YJK隔震设计
- 格式:pdf
- 大小:2.18 MB
- 文档页数:46
结构总体信息1、结构体系:按实际情况填写。
1)框架结构:框架结构是指由梁和柱以刚接或者铰接相连接而成,构成承重体系的结构,即由梁和柱组成框架共同抵抗使用过程中出现的水平荷载和竖向荷载。
结构的房屋墙体不承重,仅起到围护和分隔作用,一般用预制的加气混凝土、膨胀珍珠岩、空心砖或多孔砖、浮石、蛭石、陶粒等轻质板材等材料砌筑或装配而成。
2)框剪结构:框架-剪力墙结构,俗称为框剪结构。
主要结构是框架,由梁柱构成,小部分是剪力墙。
墙体全部采用填充墙体,由密柱高梁空间框架或空间剪力墙所组成,在水平荷载作用下起整体空间作用的抗侧力构件。
适用于平面或竖向布置繁杂、水平荷载大的高层建筑。
3)框筒结构:如果把框剪结构剪力墙布置成筒体,围成的竖向箱形截面的薄臂筒和密柱框架组成的竖向箱形截面,可称为框架-筒体结构体系。
具有较高的抗侧移刚度,被广泛应用于超高层建筑。
4)筒中筒结构:筒中筒结构由心腹筒、框筒及桁架筒组合,一般心腹筒在内,框筒或桁架筒在外,由内外筒共同抵抗水平力作用。
由剪力墙围成的筒体称为实腹筒,在实腹筒墙体上开有规则排列的窗洞形成的开孔筒体称为框筒;筒体四壁由竖杆和斜杆形成的桁架组成则称为桁架筒。
5)剪力墙结构:剪力墙结构是用钢筋混凝土墙板来代替框架结构中的梁柱,能承担各类荷载引起的内力,并能有效控制结构的水平力,这种用钢筋混凝土墙板来承受竖向和水平力的结构称为剪力墙结构。
这种结构在高层房屋中被大量运用。
6)部分框支剪力墙结构:框支剪力墙指的是结构中的局部,部分剪力墙因建筑要求不能落地,直接落在下层框架梁上,再由框架梁将荷载传至框架柱上,这样的梁就叫框支梁,柱就叫框支柱,上面的墙就叫框支剪力墙。
这是一个局部的概念,因为结构中一般只有部分剪力墙会是框支剪力墙,大部分剪力墙一般都会落地的。
7)板柱-剪力墙结构:柱-剪力墙结构(slab-column shearwall structure),是由无梁楼板与柱组成的板柱框架和剪力墙共同承受竖向和水平作用的结构。
yjk减震设计参数一、设计概述YJK减震设计是一种高效的减震技术,主要应用于建筑、桥梁和其他土木工程结构中,以减少地震、风等外部作用力对结构的影响。
通过合理的减震设计,可以显著提高结构的抗震性能和稳定性,确保结构在各种极端条件下的安全性和稳定性。
二、主要参数1.阻尼器参数:阻尼器是减震设计的核心部件,其参数的选择对减震效果有着重要影响。
主要的阻尼器参数包括阻尼器的类型、刚度、阻尼系数等。
这些参数需要根据结构的特性、地震烈度、使用要求等因素进行合理选择和计算。
2.隔震支座参数:隔震支座是实现减震的重要构件,其主要参数包括支座的刚度、承载能力、稳定性等。
在减震设计中,需要根据结构的特点和使用要求,选择合适的隔震支座类型和规格,以确保减震效果和支座的安全性。
3.结构阻尼比:结构阻尼比是反映结构自身阻尼性能的参数,其大小对减震效果有着重要影响。
在减震设计中,需要根据结构的特性、地震烈度等因素,通过计算和分析,确定合理的结构阻尼比。
4.地震动参数:地震动参数是反映地震作用力的参数,包括地震烈度、峰值加速度、峰值速度等。
在减震设计中,需要根据工程所在地的地震动参数,对结构进行相应的分析和设计,以确保结构能够承受地震作用力。
5.场地条件:场地条件对减震效果也有重要影响。
在减震设计中,需要考虑场地土壤性质、地下水位等因素,对减震方案进行相应的调整和优化。
三、设计流程1.确定设计目标:根据工程要求和实际情况,确定减震设计的主要目标,如减小地震对结构的影响、提高结构的抗震等级等。
2.收集资料:收集相关资料,包括工程地质勘察报告、建筑结构图纸、相关规范标准等,为减震设计提供基础数据和依据。
结构总体信息 换层位于地上 2 层时, 转换层所在层号应填入 5。
程序不能自动识别转换层, 需要人工指定。
对于高位转换的判断, 转换层位置以嵌固端起算, 即以 (转换层所在层号- 嵌固端所在层号+1)进行判断,是否为 3 层或 3 层以上转换。
9、加强层所在层号:人工指定。
根据《高规》 10.3 、《抗规》 6.1.10 条并结合工 程实际情况填写。
10、底框层数:用于框支剪力墙结构。
高规 10.211、施工模拟加载层步长:一般默认 1.12、恒活荷载计算信息: (P66)1)一般不允许不计算恒活荷载,也较少选一次性加载模型; 2) 模拟施工加载一模式: 采用的是整体刚度分层加载模型, 该模型应用与各 种类型的下传荷载的结构,但不使用与有吊柱的情况;3) 按模拟施工二: 计算时程序将竖向构件的轴向刚度放大十倍, 削弱了竖向 荷载按刚度的重分配, 柱墙上分得的轴力比较均匀, 传给基础的荷载更为合 理。
4)模拟施工加载三:采用分层刚度分层加载模型,接近于施工过程。
故此建议一般对多、 高层建筑首选模拟施工 3。
对钢结构或大型体育馆类 (指 没有严格的标准层概念) 结构应选一次加载。
对于长悬臂结构或有吊柱结构, 由于一般是采用悬挑脚手架的施工工艺, 故对悬臂部分应采用一次加载进行1、结构体系:按实际情况填写。
2、结构材料信息:按实际情况填写。
3 、结构所在地区: 一般选择“全国”。
分为全国 、上海 、广东, 分别采用中国国家规范、上海地区规程和广东地区规程。
B 类建筑和 A 类建筑选项只在坚定 加固版本中才可选择。
4、地下室层数:定义与上部结构整体分析的地下室层数,根据实际情况输入,无则填 0。
5、嵌固端所在层号: (P219~224) 抗规 6.1.14 条:地下室结构的楼层侧向刚度不宜小于相邻上部楼层侧向刚度的 2 倍。
如果地下室首层的侧向刚度大于其上一层侧向刚度的 2 倍,可将地下一层顶 板作为嵌固部位; 如果不大于 2 倍,可将嵌固端逐层下移到符合要求的部位, 直到嵌固端所在层侧向刚度大于上部结构一层的 2 倍。
YJK隔震设计结构隔震和消能减震设计•两点约束或单点约束功能的扩充;•在两点约束、单点约束和设置支座菜单都设置了5种选项:线型、阻尼器、速度线型相关型消能器、速度非线性相关型消能器、隔震;•选择线性时即为弹性约束;•利用弹性连接的原理设置隔震支座隔震层的建模(方式1)隔震层的建模(方式2)1、在计算前处理中用单点约束菜单设置隔震支座隔震支座参数的非线性属性隔震结构设计的四个步骤•分为上部结构、隔震支座、隔震层以下结构及基础部分;•上部结构:沿用一般抗震结构的设计方法,水平地震作用采用隔震以后的地震作用标准值,计算地震力的水平向减震系数β;•隔震支座:首先要满足重力荷载代表值下的隔震支座承载力要求及水平变位,即压应力要求;还应验算大震下隔震支座的拉应力及水平变位;•隔震层以下结构:地震作用计算、抗震验算和抗震措施,应进行隔震后设防地震(中震)的抗震承载力验算,并按罕遇地震(大震)进行抗剪承载力验算。
隔震层以下地面以上的结构在罕遇地震(大震)下的层间位移角控制。
•基础:地基基础的抗震验算不考虑隔震产生的减震效应,按本地区设防烈度进行设计;难点•非线性结构,需按动力时程分析计算(弹性);•不同部位须分别采用小震、中震、大震计算;•需考虑竖向地震计算;•弹性时程分析的FNA法和直接积分法;•非隔震模型的反应谱计算不可或缺;一、隔震结构的上部结构计算中震时程分析计算;求出水平减震系数β后用反应谱法算;上部结构计算•《抗规》12.2.5-2条:•隔震后水平地震作用计算的水平地震影响系数可按本规范5.1.4、第5.1.5条确定。
其中水平地震影响系数最大值可按下式计算:•αmaxl=βαmax/ψ•αmaxl——隔震后的水平地震影响系数最大值;•β——水平向减震系数;为按弹性计算所得的隔震与非隔震各层层间剪力的最大比值。
隔震结构上部计算主要步骤•将模型文件复制两份,一个布置上隔震支座属性,此时叫隔震模型;另一个不布置隔震支座属性,隔震支柱底端设铰,此时模型叫非隔震模型;•用中震计算水平向减震系数β;•对隔震模型和非隔震模型分别进行中震反应谱计算和时程分析计算;•人工对比两个模型时程分析结果得出β;•非隔震模型输入αmaxl的反应谱法计算建立隔震模型与非隔震模型•将模型文件复制两份•将隔震模型在前处理用单点约束菜单设置隔震支座;建立隔震模型与非隔震模型•在非隔震模型,在前处理将隔震层柱底全部设置铰接属性;•《建筑抗震设计规范理解与应用》419页关于减震系数的计算方法说明:“计算隔震与非隔震两种情况的层间剪力,宜采用基本设防水准下地震作用进行时程分析。
YJK的消能减震设计和隔震设计北京盈建科软件股份有限公司2014年9月目录YJK的消能减震设计和隔振设计 (1)第一节消能减震设计 (1)1. 规范要求 (1)2. YJK消能减震设计过程 (1)3. 附加给结构的有效阻尼比计算 (4)4. 与Etabs对比分析 (4)第二节隔震设计 (5)1. 提供减震结构的非线性时程分析计算——FNA算法 (5)2. 在计算前处理进行隔震设置 (7)3. 时程分析计算 (9)4. 求出地震力的水平向减震系数β (9)5. 对非隔震结构按照αmaxl进行结构设计计算 (9)6. 也可用振型反应谱法计算隔震结构 (9)7.隔震支座的位移和轴力 (10)第三节非线性连接单元的动力性质 (11)1. 粘滞阻尼单元 (12)2. 橡胶隔震单元 (12)第四节隔震计算与Etabs对比分析 (13)Etabs算例1—云县图书馆 (13)一、工程概况 (13)二、Etabs计算模型 (13)三、YJK计算模型 (17)四、反应谱计算计算结果对比 (18)五、时程分析计算结果对比 (21)六、结论 (22)Etabs算例2—东川紫荆家园 (22)一、工程概况 (22)二、Etabs计算模型 (23)三、YJK计算模型 (27)四、反应谱计算计算结果对比 (28)五、时程分析计算结果对比 (31)六、结论 (33)YJK算例1—27328 (33)一、工程概况 (33)二、YJK计算模型 (34)三、Etabs计算模型 (35)四、结果对比 (35)YJK算例2—23811 (36)一、工程概况 (36)二、YJK计算模型 (37)三、Etabs计算模型 (38)四、结果对比 (38)YJK算例3—23811隔震带地下室 (39)一、工程概况 (39)二、YJK计算模型 (40)三、Etabs计算模型 (41)四、结果对比 (42)YJK算例4—24601(单塔) (43)一、工程概况 (43)二、YJK计算模型 (44)三、Etabs计算模型 (45)四、结果对比 (47)第五节某隔震工程设计过程 (48)一、建模 (48)二、计算前处理及隔震支座布置 (49)三、反应谱法计算结果 (50)四、时程分析计算 (52)五、设计方法 (52)YJK的消能减震设计和隔振设计第一节消能减震设计YJK的阵型分解反应谱法和时程分析方法都支持消能减震结构的设计计算。
隔震设计总结一、上部结构模型的建立建筑条件图需完整,荷载无缺项,建立完整的上部结构模型。
1、对建立好的模型,命名为轴压比模型,进行原地震烈度下的模型计算,地震烈度及抗震等级均以原烈度输入,此模型不控制其他计算参数,仅计算轴压比,当轴压比计算均满足要求后进行下一步计算。
2、复制轴压比模型,命名为上部结构计算模型,此模型为最终施工图模型,计算需满足各项指标,在地震信息中,根据降低一度后输入抗震等级,将调整后的水平向减震系数改为0.5即可,其余参数均不变,进行计算,待计算均满足要求进行下一步分析。
(注:对于乙类建筑切记结构重要性系数为1.1)二、多遇地震下隔震分析计算1、复制上部结构计算模型,命名为小震非隔震模型,修改地震信息中调整后的水平向减震系数为1.0,在特殊构件补充定义中,将隔震层柱底改为铰接,先进行反应谱计算,然后进行时程计算。
时程计算时,选取地震波,软件可自动选波,一般选取3条波,其中2条天然波,1条人工波,修改对应的地震参数,进行时程分析。
切记选好的3条波名称,整个后续的隔震分析均以此3条波为准。
2、复制小震非隔震模型,命名为小震隔震模型,在该模型中将原有的柱底铰接属性取消,在节点属性中选择单点约束---选择柱底节点布置,进行隔震支座的布置,计算分析步骤主要为以下:(1)先确定铅心支座的初步数量。
根据总信息中风荷载产生的底部总剪力除以铅心支座的屈服力,即可得到铅心支座的最少数量。
(2)输入支座参数:支座参数共有U1,U2,U3三个方向,其中U1为竖向,U2为水平Y向,U3为水平X向。
对应参数表示为(U1):有效刚度Ke=支座竖向刚度Kv,有效阻尼CE=0,刚度KC=支座竖向刚度Kv,抗拉刚度Kt=1/10支座竖向刚度Kv,截面积A=支座面积。
对应参数表示为(U1及U2):有效刚度Ke=支座水平刚度Kh,有效阻尼CE=0,刚度K=支座初期刚度K1,屈服力KY=屈服力Qd,屈服后刚度比=1/13。
YJK隔震设计
结构隔震和消能减震设计
•两点约束或单点约束功能的扩充;
•在两点约束、单点约束和设置支座
菜单都设置了5种选项:线型、阻
尼器、速度线型相关型消能器、速
度非线性相关型消能器、隔震;
•选择线性时即为弹性约束;
•利用弹性连接的原理设置隔震支座
隔震层的建模(方式1)
隔震层的建模(方式2)
1、在计算前处理中用单点约束菜单设置隔震支座
隔震支座参数的非线性属性
隔震结构设计的四个步骤
•分为上部结构、隔震支座、隔震层以下结构及基础部分;
•上部结构:沿用一般抗震结构的设计方法,水平地震作用采用隔震以后的地震作用标准值,计算地震力的水平向减震系数β;
•隔震支座:首先要满足重力荷载代表值下的隔震支座承载力要求及水平变位,即压应力要求;还应验算大震下隔震支座的拉应力及水平变位;•隔震层以下结构:地震作用计算、抗震验算和抗震措施,应进行隔震后设防地震(中震)的抗震承载力验算,并按罕遇地震(大震)进行抗剪承载力验算。
隔震层以下地面以上的结构在罕遇地震(大震)下的层间位移角控制。
•基础:地基基础的抗震验算不考虑隔震产生的减震效应,按本地区设防烈度进行设计;
难点
•非线性结构,需按动力时程分析计算(弹性);•不同部位须分别采用小震、中震、大震计算;•需考虑竖向地震计算;
•弹性时程分析的FNA法和直接积分法;
•非隔震模型的反应谱计算不可或缺;
一、隔震结构的上部结构计算
中震时程分析计算;
求出水平减震系数β后用反应谱法算;
上部结构计算
•《抗规》12.2.5-2条:
•隔震后水平地震作用计算的水平地震影响系数可按本规范
5.1.4、第5.1.5条确定。
其中水平地震影响系数最大值可按
下式计算:
•αmaxl=βαmax/ψ
•αmaxl——隔震后的水平地震影响系数最大值;•β——水平向减震系数;为按弹性计算所得的隔震与非隔震各层层间剪力的最大比值。