车道偏离预警算法概述
- 格式:docx
- 大小:288.99 KB
- 文档页数:12
目录车道偏离预警算法概述 (2)1.基于TLC的预警决策算法 (3)2.基于瞬时侧向位移的预警算法 (6)3.基于横向速度的评价算法 (7)4.基于CCP的评价算法 (7)5.基于预测轨迹偏离的预警算法 (8)6.基于EDF的预警算法 (9)7.基于预瞄轨迹偏离TTD的评价算法 (10)8.基于FOD的评价算法 (11)车道偏离预警算法概述车道偏离预警算法也就是车道偏离的危险性评估,是指利用当前车辆的运动状态、前方道路的几何结构等从感知部分获得的信息判断车辆是否存在偏离本车道的危险。
判断是否存在危险通常用预警时间来描述。
一个合适的预警时间,既要保证不会出现频繁的错误报警给驾驶员造成不必要的干扰,又要保证预留给驾驶员恰当的反应时间采取校正措施。
这是因为不同的驾驶员生理和心理素质的不同,人与人之间驾驶风格的不同,因而对车辆偏离危险性的感知特性也不尽相同,即便是同一个驾驶员,其驾驶行为特性也会随着时间空间以及精神状态的不同而改变,所以不同类型驾驶员对预警系统的要求与影响也有区别。
从驾驶经验一般的驾驶员到熟练驾驶的驾驶员,不同驾驶员对车道偏离危险性的认识理解都不同。
如果预警系统是针对新手驾驶员开发,那么熟练驾驶员就会觉得系统发出的预警过于频繁进而感到失去耐心;反之,为熟练驾驶员设计的预警系统,新手驾驶员则会认为系统的预警作用不明显,不能预知危险,因此不能够信任系统,所以在系统开发过程中需要全面考虑驾驶员的驾驶行为特性,最大限度地满足不同风格的驾驶需求。
此外外界环境因素对车道偏离预警算法也有一定的影响。
总的说来合理的预警算法应当包括下面两个基本标准:1、保证能够及时恰当的预警,保证驾驶员有足够多的反应时间。
由于驾驶员对预警信号的感知响应以及驾驶员采取校正操作后汽车本身的响应都有一定的迟滞时间,所以,车道偏离预警系统应该在车辆横跨车道线、发生车道偏离状况之前的特定时间内准确预测出即将发生的危险,并向驾驶员及时的发出预警信号,保证驾驶员有充足的时间采取校正措施,防止致命伤亡事故的产生。
目录车道偏离预警算法概述 (2)1.基于TLC的预警决策算法 (3)2.基于瞬时侧向位移的预警算法 (6)3.基于横向速度的评价算法 (7)4.基于CCP的评价算法 (7)5.基于预测轨迹偏离的预警算法 (8)6.基于EDF的预警算法 (9)7.基于预瞄轨迹偏离TTD的评价算法 (10)8.基于FOD的评价算法 (11)车道偏离预警算法概述车道偏离预警算法也就是车道偏离的危险性评估,是指利用当前车辆的运动状态、前方道路的几何结构等从感知部分获得的信息判断车辆是否存在偏离本车道的危险。
判断是否存在危险通常用预警时间来描述。
一个合适的预警时间,既要保证不会出现频繁的错误报警给驾驶员造成不必要的干扰,又要保证预留给驾驶员恰当的反应时间采取校正措施。
这是因为不同的驾驶员生理和心理素质的不同,人与人之间驾驶风格的不同,因而对车辆偏离危险性的感知特性也不尽相同,即便是同一个驾驶员,其驾驶行为特性也会随着时间空间以及精神状态的不同而改变,所以不同类型驾驶员对预警系统的要求与影响也有区别。
从驾驶经验一般的驾驶员到熟练驾驶的驾驶员,不同驾驶员对车道偏离危险性的认识理解都不同。
如果预警系统是针对新手驾驶员开发,那么熟练驾驶员就会觉得系统发出的预警过于频繁进而感到失去耐心;反之,为熟练驾驶员设计的预警系统,新手驾驶员则会认为系统的预警作用不明显,不能预知危险,因此不能够信任系统,所以在系统开发过程中需要全面考虑驾驶员的驾驶行为特性,最大限度地满足不同风格的驾驶需求。
此外外界环境因素对车道偏离预警算法也有一定的影响。
总的说来合理的预警算法应当包括下面两个基本标准:1、保证能够及时恰当的预警,保证驾驶员有足够多的反应时间。
由于驾驶员对预警信号的感知响应以及驾驶员采取校正操作后汽车本身的响应都有一定的迟滞时间,所以,车道偏离预警系统应该在车辆横跨车道线、发生车道偏离状况之前的特定时间内准确预测出即将发生的危险,并向驾驶员及时的发出预警信号,保证驾驶员有充足的时间采取校正措施,防止致命伤亡事故的产生。
行车记录仪的秘密——轨道偏移预警什么是车道偏移预警?
车道偏移预警(LDWS)是指行车中未打转向灯突然大幅度偏离车道,不正常偏移时,记录仪一旦判定行驶路线有异,便会以行车记录仪的显示屏幕提醒驾驶人,并发出声响警告对司机进行警示。
这将使司机可以马上采取行动,回到原行车道上。
车道偏移预警技术原理
A728行车记录仪的车道偏离预警系统主要由摄像头、控制器以及传感器组成。
当车道偏离预警系统开启时,行车记录仪摄像头会时刻采集行驶车道的标识线,通过图像处理获得汽车在当前车道中的位置参数,当检测到汽车偏离车道时,传感器会及时收集车辆数据和驾驶员的操作状态,之后由控制器发出警报信号,为驾驶者提供更多的反应时间。
车道偏移预警的作用
当车辆偏离车道时,系统会发出警报提醒驾驶员修正。
减少因车道偏离而发生的交通事故。
奥尼(ANC)A728行车记录仪车道偏移预警
奥尼(ANC)A728独有的车道偏离预警,当车子偏离车道时,记录仪会通过警示声音
告知驾驶者,时刻守护驾驶者行车安全。
此外车道偏离预警系统还可以改正驾驶员不打转向指示灯的习惯。
同时,该系统还会在驾驶员疲劳驾驶和长时间单调驾驶时,给予驾驶员以提醒和警示,以防驾驶员因为注意力不集中而出现车道偏离事故,从而减少了因疲劳驾驶引发的违规情况的发生,提高了安全性。
车道偏离预警算法的研究作者:杨萍杨磊来源:《绿色科技》2017年第06期摘要:从车道偏离预警方面着手为了协助司机使车辆行驶在正确的车道线内,并且能够及时的发现和提醒司机车道已经偏离,以保证不会因为司机的疏忽、疲劳等原因引起的车道偏离,降低由于车道偏离所引发的交通事故,从而提高车辆的主动性安全,建立了车道偏离预警模型和预警决策的算法,并通过实验验证了该算法具有一定的可靠性和实际应用性。
关键词:偏离预警;车道识别;预警模型中图分类号:U491文献标识码:A 文章编号:1674-9944(2017)6-0173-041 引言随着我国经济的快速发展,人均汽车拥有量和机动车产量不断上升,人们在享受车辆带来的巨大便利时,也苦吞其带来的恶果[1]。
当汽车处于长途驾驶或在高速路上行驶时,司机通常会因为过度的劳累或者因单调驾驶而出现注意力不集中和打磕睡的一些现象,以致于驾驶者在驾驶过程中遇到危险行驶情况时未能及时准确的做出反应,导致汽车偏离路线,甚至发生交通事故[2]。
所以,本文研究的车道偏离预警系统,主要是协助司机在单调的行驶环境中保持在相应车道内驾驶,这已经成为国内外的研究重点。
2 常用车道偏离预警模型的分类在现有的车道偏离预警模型当中可粗略划分为4类:FOD(基于汽车未来偏离的量的不同[3])、CCP(基于汽车在车道中的目前位置)[4]、KBIRS(基于知识下的道路场景感知)以及TLC(基于汽车即将横越车道边界的时间)这4种类型[5~8]。
2.1 FOD车道偏离预警模型FOD车道偏离预警模型考虑了驾驶员自己的驾车习惯,在虚拟边界状态时增加了其在驾驶时的自然转向时习惯的一些偏离量。
若驾驶员在驾驶时没有这种偏离习惯,那么真实的车道标志线和虚拟的车道线重合一致。
使用FOD预警模型方法引起的警告触发其准则是:L′P>V;L′P则表示为预计车辆的侧向位置,它的计算公式是:L′P=LP+TLV。
当前车辆与车道边界线之间的距离表示为LP,侧向速度表示为LV;T是预计的时间,其计算公式为:V-xLV=T,公式里的x含义是期望警告发生的点;V则表示为虚拟的车道边界。
目录车道偏离预警算法概述 (2)1.基于TLC的预警决策算法 (3)2.基于瞬时侧向位移的预警算法 (6)3.基于横向速度的评价算法 (6)4.基于CCP的评价算法 (6)5.基于预测轨迹偏离的预警算法 (7)6.基于EDF的预警算法 (8)7.基于预瞄轨迹偏离TTD的评价算法 (9)8.基于FOD的评价算法 (10)车道偏离预警算法概述车道偏离预警算法也就是车道偏离的危险性评估,是指利用当前车辆的运动状态、前方道路的几何结构等从感知部分获得的信息判断车辆是否存在偏离本车道的危险。
判断是否存在危险通常用预警时间来描述。
一个合适的预警时间,既要保证不会出现频繁的错误报警给驾驶员造成不必要的干扰,又要保证预留给驾驶员恰当的反应时间采取校正措施。
这是因为不同的驾驶员生理和心理素质的不同,人与人之间驾驶风格的不同,因而对车辆偏离危险性的感知特性也不尽相同,即便是同一个驾驶员,其驾驶行为特性也会随着时间空间以及精神状态的不同而改变,所以不同类型驾驶员对预警系统的要求与影响也有区别。
从驾驶经验一般的驾驶员到熟练驾驶的驾驶员,不同驾驶员对车道偏离危险性的认识理解都不同。
如果预警系统是针对新手驾驶员开发,那么熟练驾驶员就会觉得系统发出的预警过于频繁进而感到失去耐心;反之,为熟练驾驶员设计的预警系统,新手驾驶员则会认为系统的预警作用不明显,不能预知危险,因此不能够信任系统,所以在系统开发过程中需要全面考虑驾驶员的驾驶行为特性,最大限度地满足不同风格的驾驶需求。
此外外界环境因素对车道偏离预警算法也有一定的影响。
总的说来合理的预警算法应当包括下面两个基本标准:1、保证能够及时恰当的预警,保证驾驶员有足够多的反应时间。
由于驾驶员对预警信号的感知响应以及驾驶员采取校正操作后汽车本身的响应都有一定的迟滞时间,所以,车道偏离预警系统应该在车辆横跨车道线、发生车道偏离状况之前的特定时间内准确预测出即将发生的危险,并向驾驶员及时的发出预警信号,保证驾驶员有充足的时间采取校正措施,防止致命伤亡事故的产生。
但是如果预警时刻过早,反而会令驾驶员感到系统报警的不必要,会不加理睬,这也就是去了系统本身的意义。
2、根据ISO 17361:2007国际标准提出的评价指标:误报警的次数和遗漏的正确报警次数都要尽量少。
误报警是指车辆在车道内保持正常行驶轨迹的情况下系统发出的报警。
如果车道偏离预警系统发出的误报警过于频繁,势必引起驾驶员的厌烦,如此下去,将导致驾驶员对系统报警的不信任性;另一方面,如果过度关注降低系统的误报警率,必然会造成一些正确报警被遗漏,同样使系统预警功能不可靠,甚至可能发生严重的后果。
完善的车道偏离预警算法应该全面考虑各种情况,应该经过长期的对大量数据的优化分析和实车实验验证得到,为了实现这个目的,国内外的研究人员在视觉感知算法和车道偏离预警算法方面都做了很多的工作。
大多都是通过预测汽车的未来运动轨迹来估算发生车道偏离剩余的时间,并由此选择恰当的预警时间目前国内外的各种车道偏离预警系统,以及国内各大高校、研究机构所进行的对LDW 系统的研究中,采用预警决策算法有很多种。
总的说来,基本上都是以时间、速度或者距离作为评价指标。
下面介绍几种常用的车道偏离预警算法:1.基于TLC 的预警决策算法TLC ( Time to Lane Crossing)方法是国际上各类车道偏离预警系统中非常流行的一种决策算法,是当今大部分研究车道偏离预警的机构与高校所采用的方法。
TLC 是指从汽车当前位置开始到汽车与车道线开始接触为止所需的运动时间,也可称之为汽车从当前的时刻开始到汽车偏离本车道之前所剩余的时间。
为了尽可能迅速的识别出未来可能发生的轨迹偏离是提出TLC 方法的目的。
该方法一般是对未来特定时间内的车辆动力学模型进行有效假设,根据建立的车辆运动模型和对前方道路模型的正确识别,最后计算出汽车即将跨越道路边界的时间。
基于TLC 的预警算法,是由Godthelp 最初提出来的,基本原理是如果TLC 小于给定的时间阈值T th 即:TLC<T th ,我们认为汽车将发生车道偏离,触发系统报警。
TLC 的评价算法可以分为横向TLC 算法和纵向TLC 算法,这是由所考虑的车道偏离方向的不同来区分的。
AURORA 系统(美国卡内基麦隆大学)采用了横向TLC 算法,其公式如下:P y L TLC v公式中,P L 表示汽车侧向的位置,即车辆的纵轴线与道路中心线的侧向距离, y v 表示汽车的侧向速度,通过计算最后半秒内汽车标志线相对汽车移动的距离计算获得时间,该方法中道路宽度已知且为常量。
该算法使用了侧向位移和侧向速度信息同时考虑了汽车的行驶轨迹,能够保证在一定的时间范围内向驾驶员报警,给驾驶员预留了一定的反应时间;但是本算法假定汽车的侧向速度在较短的时间间隔内保持不变,并且汽车的航向角保持恒定,但是某些情况下这种假设是不正确的。
我们知道当方向盘转角为一固定值时,汽车会沿着圆弧轨迹行驶,因而在道路上车辆的侧向速度是不断改变的,同时汽车的航向角也是不断改变的。
韩国三星公司、德国的R.Risack 使用的是纵向TLC 公式,相对来说使用比较广泛:x L TLC v =上式中x v 表示汽车的纵向速度,L 表示从当前时刻开始到汽车前轮接触车道线为止在汽车纵轴线方向的纵向距离。
由公式可见,纵向TLC 算法关键之处是如何确定纵向距离L 的值,计算方法主要有两种,两种方法的区别主要在于用于预测汽车运动轨迹的车辆模型不同。
(l)假定车辆发生偏离过程中航向角始终保持不变,汽车横向和纵向的速度也保持恒定。
如图1.7所示,L 是根据汽车质心偏离本车道时所确定的纵向距离。
(2)假定车辆发生偏离过程中方向盘转角角保持恒定,汽车的运动轨迹能够很好跟随道路边界线曲率,因而汽车的运动轨迹曲线与道路边界线比较类似。
假设地面水平,车道边界线可以近似表述为常见的回旋曲线,如图1.8所示:230111(l)226h h b y c l c l =±+++式中0h c 为道路曲线在水平方向的曲率,1h c 表示道路曲线在水平方向的曲率变化率。
假定道路曲线的曲率为固定常数即1h c = 0,b 表示道路的宽度并且为已知常数,加号对应右车道减号对应左车道。
汽车质心的运动行驶轨迹可以表示为如下公式:201(l)2c y y l c l θ+=+上式中c c 为汽车运动轨迹曲率,可通过当前的方向盘转角得到。
上述两种模型的建立都是通过对汽车质心运动轨迹的预估得到的,下文公式又可表示左右车轮的运动:()()2cllr b l l y y ±=式中左、右车轮由下标由l 、r 分别对应。
由此得到的汽车行驶轨迹曲线和对应的道路边界曲线的交点与当前汽车在道路中的位置之间的距离就称之为L 。
2.基于瞬时侧向位移的预警算法这种算法利用汽车中心偏离车道中心的瞬时侧向位移L,作为评价指标,是一种比较简单的车道偏离预警算法。
当p L 大于事先给定的阈值时系统则发出报警。
这种算法比较简单,在实际应用中比较易于实现;但是它忽略了汽车的运动轨迹,尤其是当车辆的运动行驶轨迹偏离道路中心一个距离且平行车道行驶时(如图1.9 a 所示)会发出错误报警。
通常情况下,驾驶员开车时不可能严格沿着道路中心线行驶,而是偏离道路中心线特定距离,这个值最大可以达到10厘米,对具有这种驾驶行为的驾驶员来说,该预警算法可导致频繁的误报警。
当车辆以较大角度偏离当前行驶车道的工况下(如图1.9b 所示),系统发出预警信号后留给驾驶员的反映时间太短,驾驶员一般来不及纠正车道偏离行为,这样系统发出的预警也就失去了作用。
3.基于横向速度的评价算法该预警算法以车辆的侧向速度Vy 作为评价指标,如果车辆以比较大的速度偏离道路边界线时系统发出预警,公式如下:y th v v >→报警式中th v 为给定的速度阈值。
该方法同样的会导致错误的报警,因为某些驾驶员开车并不紧紧跟随道路车道线,而是在道路上左右摇摆(如图1.9c 所示),这时车辆侧向速度会较大,对这种驾驶员来说,该方法也会导致频繁的错误报警,会导致驾驶员不认可系统的预警功能。
另外,若驾驶员发现汽车偏离道路中心线比较大的距离时,会迅速反应转动方向盘使汽车回到道路中心线附近,这时汽车的侧向速度很大,如果此时报警必将干扰驾驶员的校正,令驾驶员感到厌烦。
4.基于CCP 的评价算法基于汽车当前位置CCP ( Car's Current Position)的评价算法是利用汽车在道路中当前位置作为评价指标,判断车辆是否会发生偏离。
汽车在道路中的坐标由车道线检测算法得到,道路中心与汽车纵向轴线的距离用0y表示。
这种算法假定汽车平行于行驶车道,给出汽车车宽c b ,则不难计算出目前汽车前轮相对于左右道路边界的位置:00y y 22y y 22c l c r b b b b ⎧⎫⎛⎫∆=-+ ⎪⎪⎪⎪⎝⎭⎪⎨⎬⎛⎫⎪⎪∆=+- ⎪⎪⎪⎝⎭⎩⎭由道路识别算法可计算出公式中道路宽度 b , y l ∆和y r ∆表示左右轮胎到相应道路边界的位置。
当y l ∆> 0并且 y r ∆>0时,说明汽车在本行驶车道内,不需发出预警。
当y l ∆< 0或者 y r ∆<0时,则说明汽车即将偏离行驶车道,系统发出预警。
5.基于预测轨迹偏离的预警算法基于预测轨迹偏离的预警算法依据一段时间后汽车的预测轨迹与目标行驶轨迹之间的偏差值来进行评价,如果偏差大于给定的阈值,我们就认为会发生车道偏离,系统报警。
丰田汽车(日本)公司的STAR 系统所采用的就是这种预警方法。
如图1.10所示,汽车的预测行驶轨迹与目标行驶轨迹的偏差值万计算方法如下: m x v x τϕε--=上式中x 为当前时刻汽车质心的侧向位置,m x 为τ秒后汽车质心的侧向位置,ϕ表示车辆横摆角,v 表示车速。
该算法一般假定驾驶员能较好的跟随道路曲率变化,因而目标运动轨迹通常为行驶道路的中心线。
于此同时,这种算法假设汽车的横摆角恒定,则预测轨迹为直线。
6.基于EDF 的预警算法 基于边缘分布函数EDF ( Edge Distributin Function)的预警方法,是指将边缘方向角的边缘强度直方图进行考虑。
韩国全南大学的Joon Woong Lee 等主要采用EDF 的评价方法,它通过边缘分布函数将车道信息和边缘信息联系起来。
该算法对行车线作出几条假设: (1)车道线平滑过渡,(2)车道线比路面其它部分明亮,(3)左右车道线应该平行道路中心线。
如图1.11b 所示。
依据上述假设,EDF 具有两个重要特征一一对称轴和局部最大值,如图1.11b 所示。
基于边缘分布函数的预警算法,一般有三个步骤组成。