的匀变速直线运动的四个常用推论(1)1T末、2T末、3T末…瞬时速度的比为v1∶v2∶v3∶…∶v n=1∶2∶3∶…∶n。
(2)1T内、2T内、3T内…位移的比为xⅠ∶xⅡ∶xⅢ∶…∶x N=12∶22∶32∶…∶n2。
(3)第一个T内、第二个T内、第三个T内…位移的比为x1∶x2∶x3∶…∶x n =1∶3∶5∶…∶(2n-1)。
(4)从静止开始通过连续相等的位移所用时间的比为t1∶t2∶t3∶…∶t n三、自由落体运动和竖直上抛运动1.思考辨析(正确的画“√”,错误的画“×”)(1)匀变速直线运动是加速度均匀变化的直线运动。
(×)(2)匀加速直线运动的位移是均匀增加的。
(×)(3)在匀变速直线运动中,中间时刻的速度一定小于该段时间内位移中点的速度。
(√)(4)物体做自由落体运动的加速度一定等于9.8 m/s2。
(×)(5)做竖直上抛运动的物体到达最高点时处于静止状态。
(×)(6)竖直上抛运动的上升阶段和下落阶段速度变化的方向都是向下的。
(√) 2.(人教版必修1P43T3改编)某航母甲板上跑道长200 m,飞机在航母上滑行的最大加速度为6 m/s 2,起飞需要的最低速度为50 m/s ,那么,飞机在滑行前,需要借助弹射系统获得的最小初速度为( )A .5 m/sB .10 m/sC .15 m/sD .20 m/s[答案] B3.(人教版必修1P 40T 3改编)以18 m/s 的速度行驶的汽车,制动后做匀减速运动,在3 s 内前进36 m ,则汽车在5 s 内的位移为( )A .50 mB .45 mC .40.5 mD .40 m C [根据x =v 0t +12at 2得36=18×3+12a ×32,即a =-4 m/s 2。
【课题】8.3 两条直线的位置关系(一)【教学目标】知识目标:(1)掌握两条直线平行的条件;(2)能应用两条直线平行的条件解题.能力目标:培养学生的数学思维及分析问题和解决问题的能力.【教学重点】两条直线平行的条件.【教学难点】两条直线平行的判断及应用.【教学设计】从初中平面几何中两条直线平行的知识出发,通过“数”“形”结合的方式,讲解两条直线平行的判定方法,介绍两条直线平行的条件,学生容易接受.知识讲解的顺序为:.两条直线平行⇔同位角相等⇔倾斜角相等⇔9090⎧≠⇔⎨=⇔⎩αα倾斜角斜率相等;倾斜角斜率都不存在.教材都是采用利用“斜率与截距”判断位置关系的方法.其步骤为:首先将直线方程化成斜截式方程,再比较斜率与截距进行位置关系的判断.例1就是这种方法的巩固性题目.考虑到学生的实际状况和职业教育的特点,教材没有介绍利用直线的一般式方程来判断两条直线的位置关系.例2是利用平行条件求直线的方程的题目,属于基础性题.首先利用平行条件求出直线的斜率,从而写出直线的点斜式方程,最后将方程化为一般式方程.简单的解决问题的过程,蕴含着“解析法”的数学思想,要挖掘.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程师行为生 行为学 意图间 *揭示课题 8.3 两条直线的位置关系(一)*创设情境 兴趣导入 【知识回顾】我们知道,平面内两条直线的位置关系有三种:平行、相交、重合.并且知道,两条直线都与第三条直线相交时,“同位角相等”是“这两条直线平行”的充要条件.【问题】两条直线平行,它们的斜率之间存在什么联系呢介绍 质疑 引导分析了解思考启发学生思考1*动脑思考 探索新知【新知识】 当两条直线1l 、2l 的斜率都存在且都不为0时(如图8-11(1)),如果直线1l 平行于直线2l ,那么这两条直线与x 轴相交的同位角相等,即直线的倾角相等,故两条直线的斜率相等;反过来,如果直线的斜率相等,那么这两条直线的倾角相等,即两条直线与x 轴相交的同位角相等,故两直线平行.当直线1l 、2l 的斜率都是0时(如图8-11(2)),两条直线都与x 轴平行,所以1l //2l .讲解说明引领 分析思考 理解 带领 学生 分析图(【教师教学后记】是否自觉地进行反思;学生合作交流的情况学生是否善于与人合作;在交流中,是否积极表达;是否善于倾听别人的意见;学生实践的情况学生是否愿意开展实践;能否根据问题合理地进行实践;在实践中能否积极思考;能否有意识的反思实践过程的方面;。
3.2.3 直线的一般式方程
一、教学目标
1.掌握直线方程的一般式,了解直角坐标系中直线与关于x 和y 的一次方程的对应关系,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.
2.会将直线方程的特殊形式化成一般式,会将一般式化成斜截式和截距式,培养学生归纳、概括能力,渗透分类讨论、化归、数形结合等数学思想.
3.通过教学,培养相互合作意识,培养学生思维的严谨性,注意学生语言表述能力的训练. 二、重点难点
教学重点:直线方程的一般式及各种形式的互化.
教学难点:在直角坐标系中直线方程与关于x 和y 的一次方程的对应关系,关键是直线方程
各种形式的互化
三、教学过程 1、导入新课
前面所学的直线方程的几种形式,有必要寻求一种更好的形式,那么怎样的形式才能表示一切直线方程呢?这节课我们就来研究这个问题. 提出问题
①坐标平面内所有的直线方程是否均可以写成关于x,y 的二元一次方程?
②关于x,y 的一次方程的一般形式Ax+By+C=0(其中A 、B 不同时为零)是否都表示一条直线?
③我们学习了直线方程的一般式,它与另四种形式关系怎样,是否可互相转化? ④特殊形式如何化一般式?一般式如何化特殊形式?特殊形式之间如何互化?
⑤我们学习了直线方程的一般式Ax+By+C=0,系数A 、B 、C 有什么几何意义?什么场合下需要化成其他形式?各种形式有何局限性?
讨论结果:①分析:在直角坐标系中,每一条直线都有倾斜角α. 1°当α≠90°时,它们都有斜率,且均与y 轴相交,方程可用斜截式表示:y=kx+b. 2°当α=90°时,它的方程可以写成x=x 1的形式,由于在坐标平面上讨论问题,所以这个方程应认为是关于x 、y 的二元一次方程,其中y 的系数是零. 结论1°:直线的方程都可以写成关于x 、y 的一次方程.
②分析:a 当B≠0时,方程可化为y=-B A x-B C ,这就是直线的斜截式方程,它表示斜率为-B
A
,在y 轴上的截距为-B C 的直线.b 当B=0时,由于A 、B 不同时为零必有A≠0,方程化为x=-A
C
,
表示一条与y 轴平行或重合的直线.
结论2°:关于x,y 的一次方程都表示一条直线.
综上得:这样我们就建立了直线与关于x,y 的二元一次方程之间的对应关系.我们把Ax+By+C=0(其中A,B 不同时为0)叫做直线方程的一般式. 注意:一般地,需将所求的直线方程化为一般式. 在这里采用学生最熟悉的直线方程的斜截式(初中时学过的一次函数)把新旧知识联系起来. 师生小结:特殊形式必能化成一般式;一般式不一定可以化为其他形式(如特殊位置的直线),由于取点的任意性,一般式化成点斜式、两点式的形式各异,故一般式化斜截式和截距式较常见;特殊形式的互化常以一般式为桥梁,但点斜式、两点式、截距式均能直接化成一般式.各种形式互化的实质是方程的同解变形(如图1).
图1
列表: 形 式 方程 局限 各常数的几何意义 点斜式 y-y 1=k(x-x 1) 除x=x 0外 (x 1,y 1)是直线上一个定点,k
是斜率 斜截式 y=kx+b
除x=x 0外 k 是斜率,b 是y 轴上的截距 两点式
1
21
121x x x x y y y y --=
-- 除x=x 0和y=y 0外 (x 1,y 1)、(x 2,y 2)是直线上两个
定点 截距式
b
y a x +=1 除x=x 0、y=y 0及y=kx
外
a 是x 轴上的非零截距,
b 是
y 轴上的非零截距 一般式
Ax+By+C=0
无
当B≠0时,-
B A 是斜率,-B
C 是y 轴上的截距
思考探究:P98
例题讲解:
P98 例5、6 知能训练:
课本本节练习1、2、3. 拓展提升:
《名师金典》P60 例1 P61 例2、例3 .
3.3 直线的交点坐标与距离公式 3.3.1 两条直线的交点坐标
一、教学目标
1.掌握两直线方程联立方程组解的情况与两直线不同位置的对立关系,并且会通过直线方程系数判定解的情况,培养学生树立辩证统一的观点.
2.当两条直线相交时,会求交点坐标.培养学生思维的严谨性,注意学生语言表述能力的训练.
3.学生通过一般形式的直线方程解的讨论,加深对解析法的理解,培养转化能力.
4.以“特殊”到“一般”,培养学生探索事物本质属性的精神,以及运动变化的相互联系的观点.
二、重点难点
教学重点:根据直线的方程判断两直线的位置关系和已知两相交直线求交点. 教学难点:对方程组系数的分类讨论与两直线位置关系对应情况的理解.
三、教学过程: 1、导入新课
思路1.作出直角坐标系中两条直线,移动其中一条直线,让学生观察这两条直线的位置关系. 课堂设问:由直线方程的概念,我们知道直线上的一点与二元一次方程的解的关系,那如果两直线相交于一点,这一点与这两条直线的方程有何关系?你能求出它们的交点坐标吗?说说你的看法.
思路2.你认为该怎样由直线的方程求出它们的交点坐标?这节课我们就来研究这个问题.
2、提出问题
①已知两直线l 1:A 1x+B 1y+C 1=0,l 2:A 2x+B 2y+C 2=0,如何判断这两条直线的关系? ②如果两条直线相交,怎样求交点坐标?交点坐标与二元一次方程组有什关系? ③解下列方程组(由学生完成):
(ⅰ)⎩⎨⎧=++=-+022,0243y x y x ; (ⅱ)⎪⎩⎪⎨⎧+==+-2131,0362x y y x ; (ⅲ)⎪⎩
⎪⎨⎧+==-2131,
062x y y x .
如何根据两直线的方程系数之间的关系来判定两直线的位置关系?
设两条直线的方程是l 1:A 1x+B 1y+C 1=0,l 2:A 2x+B 2y+C 2=0,
如果这两条直线相交,由于交点同时在这两条直线上,交点的坐标一定是这两个方程的唯一公共解,那么以这个解为坐标的点必是直线l 1和l 2的交点,因此,两条直线是否有交点,就要看这两条直线方程所组成的方程组⎪⎩⎪⎨
⎧=++=++0
,
0222111C y B x A C y B x A 是否有唯一解.
(ⅰ)若二元一次方程组有唯一解,则l 1与l 2相交;
(ⅱ)若二元一次方程组无解,则l 1与l 2平行;
(ⅲ)若二元一次方程组有无数解,则l 1与l 2重合.即
直线l 1、l 2联立得方程组⎪⎩⎪⎨⎧⇔⎪⎩⎪
⎨⎧.
,,212121平行重合相交无解无穷多解唯一解
转化、l l 、l l 、l l
(代数问题) (几何问题)
一般地,对于直线l 1:A 1x+B 1y+C 1=0,l 2:A 2x+B 2y+C 2=0(A 1B 1C 1≠0,A 2B 2C 2≠0),有
方程组⎪⎪⎪⎪
⎩
⎪
⎪⎪
⎪
⎨
⎧⇔≠=⇔⇔==⇔⇔≠⇔⎪⎩⎪⎨⎧=++=++.,,002121212121212121212
121222111平行无解重合无穷多解相交唯一解l l C C
B B A A l l
C C B B A A l l B B A A C y B x A C y B x A 3、例题讲解:P103 例1、2,《名师金典》P63 例1、2
4、练习巩固:P104 第1、2题
5、作业:课本习题3.3 A 组1、2、3,选做4题.
3.3.2 两点间的距离
一、教学目标
1.使学生掌握平面内两点间的距离公式及其推导过程;通过具体的例子来体会坐标法对于证明简单的平面几何问题的重要性.
2.能灵活运用此公式解决一些简单问题;使学生掌握如何建立适当的直角坐标系来解决相应问题,培养学生勇于探索,善于发现,独立思考的能力以及不断超越自我的创新品质. 二、重点难点
教学重点:1、平面内两点间的距离公式.
2、如何建立适当的直角坐标系.
教学难点:如何根据具体情况建立适当的直角坐标系来解决问题. 三、教学过程: 1、导入新课
思路1.已知平面上的两点P 1(x 1,y 1),P 2(x 2,y 2),如何求P 1(x 1,y 1),P 2(x 2,y 2)的距离|P 1P 2|?
思路2.(1)如果A 、B 是x 轴上两点,C 、D 是y 轴上两点,它们的坐标分别是x A 、x B 、y C 、y D ,那么|AB|、|CD|怎样求?(2)求B(3,4)到原点的距离.(3)设A(x 1,y 1),B(x 2,y 2),求|AB|. 2、提出问题
已知平面上的两点P 1(x 1,y 1),P 2(x 2,y 2),如何求P 1(x 1,y 1),P 2(x 2,y 2)的距离|P 1P 2|.
图1
在直角坐标系中,已知两点P 1(x 1,y 1)、P 2(x 2,y 2),如图1,从P 1、P 2分别向x 轴和y 轴作垂线P 1M 1、P 1N 1和P 2M 2、P 2N 2,垂足分别为M 1(x 1,0)、N 1(0,y 1)、M 2(x 2,0)、N 2(0,y 2),其中直线P 1N 1和P 2M 2相交于点Q.
在Rt △P 1QP 2中,|P 1P 2|2=|P 1Q|2+|QP 2|2.
因为|P 1Q|=|M 1M 2|=|x 2-x 1|,|QP 2|=|N 1N 2|=|y 2-y 1|, 所以|P 1P 2|2=|x 2-x 1|2+|y 2-y 1|2.
由此得到两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式:|P 1P 2|=2
122
12)()(y y x x -+-. 3、例题讲解:P105 例3、4,《名师金典》P65 例1、2、3 4、练习巩固:P106 第1、2题
5、作业:课本习题3.3 A 组
6、
7、8;B 组6.。