级奥数《简便计算》
- 格式:doc
- 大小:203.00 KB
- 文档页数:7
奥数简便计算及答案相关奥数题目1:聪聪用10元钱买了3支圆珠笔和7本练习本,剩下的钱若买一支圆珠笔就少1角4分;若买一本练习本还多8角,问一支圆珠笔的售价是多少元?相关奥数题目计算分析:剩下的钱若买一支圆珠笔就少1角4分;若买一本练习本还多8角,说明圆珠笔比练习本贵1角4分+8角=9角4分,那么,3支圆珠笔就要比三本练习本贵94*3=282分=2元8角2分,这样,就相当于在10元中扣除2元8角2分加8角,正好可以买11本练习本,所以,每本练习本的价钱是(1000-282-80)/11=58分=5角8分。
解:圆珠笔-练习本=14+80=94分,每本练习本的价钱是(1000-94*3-80)/11=58分=5角8分,圆珠笔的售价=58+94=152分=1元5角2分。
相关奥数题目2:甲、乙两位学生原计划每天自学的时间相同,若甲每天增加自学时间半小时,乙每天减少自学时间半小时,则乙自学6天的时间仅相等于甲自学一天的时间。
问:甲、乙原订每天自学的时间是多少分钟?相关奥数题目计算分析:甲每天增加自学时间半小时,乙每天减少自学时间半小时,甲比乙多自学一个小时,乙自学6天的时间仅相等于甲自学一天的时间,甲是乙的6倍,差倍问题。
解:乙每天减少半小时后的自学时间=1/(6-1)=1/5小时=12分钟,乙原计划每天自学时间=30+12=42分钟,甲原计划每天自学时间=12*6-30=42分钟。
相关奥数题目3:一大块金帝牌巧克力可以分成若干大小一样的正方形小块。
小明和小强各有一大块金帝巧克力,他们同时开始吃第一小块巧克力。
小明每隔20分钟吃1小块,14时40分吃最后1小方块;小强每隔30分钟吃1小块,18时吃最后1小方块。
那么他们开始吃第1小块的时间是几时几分?相关奥数题目计算分析:小明每隔20分钟吃1小块,小强每隔30分钟吃1小块,小强比小明多间隔10分钟,小明14时40分吃最后1小方块,小强18时吃最后1小方块,小强比小明晚3小时20分,说明在吃最后一块前面共有(3*60+20)/10=20个间隔,即已经吃了20块。
简便运算简便运算:把所给的算式,根据运算定律和数字的基本性质,或改变它的运算顺序,或凑整,对复杂的算式适当变形,变成一个易于算出结果的算式,从而使计算简便。
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带数字前的符号搬家”。
a+b+c=a+c+b, a+b-c=a-c+b, a-b+c=a+c-b, a-b-c=a-c-b;a ×b ×c=a ×c ×b, a ÷b ÷c=a ÷c ÷b, a ×b ÷c=a ÷c ×b, a ÷b ×c=a ×c ÷b 1.调换加数或减数的位置:(1)632-156-232 (2)128+186+72-86(3)12.6-3.7-1.6 (4)30.34+9.76-10.34(5)431+3.2+532+6.8 (6) 53763532766--+ (7) 1773+174-773 (8)195-137-95分析:在只有加减法混合运算中,如果算式中没有括号,计算时可以根据运算定律和性质调换加数和减数的位置。
2.调换因数或除数的位置:(1)158×61÷79×3 (2)3.2×7÷3.2×7(3)34÷4÷1.7 (4) 1.25÷2×0.8(5)102×7.3÷5.1 (6) 83×3÷83×3 分析:在只有乘除法混合运算中,如果算式中没有括号,计算时可以根据运算定律和性质调换因数或除数的位置。
括号前面是加号乘号,添、去括号不改号;括号前面是减号除号,添、去括号要改号去括号以后,通常需要再利用“带符号搬家法”,使计算简便①在计算有括号的加减混合运算时,有时为了使计算简便可以去括号,如果括号前面是“+”号,去括号时,括号内的符号不变;如果括号前面是“-”号,去括号时,括号内的加号就要变成减号,减号就要变成加号。
六年级奥数简便运算六年级奥数是小学生们参加的一项数学竞赛,其中的运算题目是考察他们计算速度和思维能力的重要环节。
在奥数竞赛中,掌握一些简便运算方法可以帮助小学生们更快地解题,提高竞赛成绩。
一、快速计算乘法在六年级奥数中,乘法是一个经常出现的运算题型。
为了提高解题速度,我们可以运用一些简便的乘法方法。
下面是一些常用的快速计算乘法的技巧。
1. 乘法的交换律:a × b = b × a。
利用这个性质,我们可以调整乘法的顺序,选择较简单的计算方式。
例如,计算8 × 6,可以交换顺序为6 × 8,这样就可以利用6 × 10 = 60,再减去2个6,得到48。
2. 同尾巧算:当两个乘数的个位数相同,十位数之和为10的倍数时,可以利用同尾相乘的方法。
例如,计算23 × 27,可以先计算3 × 7 = 21,然后将2与7相乘得到14,最后将两个结果相加,得到621。
3. 同倍巧算:当两个乘数一个为10的倍数,另一个可以分解成10的倍数和个位数时,可以利用同倍相乘的方法。
例如,计算40 × 9,可以先计算4 × 9 = 36,然后在结果后面加一个0,得到360。
二、快速计算除法除法也是六年级奥数中的一个常见题型。
为了更快地解答除法题目,我们可以运用一些简便的除法方法。
1. 除法的逆运算:乘法和除法是相互逆运算。
如果我们知道一个乘法的结果和一个乘数,就可以通过除法来求另一个乘数。
例如,如果我们知道6 × 8 = 48,想要求出8,就可以用48除以6,得到8。
2. 除法的倍数法则:当除数和被除数都是10的倍数时,可以通过去掉末尾的0来简化计算。
例如,计算300 ÷ 10,可以直接去掉末尾的0,得到30。
三、快速计算加法和减法加法和减法是六年级奥数中的基本运算。
为了提高计算速度,我们可以运用一些简便的加法和减法方法。
简便运算(一)一、知识要点根据算式的结构和数的特征. 灵活运用运算法则、定律、性质和某些公式.可以把一些较复杂的四则混合运算化繁为简. 化难为易。
二、精讲精练【例题 1】计算 4.75-9.63+ (8.25-1.37 )【思路导航】先去掉小括号 . 使 4.75 和 8.25 相加凑整 . 再运用减法的性质:a-b-c = a -( b+c). 使运算过程简便。
所以原式= 4.75+8.25 -9.63 -1.37=13-( 9.63+1.37 )=13-11=2练习 1:计算下面各题。
1. 6.73 - 2 又 8/17+ (3.27 -1 又 9/17 )2.7 又 5/9 -(3.8+1 又 5/9 )- 1 又 1/53.14.15 -( 7 又 7/8 - 6 又 17/20 )- 2.1254.13 又 7/13 -( 4 又 1/4+3 又 7/13 )- 0.75【例题 2】计算 333387 又 1/2 ×79+790× 66661 又 1/4【思路导航】可把分数化成小数后 . 利用积的变化规律和乘法分配律使计算简便。
所以:原式= 333387.5 × 79+790×66661.25=33338.75 ×790+790× 66661.25=( 33338.75+66661.25 )× 790=100000× 790=79000000练习 2:计算下面各题:1.3.5 ×1 又 1/4+125% +1 又 1/2 ÷4/52.975 ×0.25+9 又 3/4 ×76-9.753.9 又 2/5 ×425+4.25÷1/604.0.9999 ×0.7+0.1111 ×2.7【例题 3】计算: 36× 1.09+1.2 ×67.3【思路导航】此题表面看没有什么简便算法. 仔细观察数的特征后可知:36 =1.2 ×30。
简便计算一、加减法巧算之凑整与组合思想1、1989+1988+1987-1986-1985-1984+1983+1982+1981-1980-1979-1978+…+9+8+7-6-5-4+3+2+1练习1、199-198+197-196+195-194+…+5-4+3-2+1 2、加法金字塔,计算下面数的和:练习2、3、计算:19+199+1999+…+199991999个9练习3、计算:9+99+999+…+99999个9二、乘除法巧算之提取公因数与组合思想1、2000⨯1999-1999⨯1998+1998⨯1997-1997⨯1996+1996⨯1995-1995⨯19942、2008⨯20072006-2006⨯20072008练习2、2008⨯20072006-2006⨯200720083、333⨯332332333-332⨯333333332练习3、1991⨯199219921992-1992⨯199119911991三、四则混合巧算之综合技巧1、2⨯3⨯5⨯7⨯11⨯13⨯17⨯19÷38÷51÷65÷77练习1、(11⨯10⨯9⨯…⨯3⨯2⨯1)÷(22⨯24⨯25⨯27)2、99个9999⨯99个7777+99个3333⨯99个6666练习2、333333⨯333333+999999⨯7777773、99个0123456791234567901234567901234567981⨯练习3、142857142857142857⨯63四、小数计算与换元思想、循环小数互化与错位相减技巧1、1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.192、0.01+0.12+0.23+0.34+0.78+0.89练习2、0.1+0.125+0.3+0.16(结果保留三位小数)3、+⨯-⨯+⨯-⨯⨯+⨯-111111(1)(1)(1)(1)(1)(1)223399994、2123912391129239()()(1)()2341023410223103410+++++++++⨯-++++⨯+++练习4、5、(-+-+-11111234599+1100)⨯(-+-+-+111111234599)- (-+-+-+111111234599-1100)⨯(-+-+-11111234599)+++++++++++⨯-++++++⨯++++2123456123456112345623456()()(1)()234567234567223456734567练习5、--+⨯+--+-⨯-+-11111111111111(1+)(-)(1)()1113171911131711131711131719五、估算、放缩综合技巧1、求数a =10100+10101+10102+…+10110的整数部分。
.简便计算(一)知识导航:1、基本概念根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
2、重要公式乘法分配律: a×(b-c) =a×b-a×c积不变的性质:a×b=(a×c) ×(b÷c)3、常用思想分类思想、凑整思想经典例题题型一:例1: 12×3.27+12×6.73 36×1.09+12×6.73 36×1.09+1.2×67.3例2:81.5×15.8+81.5×51.8+67.6×18.5例3:1999×19981997-1997×19981999变式练习①99999×77778+33333×66666 ②45×2.08+1.5×37.64.4×57.8+45.3×5.6 34.5×76.5-345×6.42-123×1.45.53.5×35.3+53.5×43.2+78.5×46.5题型二:例1:3333387×79+790×66661例2:×+×+×例3:4445×37 27×15264445×914445×181例4:3×25+37.9×6变式练习×-×+××27+×4119971998×1999 22120×121题型三例1:1234+2341+3412+4123变式练习23456+34562+45623+56234+62345124.68+324.68+524.68+724.68+924.68当堂过关999.99×77778+3333.3×6666.6 45×作业1、学业水平达标(1)48×1.08+1.2×56.8 (2)52×11.1+2.6×778(3)0.48×108+1.2×56.8 (4)0.36×7+3.6%×27-36×0.002(5)6.8×16.8+19.3×3.2 (6)99999×7777.8+3333.3×66666 2、学科能力过关73×7475 35×1136 166120 ÷4117 ×34 +37 ×16 +67 ×112 16 ×35+56 ×17 3、综合强化提升45678+56784+67845+78456+8456776×(-)+23×()-53×(-)简便运算(二)知识导航1、基本概念一般地,如果一个数列从第2项起每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差。
简便运算(一)一、知识要点根据算式的结构和数的特征.灵活运用运算法则、定律、性质和某些公式.可以把一些较复杂的四则混合运算化繁为简.化难为易。
二、精讲精练【例题1】计算4.75-9.63+(8.25-1.37)【思路导航】先去掉小括号.使4.75和8.25相加凑整.再运用减法的性质:a-b-c = a-(b+c).使运算过程简便。
所以原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1:计算下面各题。
1. 6.73-2 又8/17+(3.27-1又9/17)2. 7又5/9-(3.8+1又5/9)-1又1/53. 14.15-(7又7/8-6又17/20)-2.1254. 13又7/13-(4又1/4+3又7/13)-0.75【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后.利用积的变化规律和乘法分配律使计算简便。
所以:原式=333387.5×79+790×66661.25=33338.75×790+790×66661.25=(33338.75+66661.25)×790=100000×790练习2:计算下面各题:1. 3.5×1又1/4+125%+1又1/2÷4/52. 975×0.25+9又3/4×76-9.753. 9又2/5×425+4.25÷1/604. 0.9999×0.7+0.1111×2.7【例题3】计算:36×1.09+1.2×67.3【思路导航】此题表面看没有什么简便算法.仔细观察数的特征后可知:36 = 1.2×30。
这样一转化.就可以运用乘法分配律了。
所以原式=1.2×30×1.09+1.2×67.3=1.2×(30×1.09+1.2×67.3)=1.2×(32.7+67.3)=1.2×100=120练习3:计算:1. 45×2.08+1.5×37.62. 52×11.1+2.6×7783. 48×1.08+1.2×56.84. 72×2.09-1.8×73.6【例题4】计算:3又3/5×25又2/5+37.9×6又2/5【思路导航】虽然3又3/5与6又2/5的和为10.但是与它们相乘的另一个因数不同.因此.我们不难想到把37.9分成25.4和12.5两部分。
六年级奥数-简便计算 work Information Technology Company.2020YEAR简便计算——简便计算(一)【知识点拨】1.简便计算是一种特殊的计算,就是灵活、正确、合理地运用各种性质、定律,使复杂的计算变得简单,从而大幅度地提高计算速度与正确率。
2.运算定律和性质(1)加法交换律: a+b=b+a(2)加法结合律: (a+b)+c= a+(b+c)(3)乘法交换律: a×b=b×a(4)乘法结合律: (a×b)×c= a×(b×c)(5)乘法分配律: (a+b)×c=a×c+b×c(a-b)×c=a×c-b×c(a+b+c)×d=a×d+b×d+c×d(a+b-c)×d=a×d+b×d-c×d(6)减法性质: a-b-c= a-(b+c) a-(b+c)= a-b-c(7)除法性质: a÷b÷c= a÷(b×c) (b、c不能为0)(8)分数的性质:(9)添去括号法则:括号前是“+”,添、去括号不变号括号前是“-”,添、去括号要变号(10)数字前面符号搬家:在只有加减法运算中,可带数字前面符号搬家,如:a+b-c= a-c+b在只有乘、除法运算中,可带着数字前面符号搬家。
如:a×b÷c= a÷c×b(c 不为0)【典型例题】例1. 4.75-9.63+(8.25-1.37)【解析】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质,使运算过程简便。
所以:原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2例2.399998+39998+3998+398【解析】先凑成整数再减去相差的数,凑整调整后一定要与原数保持相等,所以:原式=(400000-2)+(40000-2)+(4000-2)+(400-2)=444400-8=444392【练一练】1、6.73-2+(3.27-1)2、 99【典型例题】例3. 2.5【解析】熟记25并且在做简便计算时要灵活运用小数的性质,所以:原式=2.5=10=100例4. 98【解析】利用乘法分配率,先凑成整数再加上相差的数,把101拆成100加1,凑整调整后一定要与原数保持相等,所以:原式=98×(100+1)=98×100+98×1=9800+98=9898例5.【解析】上题是分数与整数相乘,仔细观察数字间特点,(1)中的与1只相差,如果把写成(1-)的形式与37相乘,再运用乘法的分配率就能简化运算了,所以:原式=(1- )=37-=37-=【练一练】3、(13×125)×(3×8)4、198×10015、【典型例题】例6.【解析】同例5一样,本题中的27可以写成(26+1)。
简便运算(一)一、知识要点根据算式的结构和数的特征. 灵活运用运算法则、定律、性质和某些公式.可以把一些较复杂的四则混合运算化繁为简. 化难为易。
二、精讲精练【例题 1】计算 4.75-9.63+ (8.25-1.37 )【思路导航】先去掉小括号 . 使 4.75 和 8.25 相加凑整 . 再运用减法的性质:a-b-c = a -( b+c). 使运算过程简便。
所以原式= 4.75+8.25 -9.63 -1.37=13-( 9.63+1.37 )=13-11=2练习 1:计算下面各题。
1. 6.73 - 2 又 8/17+ (3.27 -1 又 9/17 )2.7 又 5/9 -(3.8+1 又 5/9 )- 1 又 1/53.14.15 -( 7 又 7/8 - 6 又 17/20 )- 2.1254.13 又 7/13 -( 4 又 1/4+3 又 7/13 )- 0.75【例题 2】计算 333387 又 1/2 ×79+790× 66661 又 1/4【思路导航】可把分数化成小数后 . 利用积的变化规律和乘法分配律使计算简便。
所以:原式= 333387.5 × 79+790×66661.25=33338.75 ×790+790× 66661.25=( 33338.75+66661.25 )× 790=100000× 790=79000000练习 2:计算下面各题:1.3.5 ×1 又 1/4+125% +1 又 1/2 ÷4/52.975 ×0.25+9 又 3/4 ×76-9.753.9 又 2/5 ×425+4.25÷1/604.0.9999 ×0.7+0.1111 ×2.7【例题 3】计算: 36× 1.09+1.2 ×67.3【思路导航】此题表面看没有什么简便算法. 仔细观察数的特征后可知:36 =1.2 ×30。
简便计算——简便计算(一)【知识点拨】1.简便计算是一种特殊的计算,就是灵活、正确、合理地运用各种性质、定律,使复杂的计算变得简单,从而大幅度地提高计算速度与正确率。
2.运算定律和性质(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c= a+(b+c)(3)乘法交换律:a×b=b×a(4)乘法结合律:(a×b)×c= a×(b×c)(5)乘法分配律:(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c(a+b+c)×d=a×d+b×d+c×d(a+b-c)×d=a×d+b×d-c×d(6)减法性质:a-b-c= a-(b+c) a-(b+c)= a-b-c (7)除法性质:a÷b÷c= a÷(b×c) (b、c不能为0)(8)分数的性质:(9)添去括号法则:括号前是“+”,添、去括号不变号括号前是“-”,添、去括号要变号(10)数字前面符号搬家:在只有加减法运算中,可带数字前面符号搬家,如:a+b-c= a-c+b在只有乘、除法运算中,可带着数字前面符号搬家。
如:a×b÷c= a÷c×b(c 不为0)【典型例题】例1. 4.75-9.63+(8.25-1.37)【解析】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质,使运算过程简便。
所以:原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2例2.399998+39998+3998+398【解析】先凑成整数再减去相差的数,凑整调整后一定要与原数保持相等,所以:原式=(400000-2)+(40000-2)+(4000-2)+(400-2)=444400-8=444392【练一练】1、6.73-2+(3.27-1)2、99【典型例题】例3. 2.5【解析】熟记25并且在做简便计算时要灵活运用小数的性质,所以:原式=2.5=10=100例4. 98【解析】利用乘法分配率,先凑成整数再加上相差的数,把101拆成100加1,凑整调整后一定要与原数保持相等,所以:原式=98×(100+1)=98×100+98×1=9800+98=9898例5.【解析】上题是分数与整数相乘,仔细观察数字间特点,(1)中的与1只相差,如果把写成(1-)的形式与37相乘,再运用乘法的分配率就能简化运算了,所以:原式=(1- )=37-=37-=【练一练】3、(13×125)×(3×8)4、198×10015、【典型例题】例6.【解析】同例5一样,本题中的27可以写成(26+1)。
4年级奥数简便运算60题一、加法交换律和结合律相关(1 - 10题)1. 25 + 36+75- 解析:根据加法交换律,将25和75先相加,因为它们的和是整百数。
- 原式=(25 + 75)+36=100 + 36 = 136。
2. 13 + 98+87+2- 解析:利用加法交换律和结合律,把13和87结合,98和2结合。
- 原式=(13 + 87)+(98+2)=100+100 = 200。
3. 45+89+55+11- 解析:先交换加数位置,再结合。
- 原式=(45 + 55)+(89+11)=100+100=200。
4. 36+29+64+71- 解析:运用加法交换律和结合律。
- 原式=(36+64)+(29 + 71)=100+100 = 200。
5. 125+34+75+66- 解析:通过交换律和结合律进行简便计算。
- 原式=(125+75)+(34+66)=200 + 100=300。
6. 56+97+44+3- 解析:先交换加数,再结合。
- 原式=(56 + 44)+(97+3)=100+100 = 200。
7. 18+35+82+65- 解析:利用加法运算律。
- 原式=(18+82)+(35+65)=100+100 = 200。
8. 48+73+52+27- 解析:根据加法交换律和结合律计算。
- 原式=(48+52)+(73+27)=100+100 = 200。
9. 15+28+85+72- 解析:先交换后结合。
- 原式=(15+85)+(28+72)=100+100 = 200。
10. 32+99+68+1- 解析:运用加法运算律。
- 原式=(32+68)+(99 + 1)=100+100 = 200。
二、乘法交换律和结合律相关(11 - 20题)11. 25×13×4- 解析:根据乘法交换律,交换13和4的位置,先计算25×4。
- 原式=(25×4)×13 = 100×13=1300。
生:99,22,33比较特殊。
师:非常棒,还有没有其他的发现,这里面谁和谁有一定的关系呢?我们还能不能运用乘法分配律的逆运算进行简便计算呢?生:99,22,33都是11的倍数……师:我听到有倍数,这里谁是谁的几倍?生:99是11的9倍,33是11的3倍,22是11的2倍……师:按照你这样说,我们能不能运用乘法分配律的逆运算呢?要想用到它,必须要有什么?生:相同的乘数!师:可是前后两个算式怎么找到相同的乘数呢?生:(可以小组讨论片刻)老师,我知道了,99是33的3倍!将99拆分成33 ×3就可以凑到相同的乘数33。
师:(进行奖励)非常棒的方法,那接下来你会怎么做呢?生:将33提出来,计算22×3的积是66,66与34相加刚好是100,这样就可以很快得出算式的结果。
师:我们现在将这位同学说的计算思路一一呈现出来。
(展示ppt)当我们无法在算式中直接运用简便运算,就仔细观察,算式中的数能不能通过拆分或者凑整得到我们想要的数。
观察第二个算式,你有没有发现什么?生:156可以拆分成78×2!师:我们可以发现,156正好是78的2倍,就可以拆分为78×2。
接下来的步骤应该怎么写呢?生:78×80-78×79=78×(80-79),结果就是78。
师:他算得对不对?生:对!师:像这样的题目我们要善于找到各个数之间的关系,题中不能直接简便计算的方法,我们就观察一些特殊的数,找到它们之间的关系然后进行拆分。
板书:(1)99×22+33×34 (2)156×40-78×79=33×3×22+33×34 =78×2×40-78×79=33×66+33×34 =78×80-78×79=33×(66+34) =78×(80-79)=33×100 =78×1=3300 =78练习2:(5分)用简便方法计算下面各题。
五年级数学上册奥数:简便运算含答案【例1】用简便方法计算:2.64×51.9+264×0.481解析:整体观察算式发现,本题求的是两个乘法算式的和,因此可从乘法分配律上考虑.再观察数据发现,2.64与264虽然大小不同,但两者可以相互转化.我们可以把题中任意一步乘法计算利用积的变化规律进行变形,使本题可以运用乘法分配律进行简便计算.2.64×51.9+264×0.481=2.64×51.9+2.64×________=2.64×(51.9+________)=2.64×________=________或 2.64×51.9+264×0.481=264×________+264×0.481=264×(________+0.481)=264×________=________变式练习1用简便方法计算:9.16×1.53-0.053×91.6方法一:方法二:【例2】用简便方法计算:0.9999×0.08+0.1111×0.28解析:本题的思路和例1基本相同,只不过题中数据之间的关系稍微复杂,较难发现.细心观察、思考能够发现,0.9999是0.1111的9倍,因此可将0.9999写成0.1111×9,再利用乘法结合律和分配律简便计算.简算过程如下:0.9999×0.08+0.1111×0.28=0.1111×(9×0.08)+0.1111×0.28=0.1111×________+0.1111×0.28=0.1111×(________+0.28)=0.1111×________=________变式练习2用简便方法计算:3.6-72×0.02528×34+0.56×33000.333×25+9.99×2.5挑战奥数1例148.148.1100264或0.5190.5191264变式练习1方法一:9.16×1.53-0.053×91.6=9.16×1.53-0.53×9.16=9.16×(1.53-0.53)=9.16×1=9.16方法二:9.16×1.53-0.053×91.6=91.6×0.153-0.053×91.6=91.6×(0.153-0.053)=91.6×0.1=9.16例20.720.7210.1111变式练习2 1.8280033.3。
第3讲简便运算(1)
一、夯实基础
所谓简算,就是利用我们学过的运算法则和运算性质以及运算技巧,来解决一些用常规方法在短时间内无法实现的运算问题。
简便运算中常用的技巧有“拆”与“凑”,拆是指把一个数拆成的两部分中含有一个整十、整百、整千或者有利于简算的数,凑是指把几个数凑成整十、整百、整千……的数,或者把题目中的数进行适当的变化,运用运算定律或性质再进行简算。
让我们先回忆一下基本的运算法则和性质:
乘法结合律:a×b×c=a×(b×c)=(a×c)×b
乘法分配律:a×(b+c)=a×b+a×c a×(b-c)=a×b-a×c
二、典型例题
例1. (1)9999×7778+3333×6666 (2)765×64×0.5×2.5×0.125
例2.399.6×9-1998×0.8
例3.654321×123456-654322×123455
三、熟能生巧
1.(1)888×667+444×666 (2)9999×1222-3333×666
2.(1)400.6×7-2003×0.4 (2)239×7.2+956×8.2
3.(1)1989×1999-1988×2000 (2)8642×2468-8644×2466
四、拓展演练
1.1234×4326+2468×2837
2.275×12+1650×23-3300×7.5
3.7654321×1234567-7654322×1234566
六、星级挑战
★1.31÷5+32÷5+33÷5+34÷5
★★★2.3333×4+5555×5+7777×7
★★★3.99+99×99+99×99×99
★★★4. 48.67×67+3.2×486.7+973.4×0.05
第4讲 简便运算(2)
一、夯实基础
在进行分数的运算时,可以利用约分法将分数形式中分子与分母同时扩大或缩小若干倍,从而简化计算过程;还可以运用分数拆分的方法使一些复杂的分数数列计算简便。
同学们在进行分数简便运算式,要灵活、巧妙的运用简算方法。
让我们先回忆一下基本的运算法则和性质:
乘法结合律:a×b×c=a×(b×c )=(a×c )×b
乘法分配律:a×(b +c )=a×b +a×c a×(b -c )=a×b -a×c 拆分:n n )1(1-=11-n -n
1 n k n a )(-=k a (k n -1-n 1) 二、典型例题
例1.(1)2006÷2006
20072006 (2)9.1×4.8×421÷1.6÷203÷1.3
例2.(1)
200620042005120062005⨯+-⨯ (2)(972+792)÷(75+95)
例3.
211⨯+321⨯+431⨯……+100
991⨯
三、熟能生巧
1. (1)238÷238
239
238 (2)3.41×9.9×0.38÷0.19÷3103÷1.1
2.(1)
186548362361548362-⨯⨯+ (2)(98+173+116)÷(113+75+94)
3.
211⨯+321⨯+431⨯+541⨯+651⨯+7
61⨯
四、拓展演练
1.(1)123131÷4139
1 (2)43×2.84÷353÷(121×1.42)×154
2.(1)
143138058419921991584204--⨯⨯+ (2)(962524367363+)÷(32258127321+)
3.
311⨯+532⨯+7
52⨯+……+99972⨯+101992⨯
六、星级挑战
★1. 21+41+61+81+161+321+64
1
★★2. 351+352+353+……+35
34
★★★3.
421⨯+642⨯+862⨯+ (50482)
★★★4. 1
31-127+209-3011+4213-56
15
第5讲 简便运算(3)
一、夯实基础
所谓简算,就是利用我们学过的运算法则和运算性质以及运算技巧,来解决一些用常规方法在短时间内无法实现的运算问题。
简便运算中常用的技巧有“拆”与“凑”,拆是指把一个数拆成的两部分中含有一个整十、整百、整千或者有利于简算的数,凑是指把几个数凑成整十、整百、整千……的数,或者把题目中的数进行适当的变化,运用运算定律或性质再进行简算。
让我们先回忆一下基本的运算法则和性质:
等差数列的一些公式:
项数=(末项-首项)÷公差+1
某项=首项+公差×(项数-1)
等差数列的求和公式:(首项+末项)×项数÷2
二、典型例题
例1. 2+4+6+8……+198+200
例2.0.9+9.9+99.9+999.9+9999.9+99999.9
例3.2008×20092009-2009×20082008
三、熟能生巧
1.1+3+5+7+……+65+67
2.9+99+999+9999+99999
3.1120×122112211221-1221×112011201120
四、拓展演练
1.(1)0.11+0.13+0.15+……+0.97+0.99(2)8.9×0.2+8.8×0.2+8.7×0.2+……+8.1×0.2 2.(1)98+998+9998+99998+999998 (2)3.9+0.39+0.039+0.0039+0.00039 3.(1)1234×432143214321-4321×123412341234 (2)2002×60066006-3003×40044004
六、星级挑战
★1.(1)438.9×5 (2)47.26÷5 (3)574.62×25 (4)14.758÷0.25 ★★2. (44332-443.32)÷(88664-886.64)
★★3.1.8+2.8+3.8+……+50.8
★★★4.2002-1999+1996-1993+1990-1987+……+16-13+10-7+4。