数理逻辑部分综合练习题
- 格式:doc
- 大小:91.00 KB
- 文档页数:2
一阶逻辑等值式与置换规则1.设个体域D={a,b,c},消去下列各式的量词:(1) x y(F(x)∧G(y))(2) x y(F(x)∨G(y))(3) xF(x)→yG(y)(4) x(F(x,y)→yG(y))2.设个体域D={1,2},请给出两种不同的解释I1和I2,使得下面公式在I1下都是真命题,而在I2下都是假命题。
(1) x(F(x)→G(x))(2) x(F(x)∧G(x))3.给定解释I如下:(a) 个体域D={3,4}。
(b) (x)为(3)=4,(4)=3。
(c) (x,y)为(3,3)=(4,4)=0,(3,4)=(4,3)=1。
试求下列公式在I下的真值:(1) x yF(x,y)(2) x yF(x,y)(3) x y(F(x,y)→F(f(x),f(y)))4.构造下面推理的证明:(1) 前提:x(F(x)→(G(a)∧R(x))),xF(x)结论:x(F(x)∧R(x))(2) 前提:x(F(x)∨G(x)),┐xG(x)结论:xF(x)(3) 前提:x(F(x)∨G(x)),x(┐G(x)∨┐R(x)),xR(x)结论:xF(x)5.证明下面推理:(1) 每个有理数都是实数,有的有理数是整数,因此有的实数是整数。
(2) 有理数、无理数都是实数,虚数不是实数,因此虚数既不是有理数、也不是无理数。
(3) 不存在能表示成分数的无理数,有理数都能表示成分数,因此有理数都不是无理数。
答案1.(1) x y(F(x)∧G(y))xF(x)∧yG(y)(F(a)∧F(b))∧F(c))∧(G(a)∨G(b)∨G(c))(2) x y(F(x)∨G(y))xF(x)∨yG(y)(F(a)∧F(b)∧F(c))∨(G(a)∧G(b)∧G(c))(3) xF(x)→yG(y)(F(a)∧F(b)∧F(c))→(G(a)∧G(b)∧G(c)) (4) x(F(x,y)→yG(y))xF(x,y)→yG(y)(F(a,y)∨F(b,y)∨F(c,y))→(G(a)∨G(b)∨G(c))2.(1)I1: F(x):x≤2,G(x):x≤3F(1),F(2),G(1),G(2)均为真,所以x(F(x)→G(x))(F(1)→G(1)∧(F(2)→G(2))为真。
1.在一阶逻辑中将下面命题符号化,并分别讨论个体域限制为(a),(b)时命题的真值:(1)凡有理数都能被2整除。
(2)有的有理数能被2整除。
其中(a)个体域为有理数集合,(b)个体域为实数集合。
2.在一阶逻辑中将下面命题符号化,并分别讨论个体域限制为(a),(b)时命题的真值:(1)对于任意的x,均有x2-2= (x+)(x-)。
(2)存在x,使得x+5=9。
其中(a)个体域为自然数集合,(b)个体域为实数集合。
3.在一阶逻辑中将下列命题符号化:(1)没有不能表示成分数的有理数。
(2)在北京卖菜的人不全是外地人。
(3)乌鸦都是黑色的。
(4)有的人天天锻炼身体。
4.在一阶逻辑中将下列命题符号化:(1)火车都比轮船快。
(2)有的火车比有的汽车快。
(3)不存在比所有火车都快的汽车。
(4)“凡是汽车就比火车慢”是不对的。
5.给定解释I如下:(a)个体域D I为实数集合R。
(b)D I中特定元素=0。
(c)特定函数(x,y)=x-y,x,y∈D I。
(d)特定谓词(x,y):x=y,(x,y):x<y,x,y∈D I。
说明下列公式在I下的含义,并指出各公式的真值:(1)xy(G(x,y)→┐F(x,y))(2)xy(F(f(x,y),a)→G(x,y))(3)xy(G(x,y)→┐F(f(x,y),a))(4)xy(G(f(x,y),a)→F(x,y))6.给定解释I如下:(a)个体域D=N(N为自然数)。
(b)D中特定元素=2。
(c)D上函数(x,y)=x+y,(x,y)=x·y。
(d)D上谓词(x,y):x=y。
说明下列公式在I下的含义,并指出各公式的真值:(1)xF(g(x,a),x)(2)xy(F(f(x,a),y)→F(f(y,a),x))(3)xyz(F(f(x,y),z)(4)xF(f(x,x),g(x,x))7.证明下面公式既不是永真式也不是矛盾式:(1)x(F(x)→y(G(y)∧H(x,y)))(2)xy(F(x)∧G(y)→H(x,y))答案1.(1)(a)中,xF(x),其中,F(x):x能被2整除,真值为0。
一年级数学下册逻辑推理强化练习题练题一小明手里有5个苹果,他给了小红2个苹果,现在小明还剩下几个苹果?练题二小明和小刚是好朋友,他们一起去超市买东西。
小明买了3个饮料和4个饼干,小刚买了1个饮料和6个饼干。
他们一共买了几个东西?练题三小明家里有8个橙子,他把其中3个橙子分给了小红和小刚,每人得到几个橙子?练题四小明有一本书,小红比小明少1本书,小刚比小红多1本书。
三个人一共有几本书?练题五小红和小明一起做了10个问答题,小红做对了3个,小明做对了几个?练题六小明有8个石头,他把石头分成两堆,一堆有6个石头,另一堆有几个石头?练题七小红和小明比赛轮流丢硬币,谁先掷到正面谁就赢。
已知小红掷了5次都是反面,请问小红赢了吗?还是小明赢了?练题八小刚从家到学校骑自行车需要10分钟,小红骑自行车需要15分钟。
请问谁比较快?练题九小明家有3个蛋糕,他想请小红和小刚吃蛋糕,每人分到几个蛋糕?练题十小明有5只铅笔,他给了小红和小刚各1只铅笔,现在小明还剩下几只铅笔?练题十一小红和小明一起做作业,他们一共用了20分钟。
小红用了8分钟,小明用了几分钟?练题十二小红和小明参加了一个游戏,游戏结束后小红得到5个糖果,小明得到几个糖果?练题十三爸爸给小明买了3本书,妈妈给小明买了2本书,小明一共得到几本书?练题十四小明和小红在教室里比赛跑步,小明用了10秒,小红用了15秒,请问谁跑得更快?练题十五小红比小明先吃饭,小红吃了5分钟,小明吃了几分钟?练题十六小明和小红一起拉着绳子,小明拉了4次,小红拉了2次。
请问谁拉了更多次?练题十七小刚从家里到学校需要走20步,他已经走了11步,请问他离学校还有几步?练题十八小红和小明在一起玩了3个小时,小明又玩了5个小时,请问小红玩了多少个小时?练题十九小明家里有8个橘子,他把其中4个橘子分给了小红,现在小明家里还剩下几个橘子?练题二十小红和小明一起种了10棵树,小红种了2棵,小明种了几棵?。
《离散数学》第1章练习题参考答案2017年一、填空题1. 设命题公式)(r q p G ∨⌝∧=,则G 的成真赋值是 100 、 101 、 111 .2. 已知命题公式r q p G →∧⌝=)(,则G 的析取范式为r q p ∨⌝∨.3. 设B A ,为两个命题公式,B A ⇔当且仅当为重言式B A ↔,B A ⇒当且仅当为重言式B A →.4. 已知命题公式),,(r q p A 的主合取范式为530M M M ∧∧,则它的主析取范式为76421m m m m m ∨∨∨∨.5. 已知命题公式),,(r q p A 的成真赋值为000,001,010,100,110,则其主合取范式为357M M M ∧∧.二、选择题1. 设命题公式)(p q p G ⌝→∧=,则使G 的真值为1的p ,q 的取值是 ( C )(A ) 00 (B ) 01 (C ) 10 (D ) 112. 与命题公式)(r q p →→等值的公式是 ( B )(A )r q p →∨)( (B )r q p →∧)( (C ))(r q p ∧→ (D ))(r q p ∨→3. 命题公式p q p →∧)(是 ( A )(A )永真式 (B )永假式 (C )非永真式的可满足式 (D )合取范式4. 设命题公式)(),(p q H q p G ⌝→=→⌝=,则G 与H 的关系是 ( D )(A )G H ⇔ (B )G H → (C )G H ⇒ (D )H G ⇒5. 下列重言蕴涵式中,不正确的是 ( C )(A )Q P Q ∨⇒ (B )Q P Q →⇒(C )P Q P Q ⇒→∧⌝)( (D )Q Q P ⌝⇒→⌝)(三、计算题1. 将下列命题符号化(1)李强不是不聪明,而是不用功 (2)如果天不下雨,我们就去郊游 解 (1)设p :李强聪明,q :李强用功.原命题符号化为:q p ⌝∧(2)设p :天下雨,q :我们去郊游.原命题符号化为:q p →⌝2.给出下列公式的真值表(1)r q p r q p ⌝∧∧→→∧)((2))()()(r p r q q p ⌝∧⌝→→∧∨⌝解略.3. 设命题变项q p ,为1, s r ,为0,试求出下列命题的真值(1))(r q p ∧∨ (2))()(s q r p →⌝∧→解 (1)101)01(1)(⇔∨⇔∧∨⇔∧∨r q p(2)010)00()01()()(⇔∧⇔→∧→⇔→⌝∧→s q r p4. 判断下列公式的类型(1))(r q p p ∨∨→ (2))()(q p q p ∨⌝→↔解 用真值表知(1)是重言式,(2)是可满足式.5. 求命题公式r q p →∨)(的主合取范式,并求其成假赋值. 解 用真值表可得642)(M M M r q p ∧∧⇔→∨.真值为0的赋值有三种:001,100,110.6. 求命题公式r q p ∨∧)(的主合取范式与主析取范式.解 用真值表法可知42076531)(M M M m m m m m r q p ∧∧⇔∨∨∨∨⇔∨∧四、证明题1. 用等值演算法证明q q p p →→∧)(为重言式. 证 原式q q p p q q p p →∨⌝∧⇔→→∧⇔)()( q q p q q p p ∨∧⌝⇔∨∨⌝∧⌝⇔)())((11⇔∨⌝⇔∨⌝∨⌝⇔p q q p2. 构造下列推理的证明(1)前提:q p q s s r q r →⌝→∨⌝→,,,,结论:p ⌝;(2)前提:s r s p q s r q p ,),)((),()(⌝∨→∧⌝→→⌝,结论:q p ↔;(3) 前提:)(,)(,t p r r q q p ∧⌝⌝⌝∧∨⌝→,结论:t ⌝. 证 (1)用归谬法证明①p 结论的否定引入 ②q p → 前提引入 ③q ①②假言推理 ④q s ⌝→ 前提引入 ⑤s ⌝ ③④拒取 ⑥ s r ∨ 前提引入⑦r ⑤⑥析取三段论 ⑧q r ⌝→ 前提引入 ⑨q ⌝ ⑦⑧假言推理 ⑩q q ⌝∧ ③⑨合取 ⑩得出矛盾,因此,p ⌝是前提的有效结论.(2)① s p q ⌝∨→)( 前提引入② s 前提引入 ③ p q → ①②析取三段论 ④ )()(s r q p ∧⌝→→⌝ 前提引入 ⑤ r 前提引入 ⑥ s r ∧ ②⑤合取 ⑦ q p → ④⑥拒取⑧)p→∧q→③⑦合取(q)(p⑨qp↔⑧置换(3)①r⌝)(前提引入∨∧q⌝r②rq∨⌝①化简③r⌝①化简④)⌝前提引入⌝p∧(t⑤tp⌝∨④置换⑥q⌝②③析取三段论⑦qp→前提引入⑧p⌝⑥⑦拒取⑨t⌝⑤⑧析取三段论。
21.招聘广告登出后,一共有36人应聘。
打字、速记和记账三项能力中,每个应聘者至少具备一项能力,其中会打字的有25人,会速记的有20人,会记账的有21人。
进一步统计后发现,有7人会打字和速记,有9人会打字和记账,有6人会速记和记账,但他们都不具备另一项能力。
老板面试的是具有三项能力的全部应聘者。
老板面试了多少应聘者?A.2个。
B.4个。
C.5个。
D.8个。
E.10个。
【知识点】综合推理-数理逻辑【正确选项】B设具有三项能力的全部应聘者为X,则总人数=至少会意向的人数-仅会两项的人数-2X因此,36=25+20+21-(7+9+6)-2X,解得X=422.有三个骰子,其中红色骰子上2、4、9点各两面,绿色骰子上3、5、7点各两面;蓝色骰子上1、6、8点各两面。
两个人玩掷骰子的游戏,游戏规则是两人先各选一个骰子,然后同时掷,谁的点数大谁获胜。
那么,以下说法正确的是:A.先选骰子的人获胜的概率比后选骰子的人高。
B.选红色骰子的人比选绿色骰子的人获胜概率高。
C.没有任何一种骰子的获胜概率能同时比其他两个高。
D.获胜概率的高低与选哪种颜色的骰子没有关系。
【知识点】综合推理-数理逻辑【正确选项】C假设将PK中获胜的用“1”表示,没有获胜“0”表示。
则红与绿骰子PK的情况可用下图表示:此时,红色骰子胜利的概率为5/9。
同理可画绿与蓝骰子PK的图示(略),都看完后可以得出C选项没有任何一种骰子的获胜概率能同时比其他两个高。
(注:现以红为主看获胜的概率,当红与绿PK时,红胜的概率是4/9,则绿胜的概率为5/9。
)23.某工厂实验室对3种产品A、B、C进行撞击和拉伸测试,能通过这两种测试的产品就是合格品。
结果有两种产品通过了撞击测试,有两种产品通过了拉伸测试。
根据上述测试,以下哪项一定为真?A.有两种产品是合格品。
B.至少有一种产品是合格品。
C.还应该通过其他测试。
D.有可能3种产品都不是合格品。
E.产品A是合格品。
幼儿园小班数理逻辑考试试题一、数学1. 请选出下列物品中数量最多的一个:A. 毛笔B. 铅笔C. 红颜色的绳子D. 星星2. 妈妈给小明买了5个苹果和3个橙子,一共买了多少个水果?A. 7个B. 8个C. 5个D. 3个3. 下列哪个图形是一个正方形?A. 三角形B. 四边形C. 圆形D. 方形4. 小明有3个苹果,小光有2个苹果,他们一共有多少个苹果?A. 2个B. 3个C. 5个D. 6个5. 请选出下列哪个数字是最大的?A. 5B. 9C. 3D. 7二、逻辑推理1. 小红比小李年纪大,小李比小明年纪大,那么小红比小明年纪大吗?A. 是的B. 不是2. 下列物品中,哪个不属于自然界?A. 水B. 树木C. 电视机D. 石头3. 请根据以下数字继续数列:1,4,7,10,13,...A. 15B. 16C. 18D. 194. 今天是星期一,后天是星期几?A. 星期一B. 星期三C. 星期四D. 星期日5. 小明喜欢吃苹果,小李喜欢吃香蕉,小红喜欢吃什么水果?A. 苹果B. 香蕉C. 草莓D. 橙子三、综合题1. 请从下列图案中选出与原图最相似的一个:A. 图案1B. 图案2C. 图案3D. 图案42. 婆婆给小明5块钱,妈妈给了他3块钱,爸爸给了他2块钱,小明一共有多少钱?A. 8块钱B. 10块钱C. 5块钱D. 2块钱3. 如果今天是星期五,那么十天后是星期几?A. 星期一B. 星期二C. 星期四D. 星期六4. 请选出下列水果中含有酸味的一个:A. 苹果B. 香蕉C. 葡萄D. 西瓜5. 下列哪个关系是不正确的?A. 苹果-水果B. 小说-书籍C. 猫-动物D. 鱼-汽车。
逻辑学综合练习题参考答案一、选择题(将你认为正确的答案写在题后的括号内。
)(每题2分,共10分。
)1.“中国人占世界人口总数的22%”中,“中国人”是(AC )A.集合概念B.非集合概念C.单独概念D.普遍概念E.负概念2.下列有关概念的限制和概括,错误的有(ABCE )A.“湖南省人民法院”概括为“最高人民法院”B.“全国人大常委会”限制为“湖南省人大常委会”C.“工人”概括为“工人阶级”D.“张家界”概括为“旅游胜地”E.“学生”限制为“人”。
3..下列既具有对称关系的是(A B C )A.概念之间的同一关系B. 概念之间的交叉关系C.概念之间的全异关系D.概念之间的真包含关系E. 概念之间的真包含于关系4.“A∨B”与“A∧B”这两个逻辑公式中,它们(D E )A.逻辑常项和变项均相同B. 逻辑常项和变项均不相同C.逻辑常项相同和变项不相同D. 逻辑常项不相同和变项相同E.前者是相容选言命题,后者是联言命题5.“没有什么事物不包含矛盾”这一命题在自然语言中还可以表述为(DE )A.没有事物不是不包含矛盾B.事物不都包含矛盾C.有些事物包含矛盾D.一切事物都包含矛盾E.所有的事物不是不包含矛盾的二、图表题(共18分)1.用欧拉图表示下列概念之间的关系(6分)(1)中国(A)在亚洲(B),这个亚洲国家(C)是发展中国家(D)。
(6分)自己画。
注意“中国”与“亚洲”是全异关系。
2.用真值表判定下列两个判断之间的关系(12分)(1)只要社会活动能力强,就能找到好工作。
(2)社会活动能力强,也不一定能找到好工作。
答:矛盾关系。
真值表自制.三、分析题(47分)(一)运用概念部分的知识,分析下列问题:(每题3分,共12分)1. “逻辑学是研究思维形式和思维规律的科学,它包括传统逻辑、数理逻辑和辩证逻辑等学科。
”哪些内容表达了“逻辑学”的内涵?哪些内容表达了“逻辑学”的外延?答“研究思维形式和思维规律的科学”是内涵,“形式逻辑、数理逻辑、辩证逻辑”是外延。
数理逻辑部分综合练习一、单项选择题1.设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为( ).A.P∨⌝P⌝Q→ B.QP→ C.QP↔ D.Q 2.命题公式P?Q的合取范式是 ( ).A.P?Q B.(P?Q)?(P?Q)C.P?Q D.?(?P??Q)3.命题公式)⌝的析取范式是( ).P→(QA.Q⌝ D.QP∨P⌝∨P⌝⌝ C.Q∧ B QP∧4.下列公式成立的为( ).A.?P??Q ? P?Q B.P??Q ? ?P?QC.Q?P ? P D.?P?(P?Q)?Q5.下列公式 ( )为重言式.A.?P??Q?P?Q B.(Q?(P?Q)) ?(?Q?(P?Q))C.(P?(?Q?P))?(?P?(P?Q)) D.(?P?(P?Q)) ?Q6.设A(x):x是人,B(x):x是学生,则命题“不是所有人都是学生”可符号化为().A.(∀x)(A(x)?B(x)) B.?(∃x)(A(x)?B(x))C.?(?x)(A(x)?B(x)) D.?(∃x)(A(x)??B(x))7.设A(x):x是人,B(x):x是工人,则命题“有人是工人”可符号化为().A.(?x)(A(x)?B(x)) B.(?x)(A(x)?B(x))C.?(?x)(A(x)?B(x)) D.?(?x)(A(x)??B(x))8.表达式))yQyRxzx∀∨∀中x∧∃xP→((,)(y))(zQ((z),∀的辖域是( ).A.P(x, y) B.P(x, y)?Q(z) C.R(x, y) D.P(x, y)?R(x, y) 9.在谓词公式(?x)(A(x)→B(x)?C(x,y))中,().A.x,y都是约束变元 B.x,y都是自由变元C.x是约束变元,y都是自由变元 D.x是自由变元,y都是约束变元补充题:设个体域为自然数集合,下列公式中是真命题的为 ( )A.)1∃∀y+yx(=xy⋅(=∃∀yxx B.)0C.)yxyx=+∃∀(y2yxyx=⋅∃ D.)∀(x二、填空题1.命题公式()→∨的真值是.P Q P2.设P:他生病了,Q:他出差了.R:我同意他不参加学习. 则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为.3.含有三个命题变项P,Q,R的命题公式P?Q的主析取范式是.4.设个体域D={a, b},那么谓词公式)xA∀∨x∃消去量词后的等值式)yB((y为.5.设个体域D={1, 2, 3},A(x)为“x小于3”,则谓词公式(?x)A(x) 的真值为.6.谓词命题公式(?x)((A(x)?B(x)) ?C(y))中的自由变元为 .三、公式翻译题1.请将语句“今天是天晴”翻译成命题公式.2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式.3.请将语句“他去旅游,仅当他有时间.”翻译成命题公式.4.请将语句“所有人都努力工作.”翻译成谓词公式.四、判断说明题(判断下列各题,并说明理由.)1.命题公式P P⌝∧的真值是1.2.命题公式?P∧(P??Q)∨P为永真式.3.下面的推理是否正确,请给予说明.五.计算题1.求P?Q?R的析取范式,合取范式、主析取范式,主合取范式.2.设谓词公式()((,)()(,,))()(,)∃→∀∧∀.x P x y z Q y x z y R y z(1)试写出量词的辖域;(2)指出该公式的自由变元和约束变元.3.设个体域为D={a1, a2},求谓词公式?y?xP(x,y)消去量词后的等值式.六、证明题1.试证明命题公式 (P?(Q??R))??P?Q与?(P??Q)等价.2.试证明(?x)(P(x)?R(x))?(?x)P(x)?(?x)R(x).。
北京科技大学远程教育学院《离散数学》综合练习(一)参考答案数理逻辑一、判断下列句子是否是命题,若是命题判断真值,并将其符号化。
1、今天天气真好!解:不是命题。
2、王华和张民是同学。
解:是命题。
真值视实际情况而定。
p:王华和张民是同学。
3、我一边吃饭,一边看电视。
解:是命题。
真值视实际情况而定。
p:我吃饭。
q:我看电视。
p∧q 4、没有不呼吸的人。
解:是命题。
真值为1。
M(x):x是人。
F(x):x呼吸。
∀x(M(x)→F(x))二、求命题公式的真值表和成真赋值、成假赋值。
p→∧qr∧→(p])[(r)解:成真赋值:000,001,010,011,101,111;成假赋值100,110三、用真值表、等值演算两种方法判别公式类型。
1、r q q p →∧→])[( 解:rq q p r q q q p r q q p rq q p r q q p r q q p ∨⌝∧⌝∨⇔∨⌝∨⌝∧⌝∨⇔∨⌝∨⌝∧⇔∨⌝∨∨⌝⌝⇔∨∧∨⌝⌝⇔→∧→])[()]()[()()(])[(])[(可满足式2、))((p q p q ∧∨⌝⌝∨ 解:))((p q p q A ∧∨⌝⌝∨=1)()()())((⇔∨⌝∨∨⌝⌝⇔⌝∨∨⌝⌝∨⇔∧∨⌝⌝∨q p q p p q p q p q p q永真式四、求命题公式的主析取范式和成真赋值、成假赋值。
)(r q p →→ 解:∑=→→),,,,,,7543210()(r q p 成真赋值:000,001,010,011,100,101,111;成假赋值110 五、解释I 如下:D 是实数集,特定元素a =0;特定函数f (x ,y )=x -y ;特定谓词F (x ,y ):x<y 。
在解释I 下判别公式真、假。
1、)])(([x y x f F y x ,,⌝∀∀ 解:)])[()])(([)]([)])(([x y x y x x y x y x x y x F y x x y x f F y x ≥-∀∀⇔<-⌝∀∀⇔-⌝∀∀⇔⌝∀∀,,,真值为假2、)]()([)({z y f z x f F y x F z y x ,,,,→∀∀∀ 解:)]()()[()]}()([)({z y z x y x z y x z y f z x f F y x F z y x -<-→<∀∀∀⇔→∀∀∀,,,,真值为真 六、1、求前束范式)()(y x yG x xF ,∀→⌝∃ 解:)]()([)()()()()()(y t G x F y x y t yG x xF y x yG x xF y x yG x xF ,,,,∨∀∃⇔∀∨∃⇔∀∨∃⇔∀→⌝∃2、证明:B x xA B x A x →∀⇔→∃)())(( 证明:Bx xA Bx xA B x A x B x A x B x A x →∀⇔∨⌝∀⇔∨⌝∃⇔∨⌝∃⇔→∃)()()())(())((七、写出下面推理的证明,要求写出前提、结论,并注明推理规则。
离散数学集合论部分综合练习本课程综合练习共分3次, 分别是集合论部分、图论部分、数理逻辑部分的综合练习, 这3次综合练习基本上是按照考试的题型安排练习题目, 目的是经过综合练习, 使同学自己检验学习成果, 找出掌握的薄弱知识点, 重点复习, 争取尽快掌握。
本次是集合论部分的综合练习。
一、单项选择题1.若集合A={a, b}, B={ a, b, { a, b }}, 则( ) . A.A B, 且A B B.A B, 但A BC.A B, 但A B D.A B, 且A B 2.若集合A={2, a, { a }, 4}, 则下列表述正确的是( ).A.{a, { a }}A B.{ a }AC.{2}A D. A3.若集合A={a, {a}, {1, 2}}, 则下列表述正确的是( ). A.{a, {a}}A B.{2}AC.{a}A D.A4.若集合A={a, b, {1, 2 }}, B={1, 2}, 则( ) .A.B A, 且B A B.B A, 但B AC.B A, 但B A D.B A, 且B A5.设集合A = {1, a }, 则P(A) = ( ).A.{{1}, {a}} B.{∅,{1}, {a}} C.{∅,{1}, {a}, {1, a}} D.{{1}, {a}, {1, a}} 6.若集合A的元素个数为10, 则其幂集的元素个数为( ) .A.1024 B.10 C.100 D.1 7.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x, y>|x+y=10且x, y∈A}, 则R的性质为( ) .A.自反的 B.对称的C.传递且对称的 D.反自反且传递的8.设集合A = {1, 2, 3, 4, 5, 6 }上的二元关系R ={<a , b>a , b∈A , 且a +b = 8}, 则R具有的性质为( ) .A.自反的 B.对称的C.对称和传递的 D.反自反和传递的9.如果R1和R2是A上的自反关系, 则R1∪R2, R1∩R2, R1-R2中自反关系有( ) 个.A .0B .2C .1D .310.设集合A ={1 , 2 , 3 , 4}上的二元关系R = {<1 , 1>, <2 , 2>, <2 , 3>, <4 , 4>},S = {<1 , 1>, <2 , 2>, <2 , 3>, <3 , 2>, <4 , 4>}, 则S 是R 的( ) 闭包.A .自反B .传递C .对称D .以上都不对11.设集合A = {1 , 2 , 3 , 4 , 5}上的偏序关系 的哈斯图如图一所示, 若A 的子集B则元素3为B 的( ) .A .下界B .最大下界C .最小上界D .以上答案都不对12.设A ={1, 2, 3, 4, 5, 6, 7, 8}, R 是A 上的整除关系, B ={2, 4, 6}, 则集合B 的最大元、 最小元、 上界、 下界依次为 ( ).A .8、 2、 8、 2B .无、 2、 无、 2C .6、 2、 6、 2D .8、 1、 6、 113.设A ={a , b }, B ={1, 2}, R 1, R 2, R 3是A 到B 的二元关系, 5图且R1={<a, 2>, <b, 2>}, R2={<a, 1>, <a, 2>, <b, 1>}, R3={<a, 1>, <b, 2>}, 则( ) 不是从A到B的函数.A.R1和R2 B.R2 C.R3 D.R1和R3二、填空题1.设集合A有n个元素, 那么A的幂集合P(A)的元素个数为.2.设集合A={a, b}, 那么集合A的幂集是.应该填写: {,{a,b},{a},{b }}3.设集合A={0, 1, 2, 3}, B={2, 3, 4, 5}, R是A到B的二元关系,∈R⋂xy∈x且=且<>∈{B,,}AyyBxA则R的有序对集合为.4.设集合A={0, 1, 2}, B={0, 2, 4},R是A到B的二元关系,∈∈R⋂x∈y且=且<>A{B,,}xyAxyB则R的关系矩阵M R=.5.设集合A={a,b,c}, A上的二元关系R={<a, b>,<c. a>}, S={<a, a>,<a, b>,<c, c>}则(R S)-1= .6.设集合A={a,b,c}, A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>}, 则二元关系R具有的性质是.7.若A={1,2}, R={<x, y>|x A, y A, x+y=10}, 则R的自反闭包为.8.设集合A={1, 2}, B={a, b}, 那么集合A到B的双射函数是.9.设A={a, b, c}, B={1, 2}, 作f: A→B, 则不同的函数个数为.三、判断说明题( 判断下列各题, 并说明理由.)1.设A、B、C为任意的三个集合, 如果A∪B=A∪C, 判断结论B=C是否成立? 并说明理由.图一。
从一份模拟试题中抽取出来的《数理逻辑》复习题及参考答案一、单选题(每小题2分,共20分)1 以下语句是命题的是( )。
A . y 等于x 。
B . 每个自然数都是奇数。
C . 请爱护环境。
D . 你今天有空吗?2 设α是一赋值,α(p)= α(q)=1,α(r)=0,下列公式的值为假的是( )。
A .p ∧(q ∨r)B .(p ✂r) ↔ (¬r ✂q)C .(r ✂q) ∧(q ✂p)D .(r ✂q)3 以下联结词的集合( )不是完备集。
A .{¬,∧,∨, ✂,↔}B .{¬,∧,∨}C .{¬, ✂}D .{∧,∨}4 公式A 的对偶式为A*,下列结果成立的是( )。
A .A ↔A*B .¬A ↔A*C .A|=|A*D .¬A|=|A*5 假设论域是正整数集合,下列自然语言的符号化表示中,( )的值是真的。
A .∀x ∃yG(x,y),其中G(x,y)表示xy=yB .∀x ∀yF(x,y),其中F(x,y)表示x+y=yC .∃x ∀yH(x,y),其中H(x,y)表示x+y=xD .∀x ∀yM(x,y),其中M(x,y)表示xy=x6.以下式子错误的是( )。
A .∀x ¬A(x) |=| ¬∃xA(x)B .∀x(A(x)∧B(x)) |=| ∀xA(x)∧∀x B(x)C .∃x(A(x)∨B(x)) |=| ∃xA(x)∨∃x B(x)D .∀x(A(x)∨B(x)) |=| ∀xA(x)∨∀x B(x)7. 下列式子( )不正确。
A .{x}∈{{x}}B .{x}∈{{x},x}C .{x}⊆{{x}}D .{x}⊆{{x},x}二、填空题(每小题2分,共20分)1.句子“只有小王爱唱歌,他才会弹钢琴。
”中,把“小王爱唱歌”形式化为命题符p ,“小王会弹钢琴”形式化为命题符q ,则句子形式化为公式 。
命题逻辑基本概念1.将下列命题符号化。
(1)刘晓月跑得快,跳得高。
(2)老王是山东人或河北人。
(3)因为天气冷,所以我穿了羽绒服。
(4)王欢与李乐组成一个小组。
(5)李辛与李末是兄弟。
(6)王强与刘威都学过法语。
(7)他一面吃饭,一面听音乐。
(8)如果天下大雨,他就乘班车上班。
(9)只有天下大雨,他才乘班车上班。
(10)除非天下大雨,他才乘班车上班。
(11)下雪路滑,他迟到了。
(12)2与4都是素数,这是不对的。
(13)“2或4是素数,这是不对的”是不对的。
2.将下列命题符号化,并给出各命题的真值:(1)若3+2=4,则地球是静止不动的。
(2)若3+2=4,则地球是运动不止的。
(3)若地球上没有树木,则人类不能生存。
(4)若地球上没有水,则是无理数。
3.将下列命题符号化,并给出各命题的真值:(1)2+2=4当且仅当3+3=6。
(2)2+2=4的充要条件是3+3≠6。
(3)2+2≠4与3+3=6互为充要条件。
(4)若2+2≠4,则3+3≠6,反之亦然。
4.设p:2+3=5。
q:大熊猫产在中国。
r:复旦大学在广州。
求下列复合命题的真值:(1)(p q)→r(2)(r→(p∧q))┐p(3)┐r→(┐p∨┐q∨r)(4)(p∧q∧┐r)((┐p∨┐q)→r)5.用真值表判断下列公式的类型:(1)p→(p∨q∨r)(2)(p→┐q)→┐q(3)┐(q→r)∧r(4)(p→q)→(┐q→┐p)(5)(p∧r)(┐p∧┐q)(6)((p→q)∧(q→r))→(p→r)(7)(p→q)(r s)答案1.(1)p∧q,其中,p:刘晓月跑得快,q:刘晓月跳得高。
(2)p∨q,其中,p:老王是山东人,q:老王是河北人。
(3)p→q,其中,p:天气冷,q:我穿了羽绒服。
(4)p,其中,p:王欢与李乐组成一个小组,是简单命题。
(5)p,其中,p:李辛与李末是兄弟。
(6)p∧q,其中,p:王强学过法语,q:刘威学过法语。
数理逻辑部分综合练习及答案一、单项选择题1.设P :我将去打球,Q :我有时间.命题“我将去打球,仅当我有时间时”符号化为( ).A .P Q →B .Q P →C .Q P ↔D .Q P ⌝∨⌝因为语句“仅当我有时间时”是“我将去打球”的必要条件,一般地,当语句是由“……,仅当……”组成,它的符号化用条件联结词→.所以选项B 是正确的.正确答案:B问:如果把“我将去打球”改成“我将去学习”、“我将去旅游”等,怎么符号化呢?2.命题公式P ∨Q 的合取范式是 ( ).A .P ∧QB .(P ∧Q )∨(P ∨Q )C .P ∨QD .⌝(⌝P ∧⌝Q )复习合取范式的定义:定义6.6.2 一个命题公式称为合取范式,当且仅当它具有形式:A 1∧A 2∧…∧A n , (n ≥1)其中A 1,A 2,…,A n 均是由命题变元或其否定所组成的析取式.由此可知,选项B 和D 是错的.又因为P ∧Q 与P ∨Q 不是等价的,选项A 是错的.所以,选项C 是正确的. 正确答案:C3.命题公式)(Q P →⌝的析取范式是( ).A .Q P ⌝∧B Q P ∧⌝C .Q P ∨⌝D .Q P ⌝∨复习析取范式的定义:定义6.6.3 一个命题公式称为析取范式,当且仅当它具有形式:A 1∨A 2∨…∨A n , (n ≥1)其中A 1,A 2,…,A n 均是有命题变元或其否定所组成的合取式.由教材第167页中的蕴含等价式知道,公式)(Q P →⌝与Q P ⌝∧是等价的,Q P ⌝∧满足析取范式的定义,所以,选项A 是正确的.正确答案:A注:第2,3题复习了合取范式和析取范式的概念,大家一定要记住的。
如果题目改为求一个变元(P 或⌝P )命题公式的合取范式或析取范式,那么答案是什么?4.下列公式成立的为( ).A .⌝P ∧⌝Q ⇔ P ∨QB .P →⌝Q ⇔ ⌝P →QC .Q →P ⇒ PD .⌝P ∧(P ∨Q )⇒Q因为: ⌝P ∧(P ∨Q )⇒Q (析取三段论,P171公式(10))所以,选项D 是正确的.正确答案:D5.下列公式 ( )为重言式.A .⌝P ∧⌝Q ↔P ∨QB .(Q →(P ∨Q )) ↔(⌝Q ∧(P ∨Q ))C .(P →(⌝Q →P ))↔(⌝P →(P →Q ))D .(⌝P ∨(P ∧Q )) ↔Q由教材第167页中的蕴含等价式,得(P →(⌝Q →P )) ⇔⌝P ∨(Q ∨ P ),(⌝P →(P →Q )) ⇔ P ∨ (⌝P ∨Q )所以,C 是重言式,也就是永真式.正确答案:C说明:如果题目改为“下列公式 ( )为永真式”,应该是一样的.6.设A (x ):x 是人,B (x ):x 是学生,则命题“不是所有人都是学生”可符号化为( ).A .(∀x )(A (x )∧B (x )) B .⌝(∃x )(A (x )∧B (x ))C .⌝(∀x )(A (x )→B (x ))D .⌝(∃x )(A (x )∧⌝B (x ))由题设知道,A (x )→B (x )表示只要是人,就是学生,而“不是所有”应该用全称量词的否定,即⌝∀x ,得到公式C .正确答案:C7.设A (x ):x 是人,B (x ):x 是工人,则命题“有人是工人”可符号化为( ).A .(∃x )(A (x )∧B (x )) B .(∀x )(A (x )∧B (x ))C .⌝(∀x )(A (x )→B (x ))D .⌝(∃x )(A (x )∧⌝B (x ))选项A 中的A (x )∧B (x )表示x 是人,而且是工人,∃x 表示存在一个人,有一个人,因此(∃x )(A (x )∧B (x ))表示“有人是工人”.正确答案:A8.表达式))(),(())(),((z zQ y x R y z Q y x P x ∀→∃∧∨∀中x ∀的辖域是( ).A .P (x , y )B .P (x , y )∨Q (z )C .R (x , y )D .P (x , y )∧R (x , y )所谓辖域是指“紧接于量词之后最小的子公式称为量词的辖域”.那么看题中紧接于量词∀x 之后最小的子公式是什么呢?显然是P (x , y )∨Q (z ),因此,选项B 是正确的.正确答案:B注:如果该题改为判断题,即表达式))(),(())(),((z zQ y x R y z Q y x P x ∀→∃∧∨∀中x ∀的辖域是P (x , y )如何判断并说明理由呢?9.在谓词公式(∀x )(A (x )→B (x )∨C (x ,y ))中,( ).A .x ,y 都是约束变元B .x ,y 都是自由变元C .x 是约束变元,y 都是自由变元D .x 是自由变元,y 都是约束变元约束变元就是受相应的量词约束的变元.而自由变元就是不受任何量词约束的变元.所以选项C 是正确的. 正确答案:C注:如果该题改为填写约束变元或自由变元的填空题,大家也应该掌握.补充题:设个体域为自然数集合,下列公式中是真命题的为 ( )A .)1(=⋅∃∀y x y xB .)0(=+∃∀y x y xC .)(x y x y x =⋅∀∃D .)2(y y x y x =+∀∃因为选项A 表示:对任一自然数x 存在自然数y 满足xy =1,这样的y 是不存在的选项B 表示:对任一自然数x 存在自然数y 满足x +y =0,这样的y 也是不存在的选项C 表示:存在一自然数x 自然数对任意自然数y 满足xy =x ,取x =0即可,故选项C 正确正确答案:C二、填空题1.命题公式()P Q P →∨的真值是 .因为()P Q P →∨⇔⌝P ∨(Q ∨P ) ⇔1,所以应该填写:1.应该填写:1问:命题公式Q Q →、Q Q ⌝∨的真值是什么?2.设P :他生病了,Q :他出差了.R :我同意他不参加学习. 则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为 .一般地,当语句是由“如果……,那么……”,或“若……,则……”组成,它的符号化用条件联结词→. 应该填写:(P ∨Q )→R3.含有三个命题变项P ,Q ,R 的命题公式P ∧Q 的主析取范式是 .复习主析取范式的定义:定义6.6.5 对于给定的命题变元,如果有一个等价公式,它仅仅有小项的析取组成,则该等价式称为原式的主析取范式.而小项的定义是:定义6.6.4 n 个命题变元的合取式,称为布尔合取或小项,其中每个变元与它的否定不能同时存在,但两者必须出现且仅出现一次.由小项的定义知道,命题公式P ∧Q 中缺少命题变项R 与它的否定,因此,应该补上,即P ∧Q ⇔P ∧Q ∧ (R ∨⌝R ) ⇔(P ∧Q ∧ R ) ∨(P ∧Q ∧⌝R )得到命题公式P ∧Q 的主析取范式.应该填写:(P ∧Q ∧R )∨ (P ∧Q ∧⌝R )4.设个体域D ={a , b },那么谓词公式)()(y yB x xA ∀∨∃消去量词后的等值式为 . 因为在有限个体域下,消除量词的规则为:设D ={a 1, a 2, …, a n },则)(...)()()(21n a A a A a A x xA ∧∧∧⇔∀)(...)()()(21n a A a A a A x xA ∨∨∨⇔∃所以,应该填写:(A (a )∨ A (b ))∨ (B (a )∧ B (b ))应该填写:(A (a )∨ A (b ))∨ (B (a )∧ B (b ))注:如果个体域是D ={1, 2},D ={a , b , c }, 或谓词公式变为(()())x A x B x ∃∨,怎么做?5.设个体域D ={1, 2, 3},A (x )为“x 小于3”,则谓词公式(∃x )A (x ) 的真值为 .因为 (∃x )A (x )⇔A (1)∨A (2)∨A (3)⇔1∨1∨0⇔1应该填写:1注:若个体域D ={1, 2},A (x )为“x 小于3”,则谓词公式(∃x )A (x ) 的真值是什么?或:设个体域D={1, 2, 3},A(x)为“x是奇数”,则谓词公式(∃x)A(x) 的真值是什么?6.谓词命题公式(∀x)((A(x)∧B(x)) ∨C(y))中的自由变元为.因为自由变元就是不受任何量词约束的变元,在公式(∀x)((A(x)∧B(x)) ∨C(y))中,y是不受全称量词∀约束的变元.所以应该填写:y.应该填写:y问: 公式中的约束变元是什么?判断:谓词命题公式(∀x)((A(x)∧B(x)) ∨C(y))中的自由变元为x,是否正确?为什么?三、公式翻译题1.请将语句“今天是天晴”翻译成命题公式.解:设P:今天是天晴;则命题公式为:P.问:“今天不是天晴”的命题公式是什么?2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式.解:设P:小王去旅游,Q:小李去旅游,则命题公式为:P∧Q.注:语句中包含“也”、“且”、“但”等连接词,命题公式要用合取“∧”.3.请将语句“他去旅游,仅当他有时间.”翻译成命题公式.解:设P:他去旅游,Q:他有时间,则命题公式为:P→Q.注:命题公式的翻译还要注意“不可兼或”的表示.例如,教材第164页的例6 “T2次列车5点或6点钟开.”怎么翻译成命题公式?这里的“或”为不可兼或.4.请将语句“所有人都努力工作.”翻译成谓词公式.解:设P(x):x是人,Q(x):x努力工作.谓词公式为:(∀x)(P(x)→ Q(x)).四、判断说明题(判断下列各题,并说明理由.)⌝∧的真值是1.1.命题公式P P解错误.⌝∧是永假式(教材167页的否定律).因为P P2.命题公式⌝P∧(P→⌝Q)∨P为永真式.解:正确注:如果题目改为该命题公式为永假式,如何判断并说明理由?3.下面的推理是否正确,请给予说明.(1) (∀x)A(x) ∧ B(x) 前提引入(2) A(y) ∧B(y) US (1)解:错第2步应为:A(y) ∧B(x)因为A(x)中的x是约束变元,而B(x)中的x是自由变元,换名时,约束变元与自由变元不能混淆.五.计算题1.求P→Q∨R的析取范式,合取范式、主析取范式,主合取范式.分析:定义6.6.7 对于给定的命题变元,如果有一个等价公式,它仅仅有大项的合取组成,则该等价式称为原式的主合取范式.定义6.6.6 n个命题变元的析取式,称为布尔析取或大项,其中每个变元与它的否定不能同时存在,但两者必须出现且仅出现一次.解析取范式,合取范式、主析取范式的定义前面复习过了,由教材167的蕴含等价式P→Q∨R ⇔⌝P∨Q∨R(析取范式、合取范式、主合取范式)⇔(⌝P ∧(Q ∨⌝Q )∧(R ∨⌝R ))∨((P ∨⌝P )∧Q ∧(R ∨⌝R ))∨((P ∨⌝P )∧(Q ∨⌝Q )∧R )(补齐命题变项)⇔(⌝P ∧Q ∧R )∨(⌝P ∧Q ∧⌝R )∨(⌝P ∧⌝Q ∧R )∨(⌝P ∧⌝Q ∧⌝R )∨(P ∧Q ∧R )∨(P ∧Q ∧⌝R )∨(⌝P ∧Q ∧R )∨(⌝P ∧Q ∧⌝R )∨(P ∧Q ∧R )∨(P ∧⌝Q ∧R )∨(⌝P ∧Q ∧R )∨(⌝P ∧⌝Q ∧R ) (∧对∨的分配律)⇔(⌝P ∧⌝Q ∧⌝R )∨(⌝P ∧⌝Q ∧R )∨(⌝P ∧Q ∧⌝R )∨(⌝P ∧Q ∧R )∨(P ∧⌝Q ∧R )∨(P ∧Q ∧⌝R )∨(P ∧Q ∧R ) (主析取范式)注:如果题目只是求“析取范式”或“合取范式”,大家一定不要再进一步求“主析取范式”或“主合取范式”. 例如:求(P ∨Q )→R [或(P ∨Q )→(R ∨Q ),P →Q ∧R ]的合取范式、析取范式.2.设谓词公式()((,)()(,,))()(,)x P x y z Q y x z y R y z ∃→∀∧∀.(1)试写出量词的辖域;(2)指出该公式的自由变元和约束变元.解 (1)量词x ∃的辖域为(,)(,,)P x y zQ y x z →∀,z ∀的辖域为(,,)Q y x z ,y ∀的辖域为(,)R y z .(2)自由变元为(,)(,,)P x y zQ y x z →∀中的y ,(,)R y z 中的z .约束变元为(,)(,,)P x y zQ y x z →∀中的x ,(,,)Q y x z 中的z ,(,)R y z 中的y .3.设个体域为D ={a 1, a 2},求谓词公式∀y ∃xP (x ,y )消去量词后的等值式.解:∀y ∃xP (x , y ) ⇔(∃xP (x , a 1))∧(∃xP (x , a 2))⇔(P (a 1, a 1)∨P (a 2, a 1))∧(P (a 1, a 2)∨P (a 2, a 2))六、证明题1.试证明命题公式 (P →(Q ∨⌝R ))∧⌝P ∧Q 与⌝(P ∨⌝Q )等价.证:(P →(Q ∨⌝R ))∧⌝P ∧Q ⇔(⌝P ∨(Q ∨⌝R ))∧⌝P ∧Q⇔((⌝P ∨Q ∨⌝R )∧⌝P )∧Q⇔⌝P ∧Q (吸收律)⇔⌝(P ∨⌝Q ) (摩根律)2.试证明(∃x )(P (x )∧R (x ))⇒(∃x )P (x )∧(∃x )R (x ).分析:前提:(∃x )(P (x )∧R (x )),结论:(∃x )P (x )∧(∃x )R (x ) .证明 (1) (∃x )(P (x )∧R (x )) P(2) P (a )∧R (a ) ES (1) (存在指定规则)(3) P (a ) T (2) I (化简)(4) (∃x )P (x ) EG (3) (存在推广规则)(5) R (a ) T (2) I (化简)(6) (∃x )R (x ) EG (5) (存在推广规则)(7) (∃x )P (x )∧(∃x )R (x ) T (4)(6)I (合取引入)。
练习题(-)引论一、指出下列各段文字中‚逻辑‛一词的含义:1、实现四个现代化,这个宏伟任务是我国半个多世纪以来,在中国共产党领导下全部革命过程的合乎逻辑的继续。
2、写文章要讲逻辑。
就是要注意整篇文章、整篇讲话的结构,开头、中间、尾巴要有一种关系,要有一种内部的联系,不要互相冲突。
3、这样,对于已经从自然界和历史中被驱逐出去的哲学来说,要是还留下什么的话.那就只留下一个纯粹思想的领域:关于思维过程本身的规律的学说,即逻辑和辩证法。
4、……出现重复,部分是由于术语上的缺点,部分是由于缺乏逻辑修养。
5、跨过战争的艰难路程之后,胜利的坦途就到来了,这是战争的自然逻辑。
6、使我佩服的是列宁演说中那种不可战胜的逻辑力量,这种逻辑力量紧紧地抓住听众,一步一步地感染听众,然后把听众俘虏得一个不剩。
7、在这些人看来,清官比贪官还要坏,这真是个奇怪的逻辑。
8、帝国主义的逻辑和人民的逻辑是这样的不同。
捣乱、失败、再捣乱、再失败,直至灭亡,这就是帝国主义和世界上一切反动派对待人民事业的逻辑,他们是决不会违背这个逻辑的。
9、虽说马克思没有遗留下‚逻辑‛(大写字母的),但他遗留下《资本论》的‚逻辑‛。
10、语法、逻辑、修辞、音韵等等都是没有阶级性的。
“例示”题:‚我们但愿法国历史的无意识的逻辑将战胜所有政党(指当时法国的资产阶级政党——编者注)对逻辑的有意识的违反。
‛答:本题中的两个‚逻辑‛,均指客观事物发展的规律。
二、请指出下列各段文字中具有共同逻辑形式的判断或推理,并用公式表示之。
1、鸟都是有脊椎骨的;天鹅是鸟;所以,天鹅是有脊椎骨的。
2、如果火箭的速度超过9.8公里/秒,那么它就会飞出地球的引力场。
3、只有历史清楚,才能加入中国共产党。
4、如果人们要使工作得到预想的结果,那么就要使自己的思想合乎客观外界的规律性。
5、玛丽喜欢滑冰,而且喜欢打网球,喜欢游泳。
6、或者张明去参观画展,或者李玲去参观画展。
7、如果一部作品获奖,那么,它一定是优秀作品;《芙蓉镇》是获奖作品;所以,它是一部优秀作品。
离散数学作业6离散数学数理逻辑部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。
本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业。
要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求本学期第17周末前完成并上交任课教师(不收电子稿)。
并在07任务界面下方点击“保存”和“交卷”按钮,以便教师评分。
一、填空题1.命题公式()P Q P →∨的真值是 1或T .2.设P :他生病了,Q :他出差了.R :我同意他不参加学习. 则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为 (P ∨Q )→R .3.含有三个命题变项P ,Q ,R 的命题公式P ∧Q 的主析取范式是(P ∧Q ∧R)∨(P ∧Q ∧⌝R) .4.设P (x ):x 是人,Q (x ):x 去上课,则命题“有人去上课.” 可符号化为 ∃x(P(x) ∧Q(x)) .5.设个体域D ={a , b },那么谓词公式)()(y yB x xA ∀∨∃消去量词后的等值式为 (A(a) ∨A(b)) ∨((B(a) ∧B(b)) .6.设个体域D ={1, 2, 3},A (x )为“x 大于3”,则谓词公式(∃x )A (x ) 的真值为 0(F) .7.谓词命题公式(∀x )((A (x )∧B (x )) ∨C (y ))中的自由变元为 y . 8.谓词命题公式(∀x )(P (x ) →Q (x ) ∨R (x ,y ))中的约束变元为 x .三、公式翻译题1.请将语句“今天是天晴”翻译成命题公式. 设P :今天是晴天。
姓 名: 学 号: 得 分: 教师签名:则P2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式.设P:小王去旅游。
工程数学(本)形成性考核作业5一、解答题(每题10分,共80分)1.设()3,4X N ,试求:(1)()59P X <<;(2)()7P X >.(已知()10.8413Φ=, ()20.9772Φ=,()30.9987Φ=)2. 设2~(1,2)X N ,试求:(1)(3)P X <;(2)求常数a ,使得(1)0.9974P X a -<=(已知(1)0.8413,(2)0.9772,(3)0.9987Φ=Φ=Φ=).3. 设2~(20,2)X N ,试求:(1)(2226)P X <<;(2)(24)P X >.(已知(1)0.8413,(2)0.9772,(3)0.9987Φ=Φ=Φ=)4. 设2~(3,2)X N ,试求:(1)(5)P X <;(2)(9)P X >.(已知(1)0.8413,(2)0.9772,(3)0.9987Φ=Φ=Φ=).5. 设某一批零件重量X 服从正态分布2(,0.6)N μ,随机抽取9个测得平均重量为5(单位:千克),试求此零件重量总体均值的置信度为0.95的置信区间(已知0.975 1.96u =).6. 为了对完成某项工作所需时间建立一个标准,工厂随机抽查了16名工人分别去完成这项工作,结果发现他们所需的平均时间为15分钟,样本标准差为3分钟. 假设完成这项工作所需的时间服从正态分布,在标准差不变的情况下,试确定完成此项工作所需平均时间的置信度为0.95的置信区间(已知0.975 1.96u =).7. 某校全年级的英语成绩服从正态分布2(85,10)N ,现随机抽取某班16名学生的英语考试成绩,得平均分为80x =. 假设标准差没有改变,在显著水平0.05α=下,问能否认为该班的英语平均成绩为85分(已知0.975 1.96u =).8. 据资料分析,某厂生产的砖的抗断强度X 服从正态分布(32.5,1.21)N . 今从该厂最近生产的一批砖中随机地抽取了9块,测得抗断强度(单位:kg /cm 2)的平均值为31.18. 假设标准差没有改变,在0.05的显著性水平下,问这批砖的抗断强度是否合格.(0.975 1.96u =)二、证明题(每题10分,共20分)1.设随机事件A与B相互独立,试证A与B也相互独立.2.设A B,为两个事件,且B A⊂,试证()()+=.P A B P A。
数理逻辑部分综合练习
一、单项选择题
1.设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为( ).A.P
∨
⌝
P⌝
Q→B.Q
P→C.Q
P↔D.Q 2.命题公式P∨Q的合取范式是( ).
A.P∧Q B.(P∧Q)∨(P∨Q)
C.P∨Q D.⌝(⌝P∧⌝Q)
3.命题公式)
⌝的析取范式是( ).
P→
(Q
A.Q
⌝D.Q
P∨
P⌝
∨
P⌝
⌝C.Q
∧B Q
P∧
4.下列公式成立的为( ).
A.⌝P∧⌝Q ⇔P∨Q B.P→⌝Q⇔⌝P→Q
C.Q→P⇒ P D.⌝P∧(P∨Q)⇒Q
5.下列公式( )为重言式.
A.⌝P∧⌝Q↔P∨Q B.(Q→(P∨Q)) ↔(⌝Q∧(P∨Q))
C.(P→(⌝Q→P))↔(⌝P→(P→Q)) D.(⌝P∨(P∧Q)) ↔Q
6.设A(x):x是人,B(x):x是学生,则命题“不是所有人都是学生”可符号化为().A.(∀x)(A(x)∧B(x)) B.⌝(∃x)(A(x)∧B(x))
C.⌝(∀x)(A(x)→B(x)) D.⌝(∃x)(A(x)∧⌝B(x))
7.设A(x):x是人,B(x):x是工人,则命题“有人是工人”可符号化为().A.(∃x)(A(x)∧B(x)) B.(∀x)(A(x)∧B(x))
C.⌝(∀x)(A(x)→B(x)) D.⌝(∃x)(A(x)∧⌝B(x))
8.表达式))
y
Q
y
R
x
z
x∀
∨
∀中x
∧
∃
x
P
→
(
(
,
)
(
y
))
(
zQ
(
(z
)
,
∀的辖域是( ).A.P(x, y) B.P(x, y)∨Q(z) C.R(x, y) D.P(x, y)∧R(x, y)
9.在谓词公式(∀x)(A(x)→B(x)∨C(x,y))中,().
A.x,y都是约束变元B.x,y都是自由变元
C.x是约束变元,y都是自由变元D.x是自由变元,y都是约束变元
补充题:设个体域为自然数集合,下列公式中是真命题的为( )
A.)1
∃
∀y
+
y
x
(=
x
y
⋅
(=
∃
∀y
x
x B.)0
C.)
y
x
y
x=
+
∃
∀
(y
2
y
x
y
x=
⋅
∃D.)
∀
(x
二、填空题
1.命题公式()
→∨的真值是.
P Q P
2.设P:他生病了,Q:他出差了.R:我同意他不参加学习.则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为.
3.含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式是.
4.设个体域D={a, b},那么谓词公式)
xA∀
∨
x
∃消去量词后的等值式
)
yB
(
(y
为.
5.设个体域D={1, 2, 3},A(x)为“x小于3”,则谓词公式(∃x)A(x) 的真值为.
6.谓词命题公式(∀x)((A(x)∧B(x)) ∨C(y))中的自由变元为.
三、公式翻译题
1.请将语句“今天是天晴”翻译成命题公式.
2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式.
3.请将语句“他去旅游,仅当他有时间.”翻译成命题公式.
4.请将语句“所有人都努力工作.”翻译成谓词公式.
四、判断说明题(判断下列各题,并说明理由.)
1.命题公式P P
⌝∧的真值是1.
2.命题公式⌝P∧(P→⌝Q)∨P为永真式.
3.下面的推理是否正确,请给予说明.
五.计算题
1.求P→Q∨R的析取范式,合取范式、主析取范式,主合取范式.2.设谓词公式()((,)()(,,))()(,)
∃→∀∧∀.
x P x y z Q y x z y R y z
(1)试写出量词的辖域;
(2)指出该公式的自由变元和约束变元.
3.设个体域为D={a1, a2},求谓词公式∀y∃xP(x,y)消去量词后的等值式.六、证明题
1.试证明命题公式(P→(Q∨⌝R))∧⌝P∧Q与⌝(P∨⌝Q)等价.
2.试证明(∃x)(P(x)∧R(x))⇒(∃x)P(x)∧(∃x)R(x).。