高中数学必修四导学案
- 格式:doc
- 大小:3.76 MB
- 文档页数:73
2017-2018学年人教版高中数学必修四全册导学案目录课题:任意角 (1)课题:1.1.2 弧度制 (5)课题:任意角的三角函数 (9)课题:三角函数的诱导公式(1) (12)课题:三角函数的诱导公式(2) (15)课题: 正弦函数、余弦函数的图象 (19)课题: 正弦函数、余弦函数的性质 (23)课题: 正切函数的性质和图象 (26)课题: 函数y=Asin(ωx+φ)的图象(1) (30)课题: 函数y=Asin(ωx+φ)的图象(2) (36)课题:同角三角函数的基本关系 (41)课题:用单位圆中的线段表示三角函数值 (44)课题: 平面几何中的向量方法 (49)课题: 平面向量的实际背景及基本概念 (50)课题: 向量的加法运算及其几何意义 (53)课题: 向量的减法运算及其几何意义 (57)课题: 向量数乘运算及其几何意义 (60)课题: 平面向量的基本定理 (63)课题: 平面向量数量积的坐标表示、模、夹角 (67)课题: 平面向量的数量积的物理背景及其含义 (68)课题: 二倍角的正弦、余弦和正切公式 (70)课题: 两角差的余弦公式 (72)课题: 两角和与差的正弦、余弦、正切公式 (73)课题: 简单的三角恒等变换 (75)课题:任意角,即任意一个与角k +α(边 。
即学即练:1.如图⑴、⑵中终边分别为所对应的角分别属于第 、 、 象限角。
2.下列角中终边与330°相同的角是( )A .30°B .30°C .630°D .630° 3. 把1485°转化为α+k ·360°(0°≤α<360°, k ∈Z )的形式是( ) A .45o4×360° B .45o4×360°C .45o5×360° D .315o5×360°4.下列结论中正确的是( ) A. 小于90°的角是锐角B. 第二象限的角是钝角C. 相等的角终边一定相同D. 终边相同的角一定相等【课外拓展】1.下列命题是真命题的是( )Α.三角形的内角必是一、二象限内的角 B .第一象限的角必是锐角 C .不相等的角终边一定不同D .=2. 若α是第一象限的角,则是( ) A. 第一象限的角B. 第一或第三象限的角C. 第二或第三象限的角D. 第二或第四象限的角3. 下列各角中,与角的终边相同的角是 ( )A .B .C .D .123OB OB OB 、、---------{}Z k k ∈±⋅=,90360| αα{}Z k k ∈+⋅=,90180| αα2α330︒510︒870︒150-︒750-︒⑵B 1 y⑴Ox45°B 2O x B 3y30°60o4.(1)终边落在 (x ≥0)上的角的集合为 。
高中数学《必修四》导学案班级________ 姓名___________第一章 三角函数 1.1.1 任意角【学习目标】1、 了解任意角的概念;正确理解正角、零角、负角的概念2、 正确理解终边相同的角的概念,并能判断其为第几象限角,熟悉掌握终边相同的角的集合表示【学习重点、难点】 用集合与符号语言正确表示终边相同的角 【自主学习】 一、复习引入问题1:回忆初中我们是如何定义一个角的______________________________________________________ 所学的角的范围是什么______________________________________________________问题2:在体操、跳水中,有“转体0720”这样的动作名词,这里的“0720”,怎么刻画______________________________________________________ 二、建构数学 1.角的概念角可以看成平面内一条______绕着它的_____从一个位置_____到另一个位置所形成的图形。
射线的端点称为角的________,射线旋转的开始位置和终止位置称为角的______和______。
2.角的分类按__________方向旋转形成的角叫做正角, 按顺时针方向旋转形成的角叫做_________。
如果一条射线没有作任何旋转,我们称它形成了一个_________,它的______和_______重合。
这样,我们就把角的概念推广到了_______,包括_______、________和________。
3. 终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合_________ ,即任一与角α终边相同的角,都可以表示成。
4.象限角、轴线角的概念我们常在直角坐标系内讨论角。
为了讨论问题的方便,使角的________与__________重合,角的___________与_______________________重合。
课题:角的概念的推广第 一 章 第 1 节 第 1 课时 【学习目标】1.了解角的概念及推广。
2.掌握终边相同的角及象限角的概念。
【学习重点】角的概念的推广。
【学习难点】1.角的旋转合成。
2.终边相同的角的集合。
【学习方法】阅读,讨论,练习 【学习过程】一、预习成果展示(学生以思维导图形式展示预习成果) 二、小组探究解疑(小组合作学习新知,讨论解疑) 1.角的概念的推广: 2.角的加减法运算: 3.终边相同的角的集合: 4.象限角(轴上角):三、反馈矫正点拨(将难点问题集中呈现,教师点拨)1.(1)分别写出终边在x 正半轴和负半轴,y 正半轴和负半轴,x 轴和y 轴上的角的集合。
(2)分别写出第一象限、第二象限、第三象限和第四象限的角的集合。
2.在直角坐标系中,判断下列语句的真假: (1)第一象限的角一定是锐角。
(2)终边相同的角一定相等。
(3)相等的角终边一定相同。
(4)小于90°的角一定是锐角。
(5)象限角为钝角的终边一定在第二象限。
(6)终边在直线y=3x 上的象限角表示为0060360k +⋅,k ∈Z 。
3.在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限角: (1)-150° (2)650° (3)-950°15′4.射线OA 绕端点O 逆时针旋转270°到达OB 位置,由OB 位置顺时针旋转一周到达OC 位置,求∠AOC 的大小?四、强化巩固练习(通过精选习题训练巩固新知) 1.若α分别是第一,二,三,四象限的角,那么2α分别是第几象限角?α2的终边又分别在哪呢?(你能总结出一点规律吗)2.小明发现自己的手表走慢了10分钟,他想把时间调准那么时针和分针各旋转了多大的角度呢?3.(1)若︒<<<︒-9090βα ,则βα-的取值范围是_________________. (2)若︒<<<︒-6030βα ,则βα-的取值范围是_________________. 五、反思总结提升(绘制完善思维导图总结本课内容) 【课后作业】《阳光课堂》对应练习(一)课题:弧度制和弧度制与角度制的换算第 一 章 第 1 节 第 2 课时【学习目标】1.了解弧度的意义。
目录第一章 三角函数1.1.1 任意角 ………………………………………………………………………………1 1.1.2 弧度角 ………………………………………………………………………………5 1.2.1 任意角的三角函数(1) ………………………………………………………………8 1.2.1 任意角的三角函数(2) ………………………………………………………………12 1.2.2 同角三角函数的关系(1) ……………………………………………………………15 1.2.2 同角三角函数的关系(2) ……………………………………………………………17 1.2.3 三角函数的诱导公式(1) ……………………………………………………………19 1.2.3 三角函数的诱导公式(2) ……………………………………………………………22 1.2.3 三角函数的诱导公式(3) ……………………………………………………………25 1.3.1 三角函数的周期性 …………………………………………………………………27 1.3.2 三角函数的图象和性质(1) …………………………………………………………30 1.3.2 三角函数的图象和性质(2) …………………………………………………………33 1.3.2 三角函数的图象和性质(3) …………………………………………………………36 1.3.3 函数)sin(ϕω+=x A y 的图象(1) (38)1.3.3 函数)sin(ϕω+=x A y 的图象(2) ......................................................41 1.3.4 三角函数的应用.................................................................................44 三角函数复习与小结 (46)第二章 平面的向量2.1 向量的概念及表示..............................................................................49 2.2.1 向量的加法.......................................................................................52 2.2.2 向量的减法.......................................................................................55 2.2.3 向量的数乘(1) .................................................................................58 2.2.3 向量的数乘(2) .................................................................................62 2.3.1 平面向量的基本定理 ........................................................................65 2.3.2 向量的坐标表示(1) ........................................................................68 2.3.2 向量的坐标表示(2) ........................................................................70 2.4.1 向量的数量积(1) ...........................................................................72 2.4.1 向量的数量积(2) (75)第三章 三角恒等变换3.1.1 两角和与差的余弦公式 .....................................................................77 3.1.2 两角和与差的正弦公式 .....................................................................81 3.1.3 两角和与差的正切公式 .....................................................................85 3.2.1 二倍角的三角函数(1) .....................................................................88 3.2.1 二倍角的三角函数(2) (92)第一章 三角函数1.1.1 任意角【学习目标】1. 了解任意角的概念;正确理解正角、零角、负角的概念2. 正确理解终边相同的角的概念,并能判断其为第几象限角,熟悉掌握终边相同的角的集合表示【学习重点、难点】用集合与符号语言正确表示终边相同的角 【自主学习】 一、复习引入问题1:回忆初中我们是如何定义一个角的?______________________________________________________ 所学的角的范围是什么?______________________________________________________ 问题2:在体操、跳水中,有“转体0720”这样的动作名词,这里的“0720”,怎么刻画? ______________________________________________________ 二、建构数学 1.角的概念角可以看成平面内一条______绕着它的_____从一个位置_____到另一个位置所形成的图形。
高中数学《必修四》导学案班级________姓名___________第一章三角函数 1.1.1任意角【学习目标】1、 了解任意角的概念;正确理解正角、零角、负角的概念2、 正确理解终边相同的角的概念,并能判断其为第几象限角,熟悉掌握终边相同的角的集合表示【学习重点、难点】用集合与符号语言正确表示终边相同的角 【自主学习】 一、复习引入问题1:回忆初中我们是如何定义一个角的?______________________________________________________ 所学的角的范围是什么?______________________________________________________问题2:在体操、跳水中,有“转体0720”这样的动作名词,这里的“0720”,怎么刻画?______________________________________________________二、建构数学 1.角的概念角可以看成平面内一条______绕着它的_____从一个位置_____到另一个位置所形成的图形。
射线的端点称为角的________,射线旋转的开始位置和终止位置称为角的______和______。
2.角的分类按__________方向旋转形成的角叫做正角, 按顺时针方向旋转形成的角叫做_________。
如果一条射线没有作任何旋转,我们称它形成了一个_________,它的______和_______重合。
这样,我们就把角的概念推广到了_______,包括_______、________和________。
3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合_________ , 即任一与角α终边相同的角,都可以表示成 。
4.象限角、轴线角的概念我们常在 直角坐标系 内讨论角。
为了讨论问题的方便,使角的________与__________重合,角的___________与_______________________重合。
高中必修4导学案数学一、函数1.1 函数的概念在数学中,函数是一种特殊的关系,它将一个或多个自变量映射到唯一的因变量上。
函数通常用f(x)或者y来表示,其中x为自变量,y 为因变量。
1.2 函数的图象函数的图象是自变量与因变量之间的对应关系,在直角坐标系中通常用曲线或折线表示。
通过函数的图象可以直观地了解函数的性质和规律。
1.3 函数的性质函数的性质包括定义域、值域、奇偶性、周期性等,这些性质对于研究函数的特点和行为至关重要。
二、指数与对数2.1 指数函数指数函数是一种以自然常数e为底的函数,其特点是随着自变量的增大,函数值呈指数增长或指数衰减的规律。
2.2 对数函数对数函数是指数函数的逆运算,以对数底为底的函数。
对数函数可以帮助我们解决指数方程和指数不等式等问题。
2.3 指数对数的性质指数对数具有一系列重要的性质,如对数的底可以是任意正数,指数对数的运算法则等,这些性质对于深入理解指数对数函数至关重要。
三、三角函数3.1 基本概念三角函数包括正弦函数、余弦函数、正切函数等,它们是角度的三角函数关系,描述了直角三角形中角度和边长之间的关系。
3.2 三角函数的性质三角函数具有周期性、奇偶性等性质,这些性质在解三角方程、三角不等式等问题时起到重要作用。
3.3 三角函数的应用三角函数在物理、工程、地理等领域有着广泛的应用,如波动方程、电路分析、地理测量等,它们帮助我们更好地理解和解决实际问题。
四、数列与数学归纳法4.1 数列的概念数列是按照一定规律排列的一组数,其中每一个数称为数列的项,数列是研究数学规律和数学性质的重要工具。
4.2 数列的性质数列有等差数列、等比数列等不同类型,每种数列都有其特定的性质和规律,通过对数列的性质研究可以更深入地理解数学知识。
4.3 数学归纳法数学归纳法是一种证明数学命题成立的方法,通过证明第一个命题为真,然后利用归纳假设证明下一个命题也为真,从而证明所有命题成立。
综上所述,高中必修4导学案数学涵盖了函数、指数对数、三角函数、数列和数学归纳法等内容,这些知识对于学生打下数学基础,培养逻辑思维和数学推理能力具有重要意义。
数学必修4导学案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2第一章 三角函数 1.1任意角和弧度制 1.1.1任意角学习目标:(1)推广角的概念、引入大于360︒角和负角;(2)理解并掌握正角、负角、零角的定义; (3)理解任意角以及象限角的概念;(4)掌握所有与α角终边相同的角(包括α角)的表示方法; 学习重、难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法. 难点: 终边相同的角的表示. 学习过程思考:你的手表慢了5分钟,你是怎样将它校准的假如你的手表快了1.25小时,你应当如何将它校准当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于0360︒︒~之间,这正是我们这节课要研究的主要内容——任意角. 【探究新知】1.初中时,我们已学习了0360︒︒~角的概念,它是如何定义的呢?角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体720︒” (即转体2周),“转体1080︒”(即转体3周)等,都是遇到大于360︒的角以及按不同方向旋转而成的角.同学们思3考一下:能否再举出几个现实生活中“大于360︒的角或按不同方向旋转而成的角”的例子,这些说明了什么问题又该如何区分和表示这些角呢如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zero angle).如教材图1.1.3(1)中的角是一个正角,它等于750︒;图1.1.3(2)中,正角210α︒=,负150,660βγ︒︒=-=-;这样,我们就把角的概念推广到了任意角(any angle ),包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角α”或“α∠”可简记为α.3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念.角的顶点与原点重合,角的始边与x 轴的非负半轴重合。
高中数学必修四导学案(推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修四导学案(推荐完整))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修四导学案(推荐完整)的全部内容。
高中数学必修四导学案(推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望高中数学必修四导学案(推荐完整) 这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈高中数学必修四导学案(推荐完整)〉这篇文档的全部内容。
高中数学《必修四》导学案班级________ 姓名___________第一章三角函数1。
1.1 任意角【学习目标】1、了解任意角的概念;正确理解正角、零角、负角的概念2、正确理解终边相同的角的概念,并能判断其为第几象限角,熟悉掌握终边相同的角的集合表示【学习重点、难点】用集合与符号语言正确表示终边相同的角【自主学习】一、复习引入问题1:回忆初中我们是如何定义一个角的?______________________________________________________所学的角的范围是什么?______________________________________________________问题2:在体操、跳水中,有“转体0720”,怎么刻画?720”这样的动作名词,这里的“0______________________________________________________二、建构数学1.角的概念角可以看成平面内一条______绕着它的_____从一个位置_____到另一个位置所形成的图形.射线的端点称为角的________,射线旋转的开始位置和终止位置称为角的______和______. 2.角的分类按__________方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做_________.如果一条射线没有作任何旋转,我们称它形成了一个_________,它的______和_______重合。
高中数学《必修四》导学案班级________ 姓名___________第一章 三角函数 1.1.1 任意角【学习目标】1、 了解任意角的概念;正确理解正角、零角、负角的概念2、 正确理解终边相同的角的概念,并能判断其为第几象限角,熟悉掌握终边相同的角的集合表示【学习重点、难点】 用集合与符号语言正确表示终边相同的角 【自主学习】 一、复习引入问题1:回忆初中我们是如何定义一个角的?______________________________________________________ 所学的角的范围是什么?______________________________________________________问题2:在体操、跳水中,有“转体0720”这样的动作名词,这里的“0720”,怎么刻画?______________________________________________________二、建构数学 1.角的概念角可以看成平面内一条______绕着它的_____从一个位置_____到另一个位置所形成的图形。
射线的端点称为角的________,射线旋转的开始位置和终止位置称为角的______和______。
2.角的分类按__________方向旋转形成的角叫做正角, 按顺时针方向旋转形成的角叫做_________。
如果一条射线没有作任何旋转,我们称它形成了一个_________,它的______和_______重合。
这样,我们就把角的概念推广到了_______,包括_______、________和________。
3. 终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合_________ , 即任一与角α终边相同的角,都可以表示成 。
4.象限角、轴线角的概念我们常在直角坐标系内讨论角。
为了讨论问题的方便,使角的________与__________重合,角的___________与_______________________重合。
高中数学《必修四》导学案班级________ ___________第一章 三角函数 1.1.1 任意角【学习目标】1、 了解任意角的概念;正确理解正角、零角、负角的概念2、 正确理解终边相同的角的概念,并能判断其为第几象限角,熟悉掌握终边相同的角的集合表示【学习重点、难点】 用集合与符号语言正确表示终边相同的角 【自主学习】 一、复习引入问题1:回忆初中我们是如何定义一个角的?______________________________________________________ 所学的角的围是什么?______________________________________________________问题2:在体操、跳水中,有“转体0720”这样的动作名词,这里的“0720”,怎么刻画?______________________________________________________二、建构数学 1.角的概念角可以看成平面一条______绕着它的_____从一个位置_____到另一个位置所形成的图形。
射线的端点称为角的________,射线旋转的开始位置和终止位置称为角的______和______。
2.角的分类按__________方向旋转形成的角叫做正角, 按顺时针方向旋转形成的角叫做_________。
如果一条射线没有作任何旋转,我们称它形成了一个_________,它的______和_______重合。
这样,我们就把角的概念推广到了_______,包括_______、________和________。
3. 终边相同的角所有与角α终边相同的角,连同角α在,可构成一个集合_________ , 即任一与角α终边相同的角,都可以表示成 。
4.象限角、轴线角的概念我们常在直角坐标系讨论角。
为了讨论问题的方便,使角的________与__________重合,角的___________与_______________________重合。
那么,角的_________(除端点外)落在第几象限,我们就说这个角是__________________。
如果角的终边落在坐标轴上,则称这个角为____________________。
象限角的集合(1)第一象限角的集合:_______________________________________(2)第二象限角的集合:_______________________________________(3)第三象限角的集合:_______________________________________(4)第四象限角的集合:_______________________________________轴线角的集合(1)终边在x轴正半轴的角的集合:_______________________________________(2)终边在x轴负半轴的角的集合:_______________________________________(3)终边在y轴正半轴的角的集合:_______________________________________(4)终边在y轴负半轴的角的集合:_______________________________________(5)终边在x轴上的角的集合:_______________________________________(6)终边在y轴上的角的集合:_______________________________________(7)终边在坐标轴上的角的集合:_______________________________________三、课前练习在同一直角坐标系中画出下列各角,并说出这个角是第几象限角。
000000---30,150,60,390,390,120【典型例题】例1 (1)钟表经过10分钟,时针和分针分别转了多少度?(2)若将钟表拨慢了10分钟,则时针和分针分别转了多少度?例2 在003600到的围,找出与下列各角终边相同的角,并分别判断它们是第几象限角。
(1)0650 (2)0150- (3)0240- (4)'015990-例3 已知0240与α角的终边相同,判断2α是第几象限角。
例4 写出终边落在第一、三象限的角的集合。
例5 写出角的终边在下图中阴影区域角的集合(包括边界)(1) (2) (3)【拓展延伸】已知角α是第二象限角,试判断2α为第几象限角?【巩固练习】1、设060-=α,则与角α终边相同的角的集合可以表示为__________________ _. 2、把下列各角化成),3600(3600Z k k ∈<≤⋅+αα的形式,并指出它们是第几象限的角。
(1)01200 (2)055- (3)01563 (4)01590-3、终边在y 轴上的角的集合_______________,终边在直线x y =上的角的集合________________,终边在四个象限角平分线上的角的集合_____________________ . 4、 终边在030角终边的反向延长线上的角的集合___________________________. 5、 若角α的终边与045角的终边关于原点对称,则若角βα,的终边关于直线0=+y x 对称,且060-=α,则6、 集合},3690|{0Z k k A ∈-⋅==αα,}180180|{00<<-=ββB ,则AB______________________________7、 若2α是第一象限角,则α的终边在______________________________ _ 8、(1)与'30350-终边相同的最小正角是________; (2)与0715终边相同的最大负角是___________; (3)与01000终边相同且绝对值最小的角是__________; (4)与01778-终边相同且绝对值最小的角是___________. 9、与015-终边相同的在003601080-<≤-β之间的角β为_______________________.10、已知角βα,的终边相同,则βα-的终边在___________________________. 11、若β是第四象限角,则β-0180是第_____象限角;β+0180是第____ 象限角。
12、若集合},9018030180|{0Z k k k A ∈+⋅<<+⋅=αα, 集合},4536045360|{0Z k k k B ∈+⋅<<-⋅=ββ, 则._____________=⋂B A13、已知集合}{锐角=M ,}90{0的角小于=N ,}{第一象限的角=P .(1)N P ⊆,(2)M P N =⋂,(3)P M ⊆,(4)P N M ⊆⋃)( 其中正确的是_______ _.14、角α小于0180而大于0180-,它的7倍角的终边又与自身终边重合,求角α。
15、已知α与060角的终边相同,分别判断αα2,2是第几象限角。
高中数学《必修四》导学案班级________ ___________1.1.2 弧度制【学习目标】1、理解弧度制的意义,能正确地进行弧度与角度的换算,熟记特殊角的弧度数2、掌握弧度制下的弧长公式和扇形的面积公式,会利用弧度制解决某些简单的实际问题3、了解角的集合与实数集之间可以建立起一一对应的关系【学习重点、难点】弧度的概念,弧度与角度换算【自主学习】一、复习引入请同学们回忆一下初中所学的01的角是如何定义的?二、建构数学1.度量角还可以用_______为单位进行度量,___________________________________ 叫做1弧度的角,用符号_____表示,读作________。
2.弧度数:正角的弧度数为_________,负角的弧度数为_________,零角的弧度数为_____ 如果半径为r的圆心角所对的弧的长为l,那么,角α的弧度数的绝对值是____________ 这里,α的正负由___________________________决定。
3.角度制与弧度制相互换算360°=_________rad 180°=_________rad1°=_________rad 1 rad=_________°≈ _________°4.角的概念推广后,在弧度制下, ________________与______________之间建立起一一对应的关系:每个角都有唯一的一个实数(即______________ _)与它对应;反过来,每一个实数也都有________________(即_______________ )与它对应。
5.弧度制下的弧长公式和扇形面积公式:α=______________ (l为弧长,r为半径)角α的弧度数的绝对值||弧长公式:____________________________扇形面积公式:____________________________【典型例题】例1.把下列各角从弧度化为度.(1)53π (2)12π (3)65π- (4)712 (5)115例2.把下列各角度化为弧度。
(1)0750- (2)01440- (3)0'6730 (4)0252 (5)'15110例3.(1)已知扇形的周长为cm 8,圆心角为rad 2,求该扇形的面积。
(2)已知扇形周长为cm 4,求扇形面积的最大值,并求此时圆心角的弧度数。
变式:已知一扇形周长为C (0C >),当扇形圆心角为何值时,它的面积最大?并求出最大面积。
【巩固练习】1、特殊角的度数与弧度数的对应:2、若角3=α,则角α的终边在第____象限;若6-=α,则角α的终边在第___ 象限.3、圆的半径为10,则2rad 的圆心角所对的弧长为______;扇形的面积为________.4、将下列各角化成)20(,2παπα<≤+k ,Z k ∈的形式,并指出终边所在位置.(1)319πα= (2)0315-=α (3)322πα= (4)223πα=5、用弧度制表示下列角终边的集合. (1)轴线角(2)角平分线上的角(3)直线x y 3=上的角6、若一圆弧长等于其所在圆的接正三角形的边长,那么该圆弧的圆心角等于_____ .7、已知角的终边与角3的终边相同,则在0,2与角3的终边相同的角为8、若角和角的终边关于x 轴对称,则角可以用角表示为( )A. 2kk Z B. 2k k Z C. kkZ D. kkZ9、若2<<4,且角的终边与角76的终边垂直,则=_________________ 10、已知集合2k <<21,A k kZ ,55B,求A B11、已知扇形的面积为25,当扇形的圆心角为多大时,扇形的周长取得最小值?12、已知扇形AOB 的圆心角为120,半径长为6,求(1)弧AB 的长(2)弧AB 与弦AB 围成的弓形的面积.高中数学《必修四》导学案班级________ ___________1.2.1任意角的三角函数(1)【学习目标】1、 掌握任意角三角函数的定义,并能借助单位圆理解任意角三角函数的定义2、 会用三角函数线表示任意角三角函数的值3、 掌握正弦、余弦、正切函数的定义域和这三种函数的值在各象限的符号 【学习重点、难点】任意角的正弦、余弦、正切的定义 【自主学习】一、复习旧知,导入新课在初中,我们已经学过锐角三角函数:角的围已经推广,那么对任意角α是否也能定义其三角函数呢? 二、建构数学1.在平面直角坐标系中,设点P 是角α终边上任意一点,坐标为(,)P x y ,它与原点的距离||OP r ==,一般地,我们规定:⑴比值___________叫做α的正弦,记作___________,即___________=___________; ⑵比值___________叫做α的余弦,记作___________,即___________=___________; ⑶比值___________叫做α的正切,记作___________,即___________=___________. 2.当α=___________________时, α的终边在y 轴上,这时点P 的横坐标等于_________, 所以_____________无意义。