整式的加减提高题
- 格式:doc
- 大小:322.50 KB
- 文档页数:4
中考数学总复习《整式的加减》专项提升训练(带有答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.若x表示一个两位数,把数字3放在x的左边,组成一个三位数是( )A.3xB.3×100+xC.100x+3D.10x+32.某食品厂打折出售食品,第一天卖出mkg,第二天比第一天多卖出2kg,第三天是第一天卖出的3倍,则这个食品厂这三天共卖出食品( )A.(3m+2)kgB.(5m+2)kgC.(3m﹣2)kgD.(5m﹣2)kg3.如果a﹣b=12,那么﹣3(b﹣a)的值是( )A.﹣35B.23C.32D.164.若代数式2x2+3x+7的值是8,则代数式4x2+6x+15的值是( )A.2B.17C.3D.165.下列各组单项式中,不是同类项的是( )A.12a3y与2ya33B.6a2mb与-a2bmC.23与32D.12x3y与-12xy36.单项式﹣3πxy2z3的系数和次数分别是( )A.﹣π,5B.﹣1,6C.﹣3π,6D.﹣3,77.多项式3x3﹣2x2y2+x+3是( )A.三次四项式B.四次四项式C.三次三项式D.四次三项式8.下列各题去括号所得结果正确的是( )A.x2﹣(x﹣y+2z)=x2﹣x+y+2zB.x﹣(﹣2x+3y﹣1)=x+2x﹣3y+1C.3x﹣[5x﹣(x﹣1)]=3x﹣5x﹣x+1D.(x﹣1)﹣(x2﹣2)=x﹣1﹣x2﹣29.某商家在甲批发市场以每包a元的价格购进了40包茶叶,又在乙批发市场以每包b元(a>b)的价格购进了同样的茶叶60包,如果商家以每包a+b2元的价格卖出这种茶叶,那么卖完后,该商家( )A.盈利了B.亏损了C.不盈不亏D.盈亏不能确定10.若多项式3x2﹣2(5+y﹣2x2)+mx2的值与x的值无关,则m等于( )A.0B.1C.﹣1D.﹣7二、填空题11.一个两位数个位为a,十位数字为b,这个两位数为.12.若a-2b=3,则9-2a+4b的值为.13.多项式5x2-7x2y-6x2y2+6是________次________项式.14.去括号:﹣6x3﹣[4x2﹣(x+5)]= .15.两个多项式的和是5x2﹣4x+5,其中一个多项式是﹣x2+2x﹣4,则另一个多项式是 .16.记Sn =a1,+a2+…an,令Tn=,则称Tn为a1,a2,…,an这列数的“凯森和”,已知a1,a2,…a500的“凯森和”为2004,那么1,a1,a2,…a500的“凯森和”为.三、解答题17.化简:﹣3x2y+3xy2+2x2y﹣2xy218.化简:2(a﹣1)﹣(2a﹣3)+319.化简:3a2+4(a2﹣2a﹣1)﹣2(3a2﹣a+1).20.化简:3(m﹣5n+4mn)﹣2(2m﹣4n+6mn).21.先化简再求值:2a2﹣[12(ab﹣4a2)+8ab]﹣12ab,其中a=1,b=13.22.为鼓励市民节约用水,某地推行阶梯式水价计费制,标准如下:每户居民每月用水不超过17立方米的按每立方米a元计费;超过17立方米而未超过30立方米的部分按每立方米b元计费;超过30立方米的部分按每立方米c元计费.(1)若某户居民在一个月内用水15立方米,则该用户这个月应交水费多少元?(2)若某户居民在一个月内用水28立方米,则该用户这个月应交水费多少元?(3)若某户居民在一个月内用水35立方米,则该用户这个月应交水费多少元?23.小明购买了一套经济适用房,地面结构如图所示(墙体厚度、地砖间隙都忽略不计,单位:米),他计划给卧室铺上木地板,其余房间都铺上地砖.根据图中的数据,解答下列问题:(结果用含x、y的代数式表示)(1)求整套住房需要铺多少平方米的地砖?(2)求客厅的面积比其余房间的总面积多多少平方米?24.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车辆,乙仓库调往A县农用车辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?25.化简求值:(1)已知A=4x2﹣4xy﹣y2,B=﹣x2+xy+7y2①求﹣A﹣3B②若x=﹣1,y=12时,﹣A﹣3B的值.(2)三角形的三边的长分别是2x+1,3x﹣2,8﹣2x(单位:cm),求这个三角形的周长,(用含x的代数式表示).如果x=3cm,三角形的周长是多少?参考答案1.B.2.B.3.C.4.B5.D6.C.7.B8.B.9.A.10.D.11.答案为:10b+a.12.答案为:313.答案为:四,四.14.答案为:﹣6x3﹣4x2+x+5.15.答案为:6x2﹣6x+9.16.答案为:2001.17.原式=﹣x2y+xy2;18.原式=2a﹣2﹣2a+3+3=4;19.原式=a2﹣6a﹣6.20.原式=3m﹣15n+12mn﹣4m+8n﹣12mn=﹣m﹣7n.21.解:2a2﹣[12(ab﹣4a2)+8ab]﹣12ab=2a2﹣[12ab﹣2a2+8ab]﹣12ab=2a2﹣12ab+2a2﹣8ab﹣12ab=4a2﹣ab﹣8ab;当a=1,b=13时原式=4×12﹣1×13﹣8×1×13=4﹣13﹣83=1.22.解:(1)∵某户居民在一个月内用水15立方米∴该用户这个月应交水费15a元;(2)∵某户居民在一个月内用水28立方米∴该用户这个月应交水费17a+(28﹣17)b=(17a+11b)元;(3)∵某户居民在一个月内用水35立方米∴该用户这个月应交水费是:17a+13b+(35﹣30)c=(17a+13b+5c)元;23.解:客厅的面积为6xm2,厨房的面积为6m2,卫生间的面积是2ym2,卧室的面积是12m2;(1)地砖的面积是(6x+6+2y)m2;(2)客厅的面积比其余房间的总面积多6x-(6+2y+12)=(6x-2y-18)m2.24.解:(1)设从甲仓库调往A县农用车x辆则调往B县农用车=12﹣x,乙仓库调往A县的农用车=10﹣x;(2)到A的总费用=40x+30(10﹣x)=10x+300;到B的总费用=80(12﹣x)+50(x﹣4)=760﹣30x;故公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费为:10x+300+760﹣30x=﹣20x+1060;(3)当x=4时,到A的总费用=10x+300=340到B的总费用=760﹣30×4=640故总费用=340+640=980.25.解:(1)①∵A=4x2﹣4xy﹣y2,B=﹣x2+xy+7y2∴﹣A﹣3B=﹣4x2+4xy+y2+3x2﹣3xy﹣21y2=﹣x2+xy﹣20y2;②当x=﹣1,y=12时,原式=﹣1﹣12﹣5=﹣612;(2)根据题意得:2x+1+3x﹣2+8﹣2x=(3x+7)cm 当x=3时,原式=9+7=16cm.。
《整式的加减》基础测试一 填空题(每小题3分,共18分):1.下列各式 -41,3xy ,a 2-b 2,53y x -,2x >1,-x ,0.5+x 中,是整式的是 ,是单项式的是 ,是多项式的是 .答案:41、3xy 、a 2-b 2、53y x -、-x 、0.5+x , -41、3xy 、-x , a 2-b2、53y x -、0.5+x . 评析:53y x - 虽然有分数线,但是分母中不含有表示未知数的字母,所以它仍是整式;另一方面,有53y x - = 53 x -51 y 所以我们认为它是多项式.在运用换元法时把它看作一个整体,也可以暂时看作单项式.2.a 3b 2c 的系数是 ,次数是 ;答案:1,6.评析:不能说a 3b 2c “没有系数”也不能说“它的系数是0”,实际上a 3b 2c =1⨯a 3b 2c ,系数“1”被省略了.单项式的次数是所有字母的指数和,在这里,字母c 的指数“1” 被省略了,所以字母的指数和是“3+2+1 = 6”,而不是“5”.3.3xy -5x 4+6x -1是关于x 的 次 项式;答案:4,4.评析:把组成多项式的各单项式中最高次项的次数作为这个多项式的次数.4.-2x 2y m 与x n y 3是同类项,则 m = ,n = ;答案:3,2.评析:根据同类项的意义“相同字母的指数也相同”可得.5.3ab -5a 2b 2+4a 3-4按a 降幂排列是 ;答案:4a 3-5a 2b 2+3ab -4.6.十位数字是m ,个位数字比m 小3,百位数字是m 的3倍,这个三位数是 .答案:300m +10m +(m -3)或930.评析:百位数应表示为100⨯3m =300m .一般地说,n 位数12321a a a a a a n n n --= a n ×10n -1+a n -1×10n -2+a n -2×10n -3 +…+a 3×102 +a 2×10+a 1.如 5273 = 5×103+2×102+7×10+3.因为⎪⎩⎪⎨⎧≤≤≤-≤≤≤93093090m m m 解得m =3.所以300m +10m +(m -3)=930.二 判断正误(每题3分,共12分):1.-3,-3x ,-3x -3都是代数式…………………………………………………( ) 答案:√.评析:-3,-3x 都是单项式,-3x -3是多项式,它们都是整式,整式为代数式的一部分.2.-7(a -b )2 和 (a -b )2 可以看作同类项…………………………………( ) 答案:√.评析:把(a -b )看作一个整体,用一个字母(如m )表示,-7(a -b )2 和 (a -b )2就可以化为 -7m 2和m 2,它们就是同类项.3.4a 2-3的两个项是4a 2,3…………………………………………………………( ) 答案:×.评析:多项式中的“项”,应是包含它前面的符号在内的单项式,所以4a 2-3的第二项应是3,而不是3.4.x 的系数与次数相同………………………………………………………………( )答案:√.评析:x 的系数与次数都是1.三 化简(每小题7分,共42分):1.a +(a 2-2a )-(a -2a 2 );答案:3a 2-2a .评析:注意去括号法则的应用,正确地合并同类项.a +(a 2-2a )-(a -2a 2 )=a +a 2-2a -a +2a 2= 3a 2-2a .2.-3(2a +3b )-31(6a -12b ); 答案:-8a -5b . 评析: 注意,把 -3 和 -31分别与二项式相乘的同时去掉括号,依乘法法则,括号内的各项都应变号. -3 2a +3b )-31(6a -12b ) =-6a -9b -2a +4b= -8a -5b .3.-{-[-(-a )2-b 2 ]}-[-(-b 2)];答案:-a 2-2b 2.评析:注意多层符号的化简,要按次序逐步进行.-{-[-(-a )2-b 2 ]}-[-(-b 2)]=-{-[ -a 2-b 2 ]}-b 2=-{a 2+b 2 }-b 2= -a 2-b 2 -b 2= -a 2-2b 2这里,-[-(-b 2 )] =-b 2 的化简是按照多重符号化简“奇数个负号结果为负”进行的;-[ -a 2-b 2 ] = a 2+b 2,-{a 2+b 2 }= -a 2-b 2 去括号法则进行的.要分析情况,灵活确定依据.4.9x 2-[7(x 2-72y )-(x 2-y )-1]-21; 答案:x 2 +3y -23. 评析:注意区别情况,恰当引用法则,按次序逐步进行.9x 2-[7(x 2-72y )-(x 2-y )-1]-21 = 9x 2-[7x2 -2y -x 2+y -1]-21 =9x 2-7x2 +2y +x 2-y +1+21 = 3x2 +y +21. 5.(3x n +2+10x n -7x )-(x -9x n +2 -10x n );答案:12x n +2+20x n -8x .评析:注意字母指数的识别.(3x n +2+10x n -7x )-(x -9x n +2 -10x n )= 3x n +2+10x n -7x -x +9x n +2+10x n= 12x n +2+20x n -8x .6.{ab -[ 3a 2b -(4ab 2+21ab )-4a 2b ]}+3a 2b . 答案:4a 2b +4ab 2 +23ab . 评析:注意多层括号的化简,要按次序由内而外逐步进行,并且注意随时合并同类项.{ab -[ 3a 2b -(4ab 2+21ab )-4a 2b ]}+3a 2b = {ab -[ 3a 2b -4ab 2-21ab -4a 2b ]}+3a 2b = {ab -[ -a 2b -4ab 2-21ab ]}+3a 2b =ab +a 2b +4ab 2 +21ab +3a 2b = 4a 2b +4ab 2 +23ab .四 化简后求值(每小题11分,共22分):1.当a =-23时,求代数式 15a 2-{-4a 2+[ 5a -8a 2-(2a 2 -a )+9a 2 ]-3a } 的值.答案:原式= 20a 2-3a =299.评析:先化简,再代入求值. 15a 2-{-4a 2+[ 5a -8a 2-(2a 2 -a )+9a 2 ]-3a }= 15a 2-{-4a 2+[ 5a -8a 2-2a 2+a +9a 2 ]-3a }= 15a 2-{-4a 2+[ -a 2+6a ]-3a }= 15a 2-{-4a 2 -a 2+6a -3a }= 15a 2-{-5a 2+3a }= 15a 2+5a 2-3a= 20a 2-3a ,把a =-23 代入,得 原式= 20a 2-3a = 20 ⨯(-23)2-3 ⨯(-23)= 45+29= 299. 2.已知|a +2|+(b +1)2 +(c -31)2 = 0,求代数式 5abc -{2a 2b -[3abc -(4ab 2 -a 2b )]}的值. 答案:原式= 8abc -a 2b -4ab 2 =352. 评析: 因为 |a +2|+(b +1)2 +(c -31)2 = 0, 且 |a +2|≥0,(b +1)2≥0,(c -31)2≥0, 所以有 |a +2|= 0,(b +1)2 = 0,(c -31)2 = 0, 于是有a =-2,b =-1,c = 31. 则有5abc -{2a 2b -[3abc -(4ab 2 -a 2b )]}= 5abc -{2a 2b -[3abc -4ab 2+a 2b ]}= 5abc -{2a 2b -3abc +4ab 2 -a 2b }= 5abc -{a 2b -3abc +4ab 2 }= 5abc -a 2b +3abc -4ab 2= 8abc -a 2b -4ab 2原式=8×(-2)×(-1)×31-(-2)2×(-1)-4×(-2)×(-1)2 =316+4+8 =352.《整式的加减》提高测试一 填空题(本题20分,每小题4分):1.仅当a = ,b = ,c = 时,等式a x 2-bx +c = x 2+2x +3 成立;2.仅当b = ,c = 时,5x 3y 2与23 x b y c 是同类项;3.煤矿十月份生产a 吨煤,比九月份增产45%,煤矿九月份生产煤 吨; 4.当3<a <4时,化简 |a -3|-|a -6| 得的结果是 ,它是一个 数;5.n 张长为a cm 的纸片,一张接一张的贴成一个长纸条,每张贴合部分的长度都是b cm ,这个纸条的总长应是 cm .答案:1.1,-2,3;2.3,2;3.45.1a ; 4.2a -9,负;5.na -b (n -1).二 计算下列各题(本题30分,每小题10分):1.-5a n -a n -(-7a n )+(-3a n );解:-5a n -a n -(-7a n )+(-3a n )=-5a n -a n +7a n -3a n=-2a n2.(2x 3-3x 2+6x +5)-(x 3-6x +9);解:(2x 3-3x 2+6x +5)-(x 3-6x +9)=2x 3-3x 2+6x +5-x 3+6x -9=x 3-3x 2+12x 2-4;3.9x -{159-[4x -(11y -2x )-10y ]+2x }.解:9x -{159-[4x -(11y -2x )-10y ]+2x }=9x -{159-[4x -11y +2x -10y ]+2x }=9x -{159-6x +21y +2x }=9x -159-21y +4x=13x -21y -159.三 先化简再求代数式的值:1.5a 2+[a 2+(5a 2-2a )-2(a 2-3a )],其中a = -21; 解:5a 2+[a 2+(5a 2-2a )-2(a 2-3a )]=9a 2+4a =)21(4)21(92-+- =249- =41;2.a 4+3a b -6a 2b 2-3a b 2+4a b +6a 2b -7a 2b 2-2a 4,其中a =-2, b =1.解:原式= -a 4-13a 2b 2+6a 2b -3a b 2+7a b= -52.四 (本题10分)已知a =215 x ,且x 为小于10的自然数,求正整数a 的值. 解:只有当 x = 3,5,7时,a 的正整数值分别是15,5,3.五 (本题10分)代数式15-(a +b ) 2的最大值是多少? 当(a +b )2 -3取最小值时,a 与b 有什么关系?解:由于(a +b )2 是非负数,所以 15-(a +b ) 2的最大值是15;当(a +b )2-3取最小值-3时,a +b =0,即a 与b 互为相反数.六 (本题10分)当a >0,b <0时,化简|5-b |+|b -2a |+|1+a |.解:当a >0,b <0时,有5-b >0,b -2a <0,1+a >0,所以|5-b |+|b -2a |+|1+a |= 5-b +2a -b +1+a= 6+3a -2b .。
整式加减能力提高题
1、若A=x﹣2y,B=4x﹣y,求4A﹣B.
2、已知:|x+1|+|y﹣2|=0,求代数式5(2x﹣y)﹣3(x﹣4y)的值.
3、若关于a、b的多项式3(a2﹣ab﹣b2)﹣(a2+mab+b2)不含ab项,求m的值
4、已知多项式(2ax2+3x﹣1)﹣(3x﹣2x2﹣3)的值与x无关,试求2a3﹣[a2﹣2(a+1)+a]﹣2的值.
5、已知A=y2﹣ay﹣1,B=2y2+3ay﹣2y﹣1,且多项式2A﹣B的值与字母y的取值无关,求a的值.
6、有这样一道题:计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,
其中x=,y=﹣1.甲同学把“x=”错抄成了“x=﹣”.但他计算的结果也是正确的,
请你通过计算说明原因.
7、已知代数式A=3x2﹣x+1,马小虎同学在做整式加减运算时,误将“A﹣B”看成“A+B”了,计算的
结果是2x2﹣3x﹣2.
(1)请你帮马小虎同学求出正确的结果;
(2)x是最大的负整数,将x代入(1)问的结果求值.
8、如果代数式(3x2+mx﹣2y+4)﹣(3nx2﹣2x+6y﹣3)的值与字母x的取值无关,
试求代数式m+n的值.
9、已知A=by2﹣ay﹣1,B=2y2+3ay﹣10y﹣1,且多项式2A﹣B的值与字母y的取值无关,
求(2a2b+2ab2)﹣[2(a2b﹣1)+3ab2+2]的值.
10、试说明:不论x取何值代数式(x3+5x2+4x﹣3)﹣(﹣x2+2x3﹣3x﹣1)+(4﹣7x﹣6x2+x3)
的值是不会改变的.。
整式的加减练习100题(有答案)不好意思,由于篇幅较长,无法在此处完整呈现100道整式加减的练习题。
以下是30道以及相关答案。
建议在做题之前充分掌握整式的基础知识。
1. (2x+3)+(4x-2)=答案:6x+12. (3x²+5x+7)-(x²+2x+3)=答案:2x²+3x+43. (2x⁴-3x²+5)+(4x²-2)=答案:2x⁴+x²+34. (5x³-2x²+3x)+(3x⁴-4x²+2)=答案:3x⁴+5x³-6x²+3x+25. (3x²+4x-2)-(x²-2x+5)=答案:2x²+6x-76. (2x⁵+3x³-7x)+(4x³-2x)=答案:2x⁵+7x³-9x7. (x⁴+x²+2)+(2x⁴+3x²-1)=答案:3x⁴+4x²+18. (3x⁴-2x²+5)+(2x⁴+3x²-1)=答案:5x⁴+x²+49. (5y⁴-3y²+2)+(2y²+1)=答案:5y⁴-1y²+310. (7x³-5x²+8x)+(2x⁴-7x³+5x²-8x+1)=答案:2x⁴+2x²+111. (4x⁴-2x³+6)+(2x³-3x²+1)+(3x⁴-4x³+2x²-3x+5)=答案:7x⁴-x²+412. (6y⁵-5y³+7)+(5y³-3y²+1)+(2y⁴-4y³+3y²-2y+1)=答案:6y⁵+2y⁴-2y²-2y+913. (2x⁴-3x²+1)-(3x³-5x²+2)+(5x³-2x²+1)=答案:2x⁴-8x³+6x²+214. (3y⁴+2y³+5)-(2y²-3y+1)+(4y²-2y+3)+(5y³-3y^2+y-4)=答案:3y⁴+7y³+4y²-415. (2x³+4x²-5x+7)-(5x³+3x²-2x+1)+(3x⁴-2x²+1)=答案:3x⁴-3x³+3x²-6x+716. (4y³-3y²+6y)+(5y⁴-2y³+4y²-6y+1)-(2y⁴+3y³-2y²+3y-1)= 答案:3y⁴-3y³+8y²-3y+217. (2a³-5a²+7a)+(3a²-2a+1)+(5a³-2a²+4a-1)-(4a³+a²-3a+5)= 答案:3a³-3a²+12a-418. (3x⁴-2x³+5)-(4x³-2x²+3)+(2x²-3x+1)+(6x⁴-3x³+2x-1)= 答案:9x⁴-6x²19. (5y⁴-3y²+2)+(2y²+1)-(6y³-2y²+3)+(-3y^3+2y^2-y+4)= 答案:5y⁴-9y³+3y²-y+420. (2x³-x+3)-(3x²+x-2)+(5x⁴-2x³+1)-(4x²-3x+7)=答案:5x⁴-x²+421. (6x³-2x²+1)+(2x⁴-5x³+3x²-5x+1)-(3x⁴+4x³-3x²+2x-3)=答案:-x⁴-x³+6x²-6x+322. (2y³-4y²+6y)+(5y⁴-3y³+2y²-1)-(3y⁴+y²+5y-1)+(y⁴-2y³+3y²-2y+7)=答案:4y⁴-y³-2y²+12y+623. (3x²-2x+1)-(x⁴-2x³+3x²-2x+1)+(2x³+x²-3x+5)-(5x⁴-3x³+2x²+1)=答案:-x⁴+6x³-2x²-x+424. (2y²-3y+5)+(5y³-2y²+7)+(3y⁴-4y³+2y²-1)-(4y³+y²+3y-5)=答案:3y⁴+y³-4y²+4y+1225. (4x³-2x²+5x-1)-(5x⁴-3x²+1)+(2x⁴+x³+3x²-5x+1)+(3x³-2x²+x-4)=答案:-3x⁴+2x³+6x²-2x-326. (3a³-2a²+1)+(2a²-3a+5)-(5a³-3a²+2a-1)+(6a⁴-2a³+1)=答案:6a⁴-2a³-6a²+6a+727. (2y⁴-3y³+2y)+(3y⁴-2y³+y²-1)-(4y³+2y²-3y+1)+(y⁴-y³+3y²-4y+7)=答案:1y⁴+4y³-y²+4y+628. (5x²-2x+1)-(2x³+x²-3x+5)-(5x⁴-3x³+2x²+1)+(3x³-4x²+3x-2)= 答案:5x⁴-5x²+529. (2a²-3a+5)-(5a³-2a²+7)+(3a⁴-4a³+2a²-1)+(4a³+a²-3a+5)=答案:3a⁴-2a³+2a²+130. (3x³-2x²+1)+(2x²-x+3)-(3x³+4x²-3x+2)+(5x⁴-2x³+1)=答案:5x⁴-3x²+2整式加减是初中数学中的重点内容之一。
整式的加减专项练习1、3(a+5b)-2(b-a)2、3a-(2b-a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)5、3x2-[7x-(4x-3)-2x2]6、(2xy-y)-(-y+yx)7、5(a2b-3ab2)-2(a2b-7ab)8、(-2ab+3a)-2(2a-b)+2ab 9、(7m2n-5mn)-(4m2n-5mn)10、(5a2+2a-1)-4(3-8a+2a2).11、-3x2y+3xy2+2x2y-2xy2;12、2(a-1)-(2a-3)+3.13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]14、(x2-xy+y)-3(x2+xy-2y)15、3x2-[7x-(4x-3)-2x2]16、a2b-[2(a2b-2a2c)-(2bc+a2c)];17、-2y3+(3xy2-x2y)-2(xy2-y3).18、2(2x-3y)-(3x+2y+1)19、-(3a2-4ab)+[a2-2(2a+2ab)].20、5m-7n-8p+5n-9m-p ;21、(5x 2y-7xy 2)-(xy 2-3x 2y ); 22、3(-3a 2-2a )-[a 2-2(5a-4a 2+1)-3a].23、3a 2-9a+5-(-7a 2+10a-5); 24、-3a 2b-(2ab 2-a 2b )-(2a 2b+4ab 2).25、(5a-3a 2+1)-(4a 3-3a 2); 26、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]27、(8xy -x 2+y 2)+(-y 2+x 2-8xy ); 28、(2x 2-21+3x )-4(x -x 2+21);29、3x 2-[7x -(4x -3)-2x 2]. 30、5a+(4b-3a )-(-3a+b );31、(3a 2-3ab+2b 2)+(a 2+2ab-2b 2); 32、2a 2b+2ab 2-[2(a 2b-1)+2ab 2+2].33、(2a 2-1+2a )-3(a-1+a 2); 34、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)].35、 -32ab +43a 2b +ab +(-43a 2b )-1 36、(8xy -x 2+y 2)+(-y 2+x 2-8xy );37、2x -(3x -2y +3)-(5y -2); 38、-(3a +2b )+(4a -3b +1)-(2a -b -3)39、4x 3-(-6x 3)+(-9x 3) 40、3-2xy +2yx 2+6xy -4x 2y41、 1-3(2ab +a )十[1-2(2a -3ab )].42、 3x -[5x +(3x -2)];43、(3a 2b -ab 2)-(ab 2+3a 2b ) 44、()[]{}y x x y x --+--3233245、(-x 2+5+4x 3)+(-x 3+5x -4) 46、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2).47、5(3a 2b-ab 2)-4(-ab 2+3a 2b ). 48、4a 2+2(3ab-2a 2)-(7ab-1).49、 21xy+(-41xy )-2xy 2-(-3y 2x ) 50、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]51、5m-7n-8p+5n-9m+8p 52、(5x 2y-7xy 2)-(xy 2-3x 2y )53、 3x2y-[2x2y-3(2xy-x2y)-xy] 54、5556、(a2+4ab-4b2)-3(a2+b2)-7(b2-ab).57、a2+2a3+(-2a3)+(-3a3)+3a2;58、5ab+(-4a2b2)+8ab2-(-3ab)+(-a2b)+4a2b2; 59、(7y-3z)-(8y-5z);60、-3(2x2-xy)+4(x2+xy-6).61、(x3+3x2y-5xy2+9y3)+(-2y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y3)62、-3x2y+2x2y+3xy2-2xy2; 63、3(a2-2ab)-2(-3ab+b2);64、5abc-{2a2b-[3abc-(4a2b-ab2]}.65、5m2-[m2+(5m2-2m)-2(m2-3m)].66、-[2m-3(m-n+1)-2]-1.67、31a-( 21a-4b-6c)+3(-2c+2b) 68、 -5a n -a n -(-7a n )+(-3a n ) 69、x 2y-3xy 2+2yx 2-y 2x70、 41a 2b-0.4ab 2- 21a 2b+ 52ab 2;71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}72、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy];73、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-3474、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.75、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;76、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-13177、化简、求值2(a2b+2b3-ab3)+3a3-(2ba2-3ab2+3a3)-4b3,其中a=-3,b=278、化简,求值:(2x3-xyz)-2(x3-y3+xyz)+(xyz-2y3),其中x=1,y=2,z=-3.79、化简,求值:5x2-[3x-2(2x-3)+7x2],其中x=-2.80、若两个多项式的和是2x2+xy+3y2,一个加式是x2-xy,求另一个加式.81、若2a2-4ab+b2与一个多项式的差是-3a2+2ab-5b2,试求这个多项式.82、求5x2y-2x2y与-2xy2+4x2y的和.83、求3x2+x-5与4-x+7x2的差.84、计算 5y+3x+5z2与12y+7x-3z2的和85、计算8xy2+3x2y-2与-2x2y+5xy2-3的差86、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M87、当3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.88、化简再求值5abc-{2a 2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-4189、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2(1)求A+B ; (2)求41(B-A);90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?91、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N .92、已知222244,5A x xy y B x xy y =-+=+-,求3A -B93、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B .94、已知2 a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值.95、化简求值:5abc-2a 2b+[3abc-2(4ab 2-a 2b )],其中a 、b 、c 满足|a-1|+|b-2|+c 2=0.96、已知a ,b ,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值:2(x 2y+xyz )-3(x 2y-xyz )-4x 2y .97、已知a+b=7,ab=10,求代数式(5ab+4a+7b )+(6a-3ab )-(4ab-3b )的值.98、已知m 2+3mn=5,求5m 2-[+5m 2-(2m 2-mn )-7mn-5]的值99、设A=2x 2-3xy+y 2+2x+2y ,B=4x 2-6xy+2y 2-3x-y ,若|x-2a|+(y-3)2=0,且B-2A=a ,求a 的值.100、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A 与B 的大小.整式的加减专项练习答案:1、3(a+5b )-2(b-a )=5a+13b2、3a-(2b-a )+b=4a-b .3、2(2a 2+9b )+3(-5a 2-4b )=—11a 2+6b 2 4、(x 3-2y 3-3x 2y )-(3x 3-3y 3-7x 2y )= -2x 3+y 3+4x 2y5、3x 2-[7x-(4x-3)-2x 2] = 5x 2 -3x-36、(2xy-y )-(-y+yx )= xy7、5(a 22b-3ab 2)-2(a 2b-7ab ) = -a 2b+11ab 8、(-2ab+3a )-2(2a-b )+2ab= -2a+b9、(7m 2n-5mn )-(4m 2n-5mn )= 3m 2n10、(5a 2+2a-1)-4(3-8a+2a 2)= -3a 2+34a-1311、-3x 2y+3xy 2+2x 2y-2xy 2= -x 2y+xy 212、2(a-1)-(2a-3)+3.=413、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]= 7a 2+ab-2b 214、(x 2-xy+y )-3(x 2+xy-2y )= -2x 2-4xy+7y15、3x 2-[7x-(4x-3)-2x 2]=5x 2-3x-3 16、a 2b-[2(a 2b-2a 2c )-(2bc+a 2c )]= -a 2b+2bc+6a 2c17、-2y 3+(3xy 2-x 2y )-2(xy 2-y 3)= xy 2-x 2y18、2(2x-3y )-(3x+2y+1)=2x-8y-1 19、-(3a 2-4ab )+[a 2-2(2a+2ab )]=-2a 2-4a20、5m-7n-8p+5n-9m-p = -4m-2n-9p21、(5x 2y-7xy 2)-(xy 2-3x 2y )=4xy 2-4x 2y22、3(-3a 2-2a )-[a 2-2(5a-4a 2+1)-3a]=-18a 2 +7a+223、3a 2-9a+5-(-7a 2+10a-5)=10a 2-19a+1024、-3a 2b-(2ab 2-a 2b )-(2a 2b+4ab 2)= -4a 2b-64ab 225、(5a-3a 2+1)-(4a 3-3a 2)=5a-4a 2+126、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]=7a 2+ab-2b 2 27、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=028、(2x 2-21+3x )-4(x -x 2+21) = 6x 2-x-25 29、3x 2-[7x -(4x -3)-2x 2]= 5x 2-3x -330、5a+(4b-3a )-(-3a+b )= 5a+3b31、(3a 2-3ab+2b 2)+(a 2+2ab-2b 2)= 4a 2-ab32、2a 2b+2ab 2-[2(a 2b-1)+2ab 2+2].= -133、(2a 2-1+2a )-3(a-1+a 2)= -a 2-a+234、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)]=-2x 2+5xy-2y 235、-32ab +43a 2b +ab +(-43a 2b )-1 = 31ab-1 36、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=037、2x -(3x -2y +3)-(5y -2)=-x-3y-138、-(3a +2b )+(4a -3b +1)-(2a -b -3)= -a-4b+439、4x 3-(-6x 3)+(-9x 3)= x 340、3-2xy +2yx 2+6xy -4x 2y = -2 x 2y+441、 1-3(2ab +a )十[1-2(2a -3ab )]=2-7a42、 3x -[5x +(3x -2)]=-5x+243、(3a 2b -ab 2)-(ab 2+3a 2b )= -2ab 244、()[]{}y x x y x --+--32332 = 5x+y45、(-x 2+5+4x 3)+(-x 3+5x -4)= 3x 3-x 2+5x+1 46、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2)=a 2+9a-147、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).=3a 2b-ab 248、4a 2+2(3ab-2a 2)-(7ab-1)=1-ab49、 21xy+(-41xy )-2xy 2-(-3y 2x )=41xy+xy 2 50、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]=11a 2-8a51、5m-7n-8p+5n-9m+8p=-4m-2n59、(7y-3z )-(8y-5z )=-y+2z60、-3(2x 2-xy )+4(x 2+xy-6)=-2x 2+7xy-24 61、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)=0 62、-3x 2y+2x 2y+3xy 2-2xy 2 = -x 2y+xy 263、3(a 2-2ab )-2(-3ab+b 2)=3a 2-2b 264、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}=8abc-6a 2b+ab 265、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )]=m 2-4m66、-[2m-3(m-n+1)-2]-1=m-3n+467、31a-( 21a-4b-6c)+3(-2c+2b)= -61a+10b 68、 -5a n -a n -(-7a n )+(-3a n )= -2a n69、x 2y-3xy 2+2yx 2-y 2x=3x 2y-4xy 271、 41a 2b-0.4ab 2- 21a 2b+ 52ab 2 = -41a 2b 71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}= 10a+9b-2c-672、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy]= 2x 2-y 2 73、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-34 原式=2x 2+21y 2-2 =698 74、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32. 原式=-3x+y 2=694 75、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121; 原式=x 3+x 2-x+6=68376、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-131 原式=5m-3n-1=577、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =2原式=-2ab 3+3ab 2=1278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-3.原式=-2xyz=679、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中x=-2.原式=-2x 2+x-6=-1680、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2-xy ,求另一个加式.(2x 2+xy+3y 2 ) ——( x 2-xy )= x 2+2xy+3y 281、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.( 2a 2-4ab+b 2 )—(-3a 2+2ab-5b 2)=5a 2 -6ab+6b 282、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.(5x 2y -2x 2y )+(-2xy 2+4x 2y )=3xy 2+2x 2y83、 求3x 2+x -5与4-x +7x 2的差.(3x 2+x -5)—(4-x +7x 2)=—4x 2+2x -984、计算 5y+3x+5z 2与12y+7x-3z 2的和(5y+3x+5z 2)+(12y+7x-3z 2)=17y+10x+2z 285、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差(8xy 2+3x 2y-2)—(-2x 2y+5xy 2-3)=5x 2y+3xy 2+186、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M23y 87、当3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值. 原式=-8xy+y= —1588、化简再求值5abc-{2a 2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-41 原式=83abc-a 2b-2ab 2=3689、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2 (1)求A+B ;(2)求41(B-A); A+B=2a 2+2b 2 41(B-A)=ab 90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得 9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?A=10x 2+x+5 A+B=11x 2+4x+391、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N .M-2N=5x 2-4x+392、已知222244,5A x xy y B x xy y =-+=+-,求3A -B3A -B=11x 2-13xy+8y 293、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B .2A -3B= 5x 2+11xy +2y 294、已知2-a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值. 原式=9ab 2-4a 2b=3495、化简求值:5abc-2a 2b+[3abc-2(4ab 2-a 2b )],其中a 、b 、c 满足|a-1|+|b-2|+c 2=0. 原式=8abc-8a 2b=-3296、已知a ,b ,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值: 2(x 2y+xyz )-3(x 2y-xyz )-4x 2y .原式=-5x 2y+5xyz=9097、已知a+b=7,ab=10,求代数式(5ab+4a+7b )+(6a-3ab )-(4ab-3b )的值. 原式=10a+10b-2ab=5098、已知m 2+3mn=5,求5m 2-[+5m 2-(2m 2-mn )-7mn-5]的值原式=2m 2+6mn+5=1599、设A=2x 2-3xy+y 2+2x+2y ,B=4x 2-6xy+2y 2-3x-y ,若|x-2a|+(y-3)2=0,且B-2A=a ,求a 的值. B-2A=-7x-5y=-14a-15=a a=-1100、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A与B 的大小. A=2a 2-4a +1 B =2a 2-4a +3 所以A<B。
整式的加减专项练习25题练习1:(2x + 3y) - (4x - 5y)解答:使用分配律展开括号,得到2x + 3y - 4x + 5y。
合并同类项,得到-2x + 8y。
练习2:(6a - 4b) + (8a + 9b)解答:使用分配律展开括号,得到6a - 4b + 8a + 9b。
合并同类项,得到14a + 5b。
练习3:(5x^2 - 3xy + 2y^2) - (2x^2 + xy - 4y^2)解答:使用分配律展开括号,得到5x^2 - 3xy + 2y^2 - 2x^2 - xy + 4y^2。
合并同类项,得到3x^2 - 4xy + 6y^2。
练习4:(-2x^2 + 3xy - y^2) + (4x^2 - 2xy + 5y^2)解答:使用分配律展开括号,得到-2x^2 + 3xy - y^2 + 4x^2 - 2xy + 5y^2。
合并同类项,得到2x^2 + xy + 4y^2。
练习5:(-7a^3 + 4a^2b - 3ab^2) - (-2a^3 - 5a^2b + ab^2)解答:使用分配律展开括号,得到-7a^3 + 4a^2b - 3ab^2 + 2a^3 +5a^2b - ab^2。
合并同类项,得到-5a^3 + 9a^2b - 4ab^2。
练习6:(3x - 4y)(5x + 2y)解答:使用分配律展开括号,得到15x^2 + 6xy - 20xy - 8y^2。
合并同类项,得到15x^2 - 14xy - 8y^2。
练习7:(2a^2 - 3ab + 4b^2)(3a + 2b)解答:使用分配律展开括号,得到6a^3 + 4a^2b - 9a^2b - 6ab^2 + 12ab^2 + 8b^3。
合并同类项,得到6a^3 - 5a^2b + 14ab^2 + 8b^3。
练习8:(5x^3 - 2xy^2)(3x^2 + 4y^2)解答:使用分配律展开括号,得到15x^5 + 20x^2y^2 - 6x^3y^2 -8xy^4。
七上--整式的加减例题讲解+提高练习分类讨论例1:求代数式13a/3−3b2−(4a3−2b2)的值改写:求代数式13a/3−3b^2−(4a^3−2b^2)的值,不考虑a、b的取值。
练1:若(2mx^2−x+3)−(3x^2−x−4)的结果与x的取值无关,求m的值。
改写:若(2mx^2−x+3)−(3x^2−x−4)的结果与x的取值无关,求m的值。
练2:已知A=2x^2+3xy−2x−1,B=−x^2+xy−1且3A+6B的值与x无关。
求y值。
改写:已知A=2x^2+3xy−2x−1,B=−x^2+xy−1且3A+6B的值与x无关。
求y的值。
练3:计算(2x^3−3x^2y−2xy^2)−(x^3−2x^2y+y^3)+(−x^3+3x^2y−y^3)的值,其中x=2,y=−1.甲同学把x=2错抄成了x=−2,但他的计算的结果也是正确的,试说明理由,并求出这个结果。
改写:计算(2x^3−3x^2y−2xy^2)−(x^3−2x^2y+y^3)+(−x^3+3x^2y−y^3)的值,其中x=2,y=−1.甲同学把x=2错抄成了x=−2,但他的计算的结果也是正确的,试说明理由,并求出这个结果。
例2:若多项式2xn−1−xn+3xm+1是五次二项式,试求3n^2+2m−5的值。
改写:若多项式2xn−1−xn+3xm+1是五次二项式,求3n^2+2m−5的值。
练1:若多项式2xn−1−xn+xm+1−3xm是五次三项式,试求m+n的值。
改写:若多项式2xn−1−xn+xm+1−3xm是五次三项式,求m+n的值。
例3:a+b+c=0,abc>0,求b+c/|a|+a+c/|b|+b+a/|c|。
改写:已知a+b+c=0,abc>0,求b+c/|a|+a+c/|b|+b+a/|c|的值。
练1:已知:a>0,b<0,|b|<|b|<1,那么以下判断正确的是()A.1﹣b>﹣b>1+a>aB.1+a>a>1﹣b>﹣bC.1+a>1﹣b>a>﹣bD.1﹣b>1+a>﹣b>a改写:已知:a>0,b-b>1+a>aB.1+a>a>1-b>-bC.1+a>1-b>a>-bD.1-b>1+a>-b>a例3:已知代数式9−6y−4y^2=7,求2y^2+3y+7的值。
整式的加减练习100题(有答案) 整式的加减专项练习100题1、3(a+5b)-2(b—a)2、3a-(2b-a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3-2y3—3x2y)-(3x3—3y3-7x2y)5、3x2-[7x-(4x—3)-2x2]6、(2xy—y)-(-y+yx)7、5(a2b-3ab2)-2(a2b—7ab)9、(7m2n—5mn)-(4m2n—5mn)10、(5a2+2a—1)-4(3-8a+2a2).11、—3x2y+3xy2+2x2y—2xy2;12、2(a-1)—(2a-3)+3.13、—2(ab-3a2)—[2b2—(5ab+a2)+2ab]14、(x2—xy+y)—3(x2+xy—2y)15、3x2-[7x-(4x-3)-2x2]17、—2y3+(3xy2—x2y)-2(xy2-y3).18、2(2x-3y)-(3x+2y+1)19、—(3a2-4ab)+[a2—2(2a+2ab)].20、5m—7n—8p+5n-9m-p;21、(5x2y—7xy2)—(xy2-3x2y);22、3(-3a2—2a)—[a2—2(5a—4a2+1)-3a].23、3a2—9a+5-(—7a2+10a—5);24、—3a2b—(2ab2—a2b)—(2a2b+4ab2).26、-2(ab—3a2)—[2b2—(5ab+a2)+2ab]27、(8xy-x2+y2)+(-y2+x2-8xy);28、(2x2-21+3x)-4(x-x2+21);29、3x2-[7x-(4x-3)-2x2].30、5a+(4b—3a)—(—3a+b);31、(3a2-3ab+2b2)+(a2+2ab—2b2);32、2a2b+2ab2-[2(a2b-1)+2ab2+2].33、(2a2—1+2a)-3(a—1+a2);34、2(x2-xy)—3(2x2—3xy)—2[x2—(2x2—xy+y2)].36、(8xy-x2+y2)+(-y2+x2-8xy);37、2x-(3x-2y+3)-(5y-2);38、-(3a+2b)+(4a-3b+1)-(2a-b-3)39、4x3-(-6x3)+(-9x3)40、3-2xy+2yx2+6xy-4x2y41、 1-3(2ab+a)十[1-2(2a-3ab)].42、 3x-[5x+(3x-2)];43、(3a2b-ab2)-(ab2+3a2b)44、()[] {}yxxyx--+--3233245、(-x2+5+4x3)+(-x3+5x-4)46、(5a2-2a+3)-(1-2a+a2)+3(-1+3a—a2). 48、4a2+2(3ab-2a2)-(7ab—1).49、21xy+(—41xy)-2xy2-(-3y2x)50、5a2-[a2—(5a2—2a)-2(a2-3a)]51、5m—7n-8p+5n-9m+8p52、(5x2y—7xy2)-(xy2-3x2y)5556、(a2+4ab—4b2)-3(a2+b2)—7(b2—ab).57、a2+2a3+(-2a3)+(-3a3)+3a258、5ab+(—4a2b2)+8ab2—(-3ab)+(—a2b)+4a2b2;60、—3(2x 2—xy )+4(x 2+xy-6).61、(x 3+3x 2y-5xy 2+9y 3)+(—2y 3+2xy 2+x 2y —2x 3)(4x 2y-x 3—3xy 2+7y 3)62、—3x 2y+2x 2y+3xy 2-2xy 2;63、3(a 2-2ab )-2(—3ab+b 2);64、5abc —{2a 2b-[3abc-(4a 2b-ab 2]}.65、5m 2—[m 2+(5m 2-2m )—2(m 2-3m )].66、—[2m-3(m-n+1)—2]—1.67、31a —( 21a-4b-6c )+3(—2c+2b )68、 —5a n—a n—(-7a n)+(-3a n)69、x 2y —3xy 2+2yx 2—y 2x70、 41a 2b-0。
整式的加减拓展提高试题【代入求值】【例1】 ⑴已知代数式a b -等于3,则代数式()()25a b a b ---的值为 .⑵已知代数式2326y y -+的值为8,那么代数式2641y y -+的值为 .⑶若232x x --的值为3,则2239x x -+的值为_______.⑷已知代数式2346x x -+的值为9,则代数式2463x x -+的值为 .⑸已知32c a b =-,求代数式22523c a b a b c ----的值.【构造整体】【例2】 ⑴如果225a ab +=,222ab b +=-,则224a b -= .⑵己知:2a b -=,3b c -=-,5c d -=,求()()()a c b d c b -⨯-⨯-的值.(3)已知,05322=--a a 求109124234-+-a a a 的值。
(4)已知210m m +-=,求3222005m m ++的值。
【赋值法】【例3】 1.已知代数式25342()x ax bx cx x dx +++,当1x =时,值为1,求该代数式当1x =-时的值.2.已知代数式4323ax bx cx dx ++++,当2x =时它的值为20;当2x =-时它的值为16, 求2x =时,代数式423ax cx ++的值. 3.已知7=-+ba ba ,求)(3)(2b a b a b a b a +---+的值;4.若543zy x ==,且1823=+-z y x ,求z y z 35-+的值; 5.已知211=+y x ,求代数式yxy x y xy x 535323+++-的值;6.若t z t y t x 32==,且t z y x 2223=++,求tz yx 5234--的值;7.当7=x 时,代数式885=-+bx ax ,求当7-=x 时,8225++x bx a 的值;巩固.1.当x=2010时,201013=++bx ax ,那么x=-2010时,13++bx ax 的值是多少?2.若b a ,互为相反数,求b b b b b a a a a a 865429753+++++++++的值.3.已知3a b -=,2b c -=;求代数式()2313a c a c -++-的值。
6.1 整式的加减法一、选择题(共5小题;共25分)1. 下列运算中正确的是( )A. 3a2−2a2=a2B. 3a2−2a2=1C. 3x2−x2=3D. 3x2−x=2x2. 下列运算正确的是 ( )A. 3x+4y=7xyB. 6y2−y2=5C. b4+b3=b7D. 4x−x=3xab n是同类项,那么m−n的值是 ( )3. 已知代数式−5a m−1b6与12A. 5B. −5C. 4D. −44. 下列计算中,正确的是 ( )A. 5a2b−4a2b=a2bB. 2b2+3b3=5b5C. 6a3−2a3=4D. a+b=ab5. 下列计算正确的是 ( )A. 7a+a=7a2B. 5y−3y=2C. 3x2y−2x2y=x2yD. 3a+2b=5ab二、填空题(共5小题;共25分)6. 三个连续整数中,n是最小的一个,这三个数的和是.7. 当b=时,式子2a+ab−5的值与a无关.=8. 设m和n均不为零,3x2y3和−5x2+2m+n y3是同类项,则3m3−m2n+3mn2+9n35m3+3m2n−6mn2+9n39. 多项式2(x2−xy−3y2)−(3x2−axy+y2)中不含xy项,则a=.∣x∣+∣x+2∣的最大值与最小值之差为10. 设−1≤x≤2,则∣x−2∣−12三、解答题(共10小题;共130分)11. 设a是一个两位数,b是一个三位数,把a放在b的左边组成一个五位数x,把b放在a的左边,组成一个五位数y,试问(x−y)能否被9整除?说明理由.12. 若多项式2x n−1−x n+3x m+1是五次二项式,试求3n2+2m−5的值.(x−5)2+5∣m∣=0,求代数式(2x2−3xy+6y2)−13. 若3a2b3与−3a2b y+1是同类项,且23m(3x2−xy+9y2)的值.14. 小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米 ),解答下列问题:(1) 用含m,n的代数式表示地面的总面积S;(2) 已知n=1.5,且客厅面积是卫生间面积的8倍,如果铺1平方米地砖的平均费用为100元,那么小王铺地砖的总费用为多少元?15. 先化简,再求值:2x−3y−3(x−2y),其中x=−2,y=1.16. 已知a+2b−4=0,求代数式12a−[4b+(−c)−(12a−c)]+6b的值.17. 先化简,再求值:(3a2−7a)−2(a2−3a+2),其中a2−a−5=0.18. 先化简,再求值:−a2b+(3ab2−a2b)−2(2ab2−a2b) ,其中a=1 , b=−2 .19. 若关于x,y的多项式x m−1y3+x3−m y∣n−2∣+x m−1y+x2m−3y∣n∣+m+n−1合并同类项后得到一个四次三项式,直接写出m,n的值(所有指数均为正整数).20. 用“ ☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1) 求(−2)☆3的值;(2) 若(a+12☆3)☆(−12)=8,求a的值;(3) 若2☆x=m,(14x)☆3=n(其中x为有理数),试比较m,n的大小.答案第一部分1. A2. D3. D4. A5. C第二部分6. 3n+37. −28. 55979. 210. 1第三部分11. 由题意得:x=1000a+b,y=100b+a,x−y=(1000a+b)−(100b+a)=1000a+b−100b−a=999a−99b=9(111a−11b).所以计算的结果能被9整除.12. 由多项式2x n−1−x n+3x m+1是五次二项式,应分情况讨论:(1)若2x n−1与3x m+1是同类项,则−x n是五次的,则n=5,n−1=4,m+1=n−1=4,所以m=3.所以3n2+2m−5=3×52+2×3−5=76;(2)若−x n与3x m+1是同类项,且都是五次的,则n=5,m+1=5,得m=4.所以3n2+2m−5=3×52+2×4−5=78.13. 由同类项的定义,得y+1=3,∴y=2.(x−5)2+5∣m∣=0,又(x−5)2≥0,∣m∣≥0,且23∴(x−5)2=0,∣m∣=0.∴x=5,m=0.∴(2x2−3xy+6y2)−m(3x2−xy+9y2)=2x2−3xy+6y2.把x=5,y=2代入得,原式=2×25−3×5×2+6×22=50−30+24=44.14. (1) S=2n+6m+3×4+2×3=6m+2n+18 .(2) 当n=1.5时,2n=3.根据题意,得6m=8×3=24 .∵铺1平方米地砖的平均费用为100元,∴铺地砖的总费用为:100(6m+2n+18)=100×(24+3+18)=4500.答:铺地砖的总费用为4500元.15. 原式=2x −3y −(3x −6y )=2x −3y −3x +6y =−x +3y .当 x =−2,y =1 时−x +3y =−(−2)+3×1=2+3=5 .16.原式=12a −[4b +(−c )−(12a −c )]+6b =12a −[4b +(−c )−12a +c ]+6b =12a −[4b −12a ]+6=12a −4b +12a +6b =a +2b因为 a +2b −4=0,所以 a +2b =4 . 所以,原式 =4 .17. 原式=3a 2−2a 2−7a +6a −4=a 2−a −4∵a 2−a −5=0, ∴a 2−a =5 .∴a 2−a −4=5−4=1 .18. −a 2b +(3ab 2−a 2b )−2(2ab 2−a 2b )=−a 2b +3ab 2−a 2b −4ab 2+2a 2b =−ab 2.当 a =1 , b =−2 时,−ab 2=−4, ∴ 原式的值是 −4 . 19. m =2,n =1 或 3.20. (1) (−2)☆3=−2×32+2×(−2)×3+(−2)=−32. (2)a +12☆3=a +12×32+2×a +12×3+a +12=8(a +1).8(a +1)☆(−12)=8(a +1)×(−12)2+2×8(a +1)×(−12)+8(a +1)=2(a +1).∴2(a +1)=8, 解得,a =3.(3) 由题意 m =2x 2+2×2x +2=2x 2+4x +2, n =14x ×32+2×14x ×3+14x =4x , 所以 m −n =2x 2+2>0. 所以 m >n .。
整式的加减专项练习100题1、3(a+5b)-2(b-a)2、3a-(2b-a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)5、3x2-[7x-(4x-3)-2x2]6、(2xy-y)-(-y+yx)7、5(a2b-3ab2)-2(a2b-7ab)8、(-2ab+3a)-2(2a-b)+2ab9、(7m2n-5mn)-(4m2n-5mn)10、(5a2+2a-1)-4(3-8a+2a2).11、-3x2y+3xy2+2x2y-2xy2;12、2(a-1)-(2a-3)+3.13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]14、(x2-xy+y)-3(x2+xy-2y)15、3x2-[7x-(4x-3)-2x2]16、a2b-[2(a2b-2a2c)-(2bc+a2c)];17、-2y3+(3xy2-x2y)-2(xy2-y3).18、2(2x-3y)-(3x+2y+1)19、-(3a2-4ab)+[a2-2(2a+2ab)].20、5m-7n-8p+5n-9m-p;21、(5x2y-7xy2)-(xy2-3x2y);22、3(-3a2-2a)-[a2-2(5a-4a2+1)-3a].23、3a2-9a+5-(-7a2+10a-5);24、-3a2b-(2ab2-a2b)-(2a2b+4ab2).25、(5a-3a2+1)-(4a3-3a2);26、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]27、(8xy-x2+y2)+(-y2+x2-8xy);28、(2x2-21+3x)-4(x-x2+21);29、3x2-[7x-(4x-3)-2x2].30、5a+(4b-3a)-(-3a+b);31、(3a2-3ab+2b2)+(a2+2ab-2b2);32、2a2b+2ab2-[2(a2b-1)+2ab2+2].33、(2a2-1+2a)-3(a-1+a2);34、2(x2-xy)-3(2x2-3xy)-2[x2-(2x2-xy+y2)].35、-32ab+43a2b+ab+(-43a2b)-136、(8xy-x2+y2)+(-y2+x2-8xy);37、2x-(3x-2y+3)-(5y-2);38、-(3a+2b)+(4a-3b+1)-(2a-b-3)39、4x3-(-6x3)+(-9x3)40、3-2xy+2yx2+6xy-4x2y41、1-3(2ab+a)十[1-2(2a-3ab)].42、3x-[5x+(3x-2)];43、(3a2b-ab2)-(ab2+3a2b)44、()[]{}yxxyx--+--3233245、(-x2+5+4x3)+(-x3+5x-4)46、(5a2-2a+3)-(1-2a+a2)+3(-1+3a-a2).47、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).48、4a 2+2(3ab-2a 2)-(7ab-1).49、21xy+(-41xy )-2xy 2-(-3y 2x )50、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]51、5m-7n-8p+5n-9m+8p52、(5x 2y-7xy 2)-(xy 2-3x 2y )53、 3x 2y-[2x 2y-3(2xy-x 2y )-xy]54、 3x 2-[5x-4( 21x 2-1)]+5x 2 55、2a 3b-21a 3b-a 2b+ 21a 2b-ab 2;56、(a 2+4ab-4b 2)-3(a 2+b 2)-7(b 2-ab ).57、a 2+2a 3+(-2a 3)+(-3a 3)+3a258、5ab+(-4a 2b 2)+8ab 2-(-3ab )+(-a 2b )+4a 2b 2;59、(7y-3z )-(8y-5z );60、-3(2x 2-xy )+4(x 2+xy-6).61、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)62、-3x 2y+2x 2y+3xy 2-2xy 2;63、3(a 2-2ab )-2(-3ab+b 2);64、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}.65、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )].66、-[2m-3(m-n+1)-2]-1. 67、31a-( 21a-4b-6c)+3(-2c+2b)68、 -5a n-a n-(-7a n)+(-3a n)69、x 2y-3xy 2+2yx 2-y 2x70、41a 2b-0.4ab 2-21a 2b+52ab 2;71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}72、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy];73、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-3474、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.75、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;76、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-13177、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-79、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中x=-2.80、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2-xy ,求另一个加式.81、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.82、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.83、 求3x 2+x -5与4-x +7x 2的差.84、计算 5y+3x+5z 2与12y+7x-3z 2的和85、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差86、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M87、当x=-21,y=-3时,求代数式3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.88、化简再求值5abc-{2a2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-4189、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2 (1)求A+B ; (2)求41(B-A);90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?91、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N .92、已知222244,5A x xy y B x xy y =-+=+-,求3A -B93、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B .94、已知2-a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值.95、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中a、b、c满足|a-1|+|b-2|+c2=0.96、已知a,b,z满足:(1)已知|x-2|+(y+3)2=0,(2)z是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.97、已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.98、已知m2+3mn=5,求5m2-[+5m2-(2m2-mn)-7mn-5]的值99、设A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x-y,若|x-2a|+(y-3)2=0,且B-2A=a,求a的值.100、有两个多项式:A=2a2-4a+1,B=2(a2-2a)+3,当a取任意有理数时,请比较A与B的大小.答案:1、3(a+5b )-2(b-a )=5a+13b2、3a-(2b-a )+b=4a-b .3、2(2a 2+9b )+3(-5a 2-4b )=—11a 2+6b 24、(x 3-2y 3-3x 2y )-(3x 3-3y 3-7x 2y )= -2x 3+y 3+4x 2y5、3x 2-[7x-(4x-3)-2x 2] = 5x 2-3x-3 6、(2xy-y )-(-y+yx )= xy7、5(a 22b-3ab 2)-2(a 2b-7ab ) = -a 2b+11ab8、(-2ab+3a )-2(2a-b )+2ab= -2a+b 9、(7m 2n-5mn )-(4m 2n-5mn )= 3m 2n10、(5a 2+2a-1)-4(3-8a+2a 2)= -3a 2+34a-13 11、-3x 2y+3xy 2+2x 2y-2xy 2= -x 2y+xy 2 12、2(a-1)-(2a-3)+3.=413、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]= 7a 2+ab-2b 214、(x 2-xy+y )-3(x 2+xy-2y )= -2x 2-4xy+7y15、3x 2-[7x-(4x-3)-2x 2]=5x 2-3x-316、a 2b-[2(a 2b-2a 2c )-(2bc+a 2c )]= -a 2b+2bc+6a 2c 17、-2y 3+(3xy 2-x 2y )-2(xy 2-y 3)= xy 2-x 2y 18、2(2x-3y )-(3x+2y+1)=2x-8y-1 19、-(3a 2-4ab )+[a 2-2(2a+2ab )]=-2a 2-4a20、5m-7n-8p+5n-9m-p = -4m-2n-9p 21、(5x 2y-7xy 2)-(xy 2-3x 2y )=4xy 2-4x 2y 22、3(-3a 2-2a )-[a 2-2(5a-4a 2+1)-3a]=-18a 2 +7a+2 23、3a 2-9a+5-(-7a 2+10a-5)=10a 2-19a+10 24、-3a 2b-(2ab 2-a 2b )-(2a 2b+4ab 2)= -4a 2b-64ab 2 25、(5a-3a 2+1)-(4a 3-3a 2)=5a-4a 2+1 26、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]=7a 2+ab-2b 227、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=028、(2x 2-21+3x )-4(x -x 2+21) = 6x 2-x-25 29、3x 2-[7x -(4x -3)-2x 2]= 5x 2-3x -330、5a+(4b-3a )-(-3a+b )= 5a+3b31、(3a 2-3ab+2b 2)+(a 2+2ab-2b 2)= 4a 2-ab32、2a 2b+2ab 2-[2(a 2b-1)+2ab 2+2].= -133、(2a 2-1+2a )-3(a-1+a 2)= -a 2-a+2 34、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)]=-2x 2+5xy-2y 235、-32ab +43a 2b +ab +(-43a 2b )-1 = 31ab-1 36、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=037、2x -(3x -2y +3)-(5y -2)=-x-3y-138、-(3a +2b )+(4a -3b +1)-(2a -b -3)= -a-4b+4 39、4x 3-(-6x 3)+(-9x 3)= x 340、3-2xy +2yx 2+6xy -4x 2y = -2 x 2y+4 41、 1-3(2ab +a )十[1-2(2a -3ab )]=2-7a42、 3x -[5x +(3x -2)]=-5x+243、(3a 2b -ab 2)-(ab 2+3a 2b )= -2ab 244、()[]{}y x x y x --+--32332 = 5x+y 45、(-x 2+5+4x 3)+(-x 3+5x -4)= 3x 3-x 2+5x+1 46、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2)=a 2+9a-1 47、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).=3a 2b-ab 248、4a 2+2(3ab-2a 2)-(7ab-1)=1-ab 49、21xy+(-41xy )-2xy 2-(-3y 2x )=41xy+xy 250、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]=11a 2-8a 51、5m-7n-8p+5n-9m+8p=-4m-2n59、(7y-3z )-(8y-5z )=-y+2z 60、-3(2x2-xy )+4(x 2+xy-6)=-2x2+7xy-2461、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)=062、-3x 2y+2x 2y+3xy 2-2xy 2 = -x 2y+xy 263、3(a 2-2ab )-2(-3ab+b 2)=3a 2-2b 264、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}=8abc-6a 2b+ab 2 65、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )]=m 2-4m 66、-[2m-3(m-n+1)-2]-1=m-3n+467、31a-( 21a-4b-6c)+3(-2c+2b)= -61a+10b 68、 -5a n -a n -(-7a n )+(-3a n )= -2a n69、71、 71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}= 10a+9b-2c-672、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy]= 2x 2-y 273、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-34 原式=2x 2+21y 2-2 =69874、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.原式=-3x+y 2=69475、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121; 原式=x 3+x 2-x+6=68376、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-131 原式=5m-3n-1=577、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =2原式=-2ab 3+3ab 2=12 78、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-3. 原式=-2xyz=679、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中x=-2.原式=-2x 2+x-6=-1680、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2-xy ,求另一个加式.(2x 2+xy+3y 2 ) ——( x 2-xy )= x 2+2xy+3y 2 81、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.( 2a 2-4ab+b 2 )—(-3a 2+2ab-5b 2)=5a 2 -6ab+6b 282、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.(5x 2y -2x 2y )+(-2xy 2+4x 2y )=3xy 2+2x 2y 83、 求3x 2+x -5与4-x +7x 2的差.(3x 2+x -5)—(4-x +7x 2)=—4x 2+2x -984、计算 5y+3x+5z 2与12y+7x-3z 2的和(5y+3x+5z 2)+(12y+7x-3z 2)=17y+10x+2z 285、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差(8xy 2+3x 2y-2)—(-2x 2y+5xy 2-3)=5x 2y+3xy 2+1 86、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M M=-21x 2+4xy —23y87、当x=- 21,y=-3时,求代数式3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.原式=-8xy+y= —15 88、化简再求值5abc-{2a2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-41原式=83abc-a 2b-2ab 2=3689、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2 (1)求A+B ; (2)求41(B-A); A+B=2a 2+2b 241(B-A)=ab 90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?A=10x 2+x+5 A+B=11x 2+4x+391、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N . M-2N=5x 2-4x+392、已知222244,5A x xy y B x xy y =-+=+-,求3A -B3A -B=11x 2-13xy+8y 293、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B . 2A -3B= 5x 2+11xy +2y 294、已知2-a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值.原式=9ab 2-4a 2b=3495、化简求值:5abc-2a 2b+[3abc-2(4ab 2-a 2b )],其中a 、b 、c 满足|a-1|+|b-2|+c 2=0.原式=8abc-8a2b=-3296、已知a,b,z满足:(1)已知|x-2|+(y+3)2=0,(2)z是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.原式=-5x2y+5xyz=9097、已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.原式=10a+10b-2ab=5098、已知m2+3mn=5,求5m2-[+5m2-(2m2-mn)-7mn-5]的值原式=2m2+6mn+5=1599、设A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x-y,若|x-2a|+(y-3)2=0,且B-2A=a,求a的值.B-2A=-7x-5y=-14a-15=a a=-1100、有两个多项式:A=2a2-4a+1,B=2(a2-2a)+3,当a取任意有理数时,请比较A与B的大小.A=2a2-4a+1 B=2a2-4a+3 所以A<B。
整式的加减专项练习100题1、 3(a+5b )—2(b-a )2、3a —(2b-a )+b2、3、2(2a 2+9b)+3(-5a 2—4b )4、(x 3—2y 3—3x 2y )—(3x 3-3y 3—7x 2y)5、3x 2-[7x —(4x-3)—2x 2]6、(2xy —y )-(—y+yx )7、5(a 2b —3ab 2)-2(a 2b —7ab ) 8、(-2ab+3a)—2(2a-b )+2ab9、(7m 2n —5mn )-(4m 2n —5mn) 10、(5a 2+2a —1)—4(3—8a+2a 2).11、—3x 2y+3xy 2+2x 2y-2xy 2; 12、2(a —1)—(2a —3)+3.13、-2(ab —3a 2)-[2b 2-(5ab+a 2)+2ab] 14、(x 2—xy+y )—3(x 2+xy —2y )15、3x 2-[7x-(4x —3)—2x 2] 16、a 2b —[2(a 2b-2a 2c )-(2bc+a 2c)];17、—2y 3+(3xy 2—x 2y )—2(xy 2-y 3). 18、2(2x —3y )—(3x+2y+1)19、—(3a 2-4ab )+[a 2-2(2a+2ab )]. 20、5m-7n-8p+5n —9m —p ;21、(5x 2y —7xy 2)-(xy 2-3x 2y ); 22、3(—3a 2—2a )-[a 2—2(5a-4a 2+1)-3a ].23、3a 2-9a+5—(-7a 2+10a-5); 24、—3a 2b-(2ab 2-a 2b )—(2a 2b+4ab 2).25、(5a-3a 2+1)-(4a 3—3a 2); 26、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]27、(8xy -x 2+y 2)+(-y 2+x 2-8xy ); 28、(2x 2-21+3x )-4(x -x 2+21);29、3x 2-[7x -(4x -3)-2x 2]. 30、5a+(4b-3a)—(—3a+b );31、(3a2-3ab+2b2)+(a2+2ab —2b2); 32、2a2b+2ab2-[2(a2b-1)+2ab2+2].33、(2a 2—1+2a )-3(a —1+a 2); 34、2(x 2-xy )—3(2x 2—3xy)-2[x 2—(2x 2-xy+y 2)]. 35、-32ab +43a 2b +ab +(-43a 2b )-1 36、(8xy -x 2+y 2)+(-y 2+x 2-8xy );37、2x -(3x -2y +3)-(5y -2); 38、-(3a +2b )+(4a -3b +1)-(2a -b -3)39、4x 3-(-6x 3)+(-9x 3) 40、3-2xy +2yx 2+6xy -4x 2y41、 1-3(2ab +a )十[1-2(2a -3ab )]. 42、 3x -[5x +(3x -2)];43、(3a 2b -ab 2)-(ab 2+3a 2b ) 44、()[]{}y x x y x --+--3233245、(-x 2+5+4x 3)+(-x 3+5x -4) 46、(5a 2—2a+3)-(1—2a+a 2)+3(—1+3a-a 2).47、5(3a 2b-ab 2)—4(-ab 2+3a 2b). 48、4a 2+2(3ab —2a 2)—(7ab —1).49、 21xy+(-41xy )-2xy 2—(-3y 2x ) 50、5a 2—[a 2-(5a 2-2a )-2(a 2—3a )] 51、5m-7n-8p+5n —9m+8p 52、(5x 2y-7xy 2)-(xy 2-3x 2y )55、 3x 2y-[2x 2y-3(2xy —x 2y )-xy ] 54、55 56、(a 2+4ab —4b 2)—3(a 2+b 2)—7(b 2-ab ).57、a 2+2a 3+(-2a 3)+(-3a 3)+3a 2; 58、5ab+(-4a 2b 2)+8ab 2—(—3ab )+(—a 2b)+4a 2b 2;59、(7y —3z)—(8y-5z ); 60、-3(2x 2-xy)+4(x 2+xy-6). 61、 (x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)—(4x 2y-x 3-3xy 2+7y 3)62、62、-3x 2y+2x 2y+3xy 2-2xy 2; 63、3(a 2—2ab)—2(—3ab+b 2);64、 5abc-{2a 2b-[3abc-(4a 2b-ab 2]}. 65、5m 2—[m 2+(5m 2-2m)-2(m 2—3m )]. 65、66、-[2m-3(m-n+1)-2]-1. 67、31a-( 21a-4b-6c )+3(—2c+2b )68、-5a n —a n —(-7a n )+(-3a n ) 69、x 2y —3xy 2+2yx 2-y 2x7071、3a-{2c —[6a —(c-b )+c+(a+8b-6)]}72、-3(xy-2x 2)—[y 2—(5xy —4x 2)+2xy ];73、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-3474、 化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.75、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121; 76、化简,求值(4m+n )-[1—(m —4n )],m=52 n=-13177、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =278、化简,求值:(2x 3—xyz )—2(x 3—y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=—3.79、 化简,求值:5x 2-[3x —2(2x —3)+7x 2],其中x=-2.80、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2-xy ,求另一个加式.81、若2a 2—4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.82、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.83、求3x 2+x -5与4-x +7x 2的差.84、计算 5y+3x+5z 2与12y+7x —3z 2的和85、计算8xy 2+3x 2y —2与—2x 2y+5xy 2-3的差86、多项式—x 2+3xy —21y 与多项式M 的差是—21x 2—xy+y ,求多项式M87、当x=- 21,y=-3时,求代数式3(x 2-2xy )-[3x 2—2y+2(xy+y )]的值.88、化简再求值5abc —{2a 2b-[3abc-(4ab 2-a 2b)]-2ab 2},其中a=-2,b=3,c=—4189、已知A=a 2—2ab+b 2,B=a 2+2ab+b 2(1)求A+B ;(2)求41(B-A);90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B,求得 9x 2-2x+7,若B=x 2+3x —2,你能否帮助小明同学求得正确答案?91、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M —2N .92、已知222244,5A x xy y B x xy y =-+=+-,求3A -B93、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B .94、已知2-a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值.95、化简求值:5abc-2a 2b+[3abc-2(4ab 2-a 2b)],其中a 、b 、c 满足|a-1|+|b —2|+c 2=0.96、已知a,b,z 满足:(1)已知|x —2|+(y+3)2=0,(2)z 是最大的负整数,化简求值: 2(x 2y+xyz)—3(x 2y-xyz)-4x 2y .97、已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)—(4ab-3b )的值.98、已知m 2+3mn=5,求5m 2-[+5m 2—(2m 2—mn )—7mn —5]的值99、设A=2x 2-3xy+y 2+2x+2y ,B=4x 2-6xy+2y 2—3x-y ,若|x-2a|+(y —3)2=0,且B —2A=a ,求a 的值.100、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A 与B 的大小.答案:1、3(a+5b)—2(b —a )=5a+13b2、3a —(2b-a )+b=4a-b .3、2(2a 2+9b )+3(—5a 2—4b )=-11a 2+6b 24、(x 3—2y 3-3x 2y )—(3x 3—3y 3-7x 2y )= -2x 3+y 3+4x 2y5、3x 2-[7x —(4x-3)-2x 2] = 5x 2—3x-36、(2xy-y )—(-y+yx)= xy7、5(a 22b —3ab 2)-2(a 2b-7ab) = -a 2b+11ab8、(—2ab+3a )—2(2a —b )+2ab= -2a+b9、(7m 2n-5mn)-(4m 2n —5mn )= 3m 2n10、(5a 2+2a-1)—4(3-8a+2a 2)= —3a 2+34a-1311、-3x 2y+3xy 2+2x 2y-2xy 2= —x 2y+xy 212、2(a-1)—(2a-3)+3.=413、-2(ab-3a 2)-[2b 2—(5ab+a 2)+2ab]= 7a 2+ab-2b 214、(x 2—xy+y )-3(x 2+xy —2y )= —2x 2—4xy+7y15、3x 2—[7x-(4x —3)-2x 2]=5x 2-3x —316、a 2b-[2(a 2b-2a 2c )—(2bc+a 2c )]= —a 2b+2bc+6a 2c17、—2y 3+(3xy 2—x 2y)—2(xy 2-y 3)= xy 2-x 2y18、2(2x —3y )—(3x+2y+1)=2x-8y-119、-(3a 2-4ab )+[a 2—2(2a+2ab )]=-2a 2—4a20、5m —7n-8p+5n-9m —p = -4m —2n-9p21、(5x 2y —7xy 2)—(xy 2—3x 2y)=4xy 2-4x 2y22、3(—3a 2—2a )—[a 2—2(5a —4a 2+1)—3a]=—18a 2 +7a+223、3a 2—9a+5-(—7a 2+10a —5)=10a 2-19a+10 24、—3a 2b —(2ab 2-a 2b )-(2a 2b+4ab 2)= —4a 2b-64ab 225、(5a —3a 2+1)-(4a 3-3a 2)=5a —4a 2+1 26、-2(ab-3a 2)-[2b 2—(5ab+a 2)+2ab]=7a 2+ab —2b 227、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=028、(2x 2-21+3x )-4(x -x 2+21) = 6x 2-x —25 29、3x 2-[7x -(4x -3)-2x 2]= 5x 2-3x -330、5a+(4b —3a )—(—3a+b )= 5a+3b31、(3a 2-3ab+2b 2)+(a 2+2ab —2b 2)= 4a 2—ab32、2a 2b+2ab 2-[2(a 2b-1)+2ab 2+2].= —133、(2a 2-1+2a )—3(a-1+a 2)= —a 2—a+234、2(x 2-xy)—3(2x 2-3xy)-2[x 2-(2x 2—xy+y 2)]=—2x 2+5xy —2y 2 35、-32ab +43a 2b +ab +(-43a 2b )-1 = 31ab —1 36、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=037、2x -(3x -2y +3)-(5y -2)=—x —3y —138、-(3a +2b )+(4a -3b +1)-(2a -b -3)= —a —4b+439、4x 3-(-6x 3)+(-9x 3)= x 340、3-2xy +2yx 2+6xy -4x 2y = -2 x 2y+441、 1-3(2ab +a )十[1-2(2a -3ab )]=2-7a42、 3x -[5x +(3x -2)]=-5x+243、(3a 2b -ab 2)-(ab 2+3a 2b )= —2ab 244、()[]{}y x x y x --+--32332 = 5x+y45、(-x 2+5+4x 3)+(-x 3+5x -4)= 3x 3-x 2+5x+146、(5a 2—2a+3)—(1—2a+a 2)+3(—1+3a-a 2)=a 2+9a —147、5(3a 2b —ab 2)—4(-ab 2+3a 2b ).=3a 2b —ab 248、4a 2+2(3ab-2a 2)—(7ab-1)=1—ab49、 21xy+(—41xy )-2xy 2—(—3y 2x)=41xy+xy 250、5a 2-[a 2—(5a 2-2a )—2(a 2—3a )]=11a 2—8a51、5m-7n —8p+5n-9m+8p=—4m —2n59、(7y-3z )—(8y —5z )=-y+2z60、—3(2x 2-xy )+4(x 2+xy —6)=—2x 2+7xy-2461、(x 3+3x 2y-5xy 2+9y 3)+(—2y 3+2xy 2+x 2y —2x 3)-(4x 2y —x 3-3xy 2+7y 3)=062、-3x 2y+2x 2y+3xy 2-2xy 2 = -x 2y+xy 263、3(a 2-2ab)—2(—3ab+b 2)=3a 2-2b 264、5abc —{2a 2b —[3abc —(4a 2b-ab 2]}=8abc-6a 2b+ab 265、5m 2-[m 2+(5m 2—2m )-2(m 2-3m )]=m 2—4m66、—[2m —3(m —n+1)—2]-1=m —3n+467、31a —( 21a —4b —6c)+3(-2c+2b )= -61a+10b 68、 -5a n —a n -(—7a n )+(-3a n )= —2a n69、x 2y —3xy 2+2yx 2-y 2x=3x 2y-4xy 270、 41a 2b-0.4ab 2— 21a 2b+ 52ab 2 = -41a 2b71、3a-{2c-[6a —(c-b )+c+(a+8b —6)]}= 10a+9b-2c —672、-3(xy-2x 2)-[y 2—(5xy —4x 2)+2xy ]= 2x 2—y 2 73、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-34 原式=2x 2+21y 2-2 =698 74、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32. 原式=-3x+y 2=694 75、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121; 原式=x 3+x 2—x+6=68376、 化简,求值(4m+n )-[1—(m-4n)],m=52 n=-131 原式=5m-3n —1=577、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =2原式=—2ab 3+3ab 2=1278、化简,求值:(2x 3-xyz)—2(x 3-y 3+xyz)+(xyz —2y 3),其中x=1,y=2,z=—3. 原式=—2xyz=679、化简,求值:5x 2—[3x —2(2x —3)+7x 2],其中x=-2. 原式=—2x 2+x —6=-1680、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2—xy,求另一个加式.(2x 2+xy+3y 2 ) —-( x 2—xy )= x 2+2xy+3y 281、若2a 2-4ab+b 2与一个多项式的差是—3a 2+2ab —5b 2,试求这个多项式.( 2a 2-4ab+b 2 )-(—3a 2+2ab-5b 2)=5a 2 -6ab+6b 282、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.(5x 2y -2x 2y )+(-2xy 2+4x 2y )=3xy 2+2x 2y83、 求3x 2+x -5与4-x +7x 2的差.(3x 2+x -5)—(4-x +7x 2)=—4x 2+2x -984、计算 5y+3x+5z 2与12y+7x —3z 2的和(5y+3x+5z 2)+(12y+7x-3z 2)=17y+10x+2z 285、计算8xy 2+3x 2y —2与—2x 2y+5xy 2—3的差(8xy 2+3x 2y-2)—(—2x 2y+5xy 2-3)=5x 2y+3xy 2+1 86、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M—23y 87、当3(x 2-2xy )-[3x 2—2y+2(xy+y )]的值. 原式=-8xy+y= —1588、化简再求值5abc-{2a 2b —[3abc-(4ab 2—a 2b )]—2ab 2},其中a=-2,b=3,c=—41 原式=83abc —a 2b —2ab 2=3689、已知A=a 2—2ab+b 2,B=a 2+2ab+b 2(1)求A+B ;(2)求41(B-A); A+B=2a 2+2b 2 41(B —A)=ab 90、小明同学做一道题,已知两个多项式A ,B,计算A+B,他误将A+B 看作A-B ,求得 9x 2-2x+7,若B=x 2+3x —2,你能否帮助小明同学求得正确答案?A=10x 2+x+5 A+B=11x 2+4x+391、已知:M=3x 2+2x-1,N=—x 2-2+3x ,求M —2N .M —2N=5x 2-4x+3 92、已知222244,5A x xy y B x xy y =-+=+-,求3A -B3A -B=11x 2-13xy+8y 293、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B .2A -3B= 5x 2+11xy +2y 294、已知2-a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值.原式=9ab 2-4a 2b=3495、化简求值:5abc-2a 2b+[3abc-2(4ab 2—a 2b )],其中a 、b 、c 满足|a-1|+|b-2|+c 2=0. 原式=8abc-8a 2b=—32 96、已知a,b ,z 满足:(1)已知|x —2|+(y+3)2=0,(2)z 是最大的负整数,化简求值:2(x2y+xyz)—3(x2y-xyz)-4x2y.原式=-5x2y+5xyz=9097、已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)—(4ab-3b)的值.原式=10a+10b-2ab=5098、已知m2+3mn=5,求5m2-[+5m2-(2m2—mn)-7mn—5]的值原式=2m2+6mn+5=1599、设A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x—y,若|x-2a|+(y—3)2=0,且B-2A=a,求a的值.B—2A=—7x-5y=—14a—15=a a=-1100、有两个多项式:A=2a2-4a+1,B=2(a2-2a)+3,当a取任意有理数时,请比较A 与B的大小.A=2a2-4a+1 B=2a2-4a+3 所以A<B。
整式的加减专项练习100题1、3(a+5b)-2(b-a)2、3a-(2b-a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)5、3x2-[7x-(4x-3)-2x2]6、(2xy-y)-(-y+yx)7、5(a2b-3ab2)-2(a2b-7ab)8、(-2ab+3a)-2(2a-b)+2ab9、(7m2n-5mn)-(4m2n-5mn)10、(5a2+2a-1)-4(3-8a+2a2).11、-3x2y+3xy2+2x2y-2xy2;12、2(a-1)-(2a-3)+3.13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]14、(x2-xy+y)-3(x2+xy-2y)15、3x2-[7x-(4x-3)-2x2]16、a2b-[2(a2b-2a2c)-(2bc+a2c)];17、-2y3+(3xy2-x2y)-2(xy2-y3).18、2(2x-3y)-(3x+2y+1)19、-(3a2-4ab)+[a2-2(2a+2ab)].20、5m-7n-8p+5n-9m-p;21、(5x 2y-7xy 2)-(xy 2-3x 2y ); 22、3(-3a 2-2a )-[a 2-2(5a-4a 2+1)-3a]. 23、3a 2-9a+5-(-7a 2+10a-5); 24、-3a 2b-(2ab 2-a 2b )-(2a 2b+4ab 2). 25、(5a-3a 2+1)-(4a 3-3a 2);26、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab] 27、(8xy -x 2+y 2)+(-y 2+x 2-8xy ); 28、(2x 2-21+3x )-4(x -x 2+21);29、3x 2-[7x -(4x -3)-2x 2].30、5a+(4b-3a )-(-3a+b );31、(3a2-3ab+2b2)+(a2+2ab-2b2); 32、2a2b+2ab2-[2(a2b-1)+2ab2+2]. 33、(2a 2-1+2a )-3(a-1+a 2); 34、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)].35、 -32ab +43a 2b +ab +(-43a 2b )-136、(8xy -x 2+y 2)+(-y 2+x 2-8xy ); 37、2x -(3x -2y +3)-(5y -2);38、-(3a +2b )+(4a -3b +1)-(2a -b -3)39、4x 3-(-6x 3)+(-9x 3) 40、3-2xy +2yx 2+6xy -4x 2y41、 1-3(2ab +a )十[1-2(2a -3ab )].42、 3x -[5x +(3x -2)];43、(3a 2b -ab 2)-(ab 2+3a 2b )44、()[]{}y x x y x --+--3233245、(-x 2+5+4x 3)+(-x 3+5x -4)46、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2).47、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).48、4a 2+2(3ab-2a 2)-(7ab-1).49、21xy+(-41xy )-2xy 2-(-3y 2x )50、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]51、5m-7n-8p+5n-9m+8p52、(5x 2y-7xy 2)-(xy 2-3x 2y )53、 3x 2y-[2x 2y-3(2xy-x 2y )-xy]5556、(a 2+4ab-4b 2)-3(a 2+b 2)-7(b 2-ab ).57、a 2+2a 3+(-2a 3)+(-3a 3)+3a 258、5ab+(-4a 2b 2)+8ab 2-(-3ab )+(-a 2b )+4a 2b 2;59、(7y-3z )-(8y-5z );60、-3(2x 2-xy )+4(x 2+xy-6).61、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)62、-3x 2y+2x 2y+3xy 2-2xy 2;63、3(a 2-2ab )-2(-3ab+b 2);64、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}.65、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )].66、-[2m-3(m-n+1)-2]-1. 67、31a-( 21a-4b-6c)+3(-2c+2b)68、 -5a n-a n-(-7a n)+(-3a n)69、x 2y-3xy 2+2yx 2-y 2x70、41a 2b-0.4ab 2-21a 2b+52ab 2;71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}72、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy];73、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-3474、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.75、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;76、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-13177、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-79、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中x=-2.80、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2-xy ,求另一个加式.81、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.82、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.83、 求3x 2+x -5与4-x +7x 2的差.84、计算 5y+3x+5z 2与12y+7x-3z 2的和85、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差86、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M87、当求代数式3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.88、化简再求值5abc-{2a2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-4189、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2(1)求A+B ; (2)求41(B-A);90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?91、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N .92、已知222244,5A x xy y B x xy y =-+=+-,求3A -B93、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B .94、已知2 a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值.95、化简求值:5abc-2a 2b+[3abc-2(4ab 2-a 2b )],其中a 、b 、c 满足|a-1|+|b-2|+c 2=0.96、已知a ,b ,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值:2(x 2y+xyz )-3(x 2y-xyz )-4x 2y .97、已知a+b=7,ab=10,求代数式(5ab+4a+7b )+(6a-3ab )-(4ab-3b )的值.98、已知m 2+3mn=5,求5m 2-[+5m 2-(2m 2-mn )-7mn-5]的值99、设A=2x 2-3xy+y 2+2x+2y ,B=4x 2-6xy+2y 2-3x-y ,若|x-2a|+(y-3)2=0,且B-2A=a ,求a 的值.100、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A 与B 的大小.答案:1、3(a+5b )-2(b-a )=5a+13b2、3a-(2b-a )+b=4a-b .3、2(2a 2+9b )+3(-5a 2-4b )=—11a 2+6b 24、(x 3-2y 3-3x 2y )-(3x 3-3y 3-7x 2y )= -2x 3+y 3+4x 2y5、3x 2-[7x-(4x-3)-2x 2] = 5x 2-3x-3 6、(2xy-y )-(-y+yx )= xy7、5(a 22b-3ab 2)-2(a 2b-7ab ) = -a 2b+11ab8、(-2ab+3a )-2(2a-b )+2ab= -2a+b 9、(7m 2n-5mn )-(4m 2n-5mn )= 3m 2n10、(5a 2+2a-1)-4(3-8a+2a 2)= -3a 2+34a-13 11、-3x 2y+3xy 2+2x 2y-2xy 2= -x 2y+xy 212、2(a-1)-(2a-3)+3.=413、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]= 7a 2+ab-2b 214、(x 2-xy+y )-3(x 2+xy-2y )= -2x 2-4xy+7y15、3x 2-[7x-(4x-3)-2x 2]=5x 2-3x-316、a 2b-[2(a 2b-2a 2c )-(2bc+a 2c )]= -a 2b+2bc+6a 2c 17、-2y 3+(3xy 2-x 2y )-2(xy 2-y 3)= xy 2-x 2y 18、2(2x-3y )-(3x+2y+1)=2x-8y-119、-(3a 2-4ab )+[a 2-2(2a+2ab )]=-2a 2-4a20、5m-7n-8p+5n-9m-p = -4m-2n-9p 21、(5x 2y-7xy 2)-(xy 2-3x 2y )=4xy 2-4x 2y 22、3(-3a 2-2a )-[a 2-2(5a-4a 2+1)-3a]=-18a 2 +7a+2 23、3a 2-9a+5-(-7a 2+10a-5)=10a 2-19a+10 24、-3a 2b-(2ab 2-a 2b )-(2a 2b+4ab 2)= -4a 2b-64ab 2 25、(5a-3a 2+1)-(4a 3-3a 2)=5a-4a 2+1 26、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]=7a 2+ab-2b 227、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=0 28、(2x 2-21+3x )-4(x -x 2+21) = 6x 2-x-2529、3x 2-[7x -(4x -3)-2x 2]= 5x 2-3x -330、5a+(4b-3a )-(-3a+b )= 5a+3b 31、(3a 2-3ab+2b 2)+(a 2+2ab-2b 2)= 4a 2-ab32、2a 2b+2ab 2-[2(a 2b-1)+2ab 2+2].= -133、(2a 2-1+2a )-3(a-1+a 2)= -a 2-a+234、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)]=-2x 2+5xy-2y 235、-32ab +43a 2b +ab +(-43a 2b )-1 = 31ab-1 36、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=037、2x -(3x -2y +3)-(5y -2)=-x-3y-138、-(3a +2b )+(4a -3b +1)-(2a -b -3)= -a-4b+4 39、4x 3-(-6x 3)+(-9x 3)= x 340、3-2xy +2yx 2+6xy -4x 2y = -2 x 2y+4 41、 1-3(2ab +a )十[1-2(2a -3ab )]=2-7a42、 3x -[5x +(3x -2)]=-5x+243、(3a 2b -ab 2)-(ab 2+3a 2b )= -2ab 244、()[]{}y x x y x --+--32332 = 5x+y 45、(-x 2+5+4x 3)+(-x 3+5x -4)= 3x 3-x 2+5x+146、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2)=a 2+9a-147、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).=3a 2b-ab 248、4a 2+2(3ab-2a 2)-(7ab-1)=1-ab 49、21xy+(-41xy )-2xy 2-(-3y 2x )=41xy+xy 250、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]=11a 2-8a 51、5m-7n-8p+5n-9m+8p=-4m-2n59、(7y-3z )-(8y-5z )=-y+2z60、-3(2x2-xy )+4(x 2+xy-6)=-2x 2+7xy-24 61、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)=062、-3x 2y+2x 2y+3xy 2-2xy 2 = -x 2y+xy 263、3(a 2-2ab )-2(-3ab+b 2)=3a 2-2b 264、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}=8abc-6a 2b+ab 2 65、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )]=m 2-4m 66、-[2m-3(m-n+1)-2]-1=m-3n+4 67、31a-( 21a-4b-6c)+3(-2c+2b)= -61a+10b68、 -5a n -a n -(-7a n )+(-3a n )= -2a n69、71、71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}= 10a+9b-2c-672、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy]= 2x 2-y 273、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-34 原式=2x 2+21y 2-2 =69874、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.原式=-3x+y 2=69475、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;原式=x 3+x 2-x+6=68376、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-131原式=5m-3n-1=577、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =2原式=-2ab 3+3ab 2=12 78、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-3. 原式=-2xyz=679、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中x=-2.原式=-2x 2+x-6=-1680、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2-xy ,求另一个加式.(2x 2+xy+3y 2 ) ——( x 2-xy )= x 2+2xy+3y 2 81、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.( 2a 2-4ab+b 2 )—(-3a 2+2ab-5b 2)=5a 2 -6ab+6b 282、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.(5x 2y -2x 2y )+(-2xy 2+4x 2y )=3xy 2+2x 2y 83、 求3x 2+x -5与4-x +7x 2的差.(3x 2+x -5)—(4-x +7x 2)=—4x 2+2x -984、计算 5y+3x+5z 2与12y+7x-3z 2的和(5y+3x+5z 2)+(12y+7x-3z 2)=17y+10x+2z 2 85、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差(8xy 2+3x 2y-2)—(-2x 2y+5xy 2-3)=5x 2y+3xy 2+1 86、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M M=-21x 2+4xy —23y87、当x=- 21,y=-3时,求代数式3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.原式=-8xy+y= —15 88、化简再求值5abc-{2a2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-41 原式=83abc-a 2b-2ab 2=36 89、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2(1)求A+B ; (2)求41(B-A); A+B=2a 2+2b 241(B-A)=ab 90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?A=10x 2+x+5 A+B=11x 2+4x+391、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N . M-2N=5x 2-4x+392、已知222244,5A x xy y B x xy y =-+=+-,求3A -B3A -B=11x 2-13xy+8y 293、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B . 2A -3B= 5x 2+11xy +2y 294、已知2-a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值.原式=9ab 2-4a 2b=3495、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中a、b、c满足|a-1|+|b-2|+c2=0.原式=8abc-8a2b=-3296、已知a,b,z满足:(1)已知|x-2|+(y+3)2=0,(2)z是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.原式=-5x2y+5xyz=9097、已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.原式=10a+10b-2ab=5098、已知m2+3mn=5,求5m2-[+5m2-(2m2-mn)-7mn-5]的值原式=2m2+6mn+5=1599、设A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x-y,若|x-2a|+(y-3)2=0,且B-2A=a,求a的值.B-2A=-7x-5y=-14a-15=a a=-1100、有两个多项式:A=2a2-4a+1,B=2(a2-2a)+3,当a取任意有理数时,请比较A与B的大小.A=2a2-4a+1 B=2a2-4a+3 所以A<B。
一、选择题1.(0分)若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.2.(0分)下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 3.(0分)下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( )A .2个B .3个C .4个D .5个A解析:A【分析】几个单项式的和叫做多项式,结合各式进行判断即可.【详解】22a b ,3,2ab ,4,m -都是单项式; 2x yz x+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab c xy y π--,是多项式,共有2个.故选:A .【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.4.(0分)如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.5.(0分)已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .5B 解析:B【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值.【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4,解得,n=3,故选:B.【点睛】 本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.6.(0分)已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( )A .﹣1B .﹣2C .﹣3D .﹣4A解析:A【分析】根据同类项是字母相同且相同字母的指数也相同,可得m ,n 的值,根据代数式求值,可得答案.【详解】由题意,得3m =6,n =2.解得m =2,n =2.9m 2﹣5mn ﹣17=9×4﹣5×2×2﹣17=﹣1,故选:A .【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.7.(0分)小明通常上学时走上坡路,通常的速度为m 千米时,放学回家时,原路返回,通常的速度为n 千米时,则小明上学和放学路上的平均速度为( )千米/时 A .2m n + B .mn m n + C .2mn m n + D .m n n m + C 解析:C【分析】平均速度=总路程÷总时间,题中没有单程,可设从家到学校的单程为1,那么总路程为2.【详解】 解:依题意得:1122()2m n mn m n mn m n+÷+=÷=+. 故选:C .【点睛】本题考查了列代数式;解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.8.(0分)﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B解析:B【分析】 根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.9.(0分)一个多项式与221a a -+的和是32a -,则这个多项式为( )A .253a a -+B .253a a -+-C .2513a a --D .21a a -+- B解析:B【分析】根据加数=和-另一个加数可知这个多项式为:(3a-2)-(a 2-2a+1),根据整式的加减法法则,去括号、合并同类项即可得出答案.【详解】∵一个多项式与221a a -+的和是32a -,∴这个多项式为:(3a-2)-(a 2-2a+1)=3a-2-a 2+2a-1=-a 2+5a-3,故选B.【点睛】题考查了整式的加减,熟记去括号法则,熟练运用合并同类项的法则是解题关键. 10.(0分)多项式33x y xy +-是( )A .三次三项式B .四次二项式C .三次二项式D .四次三项式D 解析:D【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了.【详解】解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D .【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关 二、填空题11.(0分)如果多项式32242(176)x x kx x +-+-中不含2x 的项,则k 的值为__.2【分析】先去括号再根据不含的项列出式子求解即可得【详解】由题意得:解得故答案是:2【点睛】本题考查了去括号多项式中的无关型问题熟练掌握去括号法则是解题关键解析:2【分析】先去括号,再根据“不含2x 的项”列出式子求解即可得.【详解】3223242(176)4(2)176x x kx x x k x x +-+-=+--+,由题意得:20k -=,解得2k =,故答案是:2.【点睛】本题考查了去括号、多项式中的无关型问题,熟练掌握去括号法则是解题关键. 12.(0分)观察如图,发现第二个和第三个图形是怎样借助第一个图形得到的,概括其中的规律在第n 个图形中,它有n 个黑色六边形,有_______个白色六边形.【分析】发现规律下一个图形是在上一个图形的基础上加上1个黑色六边形和4个白色六边形【详解】解:第一个图形中有6个白色六边形第二个图形有6+4个白色六边形第三个图形有6+4+4个白色六边形根据发现的规解析:42n +【分析】发现规律,下一个图形是在上一个图形的基础上加上1个黑色六边形和4个白色六边形.【详解】解:第一个图形中有6个白色六边形,第二个图形有6+4个白色六边形,第三个图形有6+4+4个白色六边形,根据发现的规律,第n 个图形中有6+4(n -1)个白色四边形.故答案是:4n +2.【点睛】本题考查规律的探究,解题的关键是先发现图形之间的规律,再去归纳总结出公式. 13.(0分)在多项式422315x x x x 中,同类项有_________________;-2x5x 【分析】根据同类项:所含字母相同并且相同字母的指数也相同进行判断即可【详解】解:-2x 与5x 是同类项;故答案为:-2x5x 【分析】本题考查了同类项的知识解题的关键是掌握同类项的定义解析:-2x,5x【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【详解】解: -2x与5x是同类项;故答案为:-2x,5x.【分析】本题考查了同类项的知识,解题的关键是掌握同类项的定义.14.(0分)m,n互为相反数,则(3m–2n)–(2m–3n)=__________.0【解析】由题意m+n=0所以(3m-2n)-(2m-3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0【解析】由题意m+n=0,所以(3m-2n)-(2m-3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.15.(0分)当x=1时,ax+b+1=﹣3,则(a+b﹣1)(1﹣a﹣b)的值为_____.-25【分析】由x=1时代数式ax+b+1的值是﹣3求出a+b的值将所得的值整体代入所求的代数式中进行计算即可得解【详解】解:∵当x=1时ax+b+1的值为﹣3∴a+b+1=﹣3∴a+b=﹣4∴(a解析:-25.【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a+b+1=﹣3,∴a+b=﹣4,∴(a+b﹣1)(1﹣a﹣b)=(a+b﹣1)[1﹣(a+b)]=(﹣4﹣1)×(1+4)=﹣25.故答案为:﹣25.【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.16.(0分)已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a、b、c、d.若|a﹣c|=10,|a﹣d|=12,|b﹣d|=9,则|b﹣c|=___.7【分析】根据数轴和题目中的式子可以求得c﹣b的值从而可以求得|b﹣c|的值【详解】∵|a﹣c|=10|a﹣d|=12|b﹣d|=9∴c﹣a=10d ﹣a=12d ﹣b=9∴(c ﹣a )﹣(d ﹣a )+(d解析:7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值,从而可以求得|b ﹣c |的值.【详解】∵|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,∴c ﹣a =10,d ﹣a =12,d ﹣b =9,∴(c ﹣a )﹣(d ﹣a )+(d ﹣b )=c ﹣a ﹣d +a +d ﹣b=c ﹣b=10﹣12+9=7.∵|b ﹣c |=c ﹣b ,∴|b ﹣c |=7.故答案为:7.【点睛】本题考查了数轴、绝对值以及整式的加减,解答本题的关键是明确数轴的特点,可以将绝对值符号去掉,求出相应的式子的值.17.(0分)两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍.设第一堆原有a 个棋子,第二堆原有______个棋子.【分析】根据题意可得第二堆现在的棋子数是2(a-2)因此原来的棋子数为2(a-2)-2【详解】解:由题意可得:现在第二堆有2(a-2)个棋子因此原来第二堆有2(a-2)-2=2a-6个棋子故答案为:解析:()26a -【分析】根据题意可得第二堆现在的棋子数是2(a -2),因此原来的棋子数为2(a -2)-2.【详解】解:由题意可得:现在第二堆有2(a -2)个棋子,因此原来第二堆有2(a -2)-2=2a -6个棋子.故答案为:(2a -6).【点睛】本题考查了整式加减的应用,根据题意列出代数式是解决此题的关键.18.(0分)为了鼓励节约用电,某地对用户用电收费标准作如下规定:如果每户用电不超过50度,那么每度电按a 元收费,如果超过50度,那么超过部分按每度()0.5a +元收费,某居民在一个月内用电98度,他这个月应缴纳电费______元.【分析】98度超过了50度应分两段进行计费第一段50每度收费a 元第二段(98-50)度每度收费(a+05)元据此计算即可【详解】解:由题意可得:(元)故答案为:(98a+24)【点睛】本题考查了列代解析:()9824a +【分析】98度超过了50度,应分两段进行计费,第一段50,每度收费a 元,第二段(98-50)度,每度收费(a +0.5)元,据此计算即可.【详解】解:由题意可得:()()5098500.59824a a a +-+=+(元).故答案为:(98a +24).【点睛】本题考查了列代数式,根据题意,列出代数式是解决此题的关键.19.(0分)已知()11nn a =-+,当1n =时,10a =;当2n =时,22a =;当3n =时,30a =;…;则123a a a ++456a a a +++的值为______.【分析】利用乘方符号的规律当n 为奇数时(-1)n=-1;当n 为偶数时(-1)n=1找到此规律就不难得到答案6【详解】∵当n 为奇数时此时;当n 为偶数时(-1)n=1此时∴故填:6【点睛】本题乘方符号的解析:【分析】利用乘方符号的规律,当n 为奇数时,(-1)n =-1;当n 为偶数时,(-1)n =1.找到此规律就不难得到答案6.【详解】∵当n 为奇数时,(1)1n -=-,此时110n a =-+=;当n 为偶数时,(-1)n =1,此时112n a =+=.∴1234560202026a a a a a a +++++=+++++=.故填:6.【点睛】本题乘方符号的规律,解题的关键是找出(1)n -的符号规律.20.(0分)观察单项式:x -,22x ,33x -,44x ,…,1919x -,2020x , …,则第2019个单项式为______.【分析】根据题目内容找到单项是的系数规律和字母的指数规律从而求解【详解】解:由题意可知:第一个单项式为;第二个单项式为;第三个单项式为…∴第n 个单项式为即第2019个单项式为故答案为:【点睛】本题考解析:20192019x -【分析】根据题目内容找到单项是的系数规律和字母的指数规律,从而求解.【详解】解:由题意可知:第一个单项式为11(1)1x -⨯⨯;第二个单项式为22(1)2x -⨯⨯;第三个单项式为33(1)3x -⨯⨯…∴第n 个单项式为(1)n n n x -⨯⨯即第2019个单项式为201920192019(1)20192019x x -⨯⨯=-故答案为:20192019x -【点睛】本题考查数的规律探索,找到单项式的系数规律和字母指数规律是本题的解题关键. 三、解答题21.(0分)已知:A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3. (1)求3A ﹣(4A ﹣2B )的值;(2)当x 取任意数值,A ﹣2B 的值是一个定值时,求(a+314A )﹣(2b+37B )的值. 解析:(1)(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)﹣312. 【分析】(1)先化简原式,再分别代入A 和B 的表达式,去括号并合并类项即可;(2)先代入A 和B 的表达式并去括号并合并类项,由题意可令x 和x 2项的系数为零,求解出a 和b 的数值,再化简原式后代入相关数值即可求解.【详解】解:(1)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴原式=3A ﹣4A+2B=﹣A+2B=﹣2x 2﹣ax+5y ﹣b+2bx 2﹣3x ﹣5y ﹣6=(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴A ﹣2B=2x 2+ax ﹣5y+b ﹣2bx 2+3x+5y+6=(2﹣2b )x 2+(a+3)x+(b+6),由x 取任意数值时,A ﹣2B 的值是一个定值,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=a ﹣2b+314(A ﹣2B )=﹣3﹣2+32=﹣312. 【点睛】理解本题中x 取任意数值时A ﹣2B 的值均是一个定值的意思是整式化简后的x 和x 2项的系数均为零是解题关键.22.(0分)已知A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+1223ab + (1)当a =﹣1,b =﹣2时,求4A ﹣(3A ﹣2B )的值;(2)若(1)中式子的值与a 的取值无关,求b 的值.解析:(1)4ab ﹣2a+13;(2)b=12 【分析】 (1)将a=﹣1,b=﹣2代入A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23,求出A 、B 的值,再计算4A ﹣(3A ﹣2B )的值即可;(2)把(1)结果变形,根据结果与a 的值无关求出b 的值即可.【详解】(1)4A ﹣(3A ﹣2B )=4A ﹣3A+2B=A+2B ,∵A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23, ∴A+2B=2a 2+3ab ﹣2a ﹣1+2(﹣a 2+12ab+23) =2a 2+3ab ﹣2a ﹣1﹣2a 2+ab+43 =4ab ﹣2a+13; (2)因为4ab ﹣2a+13 =(4b ﹣2)a+13, 又因为4ab ﹣2a+13的值与a 的取值无关, 所以4b ﹣2=0,所以b=12. 【点睛】本题考查了整式的加减、化简求值,熟练掌握运算法则是解答本题的关键.23.(0分)观察下列单项式:﹣x ,2x 2,﹣3x 3,…,﹣9x 9,10x 10,…从中我们可以发现: (1)系数的规律有两条:系数的符号规律是系数的绝对值规律是(2)次数的规律是(3)根据上面的归纳,可以猜想出第n 个单项式是 .解析:(1)奇数项为负,偶数项为正;与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx【分析】通过观察题意可得:奇数项的系数为负,偶数项的系数为正,且系数的绝对值与自然数序号相同,次数也与与自然数序号相同.由此可解出本题.【详解】(1)奇数项为负,偶数项为正,与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx -.【点睛】本题考查了单项式的有关概念.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.24.(0分)先化简,再求值:()()22222322a b ab a b ab a b -+---,其中1a =,2b =-. 解析:2ab -,4-.【分析】先去括号,再合并同类项,再将1a =,2b =-代入原式求值即可.【详解】原式22222423a b ab a b ab a b +=-+-- 22(112)(34)a b ab =--++-2ab =-,当1a =,2b =-时,原式21(2)4=-⨯-=-【点睛】本题考查了整式的化简求值问题,掌握整式化简的方法、合并同类项的方法是解题的关键.25.(0分)图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.(1) 图②有 个三角形;图③有 个三角形;(2) 按上面的方法继续下去,第n 个图形中有多少个三角形(用n 的代数式表示结论).解析:(1)5,9 ;(2)43n -【分析】(1)由图形即可数得答案;(2)发现每个图形都比起前一个图形多4个,所以第n 个图形中有14(1)43n n +⨯-=-个三角形.【详解】解:(1)根据图形可得:5,9;(2)发现每个图形都比起前一个图形多 4 个,∴第n 个图形中有14(1)43n n +⨯-=-个三角形.【点睛】本题考查图形的特征,根据图形的特征找出规律,属于一般题型.26.(0分)一种商品每件成本a 元,原来按成本增加22%定出价格.(1)请问每件售价多少元?(2)现在由于库存积压减价,按售价的85%出售,请问每件还能盈利多少元?解析:(1)每件售价1.22a 元;(2)每件盈利0.037a 元.【分析】(1)根据每件成本a 元,原来按成本增加22%定出价格,列出代数式,再进行整理即可; (2)用原价的85%减去成本a 元,列出代数式,即可得出答案.【详解】(1)根据题意,得:(1+22%)a =1.22a (元),答:每件售价1.22a 元;(2)根据题意,得:1.22a ×85%-a =0.037a (元).答:每件盈利0.037a 元.【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,注意把列出的式子进行整理.27.(0分)某商店出售一种商品,其原价为m 元,现有如下两种调价方案:一种是先提价10%,在此基础上又降价10%;另一种是先降价10%,在此基础上又提价10%. (1)用这两种方案调价的结果是否一样?调价后的结果是不是都恢复了原价?(2)两种调价方案改为:一种是先提价20%,在此基础上又降价20%;另一种是先降价20%,在此基础上又提价20%,这时结果怎样?(3)你能总结出什么规律吗?解析:(1)这两种方案调价的结果一样,都没有恢复原价;(2)这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价..【分析】(1)先提价10%为110m%,再降价10%后价钱为99m%;先降价10%为90m%,再提价10%后价钱为99m%,据此可得答案;(2)先提价20%为120%m ,再降价20%后价钱为96%m ;先降价20%为80%m ,再提价20%后价钱为96%m ,据此可得答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)方案一:先提价10%价钱为()110%110%m m +=,再降价10%后价钱为()110%110%99%m m ⨯-=;方案二:先降价10%价钱为()110%90%m m -=,再提价10%后价钱为()90%110%99%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(2)方案一:先提价20%价钱为()120%120%m m +=,再降价20%后价钱为()120%120%96%m m ⨯-=;方案二:先降价20%价钱为()120%80%m m -=,再提价20%后价钱为()80%120%96%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价.【点睛】本题考查了列代数式的知识,解题的关键是能够表示出降价或涨价后的量,难度不大. 28.(0分)已知22332A x y xy =+-,2222B xy y x =--.(1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.解析:(1)2212127x y xy +-;(2)114或99.【分析】(1)把22332A x y xy =+-,2222B xy y x =--代入23A B -计算即可;(2)根据|23|1x -=,29y =,且||x y y x -=-求出x 和y 的值,然后代入(1)中化简的结果计算即可.【详解】解:(1)()()2222232332322A B x y xy xy y x -=+----2222664366x y xy xy y x =+--++2212127x y xy =+-;(2)由题意可知:231x -=±,3=±y ,∴2x =或1,3=±y ,由于||x y y x -=-,∴2x =,3y =或1x =,3y =.当2x =,3y =时,23114A B -=.当1x =,3y =时,2399A B -=.所以,23A B -的值为114或99.【点睛】本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.。
整式的加减第一部分:合并同类项例1. 1.已知︱a-2︱+(b-3)2=0,求3a 2-4ab+5-a 2+3ab-3的值2.已知m,x,y 满足:①32(x-5)2+5︱m ︱=0 ②-2a 2by+1与7b 3a 2的和是一个单项式求代数式2x 2-6y 2+mxy-9my 2-3x 2+3xy-7y 2的值例2. 1. 已知x+y=5,xy=-4, 求xy y x x y xy x x 336315643122+-+-+--的值2.已知a+b=2,,求4(a+b)2+2(a+b)-7(a+b)+3(a+b)2的值。
例3 1.下面两个多项式是否相等?5x 3-3x 2+2x-x 3+6x 2, 4x 3+5x 2+3x-2x 2-x.2.已知关于x 多项式x 3+ax 2-2x 2+3x-bx-c 与多项式x 3-3x 2+4x-1相等,求a+b+c 的值。
例4 1.若化简关于x, y 的整式x 3+2a(x 2+xy)-bx 2-xy+y 2,得到的结果是一个三次二项式,求a 3+b 2的值。
2.若关于x, y 的单项式(2+m)x a y 4与4x 2y b+5的和等于0,求3m+2a+4b的值。
提升训练:1. 三个连续偶数,若中间的一个是2x ,则这三个连续偶数的和是_____________.2. 写出一个整式,使其至少含有三项,且合并同类项后的结果为3xy 2。
3. 已知-2x my 与3x 3y n是同类项,求m-m 2n-3m+4n+2nm 2-3n 的值。
4. 已知(a+1)2+︱b-2︱=0,求多项式a 2b 2+3ab-7a 2b 2-25ab+1+5a 2b 2的值。
5. k 为何值时,关于x, y 的多项式x 2+2kxy-3y 2-6xy-y 中不含xy 项。
第二部分:去括号,整式的加减例1. 1.已知关于a 的多项式-3a 3-2ma 2+5a+3与8a 2-3a+5相加后,不含二次项,求的m 值2.已知多项式(m+4)x4-x n+x-n是关于x的二次三项式,求m与n的差的相反数。
七年级数学提高题
姓名_______成绩____ 一、选择题(每小题3分,共36分)
1.在代数式222515,1,32,,,1x x x x x x π+--+++中,整式有(
)
个 个 个 个
2、下列说法正确的是( )
A 、13 πx 2的系数是13
B 、12 xy 2的系数为12
x C 、-5x 2的系数为5 D 、-x 2的系数为-1 3.下面计算正确的是( )
A .2233x x -=
B 。
235325a a a +=
C .33x x +=
D 。
10.2504ab ab -+= 4.下列各组中的两个单项式能合并的是(
) A .4和4x B .32323x y y x -和 C .c ab ab 221002和 D .2
m m 和 5. 单项式233xy z π-的系数和次数分别是 ( )
A.-π,5
B.-1,6
C.-3π,6
D.-3,7
6 一个多项式与2x -2x +1的和是3x -2,则这个多项式为( )
A :2x -5x +3
B :-2x +x -1
C :-2x +5x -3
D :2x -5x -13
7.已知2y 32x 和32m x y -是同类项,则式子4m-24的值是 ( )
B.-20 D.-28
8. 已知,2,3=+=-d c b a 则)()(d a c b --+的值是( )
A :1-
B :1
C :-5
D :15
9.下列去括号正确的是( )
A.()5252+-=--x x
B.()22242
1+-=+-x x C.()n m n m +=-323231 D. x m x m 232232--=⎪⎭
⎫ ⎝⎛-- 10.下列各组中的两个单项式能合并的是( )
A .4和4x
B .32323x y y x -和
C .c ab ab 221002和
D .2m m 和 11、x 2 +ax -2y+7- (bx 2 -2x+9y -1)的值与x 的取值无关,则a+b 的值为( )
A.-1; ; C.-2
12.如果5=-n m ,那么-3m+3n-7的值是 ( )
A .-22 二、填空题(每小题3分,共48分)
13.单项式5
22
xy -的系数是____________,次数是_______________。
14.多项式925734++--ab b a ab 为____次_____项式.最高次项系数是__________.
15.若x -y +2007=65
,那么25(y -x -2007)=_________.
16.多项式3223324b ab a b a -+-=33b -( ).
17.一个多项式与多项式6a 2-5a+3的和是5a 2+2a-1,则这个多项式是_____________________.
18.若单项式y x 45和25m
n y x 是同类项,则n m + 的值为____________。
19.多项式y x 23+与多项式y x 24-的差是______________________.
20.多项式223368x kxy y xy --+-不含xy 项,则k= . 21.已知a 、b 、c 在数轴上的对应点如图所示,化简a -b a ++a c -+c b += .
22.任写一个与b a 22
1-是同类项的单项式:_______________________ 23.当x 分别取2和-2时,多项式x 5+2x 3-x 的值( )
A.互为相反数
B.互为倒数
C.相等
D.异号不等
24.已知关于x 的多项式22
2ax abx b bx abx a -+++与的和是一个单项式,则有( )
=b =0或b=0 =1 =-b 或b=-2a
25.32281x x x -+-若多项式与多项式323253x mx x +-+的和不含二次项,则m 等于 。
26.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.
⎪⎭⎫ ⎝⎛-+-22213y xy x 2222 212342
1y x y xy x +-=⎪⎭⎫ ⎝⎛-+--,阴影部分即为被墨迹弄污 的部分.那么被墨汁遮住的一项应是 .
27.如果3=x 时,代数式13++qx px 的值为2008,则当3-=x 时,代数式13
++qx px 的值是
28.观察下列版式:2210101-=+=; 2221213-=+=;2232325-=+=;2243437-=+=; 2254549-=+= ……若字母n 表示自然数,请把你观察到的规律用含n 的式子表示出来: 。
三、解答题
29..计算(每题5分共30分)
(1)b a b a b a 2222132-
+ (2)32328476a a a a a a -++---
(1)(-2ab +3a )-(2a -b )+6ab ;(2)
212a -[21(ab -2a )+4ab ]-21ab .
(3)()()222243258ab b a ab
b a --- (4)2()[]
)2(2324)(22222b ab a a ab a ab a +------ a
b c 0
30.(15分)先化简,后求值:()()xy y x y x 345352222+++-,其中3
1,1=-=y x (10分) (1)4y x 2-[6xy -2(4xy -2)-y x 2]+1,其中x =-2
1 y=1. (2)22(2)x y --4(2)x y -+2(2)x y --3(2)x y -,其中x =-1,y =
12. 31.某工厂第一车间有x 人,第二车间比第一车间人数的
5
4少30人,如果从第二车间调出10人到第一车间,那么:(8分)
(1)两个车间共有多少人?
(2)调动后,第一车间的人数比第二车间多多少人? 32..已知某船顺水航行3小时,逆水航行2小时,(8分)
(1)已知轮船在静水中前进的速度是m 千米/时,水流的速度是a 千米/时,则轮船共航行多少千米?
(2)轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?
33.(8分)小郑在一次测验中计算一个多项式A 减去xz yz xy 235+-时,不小心看成加上xz yz xy 235+-,计算出错误结果为xz yz xy 462-+,试求出原题目的多项式A 。
34(10分)已知122-=x A ,2
23x B -=,求A B 2-的值。
35.(10分) 某商店出售茶杯、茶壶,茶杯每只定价4元,茶壶每只定价20元,该商店的优惠办法是买一只茶壶赠一只茶杯,某顾客欲购买茶壶5只,茶杯x 只(茶杯数超过5只)。
(1)用含x 的式子表示这位顾客应付款的钱数;
(2)当20x =时,应付款多少元?
附加题
15、用棋子摆出下列一组三角形,三角形每边有n 枚棋子,每个三角形的棋子总数是S .按此规律推断,当三角形边上有n 枚棋子时,该三角形的棋子总数S 等于 ( ) 24、(7分)已知A =2x 3-xyz ,B =y 3-z 2+xyz ,C =-x 2+2y 2-xyz ,且(x +1)2+1-y +z =0.求:A -(2B -3C )的值.
26. 已知多项式32x +m y -8与多项式-n 2x +2y +7的差中,不含有x 、y ,求m n +n m 的值. (6分)
25、(7分)某厂家生产的产品按订货商的要求
需要按图三种打包方式中的一种打包,若厂家为节省
绳子须选用哪种方式打包?(其中b>a>c)。