第6章 模糊控制技术-090421
- 格式:ppt
- 大小:1.01 MB
- 文档页数:2
模糊控制是一种新的控制方法,问世20多年来,已取得了很大的发展,在冶金、化工、电力等工业部门取得了成功的应用。
模糊逻辑在控制领域中的应用称为模糊控制。
模糊控制的最大特征是它将操作者或专家的控制经验和知识表示成语言变量描述的控制规则,然后用这些规则去控制系统。
“如果…则…”是规则的基本形式,语句的前半部分是条件或前提,后半部分是结果,因此这中规则蕴涵着一种逻辑推理。
模糊控制系统原理由于一个模糊概念可以用一个模糊集合来表示,因此模糊概念的确定问题就可以直接转换为模糊隶属函数的求取问题。
因此,对于一类缺乏数学模型的被控对象,可以用模糊集合的理论。
人对系统的操作和控制经验,总结成用模糊条件语句的形式写出的控制规则。
经过必要的数学处理,来确定一定的推理法则,做出模糊决策,完成控制动作。
具有上述功能的模糊控制系统结构如图图1 模糊控制系统方框图最基本的模糊控制系统结构如图2所示。
图中R为设定值,Y为系统输出值,它们都是清晰量。
从图2可以看出,模糊控制器的输入量是系统的偏差量。
,它是确定数值的清晰量,通过模糊化处理,用模糊语言变量E来描述偏差,模糊推理输出U是模糊变量,在系统中要实施控制时,模糊量U还要转化为清晰值,因此要进行清晰化处理,得到可以操作的确定值召,通过产的调整作用,使偏差。
尽量小。
图2 模糊控制系统方框图模糊控制器的组成模糊控制器的基本组成如图3所示图3 模糊控制器组成它包含有模糊化接口、规则库、模糊推理、清晰化接口等部分。
输入变量是过程实测量与系统设定值之间的差值,输出变量是系统的实时控制修正变量。
模糊控制的核心部分是包含语言规则的规则库和模糊推理。
模糊推理就是一种模糊变换,它将输入变量模糊集变换为输出变量模糊集,实现论域的转换。
(l)模糊化接口。
模糊化是将模糊控制器输入量的确定值转换为相应模糊语言变量值的过程,此相应语言变量均由对应的隶属度来定义。
若以偏差。
为输入,通过模糊化处理,用模糊语言变量E 来描述偏差,若以T(E)记作E的语言值集合,则有:T(E):{负大,负中,负小,零,正小,正中,正大}或用其英文字头缩写表示成:’T(E)二{NB,NM,NS,ZE,PS,PM,PB}过程参数的变化范围是各不相同的,为了统一到指定的T.(E)论域中来,模糊化的第一个任务就是进行论域变换,过程参数的实际变化范围称为基本论域。
模糊控制的基本原理模糊控制是以模糊集合理论、模糊语言及模糊逻辑为基础的控制,它是模糊数学在控制系统中的应用,是一种非线性智能控制。
模糊控制是利用人的知识对控制对象进行控制的一种方法,通常用“if条件,then结果”的形式来表现,所以又通俗地称为语言控制。
一般用于无法以严密的数学表示的控制对象模型,即可利用人(熟练专家)的经验和知识来很好地控制。
因此,利用人的智力,模糊地进行系统控制的方法就是模糊控制。
模糊控制的基本原理如图所示:模糊控制系统原理框图它的核心部分为模糊控制器。
模糊控制器的控制规律由计算机的程序实现,实现一步模糊控制算法的过程是:微机采样获取被控制量的精确值,然后将此量与给定值比较得到误差信号E;一般选误差信号E作为模糊控制器的一个输入量,把E的精确量进行模糊量化变成模糊量,误差E的模糊量可用相应的模糊语言表示;从而得到误差E的模糊语言集合的一个子集e(e实际上是一个模糊向量)。
再由e和模糊控制规则R(模糊关系)根据推理的合成规则进行模糊决策,得到模糊控制量u为:式中u为一个模糊量;为了对被控对象施加精确的控制,还需要将模糊量u进行非模糊化处理转换为精确量:得到精确数字量后,经数模转换变为精确的模拟量送给执行机构,对被控对象进行一步控制;然后,进行第二次采样,完成第二步控制……。
这样循环下去,就实现了被控对象的模糊控制。
模糊控制(Fuzzy Control)是以模糊集合理论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制。
模糊控制同常规的控制方案相比,主要特点有:(1)模糊控制只要求掌握现场操作人员或有关专家的经验、知识或操作数据,不需要建立过程的数学模型,所以适用于不易获得精确数学模型的被控过程,或结构参数不很清楚等场合。
(2)模糊控制是一种语言变量控制器,其控制规则只用语言变量的形式定性的表达,不用传递函数与状态方程,只要对人们的经验加以总结,进而从中提炼出规则,直接给出语言变量,再应用推理方法进行观察与控制。
模糊控制――文献综述摘要模糊控制理论是以模糊数学为基础,用语言规则表示方法和先进的计算机技术,由模糊推理进行决策的一种高级控制策.模糊控制作为以模糊集合论、模糊语言变量及模糊逻辑推理为基础的一种计算机数字控制,它已成为目前实现智能控制的一种重要而又有效的形式尤其是模糊控制和神经网络、遗传算法及混沌理论等新学科的融合,正在显示出其巨大的应用潜力。
实质上模糊控制是一种非线性控制,从属于智能控制的范畴.模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。
本文简单介绍了模糊控制的概念,模糊控制系统的组成,模糊控制的算法,其中包含模糊控制系统的原理、模糊控制器的分类及其设计元素。
最后以模糊PID复合控制在锅炉汽包水位控制中的应用说明模糊控制系统的整体设计过程,通过仿真证明了模糊控制显示出的优势。
1. 模糊控制的基本思想模糊控制是模糊集合理论中的一个重要方面,是以模糊集合化、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制,从线性控制到非线性控制的角度分类,模糊控制是一种非线性控制;从控制器的智能性看,模糊控制属于智能控制的范畴[1][2]。
模糊控制是建立在人类思维模糊性基础上的一种控制方式,模糊逻辑控制技术模仿人的思考方式接受不精确不完全信息来进行逻辑推理,用直觉经验和启发式思维进行工作,是能涵盖基于模型系统的技术。
它不需用精确的公式来表示传递函数或状态方程,而是利用具有模糊性的语言控制规则来描述控制过程.控制规则通常是根据专家的经验得出的,所以模糊控制的基本思想就是利用计算机实现人的控制经验[3]。
2. 模糊控制系统的组成及结构分析摸糊控制系统是采用计算机控制技术构成的一种具有反馈通道的闭环结构的数字模糊控制系统。
智能性的模糊控制器是模糊控制系统的核心,一个模糊控制系统性能的优劣,主要取决于模糊控制器的结构,所采用的模糊控制规则、合成推理算法以及模糊决策的方法等因素[6][7]。
模糊控制系统组成原理如图1所示。
模糊控制方法介绍模糊控制方法是一种在模糊集合论、模糊语言变量及模糊逻辑推理基础上形成的计算机数字控制方法。
模糊控制是一种智能的、非线性的控制方法。
与传统的控制方式相比,模糊控制有着很多的优势,它更加适用于复杂的、动态的系统,模糊控制逐渐成为了一种重要而且有效的控制方法。
本文将从组成部分、基本原理、设計方法等方面介绍模糊控制这种方法。
标签:交通工程;PLC控制;模糊控制1 引言对于无法使用精确语言及已有规律描述的复杂系统,将借助不精确的模糊条件语言来表述,这便产生了模糊控制。
传统的自动控制器需要建立被控对象准确的数学模型。
然而在实际上,即使是稍微复杂点的系统,它的影响因素也都是较为复杂的、多样的,这样就很难建立出精确的数学模型。
因此,模糊控制方法就应运而生。
2 模糊控制的工作原理模糊控制的核心是模糊控制器,它的控制规律是由计算机程序来实现的。
首先需要将所有监测出的精确量转换成为适应模糊计算的模糊量,将得到的模糊量,通过模糊控制器进行计算,然后再将这些经模糊控制器计算得到的模糊量再次转换为精确量,这样就完成了一级模糊控制。
然后等待下一次采样,再进行上述过程,如此循环,实现对被控对象的模糊控制[1]。
模糊控制原理图如下:3 模糊控制步骤及特点步骤1:对输入量进行模糊化处理;步骤2:创建模糊规则;步骤3:实施模糊推理;步骤4:输出量的反模糊化处理。
模糊控制方法主要是由模糊化,模糊推理,清晰化三个部分构成。
模糊化:在模糊控制算法当中,模糊控制规则所使用的不是具体的、精确的数字量,而是模糊的语言量,使用的是不确定的语言形式。
这就需要将得到的准确量转换为模糊的语言量。
这个过程需要遵循一定的规则首先建立隶属度函数,然后根据所建立的隶属度函数将精确的输入量转换成为模糊量。
模糊推理的过程类似于人类思考推理的过程,它是模糊控制器中的精髓。
清晰化又可以叫做解模糊化,清晰化的过程与模糊化的过程正好相反,它是由将模糊推理得到的模糊结果又转换成了精确量。