零极点分布对系统频率响应的影响
- 格式:doc
- 大小:171.50 KB
- 文档页数:5
数字信号处理知识点总结《数字信号处理》辅导一、离散时间信号和系统的时域分析 (一) 离散时间信号(1)基本概念信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。
连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。
模拟信号:是连续信号的特例。
时间和幅度均连续。
离散信号:时间上不连续,幅度连续。
常见离散信号——序列。
数字信号:幅度量化,时间和幅度均不连续。
(2)基本序列(课本第7——10页)1)单位脉冲序列 1,0()0,0n n n δ=⎧=⎨≠⎩2)单位阶跃序列 1,0()0,0n u n n ≥⎧=⎨≤⎩3)矩形序列 1,01()0,0,N n N R n n n N ≤≤-⎧=⎨<≥⎩ 4)实指数序列 ()n a u n5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。
注意正弦周期序列周期性的判定(课本第10页)2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即()()i x n x n iL ∞=-∞=-∑当L N ≥时,()()()N x n x n R n =当L N <时,()()()N x n x n R n ≠(4)序列的分解序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即()()(),e o x n x n x n n =+-∞<<∞并且1()[()()]2e x n x n x M n *=+-1()[()()]2o x n x n x M n *=--(4)序列的运算 1)基本运算2)线性卷积:将序列()x n 以y 轴为中心做翻转,然后做m 点移位,最后与()x n 对应点相乘求和——翻转、移位、相乘、求和定义式:1212()()()()()m y n x m x n m x n x n ∞=-∞=-=*∑线性卷积的计算:A 、图解B 、解析法C 、不进位乘法(必须掌握)3)单位复指数序列求和(必须掌握)/2/2/2/2/2/21/2/2/2/2/2/2(1)/21()()/(2)1()()/(2)sin(/2)sin(/2)j N j N j N j N j N j N j N N j nj j j j j j j n j N e e e e e e e j ee e e e e e e j N e ωωωωωωωωωωωωωωωωωω------------=-----===---=∑如果2/k N ωπ=,那么根据洛比达法则有sin(/2)(0)(0)(()())sin(/2)N N k N N k N ωδδω===或可以结合作业题3.22进行练习(5)序列的功率和能量能量:2|()|n E x n ∞=-∞=∑功率:21lim |()|21NN n NP x n N →∞=-=+∑(6)相关函数——与随机信号的定义运算相同(二) 离散时间系统1.系统性质 (1)线性性质定义:设系统的输入分别为1()x n 和2()x n ,输出分别为1()y n 和2()y n ,即1122()[()],()[()]y n T x n y n T x n ==统的输对于任意给定的常数a、b ,下式成立1212()[()()]()()y n T ax n bx n a y n by n =+=+则该系统服从线性叠加原理,为线性系统,否则为非线性系统。
闭环系统零、极点位置对时间响应性能指标的影响
稳定性:
如果闭环极点全部位于s左半平⾯。
则系统⼀定稳定;
运动形式:
如果闭环系统⽆零点,且闭环极点均为实数极点,则时间响应⼀定是单调的;如果闭环系统极点均为复数极点,则时间响应⼀般是震荡的。
超调量:
超调量主要取决于闭环复数主导极点的衰减率,并与其它闭环零极点接近坐标原点的程度有关。
调节时间:
调节时间主要取决于最靠近虚轴的闭环复数极点的复数的实部绝对值;如果实数极点距离虚轴最近,并且它没有实数零点,则调节时间主要取决于该实数的模值。
实数零极点的影响:
零点减⼩系统阻尼,使峰值时间提前,超调量增⼤;极点增⼤系统阻尼,使峰值之间迟后,超调量减⼩,它们的作⽤,随着它们本⾝接近坐标原点的程度⽽增强。
偶极⼦及其处理:
远离原点的偶极⼦,其影响可忽略;接近原点的偶极⼦其影响必须考虑
主导极点:
在s平⾯上,最靠近虚轴⽽附近有闭环零点的⼀些闭环极点,对系统的影响最⼤。
结合偶极⼦的处理原则,将⾼阶系统简化为⼆、三个主导极点和⼀两个零点,然后估算系统的单位阶跃响应的性能指标。
零极点对消1、系统函数的零极点对系统频率特性有何影响?极点会使调节时间变短,是系统反应更快,但是也会使系统的稳定性变差,零点一般是使得稳定性增加,但是会使调节时间变长;极点主要影响频率响应的峰值,极点愈靠近单位圆,峰值愈尖锐;零点主要影响频率特性的谷值,零点愈靠近单位圆,谷值愈深(当零点在单位圆上时,频率特性为零)。
2、系统函数的零极点对系统冲激响应有何影响?(1)冲激响应波形是指指数衰减还是指数增长或等幅振荡,主要取决于极点位于s左半平面还是右半平面或在虚轴上。
(2)冲激响应波形衰减或增长快慢,主要取决于极点离虚轴的远近。
(3)冲激响应波形振荡的快慢,主要取决于极点离实轴的远近。
零点分布只影响冲激响应函数的幅度和相位,不影响响应模式。
3、若某因果系统不稳定,有哪些主要措施可使之稳定?答:对于结构不稳定系统,改变系统结构后,只要适当选配参数就可使系统稳定。
这是一个积分器,积分器是指系统的输出为输入号的积分,在离散系统来说则是求和。
以离散号为例,当输入为单位冲激号时,积分器的输出为一个单位阶跃号。
阶跃号的Z变换可以很容易计算得到,为1/(1-z-1)。
很显然,这个系统只有一个零点,其值为z=0;有一个极点,其值为z=1。
在零极图上可以很方便地看出,这个系统在频率为0处响应最大,随着频率逐步增加,响应逐步减小,这显然可以看做是一个低通滤波器。
其次,从直观上理解,积分器是把前面很多个输入值进行累加。
在这个过程中,积分器不同输入值之间的一些比较大的抖动被钝化了,也即是说变化比较大的抖动被平均掉了,也即是相当于高频部分被抑制了,这正好就是低通滤波器的功能。
零极点对消指的是当零点与极点十分接近时(一般两点距离小于这两点与其他零点或极点的距离的1/10~1/5),称该两点对消。
ps:其实就类似分子与分母一样的时候相消,分子零点,分母级点。
matlab零极点对系统幅频的影响动态过程概述说明1. 引言1.1 概述本文将探讨零极点对系统幅频的影响动态过程。
在控制系统中,零极点是系统的重要特性,它们决定了系统的稳定性、相位和幅频响应等关键指标。
通过分析和理解零极点对幅频响应的直接影响,我们可以更好地设计和优化控制系统。
1.2 文章结构本文共分为五个部分。
引言部分介绍了文章的主题和目的,以及概述了整篇文章的结构。
第二部分将概述零极点对系统幅频的影响动态过程,包括系统的零极点分布、幅频响应的定义及意义以及零点和极点对幅频响应的直接影响。
第三部分将详细解释零极点对系统幅频的影响动态过程,包括零点变化引起的幅频响应变化、极点变化引起的幅频响应变化以及零极点共振现象及其特性分析。
第四部分将通过实例分析与案例研究来进一步说明理论知识,并提供具体示例演示单纯增加零点和移动极点对系统幅频响应的变化。
最后,结论与展望部分总结了文章的主要观点和研究结果,并提出了研究不足之处以及未来的展望。
1.3 目的本文旨在深入研究零极点对系统幅频的影响动态过程,通过理论分析和实例演示,探讨零点和极点对幅频响应的直接影响,并解释零极点共振现象及其特性。
通过这些内容,读者可以更好地理解和应用控制系统中零极点的重要性,为系统设计与优化提供指导。
本文旨在为相关领域的研究人员和工程师提供有价值的参考和启发。
2. 零极点对系统幅频的影响动态过程概述2.1 系统的零极点分布在控制系统中,零点和极点是系统传递函数的特殊点。
零点表示在该频率下系统传递函数取零值,而极点则表示在此频率下系统传递函数出现无穷大或奇异性。
系统的零极点分布对于系统的动态响应和稳定性有重要影响。
2.2 幅频响应的定义及意义幅频响应是指输入信号在不同频率下通过系统后输出信号的幅度变化。
通过分析这种变化可以了解系统对于不同频率成分的响应特性。
幅频响应反映了系统对于各个频率成分信号放大或衰减的情况,从而可以评估控制系统的性能和特征。
零点、极点和偶极子对系统性能的影响我们知道在系统之中,适当的加入零点,极点还有偶极子,可以在某些方面提升系统的性能。
但是加入某项时候,到底是如何提升的呢?为此,我们用matlab 软件来帮助我们分析,以方便我们进行比较。
为了方便我们的比较,我们还将零点,极点还有偶极子对系统性能的影响分开来进行一个一个的讨论。
这样我们可以更加直观的感受到他们的影响。
(在分析的时候选择稳定的原始系统)在分析的时候我们选择的原系统的闭环传递函数为:通过matlab 编程和绘图我们可以得到()s G的单位阶跃响应曲线如下图:现在我们开始分析加入零点,极点和偶极子对系统性能的影响!一、零点为了在方程之中添加一个零点,我们将系统的闭环传递函数变为:我们可以通过matlab 编程,绘出()1s G 和()s G的响应曲线,通过分析相应的响应曲线,我们就可以得出相应的结论!matlab 的编程为: n=4; d=[4,1,4]; t1=0:0.1:15; y1=step(n,d,t1); n1=[3,4]; y2=step(n1,d,t1);plot(t1,y1,'-r',t1,y2,'-g'),grid xlabel('t'),ylabel('c(t)'); title('单位阶跃响应')两者的响应曲线为:通过对两条响应曲线的分析我们不难得出以下的结论: (1)系统的稳定性没变,还是稳定系统; (2)系统的上升时间r t减小; (3)系统的超调时间pt 减小; (4)系统的超调量%p 变长;(5)系统的调节时间s t 变长;但是在某些情况下,我们增加零点,会带来某些我们所不希望带来的结线和原始闭环函数的响应曲线的异同点。
通过matlab绘制的响应曲线如下:可以看出如果添加的零点正好与原点重合的时候,系统虽然最后还是稳态系统,但是系统最后的稳态值为0,这显然不合实际的要求。
零极点对系统性能的影响分析1任务步骤1.分析原开环传递函数G0(s)的性能,绘制系统的阶跃响应曲线得到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间);2.在G0(s)上增加零点,使开环传递函数为G1(s),绘制系统的根轨迹,分析系统的稳定性;3.取不同的开环传递函数G1(s)零点的值,绘制系统的阶跃响应曲线得到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间);4.综合数据,分析零点对系统性能的影响5.在G0(s)上增加极点,使开环传递函数为G2(s),绘制系统的根轨迹,分析系统的稳定性;6.取不同的开环传递函数G2(s)极点的值,绘制系统的阶跃响应曲线得到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间);7.综合数据,分析极点对系统性能的影响。
8.增加一对离原点近的偶极子和一对距离原点远的偶极子来验证偶极子对消的规律。
2原开环传递函数G0(s)的性能分析2.1 G0(s)的根轨迹取原开环传递函数为:Matlab指令:num=[1];den=[1,0.8,0.15];rlocus(num,den);得到图形:G0图1 原函数G0(s)的根轨迹根据原函数的根轨迹可得:系统的两个极点分别是-0.5和-0.3,分离点为-0.4,零点在无限远处,系统是稳定的。
2.2 G0(s)的阶跃响应Matlab指令:G=zpk([],[-0.3,-0.5],[1])sys=feedback(G,1)step(sys)得到图形:图2 原函数的阶跃响应曲线由阶跃响应曲线分析系统暂态性能: 曲线最大峰值为1.12,稳态值为0.87, 上升时间tr=1.97s 超调时间tp=3.15s 调节时间ts=9.95s ,2=∆超调量%p σ=28.3%3 增加零点后的开环传递函数G1(s )的性能分析为了分析开环传递函数的零点对系统性能的影响,现在在原开环传递函数的表达式上单独增加一个零点S=-a,并改变a 值大小,即离虚轴的距离,分析比较系统性能的变化。
备注:(1)、按照要求独立完成实验内容。
(2)、实验结束后,把电子版实验报告按要求格式改名(例:09号_张三_实验七.doc)后,实验室统一刻盘留档。
实验三零极点分布对系统频率响应的影响一、实验目的1.掌握系统差分方程得到系统函数的方法;2.掌握系统单位脉冲响应获取系统函数的方法;3.掌握用系统函数零级点分布的几何方法分析研究系统的频率响应二、实验原理在MA TLAB中,可以用函数[z,p,K]=tf2zp (num,den)求得有理分式形式的系统转移函数的零、极点,用函数zplane(z,p)绘出零、极点分布图;也可以用函数zplane(num,den)直接绘出有理分式形式的系统转移函数的零、极点分布图。
另外,在MA TLAB中,可以用函数 [r,p,k]=residuez(num,den)完成部分分式展开计算;可以用函数sos=zp2sos(z,p,K)完成将高阶系统分解为2阶系统的串联。
三、实验内容(包括代码与产生的图形)1. 假设系统用下面差分方程描述:y(n)=x(n)+ay(n-1)假设a=0.7, 0.8, 0.9 ,分别在三种情况下分析系统的频率特性,并打印幅度特性曲线。
B=1;A=[1,-0.7];subplot(3,3,1);zplane(B,A);xlabel('实部Re');ylabel('虚部Im');title('y(n)=x(n)+0.7y(n-1)传输函数零、极点分布');grid on[H,w]=freqz(B,A,'whole');subplot(3,3,4);plot(w/pi,abs(H),'linewidth',2);grid on;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性');axis([0,2,0,4]);subplot(3,3,7);plot(w/pi,angle(H),'linewidth',2);grid on;axis([-0.1,2.1,-3,3]);xlabel('\omega/\pi');ylabel('\phi(\omega)');title('相频响应特性');B=1;A=[1,-0.8];subplot(3,3,2);zplane(B,A);xlabel('实部Re');ylabel('虚部Im');title('y(n)=x(n)+0.8y(n-1)传输函数零、极点分布');grid on[H,w]=freqz(B,A,'whole');subplot(3,3,5);plot(w/pi,abs(H),'linewidth',2);grid on;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性');axis([0,2,0,4]);subplot(3,3,8);plot(w/pi,angle(H),'linewidth',2);grid on;axis([-0.1,2.1,-3,3]);xlabel('\omega/\pi');ylabel('\phi(\omega)');title('相频响应特性');B=1;A=[1,-0.9];subplot(3,3,3);zplane(B,A);xlabel('实部Re');ylabel('虚部Im');title('y(n)=x(n)+0.9y(n-1)传输函数零、极点分布');grid on[H,w]=freqz(B,A,'whole');subplot(3,3,6);plot(w/pi,abs(H),'linewidth',2);grid on;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性');axis([0,2,0,4]);subplot(3,3,9);plot(w/pi,angle(H),'linewidth',2);grid on;axis([-0.1,2.1,-3,3]);xlabel('\omega/\pi');ylabel('\phi(\omega)');title('相频响应特性');图1分析:由y(n)=x(n)+ay(n-1)可知:H[z]=B[z]/A[z]=1/(1-az^(-1)) 系统极点z=a,零点z=0,当B点从w=0逆时针旋转时,在w=0点,由于极点向量长度最短,形成波峰,并且当a越大,极点越接近单位圆,峰值愈高愈尖锐;在w=pi点形成波谷;z=0处零点不影响幅频响应。
2. 假设系统用下面差分方程描述:y(n) = x(n) +ax(n-1) 假设a=0.7, 0.8, 0.9 ,分别在三种情况下分析系统的频率特性,并打印幅度特性曲线。
B=[1,0.7];A=1;subplot(3,3,1);zplane(B,A);xlabel('实部Re');ylabel('虚部Im');title('y(n)=x(n)+0.7x(n-1)传输函数零、极点分布');grid on[H,w]=freqz(B,A,'whole');subplot(3,3,4);plot(w/pi,abs(H),'linewidth',2);grid on;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性');axis([0,2,0,2]);subplot(3,3,7);plot(w/pi,angle(H),'linewidth',2);grid on;axis([-0.1,2.1,-3,3]);xlabel('\omega/\pi');ylabel('\phi(\omega)');title('相频响应特性');B=[1,0.8];A=1;subplot(3,3,2);zplane(B,A);xlabel('实部Re');ylabel('虚部Im');title('y(n)=x(n)+0.8x(n-1)传输函数零、极点分布');grid on[H,w]=freqz(B,A,'whole');subplot(3,3,5);plot(w/pi,abs(H),'linewidth',2);grid on;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性');axis([0,2,0,2]);subplot(3,3,8);plot(w/pi,angle(H),'linewidth',2); grid on;axis([-0.1,2.1,-3,3]);xlabel('\omega/\pi');ylabel('\phi(\omega)');title('相频响应特性');B=[1,0.9];A=1;subplot(3,3,3);zplane(B,A);xlabel('实部Re');ylabel('虚部Im');title('y(n)=x(n)+0.9x(n-1)传输函数零、极点分布');grid on[H,w]=freqz(B,A,'whole');subplot(3,3,6);plot(w/pi,abs(H),'linewidth',2);grid on;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性');axis([0,2,0,2]);subplot(3,3,9);plot(w/pi,angle(H),'linewidth',2);grid on;axis([-0.1,2.1,-3,3]);xlabel('\omega/\pi');ylabel('\phi(\omega)');title('相频响应特性');图2分析:系统极点z=0,零点z=a,当B 点从w=0逆时针旋转时,在w=0点,由于零点向量长度最长,形成波峰:在w=pi点形成波谷;z=a处极点不影响相频响应。
3. 假设系统函数用下式描述:y(n)=1.273y(n-1)-0.81y(n-2)+x(n)+x(n-1) 试分析它的频率特性,要求打印其幅度特性曲线,并求出峰值频率和谷值频率。
B=[1,1];A=[1,-1.273,0.81];subplot(1,3,1);zplane(B,A);xlabel('实部Re');ylabel('虚部Im');title('y(n)=1.273y(n-1)-0.81y(n-2)+x(n)+x (n-1)传输函数零、极点分布');axis([-1,1,-1,1]);grid on[H,w]=freqz(B,A,'whole');subplot(1,3,2);plot(w/pi,abs(H),'linewidth',2);grid on;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性');axis([0,2,0,4]);subplot(1,3,3);plot(w/pi,angle(H),'linewidth',2);grid on;axis([-0.1,2.1,-3,3]);xlabel('\omega/\pi');ylabel('\phi(\omega)');title('相频响应特性');分析:零点z1=-1,z2=0当B点从w=0逆时针旋转时,当旋转到接近极点z1=0.79+j0.62*1.62^(-2)是极点向量长度最短,幅度特性出现峰值。