当前位置:文档之家› 离散数学集合论部分测试题

离散数学集合论部分测试题

离散数学集合论部分测试题
离散数学集合论部分测试题

离散数学集合论部分测试题

离散数学集合论部分综合练习

本课程综合练习共分3次,分别是集合论部分、图论部分、数理逻辑部分的综合练习,这3次综合练习基本上是按照考试的题型安排练习题目,目的是通过综合练习,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次是集合论部分的综合练习。

一、单项选择题

1.若集合A={a,b},B={ a,b,{ a,b }},则().

A.A?B,且A∈B B.A∈B,但A?B

C.A?B,但A?B D.A?B,且A?B

2.若集合A={2,a,{ a },4},则下列表述正确的是( ).

A.{a,{ a }}∈A B.{ a }?A

C.{2}∈A D.?∈A

3.若集合A={ a,{a},{1,2}},则下列表述正确的是( ).

A.{a,{a}}∈A B.{2}?A

C.{a}?A D.?∈A

4.若集合A={a,b,{1,2 }},B={1,2},则().

A.B? A,且B∈A B.B∈ A,但B?A

C.B ? A,但B?A D.B? A,且B?A

5.设集合A = {1, a },则P(A) = ( ).

A.{{1}, {a}} B.{?,{1}, {a}}

C.{?,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }}

6.若集合A的元素个数为10,则其幂集的元素个数为().

A.1024 B.10 C.100 D.1

7.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={|x+y=10且x, y∈A},则R 的性质为().

A.自反的B.对称的

C.传递且对称的D.反自反且传递的

8.设集合A = {1,2,3,4,5,6 }上的二元关系R ={?a , b∈A , 且a +b = 8},则R具有的性质为().

A.自反的B.对称的

C.对称和传递的D.反自反和传递的

9.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.

A.0 B.2 C.1 D.3

10.设集合A={1 , 2 , 3 , 4}上的二元关系

R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},

9.设A ={a ,b ,c },B ={1,2},作f :A →B ,则不同的函数个数为 .

三、判断说明题(判断下列各题,并说明理由.)

1.设A 、B 、C 为任意的三个集合,如果A ∪B =A ∪C ,判断结论B =C 是

否成立?并说明理由.

2.如果R 1和R 2是A 上的自反关系,判断

结论:“R -11、R 1∪R 2、R 1?R 2是自反的” 是否

成立?并说明理由.

3. 若偏序集的哈斯图如图一所示,

则集合A 的最大元为a ,最小元不存在. 4.若偏序集的哈斯图如图二所示,

则集合A 的最大元为a ,最小元不存在.

5.设N 、R 分别为自然数集与实数集,f :N

→R ,f (x )=x +6,则f 是单射.

四、计算题 1.设集合A ={a , b , c },B ={b , d , e },求

(1)B ?A ; (2)A ?B ; (3)A -B ; (4)B ⊕A .

2.设A ={{a , b }, 1, 2},B ={ a , b , {1}, 1},试计算

(1)(A -B ) (2)(A ∪B ) (3)(A ∪B )-(A ∩B ).

3.设集合A ={{1},{2},1,2},B ={1,2,{1,2}},试计算

(1)(A -B ); (2)(A ∩B ); (3)A ×B .

4.设A ={0,1,2,3,4},R ={|x ∈A ,y ∈A 且x +y <0},S ={|x ∈A ,y ∈A 且x +y ≤3},试求R ,S ,R ?S ,R -1,S -1,r (R ).

5.设A ={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},R 是A 上的整除关系,B ={2, 4, 6}.

(1)写出关系R 的表示式; (2)画出关系R 的哈斯图;

(3)求出集合B 的最大元、最小元.

6.设集合A ={a , b , c , d }上的二元关系R 的关系图 如图三所示.

(1)写出R 的表达式;

(2)写出R 的关系矩阵;

(3)求出R 2. 7.设集合A ={1,2,3,4},R ={|x , y ∈A ;|x -y |=1或x -y =0},试

(1)写出R 的有序对表示; (2)画出R 的关系图;

(3)说明R 满足自反性,不满足传递性.

五、证明题

1.试证明集合等式:A ? (B ?C )=(A ?B ) ? (A ?C ).

2.试证明集合等式A ? (B ?C )=(A ?B ) ? (A ?C ).

图一 图二

a d

b

c 图三

3.设R 是集合A 上的对称关系和传递关系,试证明:若对任意a ∈A ,存在b ∈A ,使得∈R ,则R 是等价关系.

4.若非空集合A 上的二元关系R 和S 是偏序关系,试证明:S R ?也是A 上的偏序关系.

参考解答

一、单项选择题

1.A 2.B 3.C 4.B 5.C 6.A 7.B 8.B 9.B 10.C 11.C 12.B 13.B

二、填空题

1.2n

2.{?,{a ,b },{a },{b }}

3.{<2, 2>,<2, 3>,<3, 2>},<3, 3>

4.????

??????011000011 5.{, }

6.反自反的

7.{<1, 1>, <2, 2>}

8.{<1, a >, <2, b >},{<1, b >, <2, a >}

9.8

三、判断说明题(判断下列各题,并说明理由.)

1.解:错.

设A ={1, 2},B ={1},C ={2},则A ∪B =A ∪C ,但B ≠C .

2.解:成立.

因为R 1和R 2是A 上的自反关系,即I A ?R 1,I A ?R 2。

由逆关系定义和I A ?R 1,得I A ? R 1-1;

由I A ?R 1,I A ?R 2,得I A ? R 1∪R 2,I A ? R 1?R 2。

所以,R 1-1、R 1∪R 2、R 1?R 2是自反的。

3.解:正确.

对于集合A 的任意元素x ,均有∈R

(或xRa ),所以a 是集合A 中的最大元.

按照最小元的定义,在集合A 中不存在最

小元.

4.解:错误.

集合A 的最大元不存在,a 是极大元.

5.解:正确.

设x 1,x 2为自然数且x 1≠x 2,则有f (x 1)= x 1+6≠ x 2+6= f (x 2),故f 为单射.

四、计算题

1.解:(1)B ?A ={a , b , c }?{b , d , e }={ b }

(2)A ?B ={a , b , c }?{b , d , e }={a , b , c , d , e }

(3)A -B ={a , b , c }-{b , d , e }={a , c }

(4)B ⊕A = A ?B -B ?A ={a , b , c , d , e }-{ b }={a , c , d , e }

2.解:(1)(A -B )={{a , b }, 2}

(2)(A ∪B )={{a , b }, 1, 2, a , b , {1}}

(3)(A ∪B )-(A ∩B )={{a , b }, 2, a , b , {1}}

3.解:(1)A -B ={{1},{2}}

(2)A ∩B ={1,2}

(3)A ×B={<{1},1>,<{1},2>,<{1},{1,2}>,<{2},1>,<{2},2>,

<{2},{1,2}>,<1,1>,<1,2>,<1, {1,2}>,<2,1>,<2,2>,

<2, {1,2}>}

4.解:R =?,

S ={<0,0>,<0,1>,<0,2>,<0,3>,<1,0>,<1,1>,<1,2>,<2,0>,<2,1>,<3,0>}

R ?S =?,

R -1=?,

S -1= S ,

r (R )=I A .

5.解:(1)R =I ?{<1,2>, <1,3>, …, <1,12> ,

<2,4>, <2,6>, <2,8>, <2,10>, <2,12>, <3,6>, <3,9> ,

<3,12>, <4,8>, <4,12>, <5,10>, <6,12>}

(2)关系R 的哈斯图如图四

(3)集合B 没有最大元,最小元是:2 6.解:R ={, , , }

?????

???????=1000000001000101R M R 2 = {, , , }?{, , , }

={, , }

7.解:(1)R ={<1,1>,<2,2>,<3,3>,<4,4>,

<1,2>,<2,1>,<2,3>,<3,2>,<3,4>,<4,3>}

(2)关系图如图五

(3)因为<1,1>,<2,2>,<3,3>,<4,4>均属于R ,

即A 的每个元素构成的有序对均在R 中,故R 在

A 上是自反的。

因有<2,3>与<3,4>属于R ,但<2,4>不属于R ,

所以R 在A 上不是传递的。 1 2 3 4 6 9 5 7 8 111图四:关系R 的哈

斯图 ? ? ? ? 1 2 3 4 图五

五、证明题

1.证明:设,若x ∈A ? (B ?C ),则x ∈A 或x ∈B ?C ,

即 x ∈A 或x ∈B 且 x ∈A 或x ∈C .

即x ∈A ?B 且 x ∈A ?C ,

即 x ∈T =(A ?B ) ? (A ?C ),

所以A ? (B ?C )? (A ?B ) ? (A ?C ).

反之,若x ∈(A ?B ) ? (A ?C ),则x ∈A ?B 且 x ∈A ?C ,

即x ∈A 或x ∈B 且 x ∈A 或x ∈C ,

即x ∈A 或x ∈B ?C ,

即x ∈A ? (B ?C ),

所以(A ?B ) ? (A ?C )? A ? (B ?C ).

因此.A ? (B ?C )=(A ?B ) ? (A ?C ).

2.证明:设S =A ∩(B ∪C ),T =(A ∩B )∪(A ∩C ), 若x ∈S ,则x ∈A 且x ∈B ∪C ,即 x ∈A 且x ∈B 或 x ∈A 且x ∈C ,

也即x ∈A ∩B 或 x ∈A ∩C ,即 x ∈T ,所以S ?T .

反之,若x ∈T ,则x ∈A ∩B 或 x ∈A ∩C ,

即x ∈A 且x ∈B 或 x ∈A 且x ∈C

也即x ∈A 且x ∈B ∪C ,即x ∈S ,所以T ?S .

因此T =S .

3.设R 是集合A 上的对称关系和传递关系,试证明:若对任意a ∈A ,存在b ∈A ,使得∈R ,则R 是等价关系.

证明:已知R 是对称关系和传递关系,只需证明R 是自反关系.

?a ∈A ,?b ∈A ,使得∈R ,因为R 是对称的,故∈R ; 又R 是传递的,即当∈R ,∈R ?∈R ;

由元素a 的任意性,知R 是自反的.

所以,R 是等价关系.

4.若非空集合A 上的二元关系R 和S 是偏序关系,试证明:S R ?也是A 上的偏序关系.

证明:.① S R x x S x x R x x A x ?>∈?<>∈<>∈<∈?,,,,,,所以S R ?有自反性; ②,,A y x ∈?因为R ,S 是反对称的,

y

x x y y x S x y S y x R x y R y x S x y R x y S y x R y x S R x y S R y x =?=∧=?>∈<∧>∈<∧>∈<∧>∈∈<∧>∈<∧>∈<∧>∈<∧?><),,(),,(),,(),,(,, 所以,R ?S 有反对称性. ③ A z y x ∈?,,,因为R ,S 是传递的,

S R z y S R y x ?>∈<∧?>∈<,,

S z y R z y S y x R y x >∈<∧>∈<∧>∈<∧>∈?<,,,,

S z y S y x R z y R y x >∈<∧>∈<∧>∈<∧>∈?<,,,, S R z x S z x R z x ?>∈?<>∈<∧>∈?<,,,

所以,S R ?有传递性.

总之,R 是偏序关系.

华南农业大学 离散数学 期末考试2013试卷及答案

华南农业大学期末考试试卷(A 卷) 2013-2014学年第 一 学期 考试科目: 离散结构 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 ①本试题分为试卷与答卷2部分。试卷有四大题,共6页。 ②所有解答必须写在答卷上,写在试卷上不得分。 一、选择题(本大题共 25 小题,每小题 2 分,共 50 分) 1、下面语句是简单命题的为_____。 A 、3不是偶数 B 、李平既聪明又用功 C 、李平学过英语或日语 D 、李平和张三是同学 2、设 p:他主修计算机科学, q:他是新生,r:他可以在宿舍使用电脑,下列命题“除非他不是新生,否则只有他主修计算机科学才可以在宿舍使用电脑。”可以符号化为______。 A 、r q p →?∧? B 、r q p ?→∧? C 、r q p →?∧ D 、r q p ∧→ 3、下列谓词公式不是命题公式P →Q 的代换实例的是______。 A 、)()(y G x F → B 、),(),(y x yG y x xF ?→? C 、))()((x G x F x →? D 、)()(x G x xF →? 4、设个体域为整数集,下列公式中其值为 1的是_____。 A 、)0(=+??y x y x B 、)0(=+??y x x y C 、)0(=+??y x y x D 、)0(=+???y x y x

2 5、下列哪个表达式错误_____。 A 、 B x xA B x A x ∧??∧?)())(( B 、B x xA B x A x ∨??∨?)())(( C 、B x xA B x A x →??→?)())(( D 、)())((x xA B x A B x ?→?→? 6、下述结论错误的是____。 A 、存在这样的关系,它可以既满足对称性,又满足反对称性 B 、存在这样的关系,它可以既不满足对称性,又不满足反对称性 C 、存在这样的关系,它可以既满足自反性,又满足反自反性 D 、存在这样的关系,它可以既不满足自反性,又不满足反自反性 7、集合A 上的关系R 为一个等价关系,当且仅当R 具有_____。 A 、自反性、对称性和传递性 B 、自反性、反对称性和传递性 C 、反自反性、对称性和传递性 D 、反自反性、反对称性和传递性 8、下列说法不正确的是:______。 A 、R 是自反的,则2R 一定是自反的 B 、R 是反自反的,则2R 一定是反自反的 C 、R 是对称的,则2R 一定是对称的 D 、R 是传递的,则2R 一定是传递 9、设R 和S 定义在P 上,P 是所有人的集合,=R {x P y x y x ∧∈><,|,是y 的父亲},=S {x P y x y x ∧∈><,|,是y 的母亲},则关系{y P y x y x ∧∈><,|,是的x 外祖父}的表达式是:______。 A 、11--R R B 、11--S R C 、11--S S D 、11--R S 10、右图描述的偏序集中,子集},,{f e b 的上界为_____。 A 、c b , B 、b a , C 、b D 、c b a ,, 11、以下整数序列,能成为一个简单图的顶点度数序列的是_____。 A 、1,2,2,3,4,5

离散数学试卷及答案(2)

一、填空 20% (每小题2分) 1、 P :你努力,Q :你失败。“除非你努力,否则你将失败”的翻译为 ;“虽然你努力了,但还是失败了”的翻译为 。 2、论域D={1,2},指定谓词P 则公式),(x y yP x ??真值为 。 2、 设S={a 1 ,a 2 ,…,a 8},B i 是S 的子集,则由B 31所表达的子集是 。 3、 设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则R= (列举法)。 R 的关系矩阵M R = 。 5、设A={1,2,3},则A 上既不是对称的又不是反对称的关系R= ; A 上既是对称的又是反对称的关系R= 。 6、设代数系统,其中A={a ,b ,c}, 则幺元是 ;是否有幂等 性 ;是否有对称性 。 7、4阶群必是 群或 群。 8、下面偏序格是分配格的是 。

9、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件是 。 10、公式R Q P Q P P ?∧∨?∧∧?∨)(())(( 的根树表示为 。 二、选择 20% (每小题2分) 1、在下述公式中是重言式为( ) A .)()(Q P Q P ∨→∧; B .))()(()(P Q Q P Q P →∧→??; C .Q Q P ∧→?)(; D .)(Q P P ∨→ 。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为( )。 A .0; B .1; C .2; D .3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A .3; B .6; C .7; D .8 。 4、 设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生的S S ?上一个划分共有( )个分块。 A .4; B .5; C .6; D .9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为

离散数学集合论部分常考××题

离散数学常考题型梳理 第2章关系与函数 一、题型分析 本章主要介绍关系的概念及运算、关系的性质与闭包运算、等价关系、相容关系和偏序关系三个重要关系、函数以及函数相关知识等内容。常涉及到的题型主要包括: 2-1关系的概念理解以及关系的并、交、补、差以及复合和逆关系等运算2-2关系自反和反自反、对称和反对称等性质的概念理解与判定;自反、对称和传递闭包运算。 2-3等价关系 2-4偏序关系和哈斯图 2-5 函数的概念和性质 因此,在本章学习过程中希望大家要清楚地知道: 1.有序对和笛卡尔积 (1)有序对:所谓有序对就是指一个有顺序的数组,如< x , y >,x , y的位置是确定的,且< a , b >< b , a >。 (2)笛卡尔积:把集合A,B合成集合A×B,规定: {,|} ?=<>∈∈ 且 A B x y x A y B 由于有序对< x , y >中x,y 的位置是确定的,因此A×B 的记法也是确定的,不能写成B×A 。 笛卡儿积的运算一般不满足交换律。 2.二元关系的概念和表示、几种特殊的关系和关系的运算 (1)二元关系的概念:二元关系是一个有序对集合,设集合A,B ,从集合A 到B的二元关系 R∈ x ∈ < y =且 > } , x {B | y A 记作xRy。 二元关系的定义域:A Ram? R ) (。 ) R Dom? (;二元关系的值域:B 二元关系R 是一个有序对组成的集合.因此,一个二元关系是一个集合,可以用集合形式表示;反过来说,一个集合未必是一个二元关系,仅当集合是由有序对元素组成的,才能当做二元关系。 常用关系的表示法包括了集合表示法、列举法、描述法、关系矩阵法和关系图法。关系矩阵和关系图是有限集合上的二元关系的表示方法。

中国石油大学大学《离散数学》期末复习题及答案

《离散数学》期末复习题 一、填空题(每空2分,共20分) 1、集合A上的偏序关系的三个性质是、 和。 2、一个集合的幂集是指。 3、集合A={b,c},B={a,b,c,d,e},则A?B= 。 4、集合A={1,2,3,4},B={1,3,5,7,9},则A?B= 。 5、若A是2元集合, 则2A有个元素。 6、集合A={1,2,3},A上的二元运算定义为:a* b = a和b两者的最大值,则 2*3= 。 7、设A={a, b,c,d }, 则∣A∣= 。 8、对实数的普通加法和乘法,是加法的幂等元, 是乘法的幂等元。 9、设a,b,c是阿贝尔群的元素,则-(a+b+c)= 。 10、一个图的哈密尔顿路是。 11、不能再分解的命题称为,至少包含一个联结词的命题称 为。 12、命题是。 13、如果p表示王强是一名大学生,则┐p表示。 14、与一个个体相关联的谓词叫做。 15、量词分两种:和。 16、设A、B为集合,如果集合A的元素都是集合B的元素,则称A是B 的。 17、集合上的三种特殊元是、 及。 18、设A={a, b},则ρ(A) 的四个元素分别 是:,,,。

19、代数系统是指由及其上的或 组成的系统。 20、设是代数系统,其中是*1,*2二元运算符,如果*1,*2都满 足、,并且*1和*2满足,则称是格。 21、集合A={a,b,c,d},B={b },则A \ B= 。 22、设A={1, 2}, 则∣A∣= 。 23、在有向图中,结点v的出度deg+(v)表示,入度deg-(v)表示 以。 24、一个图的欧拉回路是。 25、不含回路的连通图是。 26、不与任何结点相邻接的结点称为。 27、推理理论中的四个推理规则 是、、、。 二、判断题(每题2分,共20分) 1、空集是唯一的。 2、对任意的集合A,A包含A。 3、恒等关系不是对称的,也不是反对称的。 4、集合{1,2,3,3}和{1,2,2,3}是同一集合。 5、图G中,与顶点v关联的边数称为点v的度数,记作deg(v)。 6、在实数集上,普通加法和普通乘法不是可结合运算。 7、对于任何一命题公式,都存在与其等价的析取范式和合取范式。 8、设(A,*)是代数系统,a∈A,如果a*a=a,则称a为(A,*)的等幂元。 9、设f:A→B,g:B→C。若f,g都是双射,则gf不是双射。 10、无向图的邻接矩阵是对称阵。 11、一个集合不可以是另一个集合的元素。 12、映射也可以称为函数,是一种特殊的二元关系。 13、群中每个元素的逆元都不是惟一的。

离散数学期末试卷A卷及答案

《离散数学》试卷(A 卷) 一、 选择题(共5 小题,每题 3 分,共15 分) 1、设A={1,2,3},B={2,3,4,5},C={2,3},则C B A ⊕?)(为(C )。 A 、{1,2} B 、{2,3} C 、{1,4,5} D 、{1,2,3} 2、下列语句中哪个是真命题 ( A ) A 、如果1+2=3,则4+5=9; B 、1+2=3当且仅当4+5≠9。 C 、如果1+2=3,则4+5≠9; D 、1+2=3仅当4+5≠9。 3、个体域为整数集合时,下列公式( C )不是命题。 A 、)*(y y x y x =?? B 、)4*(=??y x y x C 、)*(x y x x =? D 、)2*(=??y x y x 4、全域关系A E 不具有下列哪个性质( B )。 A 、自反性 B 、反自反性 C 、对称性 D 、传递性 5、函数612)(,:+-=→x x f R R f 是( D )。 A 、单射函数 B 、满射函数 C 、既不单射也不满射 D 、双射函数 二、填充题(共 5 小题,每题 3 分,共15 分) 1、设|A|=4,|P(B)|=32,|P(A ?B)|=128,则|A ?B|=??2???.

2、公式)(Q P Q ?∨∧的主合取范式为 。 3、对于公式))()((x Q x P x ∨?,其中)(x P :x=1, )(x Q :x=2,当论域为{0,1,2}时,其真值为???1???。 4、设A ={1,2,3,4},则A 上共有???15????个等价关系。 5、设A ={a ,b ,c },B={1,2},则|B A |= 8 。 三、判断题(对的填T ,错的填F ,共 10 小题,每题 1 分,共计10 分) 1、“这个语句是真的”是真命题。 ( F ) 2、“张刚和小强是同桌。”是复合命题。 ( F ) 3、))(()(r q q p p ∧?∧→?∨是矛盾式。 ( T ) 4、)(T S R T R S R ??????。 ( F ) 5、恒等关系具有自反性,对称性,反对称性,传递性。 ( T ) 6、若f 、g 分别是单射,则g f ?是单射。 ( T ) 7、若g f ?是满射,则g 是满射。 ( F ) 8、若A B ?,则)()(A P B P ?。 ( T ) 9、若R 具有自反性,则1-R 也具有自反性。 ( T ) 10、B A ∈并且B A ?不可以同时成立。 (F ) 四、计算题(共 3 小题,每题 10 分,共30 分) 1、调查260个大学生,获得如下数据:64人选修数学课程,94人选修计算机课程,58人选修商贸课程,28人同时选修数学课程和商贸课程,26人同时选修数学课程和计算机课程,22人同时选修计算机课程和商贸课程,14人同时选修三门课程。问 (1)三门课程都不选的学生有多少? (2)只选修计算机课程的学生有多少?

离散数学试卷及答案

一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选 项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。 1.一个连通的无向图G,如果它的所有结点的度数都是偶数,那么它具有一条( ) A.汉密尔顿回路 B.欧拉回路 C.汉密尔顿通路 D.初级回路 2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是( ) A.10 B.12 C.16 D.14 3.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( ) A.b∧(a∨c) B.(a∧b)∨(a’∧b) C.(a∨b)∧(a∨b∨c)∧(b∨c) D.(b∨c)∧(a∨c) 4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是( ) A.<{1},·> B.〈{-1},·〉 C.〈{i},·〉 D.〈{-i},·〉 5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交 运算,下列系统中是代数系统的有( ) A.〈Z,+,/〉 B.〈Z,/〉 C.〈Z,-,/〉 D.〈P(A),∩〉 6.下列各代数系统中不含有零元素的是( ) A.〈Q,*〉Q是全体有理数集,*是数的乘法运算 B.〈Mn(R),*〉,Mn(R)是全体n阶实矩阵集合,*是矩阵乘法运算 C.〈Z, Z是整数集, 定义为x xy=xy,?x,y∈Z D.〈Z,+〉,Z是整数集,+是数的加法运算 7.设A={1,2,3},A上二元关系R的关系图如下: R具有的性质是 A.自反性 B.对称性 C.传递性 D.反自反性 8.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( ) A.R∪I A B.R C.R∪{〈c,a〉} D.R∩I A 9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的 等价关系,R应取( ) A.{〈c,a〉,〈a,c〉} B.{〈c,b〉,〈b,a〉} C.{〈c,a〉,〈b,a〉} D.{〈a,c〉,〈c,b〉} 10.下列式子正确的是( ) A. ?∈? B.??? C.{?}?? D.{?}∈? 11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x

大学离散数学期末重点知识点总结(考试专用)

1.常用公式 p ∧(P →Q)=>Q 假言推论 ┐Q ∧(P →Q)=>┐P 拒取式 ┐p ∧(P ∨Q)=>Q 析取三段式 (P →Q) ∧(Q →R)=>P →R 条件三段式 (PQ) ∧(QR)=>PR 双条件三段式 (P →Q)∧(R →S)∧(P ∧R)=>Q →S 合取构造二难 (P →Q)∧(R →S)∧(P ∨R)=>Q ∨S 析取构造二难 (?x)((Ax)∨(Bx)) <=>( ?x)(Ax)∨(?x)(Bx) (?x)((Ax)∧(Bx)) <=>(?x)(Ax)∧(?x)(Bx) —┐(?x)(Ax) <=>(?x)┐(Ax) —┐(?x)(Ax) <=>(?x)┐(Ax) (?x)(A ∨(Bx)) <=>A ∨(?x)(Bx) (?x)(A ∧(Bx)) <=>A ∧(?x)(Bx) (?x)((Ax)→(Bx)) <=>(?x)(Ax)→(?x)(Bx) (?x)(Ax) →B <=>(?x) ((Ax)→B) (?x)(Ax) →B <=>(?x) ((Ax)→B) A →(?x)(Bx) <=>(?x) (A →(Bx)) A →(?x)(Bx) <=>(?x) (A →(Bx)) (?x)(Ax)∨(?x)(Bx) =>(?x)((Ax)∨(Bx)) (?x)((Ax)∧(Bx)) =>(?x)(Ax)∧(?x)(Bx) (?x)(Ax)→(?x)(Bx) =>(?x)((Ax)→(Bx)) 2.命题逻辑 1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假; 2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P ,Q,R 的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n 个变元共有n 2个极小项或极大项,这n 2为(0~n 2-1)刚好为化简完后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P 规则,T 规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 3.谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n 个个体,多元谓词描述个体之间的关系; 2.全称量词用蕴含→,存在量词用合取^; 3.既有存在又有全称量词时,先消存在量词,再消全称量词; 4.集合 1.N ,表示自然数集,1,2,3……,不包括0; 2.基:集合A 中不同元素的个数,|A|; 3.幂集:给定集合A ,以集合A 的所有子集为元素组成的集合,P(A); 4.若集合A 有n 个元素,幂集P(A)有n 2个元素,|P(A)|=||2A =n 2; 5.集合的分划:(等价关系) ①每一个分划都是由集合A 的几个子集构成的集合; ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 5.关系 1.若集合A 有m 个元素,集合B 有n 个元素,则笛卡尔A ×B 的基数为mn ,A 到B 上可以定义mn 2种不同的关系; 2.若集合A 有n 个元素,则|A ×A|=2n ,A 上有22n 个不同的关系; 3.全关系的性质:自反性,对称性,传递性; 空关系的性质:反自反性,反对称性,传递性; 全封闭环的性质:自反性,对称性,反对称性,传递性; 4.前域(domR):所有元素x 组成的集合; 后域(ranR):所有元素y 组成的集合; 5.自反闭包:r(R)=RU Ix ; 对称闭包:s(R)=RU 1-R ; 传递闭包:t(R)=RU 2R U 3R U …… 6.等价关系:集合A 上的二元关系R 满足自反性,对称性和传递性,则R 称为等价关系; 7.偏序关系:集合A 上的关系R 满足自反性,反对称性和传递性,则称R 是A 上的一个偏序关系; 8.covA={|x,y 属于A ,y 盖住x}; 9.极小元:集合A 中没有比它更小的元素(若存在可能不唯一); 极大元:集合A 中没有比它更大的元素(若存在可能不唯一); 最小元:比集合A 中任何其他元素都小(若存在就一定唯一); 最大元:比集合A 中任何其他元素都大(若存在就一定唯一); 10.前提:B 是A 的子集 上界:A 中的某个元素比B 中任意元素都大,称这个元素是B 的上界(若存在,可能不唯一); 下界:A 中的某个元素比B 中任意元素都小,称这个元素是B 的下界(若存在,可能不唯一); 上确界:最小的上界(若存在就一定唯一); 下确界:最大的下界(若存在就一定唯一); 6.函数 1.若|X|=m,|Y|=n,则从X 到Y 有mn 2种不同的关系,有m n 种不同的函数; 2.在一个有n 个元素的集合上,可以有2n2种不同的关系,有nn 种不同的函数,有n!种不同的双射; 3.若|X|=m,|Y|=n ,且m<=n ,则从X 到Y 有A m n 种不同的单射; 4.单射:f:X-Y ,对任意1x ,2x 属于X,且1x ≠2x ,若f(1x )≠f(2x ); 满射:f:X-Y ,对值域中任意一个元素y 在前域中都有一个或多个元素对应; 双射:f:X-Y ,若f 既是单射又是满射,则f 是双射; 5.复合函数:f og=g(f(x)); 5.设函数f:A-B ,g:B-C ,那么 ①如果f,g 都是单射,则f og 也是单射; ②如果f,g 都是满射,则f og 也是满射; ③如果f,g 都是双射,则f og 也是双射; ④如果f og 是双射,则f 是单射,g 是满射; 7.代数系统 1.二元运算:集合A 上的二元运算就是2A 到A 的映射; 2. 集合A 上可定义的二元运算个数就是从A ×A 到A 上的映射的个数,即从从A ×A 到A 上函数的个数,若|A|=2,则集合A 上的二元运算的个数为2*22=42=16种; 3. 判断二元运算的性质方法: ①封闭性:运算表内只有所给元素; ②交换律:主对角线两边元素对称相等; ③幂等律:主对角线上每个元素与所在行列表头元素相同; ④有幺元:元素所对应的行和列的元素依次与运算表的行和列相同; ⑤有零元:元素所对应的行和列的元素都与该元素相同; 4.同态映射:,,满足f(a*b)=f(a)^f(b),则f 为由的同态映射;若f 是双射,则称为同构; 8.群 广群的性质:封闭性; 半群的性质:封闭性,结合律; 含幺半群(独异点):封闭性,结合律,有幺元; 群的性质:封闭性,结合律,有幺元,有逆元; 2.群没有零元; 3.阿贝尔群(交换群):封闭性,结合律,有幺元,有逆元,交换律; 4.循环群中幺元不能是生成元; 5.任何一个循环群必定是阿贝尔群; 10.格与布尔代数 1.格:偏序集合A 中任意两个元素都有上、下确界; 2.格的基本性质: 1) 自反性a ≤a 对偶: a ≥a 2) 反对称性a ≤b ^ b ≥a => a=b 对偶:a ≥b ^ b ≤a => a=b 3) 传递性a ≤b ^ b ≤c => a ≤c 对偶:a ≥b ^ b ≥c => a ≥c 4) 最大下界描述之一a^b ≤a 对偶 avb ≥a A^b ≤b 对偶 avb ≥b 5)最大下界描述之二c ≤a,c ≤b => c ≤a^b 对偶c ≥a,c ≥b => c ≥avb 6) 结合律a^(b^c)=(a^b)^c 对偶 av(bvc)=(avb)vc 7) 等幂律a^a=a 对偶 ava=a 8) 吸收律a^(avb)=a 对偶 av(a^b)=a 9) a ≤b <=> a^b=a avb=b 10) a ≤c,b ≤d => a^b ≤c^d avb ≤cvd 11) 保序性b ≤c => a^b ≤a^c avb ≤avc 12) 分配不等式av(b^c)≤(avb)^(avc) 对偶 a^(bvc)≥(a^b)v(a^c) 13)模不等式a ≤c <=> av(b^c)≤(avb)^c 3.分配格:满足a^(bvc)=(a^b)v(a^c)和av(b^c)=(avb)^(avc); 4.分配格的充要条件:该格没有任何子格与钻石格或五环格同构; 5.链格一定是分配格,分配格必定是模格; 6.全上界:集合A 中的某个元素a 大于等于该集合中的任何元素,则称a 为格的全上界,记为1;(若存在则唯一) 全下界:集合A 中的某个元素b 小于等于该集合中的任何元素,则称b 为格的全下界,记为0;(若存在则唯一) 7.有界格:有全上界和全下界的格称为有界格,即有0和1的格; 8.补元:在有界格内,如果a^b=0,avb=1,则a 和b 互为补元; 9.有补格:在有界格内,每个元素都至少有一个补元; 10.有补分配格(布尔格):既是有补格,又是分配格; 布尔代数:一个有补分配格称为布尔代数; 11.图论 1.邻接:两点之间有边连接,则点与点邻接; 2.关联:两点之间有边连接,则这两点与边关联; 3.平凡图:只有一个孤立点构成的图; 4.简单图:不含平行边和环的图; 5.无向完全图:n 个节点任意两个节点之间都有边相连的简单无向图; 有向完全图:n 个节点任意两个节点之间都有边相连的简单有向图; 6.无向完全图有n(n-1)/2条边,有向完全图有n(n-1)条边; 7.r-正则图:每个节点度数均为r 的图; 8.握手定理:节点度数的总和等于边的两倍; 9.任何图中,度数为奇数的节点个数必定是偶数个; 10.任何有向图中,所有节点入度之和等于所有节点的出度之和; 11.每个节点的度数至少为2的图必定包含一条回路; 12.可达:对于图中的两个节点i v ,j v ,若存在连接i v 到j v 的路,则称i v 与j v 相互可达,也称i v 与j v 是连通的;在有向图中,若存在i v 到j v 的路,则称i v 到j v 可达; 13.强连通:有向图章任意两节点相互可达; 单向连通:图中两节点至少有一个方向可达; 弱连通:无向图的连通;(弱连通必定是单向连通) 14.点割集:删去图中的某些点后所得的子图不连通了,如果删去其他几个点后子图之间仍是连通的,则这些点组成的集合称为点割集; 割点:如果一个点构成点割集,即删去图中的一个点后所得子图是不连通的,则该点称为割点; 15.关联矩阵:M(G),mij 是vi 与ej 关联的次数,节点为行,边为列; 无向图:点与边无关系关联数为0,有关系为1,有环为2; 有向图:点与边无关系关联数为0,有关系起点为1终点为-1, 关联矩阵的特点: 无向图: ①行:每个节点关联的边,即节点的度; ②列:每条边关联的节点; 有向图: ③所有的入度(1)=所有的出度(0); 16.邻接矩阵:A(G),aij 是vi 邻接到vj 的边的数目,点为行,点为列; 17.可达矩阵:P(G),至少存在一条回路的矩阵,点为行,点为列; P(G)=A(G)+2A (G)+3A (G)+4A (G) 可达矩阵的特点:表明图中任意两节点之间是否至少存在一条路,以及在任何节点上是否存在回路; A(G)中所有数的和:表示图中路径长度为1的通路条数; 2A (G)中所有数的和:表示图中路径长度为2的通路条数; 3A (G)中所有数的和:表示图中路径长度为3的通路条数; 4A (G)中所有数的和:表示图中路径长度为4的通路条数; P(G)中主对角线所有数的和:表示图中的回路条数; 18.布尔矩阵:B(G),i v 到j v 有路为1,无路则为0,点为行,点为列; 19.代价矩阵:邻接矩阵元素为1的用权值表示,为0的用无穷大表示,节点自身到自身的权值为0; 20.生成树:只访问每个节点一次,经过的节点和边构成的子图; 21.构造生成树的两种方法:深度优先;广度优先; 深度优先: ①选定起始点0v ; ②选择一个与0v 邻接且未被访问过的节点1v ; ③从1v 出发按邻接方向继续访问,当遇到一个节点所有邻接点均已被访问时,回到该节点的前一个点,再寻求未被访问过的邻接点,直到所有节点都被访问过一次; 广度优先: ①选定起始点0v ; ②访问与0v 邻接的所有节点v1,v2,……,vk,这些作为第一层节点; ③在第一层节点中选定一个节点v1为起点; ④重复②③,直到所有节点都被访问过一次; 22.最小生成树:具有最小权值(T)的生成树; 23.构造最小生成树的三种方法: 克鲁斯卡尔方法;管梅谷算法;普利姆算法; (1)克鲁斯卡尔方法 ①将所有权值按从小到大排列; ②先画权值最小的边,然后去掉其边值;重新按小到大排序; ③再画权值最小的边,若最小的边有几条相同的,选择时要满足不能出现回路,然后去掉其边值;重新按小到大排序; ④重复③,直到所有节点都被访问过一次; (2)管梅谷算法(破圈法) ①在图中取一回路,去掉回路中最大权值的边得一子图; ②在子图中再取一回路,去掉回路中最大权值的边再得一子图; ③重复②,直到所有节点都被访问过一次; (3)普利姆算法 ①在图中任取一点为起点1v ,连接边值最小的邻接点v2; ②以邻接点v2为起点,找到v2邻接的最小边值,如果最小边值比v1邻接的所有边值都小(除已连接的边值),直接连接,否则退回1v ,连接1v 现在的最小边值(除已连接的边值); ③重复操作,直到所有节点都被访问过一次; 24.关键路径 例2 求PERT 图中各顶点的最早完成时间, 最晚完成时间, 缓冲时间及关键路径. 解:最早完成时间 TE(v1)=0 TE(v2)=max{0+1}=1 TE(v3)=max{0+2,1+0}=2 TE(v4)=max{0+3,2+2}=4 TE(v5)=max{1+3,4+4}=8 TE(v6)=max{2+4,8+1}=9 TE(v7)=max{1+4,2+4}=6 TE(v8)=max{9+1,6+6}=12 最晚完成时间 TL(v8)=12 TL(v7)=min{12-6}=6 TL(v6)=min{12-1}=11 TL(v5)=min{11-1}=10 TL(v4)=min{10-4}=6 TL(v3)=min{6-2,11-4,6-4}=2 TL(v2)=min{2-0,10-3,6-4}=2 TL(v1)=min{2-1,2-2,6-3}=0 缓冲时间 TS(v1)=0-0=0 TS(v2)=2-1=1 TS(v3)=2-2=0 TS(v4)=6-4=2 TS(v5=10-8=2 TS(v6)=11-9=2 TS(v7)=6-6=0 TS(v8)=12-12=0 关键路径: v1-v3-v7-v8 25.欧拉路:经过图中每条边一次且仅一次的通路; 欧拉回路:经过图中每条边一次且仅一次的回路; 欧拉图:具有欧拉回路的图; 单向欧拉路:经过有向图中每条边一次且仅一次的单向路; 欧拉单向回路:经过有向图中每条边一次且仅一次的单向回路; 26.(1)无向图中存在欧拉路的充要条件: ①连通图;②有0个或2个奇数度节点; (2)无向图中存在欧拉回路的充要条件: ①连通图;②所有节点度数均为偶数; (3)连通有向图含有单向欧拉路的充要条件: ①除两个节点外,每个节点入度=出度; ②这两个节点中,一个节点的入度比出度多1,另一个节点的入;度比出度少1; (4)连通有向图含有单向欧拉回路的充要条件: 图中每个节点的出度=入度; 27.哈密顿路:经过图中每个节点一次且仅一次的通路; 哈密顿回路:经过图中每个节点一次且仅一次的回路; 哈密顿图:具有哈密顿回路的图; 28.判定哈密顿图(没有充要条件) 必要条件: 任意去掉图中n 个节点及关联的边后,得到的分图数目小于等于n ; 充分条件: 图中每一对节点的度数之和都大于等于图中的总节点数; 29.哈密顿图的应用:安排圆桌会议; 方法:将每一个人看做一个节点,将每个人与和他能交流的人连接,找到一条经过每个节点一次且仅一次的回路(哈密顿图),即可; 30.平面图:将图形的交叉边进行改造后,不会出现边的交叉,则是平面图; 31.面次:面的边界回路长度称为该面的次; 32.一个有限平面图,面的次数之和等于其边数的两倍; 33.欧拉定理:假设一个连通平面图有v 个节点,e 条边,r 个面,则 v-e+r=2; 34.判断是平面图的必要条件:(若不满足,就一定不是平面图) 设图G 是v 个节点,e 条边的简单连通平面图,若v>=3,则e<=3v-6; 35.同胚:对于两个图G1,G2,如果它们是同构的,或者通过反复插入和除去2度节点可以变成同构的图,则称G1,G2是同胚的; 36.判断G 是平面图的充要条件: 图G 不含同胚于K3.3或K5的子图; 37.二部图:①无向图的节点集合可以划分为两个子集V1,V2; ②图中每条边的一个端点在V1,另一个则在V2中; 完全二部图:二部图中V1的每个节点都与V2的每个节点邻接; 判定无向图G 为二部图的充要条件: 图中每条回路经过边的条数均为偶数; 38.树:具有n 个顶点n-1条边的无回路连通无向图; 39.节点的层数:从树根到该节点经过的边的条数; 40.树高:层数最大的顶点的层数; 41.二叉树: ①二叉树额基本结构状态有5种; ②二叉树内节点的度数只考虑出度,不考虑入度; ③二叉树内树叶的节点度数为0,而树内树叶节点度数为1; ④二叉树内节点的度数=边的总数(只算出度);握手定理“节点数=边的两倍”是在同时计算入度和出度的时成立; ⑤二叉树内节点的总数=边的总数+1; ⑥位于二叉树第k 层上的节点,最多有12-k 个(k>=1); ⑦深度为k 的二叉树的节点总数最多为k 2-1个,最少k 个(k>=1); ⑧如果有0n 个叶子,n2个2度节点,则0n =n2+1; 42.二叉树的节点遍历方法: 先根顺序(DLR ); 中根顺序(LDR ); 后根顺序(LRD ); 43.哈夫曼树:用哈夫曼算法构造的最优二叉树; 44.最优二叉树的构造方法: ①将给定的权值按从小到大排序; ②取两个最小值分支点的左右子树(左小右大),去掉已选的这两个权值,并将这两个最小值加起来作为下一轮排序的权值; ③重复②,直达所有权值构造完毕; 45.哈夫曼编码:在最优二叉树上,按照左0右1的规则,用0和1代替所有边的权值; 每个节点的编码:从根到该节点经过的0和1组成的一排编码;

安徽大学期末试卷离散数学上卷及参考答案.doc

安徽大学20 09 — 20 10 学年第 1 学期 《离散数学(上)》考试试卷(A 卷) (时间120分钟) 院/系 专业 姓名 学号 题 号 一 二 三 四 五 总分 得 分 一、单选题(每小题2分,共20分) 1. 设A={a,b,c},A 上二元关系R={〈a,a 〉,〈b,b 〉,〈a,c 〉},则关系R 的对称闭包S(R)是( ) A.R ∪I A B.R C.R ∪{〈c,a 〉} D.R ∩I A 2. 设X={a,b,c},I x 是X 上恒等关系,要使I x ∪{〈a,b 〉,〈b,c 〉,〈c,a 〉,〈b,a 〉}∪R 为X 上的等 价关系,R 应取( ) A. {〈c,a 〉,〈a,c 〉} B.{〈c,b 〉,〈b,a 〉} C. {〈c,a 〉,〈b,a 〉} D.{〈a,c 〉,〈c,b 〉} 3. 下列式子正确的是( ) A. ?∈? B.??? C.{?}?? D.{?}∈? 4. 设解释R 如下:论域D 为实数集,a=0, f(x,y)=x-y, A(x,y):x

离散数学考试试题(A卷及答案)

离散数学考试试题(A卷及答案) 一、(10分)判断下列公式的类型(永真式、永假式、可满足式)? 1)((P→Q)∧Q)?((Q∨R)∧Q) 2)?((Q→P)∨?P)∧(P∨R) 3)((?P∨Q)→R)→((P∧Q)∨R) 解:1)永真式;2)永假式;3)可满足式。 二、(8分)个体域为{1,2},求?x?y(x+y=4)的真值。 解:?x?y(x+y=4)??x((x+1=4)∨(x+2=4)) ?((1+1=4)∨(1+2=4))∧((2+1=4)∨(2+1=4)) ?(0∨0)∧(0∨1) ?1∧1?0 三、(8分)已知集合A和B且|A|=n,|B|=m,求A到B的二元关系数是多少?A到B的函数数是多少? 解:因为|P(A×B)|=2|A×B|=2|A||B|=2mn,所以A到B的二元关系有2mn个。因为|BA|=|B||A|=mn,所以A到B的函数mn个。 四、(10分)已知A={1,2,3,4,5}和R={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>},求r(R)、s(R)和t(R)。 解:r(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<3,2>,<4,3>,<4,5>} t(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<1,3>,<2,2>,<2,4>,<1,4>} 五、(10分) 75个儿童到公园游乐场,他们在那里可以骑旋转木马,坐滑行铁道,乘宇宙飞船,已知其中20人这三种东西都乘过,其中55人至少乘坐过其中的两种。若每样乘坐一次的费用是0.5元,公园游乐场总共收入70元,求有多少儿童没有乘坐过其中任何一种。 解设A、B、C分别表示骑旋转木马、坐滑行铁道、乘宇宙飞船的儿童组成的集合,|A∩B∩C|=20,|A∩B|+|A∩C|+|B∩C|-2|A∩B∩C|=55,|A|+|B|+|C|=70/0.5=140。 由容斥原理,得 |A∪B∪C|=|A|+|B|+|C|―|A∩B|―|A∩C|―|B∩C|+|A∩B∩C| 所以 |A∩B∩C|=75-|A∪B∪C|=75-(|A|+|B|+|C|)+(|A∩B|+|A∩C|+|B∩C|-2|A∩B∩C|)+|A∩B∩C|=75-140+55+20=10 没有乘坐过其中任何一种的儿童共10人。 六、(12分)已知R和S是非空集合A上的等价关系,试证:1)R∩S是A上的等价关系;2)对a∈A,[a]R ∩S=[a]R∩[a]S。 解:?x∈A,因为R和S是自反关系,所以∈R、∈S,因而∈R∩S,故R∩S是自反 的。 ?x、y∈A,若∈R∩S,则∈R、∈S,因为R和S是对称关系,所以因∈R、∈S,因而∈R∩S,故R∩S是对称的。

离散数学集合论部分测试题

离散数学集合论部分测试题

离散数学集合论部分综合练习 本课程综合练习共分3次,分别是集合论部分、图论部分、数理逻辑部分的综合练习,这3次综合练习基本上是按照考试的题型安排练习题目,目的是通过综合练习,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次是集合论部分的综合练习。 一、单项选择题 1.若集合A={a,b},B={ a,b,{ a,b }},则(). A.A?B,且A∈B B.A∈B,但A?B C.A?B,但A?B D.A?B,且A?B 2.若集合A={2,a,{ a },4},则下列表述正确的是( ). A.{a,{ a }}∈A B.{ a }?A C.{2}∈A D.?∈A 3.若集合A={ a,{a},{1,2}},则下列表述正确的是( ). A.{a,{a}}∈A B.{2}?A C.{a}?A D.?∈A 4.若集合A={a,b,{1,2 }},B={1,2},则(). A.B? A,且B∈A B.B∈ A,但B?A C.B ? A,但B?A D.B? A,且B?A 5.设集合A = {1, a },则P(A) = ( ). A.{{1}, {a}} B.{?,{1}, {a}} C.{?,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }} 6.若集合A的元素个数为10,则其幂集的元素个数为(). A.1024 B.10 C.100 D.1 7.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={|x+y=10且x, y∈A},则R 的性质为(). A.自反的B.对称的 C.传递且对称的D.反自反且传递的 8.设集合A = {1,2,3,4,5,6 }上的二元关系R ={?a , b∈A , 且a +b = 8},则R具有的性质为(). A.自反的B.对称的 C.对称和传递的D.反自反和传递的 9.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个. A.0 B.2 C.1 D.3 10.设集合A={1 , 2 , 3 , 4}上的二元关系 R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},

离散数学考试试题(A、B卷及答案)

离散数学考试试题(A卷及答案) 一、证明题(10分) 1) (P∧Q∧A C)∧(A P∨Q∨C ) (A∧(P Q ))C。P<->Q=(p->Q)合取(Q->p) 证明: (P∧Q∧A C)∧(A P∨Q∨C) (P ∨Q ∨A∨C)∧(A∨P∨Q∨C) ((P ∨Q ∨A)∧(A∨P∨Q))∨C反用分配律 ((P∧Q∧A)∨(A ∧P ∧Q))∨C ( A∧((P∧Q)∨(P ∧Q)))∨C再反用分配律 GAGGAGAGGAFFFFAFAF

( A∧(P Q))∨C (A∧(P Q ))C 2) (P Q)P Q。 证明:(P Q)((P∧Q))(P ∨Q))P Q。 二、分别用真值表法和公式法求(P(Q∨R))∧(P∨(Q R))的主析取范式与主合取范式,并写出其相应的成真赋值和成假赋值(15分)。 主析取范式与析取范式的区别:主析取范式里每个括号里都必须有全部的变元。 主析取范式可由析取范式经等值演算法算得。 GAGGAGAGGAFFFFAFAF

证明: 公式法:因为(P(Q ∨R))∧(P∨(Q R)) (P∨Q∨R)∧(P∨(Q ∧R )∨(Q ∧R)) (P∨Q ∨R)∧(((P∨Q)∧(P ∨R ))∨(Q ∧R ))分配律 (P∨Q∨R)∧(P∨Q ∨Q)∧(P∨Q ∨R)∧(P∨R ∨Q)∧(P∨R ∨R) (P∨Q ∨R)∧(P∨Q ∨R )∧(P ∨Q∨R) M∧5M∧6M使(非P析取Q析取R)为0 4 GAGGAGAGGAFFFFAFAF

所赋真值,即100,二进制为4 GAGGAGAGGAFFFFAFAF

文本预览
相关文档 最新文档