04 无零因子环的特征
- 格式:doc
- 大小:92.50 KB
- 文档页数:2
近世代数课程教学大纲一、课程说明1、课程性质近世代数课程是数学系本科专业的一门专业必修课,是一门现代数学课,是数学专业较抽象的一门课程。
本课程主要讲现代代数学的研究对象、研究方法。
它的内容包括三个基本的代数结构:群、环、域。
它不仅是一门重要的专业基础课, 也是学习代数数论、代数几何、代数拓扑等基础数学课程及计算代数、编码等应用数学课程所必需的一门基础课。
它的基本概念、理论和方法不仅在数学中占有及其重要的地位,而且在其它学科中也有广泛的应用,如理论物理、结构化学、计算机等学科。
其研究的方法和观点,对其他学科有很大的影响。
通过本课程的学习,使学生较好地掌握近世代数的基本内容、理论和方法,加深学生对数学的基本思想和方法的理解,增强学生的抽象思维、逻辑推理能力,培养学生能利用代数学的理论知识对实际问题构建代数模型,培养学生分析问题、解决问题的能力。
2、教学目的和要求群、环、域是本课程的基本内容,要求学生熟练掌握群、环、域的基本理论和方法。
由于教学时数所限,本课程的理论推证较少,因此必须通过做练习题来加深对概念的理解和掌握,熟悉各个定理的运用,从而达到消化、掌握所学知识的目的。
对于本科学生,要独立完成大部分课后习题,它是学好本课程的重要方法。
并要阅读一定量的课外参考书,扩大视野。
还要注重培养抽象思维和推理的能力。
3、先修课程和后继课程集合论初步与高等代数是学习本课程的准备知识。
本课程学习以后可以继续研读:群论、环论、模论、李群、李代数等。
4、教学时数分配5、使用教材《近世代数基础》,张禾瑞,高等教育出版社,1978年修订本。
6、教学方法与手段本课程以讲授为主,由于该课程较抽象,在教学中要注重多举例子、多讲习题、多加思考;要注重对教材内容中各个知识点的理解,对教学内容、教学方法与教学手段的改革,认真总结教学经验,不断提高自身的教学水平和理论知识;要突出教材内容所体现的数学思想、方法,加强学生应用数学的能力;要注重对学生证明技巧、证明思路的训练;要增加以学生为主体的启发式、讨论式教学方法;要让学生多加练习、多加思考,提出问题。
一、 环的定义与基本性质(一) 环的定义:1、 定义1:交换群称为加群(Aβελ群),其运算叫做加法,记为“+”。
2、 定义2:代数系统),;A (⋅+称为环,若1)(A,+)就是加群;2)代数系统);A (⋅适合结合律;3)乘法);A (⋅对加法+的分配律成立。
3、 例子(1)),;Z (⋅+、),;Q (⋅+、),;R (⋅+、),;C (⋅+都就是环,均称为数环。
(2)Z[ι] ={α+βι | α、β∈Z,ι2=-1 },则),];i [Z (⋅+也就是数环,称之为高斯整环。
(3)设Φ就是任一数环,则Φ[ξ]关于多项式加法与乘法作成一个多项式环。
(4)Z ν={所有模ν剩余类},则),;Z (n ⋅+就是模ν剩余类环,这里[α]+[β] = [α+β],]b []a [⋅ = [αβ].(5)设(A,+)就是加群,规定乘法如下:,A b ,a ∈∀αβ=0,则),;A (⋅+作成一个环,称之为零环。
(二)环的基本性质:(1)0x a a x =⇒=+。
(2)a x x a -=⇒=+0。
(3)c b c a b a =⇒+=+。
(4)nb na )b a (n +=+。
(ν为整数)(5)na ma a )n m (+=+。
(μ、ν为整数)(6))na (m a )mn (=。
(μ、ν为整数)(7),A a ∈∀ 000=⋅=⋅a a 。
(8)ab )b (a b )a (-=-=-。
(9)ab )b )(a (=--。
(10)ac bc c )a b (,ac ab )c b (a -=--=-。
(11)j m i n j i n j j m i i b a b a ∑∑∑∑=====⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛1111 。
(12))ab (n )nb (a b )na (==。
(ν为整数)。
(13)若环中元a 、b 满足ba ab =,则()k n k nk k n n b a C b a -=∑=+0 (14)mn n m n m n m a )a (,a a a ==⋅+。
第一章集合A 的一个分类决定A的元间的一个等价关系;集合A元间的一个等价关系~决定A的一个分类。
第二章群的定义a.设G是一个非空集合,“▫”是其上一个二元运算,若满足1.“▫”满足结合律;2.{G,▫}中有单位元;3.{G,▫}每个元都与逆元则称{G,▫}是一个群,简称G是一个群。
b. 若G是一个有乘法的有限非空集合,且满足消去律。
群的性质1.单位元唯一;2.逆元唯一;3.若G是群,则对G中的任意元a、b,方程ax = b和xa = b都有唯一的解4.若G是群,则对任意G中的两个元素a、b, 有(ab)-1=b-1a-1注:可以推广到无限:111211m1m1m21ma...aaa)...aa(aG,a..,------=⇒∈∀,.a,a215.单位元是群中唯一的等幂元素(满足x2 = x的元叫等幂元)证:令x是等幂元,∴x=ex=(x-1x)x=x-1(xx)=x-1x=e。
6.群满足左右消去律。
推论:若G是有限群,则其运算表中的每一行(列)都是G中元的一个排列,而且不同行(列)的排列不同。
7.若群G的元a的阶是n(有限),则a k n|k。
8.群中的任意元素a和他的逆元a-1具有相同的阶。
9.在有限群G中,每一元素具有一有限阶,且阶数至多为|G|。
交换群:若一个群中的任意两个元a、b,都满足ab = ba,则这个群为交换群。
元素的阶:G的一个元素a,能够使a m = e 的最小正整数m叫做a的阶,记为o(a)。
若是这样的m不存在,则称a是无限阶的。
有限群:若一个群的元的个数是一个有限整数,则称这个群为有限群,否则为无限群。
一个有限群的元的个数叫做这个群的阶。
定理:一个有乘法的有限集合G若是满足封闭性、结合律、消去律,那么,对于G的任意两个元a,b来说,方程ax = b 和ya = b§5变换群定理1:假定G是集合A的若干个变换所作成的集合,并且G包含恒等变换ε。
若是对于上述乘法来说G做成一个群,那么G只包含A的一一变换。
一、 环的定义与基本性质 (一) 环的定义:1、 定义1:交换群称为加群(群),其运算叫做加法,记为“+”。
2、 定义2:代数系统),;A (⋅+称为环,若 )(,)是加群;)代数系统);A (⋅适合结合律;)乘法);A (⋅对加法的分配律成立。
3、 例子(1)),;Z (⋅+、),;Q (⋅+、),;R (⋅+、),;C (⋅+都是环,均称为数环。
()、∈,-,则),];i [Z (⋅+也是数环,称之为高斯整环。
()设是任一数环,则关于多项式加法与乘法作成一个多项式环。
()所有模剩余类,则),;Z (n ⋅+是模剩余类环,这里+,]b []a [⋅ ()设(,+)是加群,规定乘法如下:,A b ,a ∈∀,则),;A (⋅+作成一个环,称之为零环。
(二)环的基本性质:()0x a a x =⇒=+。
()a x x a -=⇒=+0。
()c b c a b a =⇒+=+。
()nb na )b a (n +=+。
(为整数) ()na ma a )n m (+=+。
(、为整数) ())na (m a )mn (=。
(、为整数)(),A a ∈∀000=⋅=⋅a a 。
()ab )b (a b )a (-=-=-。
()ab )b )(a (=--。
()ac bc c )a b (,ac ab )c b (a -=--=-。
()j m i nj i n j j m i i b a b a ∑∑∑∑=====⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛1111 。
())ab (n )nb (a b )na (==。
为整数。
()若环中元a 、b 满足ba ab =,则()k n k nk k n nb a C b a -=∑=+0()mn n m n m n m a )a (,a a a ==⋅+。
(、为整数)(三)交换律与单位元:、定义:环R叫做交换环,若,R∀有b,a∈ab=ba定义:环R的元e称为单位元,若,R∀有a∈=ae=eaa约定:环R若有单位元,则记其单位元为,并称R为有的环。
无零因子环的特征
一个环被称为无零因子环,如果它不含有非零的因子,即对于环中的任意元素a和b,如果ab=0,则a=0或b=0。
一个无零因子环的特征可以有以下性质:
1. 加法群:无零因子环一定是一个加法群,因为它满足加法封闭性、结合律、存在加法单位元和加法逆元。
2. 乘法幺元:无零因子环一定存在乘法幺元,即一个元素可以与环中的任意元素乘得自身。
3. 分配律:无零因子环满足左分配律和右分配律,即对于环中的任意元素a、b和c,有a(b+c)=ab+ac和(a+b)c=ac+bc。
4. 可交换性:无零因子环不一定是可交换环,即乘法不一定是可交换的。
总结起来,一个无零因子环的特征是它满足加法群、乘法幺元和分配律,但不一定满足可交换性。
第31卷 第2期 吉首大学学报(自然科学版)Vol.31 No.2 2010年3月J ournal of J is ho u Uni ver s i t y (Nat ural Sci ence Editio n)Mar.2010 文章编号:100722985(2010)022*******无零因子环的刻画及各种环的例子3陈祥恩(西北师范大学数学与信息科学学院,甘肃兰州 730070)摘 要:总结了刻画一个环是无零因子环的若干等价条件.给出了各种环的例子,以期更好地理解各种环之间的关系.关键词:环;无零因子环;刻画中图分类号:O175 文献标识码:A环是近世代数中的一个很基本的概念,对环的教学也显得尤为重要.根据笔者的教学实践,首先总结了刻画一个环是无零因子环的若干等价条件,然后给出了各种环的例子,以期更好地理解各种环之间的关系.所用术语如无特别说明请参看文献[1].1 无零因子环的刻画设R 是一个环,a 是R 中的一个非零元.如果存在R 中非零元b 使得ab =0,那么称a 为R 的一个左零因子.同理可定义右零因子.如果一个环没有左零因子,那么称它为无零因子环.先给出刻画一个环是无零因子环的若干充要条件.定理1 设R 是一个环.下述几条彼此等价:1)R 中左消去律成立,即Πa ,b ,c ∈R,一旦ab =ac ,a ≠0,就有b =c;2)R 是无零因子环;3)R 中没有“既是左零因子又是右零因子”的元;4)R 中没有右零因子;5)R 中右消去律成立,即Πa ,b ,c ∈R,一旦ba =ca ,a ≠0,就有b =c;6)R 中任意2个非零元的乘积还是非零元;7)Πa ,b ∈R,一旦ab =0,就有a =0或者b =0.2 各种环的例子图1 各种环的关系先用文氏图给出环、交换环、有单位元的环、无零因子环、整环、除环以及域之间的关系.如图1所示,方框的内部表示所有环的集合.包含数字2,5,6,7,8的圆的内部表示所有交换环的集合.包含数字4,6,7,8,9,10的圆的内部表示所有含单位元的环的集合.包含数字3,5,7,8,9,10的圆的内部表示所有无零因子环的集合.虚线的内部表示所有除环的集合.3收稿日期:2009211206基金项目:国家自然科学基金资助项目(10771091);西北师范大学数学与应用数学专业代数课程(校级及省级)教学团队经费资助()作者简介陈祥恩(652),男,甘肃天水人,西北师范大学数学与信息科学学院教授,主要从事代数与图证研究2009-07:19.为了更好地理解环、交换环、有单位元的环、无零因子环、整环、除环以及域之间的关系,下面给出各种环的例子.用E表示所有能够被2整除的整数所组成的集合,用Z表示整数集.例1 令R1={a bc d|a,b,c,d∈E}.R1关于矩阵的加法、乘法作成环.R1不是交换环,不是有单位元的环,也不是无零因子环.例2 设(Z,+)是整数加群.对Πa,b∈Z,令a.b=0,则(Z,+,.,)是交换环,但不是有单位元的环,也不是无零因子环.例3 令R2={a+b i c+d i-c+d i a-b i|a,b,c,d∈E}.R2关于矩阵的加法、乘法作成环.R2不是交换环,不是有单位元的环,但它是无零因子环.例4 设M n(F)表示数域F上全体n(>1)阶方阵所构成的集合.M n(F)关于矩阵的加法、乘法作成环.M n(F)是有单位元的环,但它不是交换环,不是无零因子环.例5 E关于整数的加法、乘法构成一个环.它是交换环、无零因子环,但它不是有单位元的环.例6 设n(>1)是合数,则模n的剩余类环Z n是交换环、有单位元的环,但它不是无零因子环.例7 设整数环Z是整环,但它不是域.例8 设p(>1)是素数,则模p的剩余类环Z p是域.例9 四元数除环是除环,但不是域[1].例10 令R3={a+b i c+d i-c+d i a-b i|a,b,c,d∈Z}.R3关于矩阵的加法、乘法作成环.R3是有单位元的环、无零因子环,但它不是交换环,不是除环.参考文献:[1] 张禾瑞.近世代数基础[M].第1版.北京:高等教育出版社,1978.Char acter iza tion f or Rings Without Zer o Divisor andExa mples of V ar ious RingsC H EN X ia ng2en(College of Mathematics a nd Infor mation Science,Nort hwest Normal Univer sity,La nzhou730070,China)Abstract:The equivalence condi tions for charact erizing ri ngs wit hout zero divi sor are summarized a nd t he exa mple s of va rious rings are gi ven i n t hi s paper.K ey w or ds:ri ng;ri ng wit hout zero di vi sor;charact erizat io n(责任编辑 向阳洁) 2吉首大学学报(自然科学版)第31卷。
近世代数环和域环和域无零因子环的特征数同态和理想子环极大理想和费尔马定理定义13.1.1设R是一个非空集合,R上有两个代数运算,一个称为加法,用“+”表示,另一个称为乘法,用“◦”表示。
如果下面三个条件成立:1(R,+)是一个Abel群。
2(R,◦)是一个半群。
3乘法对加法满足左右分配律:对∀a,b,c∈R有a◦(b+c)=a◦b+a◦c(b+c)◦a=b◦a+c◦a则称代数系(R,◦,+)是一个环。
Definition(定义13.1.2)如果环(R,◦,+)的乘法满足交换律,即对∀a,b∈R有a◦b=b◦a,则称(R,◦,+)是一个交换环或可换环。
Example(例13.1.1)整数集合Z对通常的加法和乘法构成一个环(Z,+,·),这个环是一个交换环。
Example(例13.1.2)有理数集Q、实数集R和复数集C对通常的加法和乘法分别构成交换环(Q,+,·)、(R,+,·)和(C,+,·)。
Example(例13.1.3)设M n为所有n×n实矩阵的集合,则M n对矩阵的加法和乘法构成一个非交换环(M n,+,·),这个环称为n阶矩阵环。
Definition(定义12.1.3)环(R,◦,+)称有限换环,如果R是非空有限集合,即|R|<+∞。
Example(例13.1.4)文字x的整系数多项式之集设Z[x]对多项式的加法和乘法构成一个交换环。
Example(例13.1.5)设S={0},则S对数的通常加法和乘法构成一个环,称为零环,它仅有一个元素。
Example(例12.1.6)有限环的一类重要例子是模n剩余类环(Z n,+,·),其中Z n是全体整数集合Z对模n的同余类之集Z n={[0],[1],···,[n−1]}在环(R,+,◦)中,加法的单位元用0表示,并称为R的零元(素)。
对∀a∈R,a对加法的逆元素记为−a,并称为a的负元素。
近世代数课后习题参考答案第三章 环与域1 加群、环的定义1. 证明,本节内所给的加群的一个子集作成一个子群的条件是充分而且必要的.证 (ⅰ)若S 是一个子群 则S b a S b a ∈+⇒∈,'0是S 的零元,即a a =+'0对G 的零元,000'=∴=+a a 即.00S a a s ∈-=-∴∈ (ⅱ)若S b a S b a ∈+⇒∈, S a S a ∈-⇒∈今证S 是子群由S S b a S b a ,,∈+⇒∈对加法是闭的,适合结合律, 由S a S a ∈-⇒∈,而且得S a a ∈=-0 再证另一个充要条件:若S 是子群,S b a S b a S b a ∈-⇒∈-⇒∈,, 反之S a a S a a S a ∈-=-⇒∈=-⇒∈00 故S b a b a S b a ∈+=--⇒∈)(,2. },,,0{c b a R =,加法和乘法由以下两个表给定:+ 0 a b c ⨯0 a b c 0 0 a b c 0 0 0 0 0 a a 0 c b a 0 0 0 0 b b c 0 a b 0 a b c c c b a 0c0 a b c证明,R 作成一个环 证 R 对加法和乘法的闭的.对加法来说,由.9.2习题6,R 和阶是4的非循环群同构,且为交换群. 乘法适合结合律Z xy yz x )()(=事实上.当0=x 或a x =,)(A 的两端显然均为0.当b x =或x=c,)(A 的两端显然均为yz . 这已讨论了所有的可能性,故乘法适合结合律.两个分配律都成立xz xy z y x +=+)( zx yx x z y +=+)(事实上,第一个分配律的成立和适合律的讨论完全一样, 只看0=x 或a x =以及b x =或c x =就可以了.至于第二个分配律的成立的验证,由于加法适合交换律,故可看0=y 或a y = (可省略a z z ==,0的情形)的情形,此时两端均为zx剩下的情形就只有0,0)(=+=+=+x x bx bx x b b 0,0)(=+=+=+x x cx cx x c c0,0)(=+=+==+x x cx bx ax x c b ∴R 作成一个环.2 交换律、单位元、零因子、整环1. 证明二项式定理 n n n n n b b aa b a +++=+- 11)()(在交换环中成立. 证 用数学归纳法证明. 当1=n 时,显然成立. 假定k n =时是成立的:k i i k k i k kk k b b a b a a b a +++++=+-- )()()(11看1+=k n 的情形)()(b a b a k++))()()((11b a b b a b a a ki i k k i k k k ++++++=--1111111)]()[()()(++--+++++++++=+k ii k k i k i k k k k b b ab a a b a 111111)()(+-+++++++++=k i i k k i k k k b b a b a a(因为)()()(11kr k r k r -++=) 即二项式定理在交换环中成立.2. 假定一个环R 对于加法来说作成一个循环群,证明R 是交换环.证 设a 是生成元 则R 的元可以写成na (n 整数)2)]([)]([))((nma aa m n ma a n ma na ===2))((mna na ma =3. 证明,对于有单位元的环来说,加法适合交换律是环定义里其他条件的结果 (利用)11)((++b a ) 证 单位元是1,b a , 是环的任意二元,1)11(1)()11)((⋅++⋅+=++b a b ab a b a +++= )11()11(+++=b a b b a a +++=b b a a b a b a +++=+++∴ b a a b +=+4. 找一个我们还没有提到过的有零因子的环.证 令R 是阶为2的循环加群 规定乘法:R b a ∈,而0=ab 则R 显然为环.阶为2 ∴有R a ∈ 而 0≠a但 0=aa 即a 为零因子 或者R 为n n ⨯矩阵环.5. 证明由所有实数2b a + (b a ,整数)作成的集合对于普通加法和乘法来说 是一个整环.证 令2{b a R +=b a ,(整数)}(ⅰ) R 是加群2)()()2()2(d b c a d c b a +++=+++ 适合结合律,交换律自不待言.零元 200+2b a +的负元2b a --(ⅱ)2)()2()2)(2(bc ad bd ac d c b a +++=++ 乘法适合结合律,交换律,并满足分配律.(ⅲ)单位元 201+(ⅲ) R 没有零因子,任二实数00=⇒=a ab 或0=b3 除、环、域1. =F {所有复数bi a + b a ,是有理数}证明 =F 对于普通加法和乘法来说是一个域.证 和上节习题5同样方法可证得F 是一个整环. 并且 (ⅰ)F 有01≠+i(ⅱ) 0≠+bi a 即 b a , 中至少一个0≠022≠+∴b a 因而有,i b a b b a a 2222+-++ 使)((bi a +i b a bb a a 2222+-++1)= 故F 为域2. =F {所有实数,3b a + b a ,( 是有理数)} 证明 F 对于普通加法和乘法来说是一个域.证 只证明 03≠+b a 有逆元存在.则b a ,中至少有一个0≠ , 我们说0322≠-b a 不然的话,223b a =,0(≠b 若0=b 则 0=a 矛盾)223b a = 但 3 不是有理数既然0322≠-b a则 3b a + 的逆为3332222b a bb a a -+-4. 证明 例3的乘法适合结合律.证),)](,)(,[(332211βαβαβα=),)(,(331212121βααββαββαα--+----+--=,)()[(3212132121βαββααββαα ---+--])()(3212132121ααββαβββαα 又 )],)(,)[(,(332211βαβαβα],)[,(3232323211--+-=αββαββααβα -----------------+--=)()([3232132321αββαβββααα, )]()(3232132321----------------++ββααβαββαα ),([32321321321----------+--=βββαβββαααα )](32321321321----------++αββαβαβαβαα,[321321321321αβββαβββαααα-------= ]321321321321βββααβαβαβαα-----++ ,)()[(3212132121βαββααββαα--+--= 3212132121)()(---++-ααββαβββαα )])()[(())]()([(332211333211βαβαβαβαβαβα=∴5. 验证,四元数除环的任意元 )(),(di c bi a ++ ,这里d c b a ,,,是实数,可以写成),0)(0,()1,0)(0,()0,)(0,()0,(i d c i b a +++的形式. 证 ),(),(),(di bi c a di c bi a +=++ ),0()0,(),0()0,(di bi c a +++=),0)(0,()0,)(0,()1,0)(0,()0,(i d i b c a +++=4 无零因子环的特征1. 假定F 是一个有四个元的域,证明.(a )的特征是2;(b )F 的0≠ 或11的两个元都适合方程 证 (a ) 设F 的特征为P 则P 的(加)群F 的非零元的阶 所 4P (4是群F 的阶) 但要求P 是素数, .2=∴P (b ) 设},,1,0{b a F =由于2=P ,所以加法必然是,0=+x x ,而b a a a =+⇒≠+11 故有0 1 a b0 0 1 a b 1 1 0 b a a a b 0 1 bb a 1 0 又 },,1{b a 构成乘群,所以乘法必然是 1,=⇒≠≠ab b ab a ab1,22≠≠a a a (否则b a = )b a =⇒2故有.1 a b 11 a b a a b 1 bb a 1这样, b a , 显然适合12+=x x2. 假定 ][a 是模 的一个剩余类.证明,若a 同 n 互素,那么所有][a 的书都同n 互素(这时我们说][a 同n 互素). 证 设][a x ∈ 且d n x =),( 则11,dn n dx x ==由于)(1111q n x d q dn dx nq x a nq a x -=-=-=⇒=-故有 ,a d ,且有 n d因为 1),(=n a 所以1=d3. 证明, 所有同 n 互素的模 n 的剩余类对于剩余类的乘法来说作成一个群(同 互素的剩余类的个数普通用符号)(n φ 来表示,并且把它叫做由拉φ函数)证]{[a G =而][a 同n 互素}G 显然非空,因为)1),1((]1[=∈n G(ⅰ)G b a ∈][],[则][]][[ab b a =又1),(,1),(==n b n a 有1),(=n abG ab ∈∴][(ⅱ)显然适合结合律.(ⅲ)因为n 有限,所以G 的阶有限. 若]][[]][['x a x a = 即][]['ax ax =由此可得)(''x x a ax ax n -=-',1),(x x n n a -∴= 即有][]['x x =另一个消去律同样可证成立.G 作成一个群4. 证明,若是1),(=n a , 那么)(1)(n an ≡φ(费马定理)证 ),(n a 则G a ∈][而 ][a 的阶是G 的阶 )(n φ的一个因子 因此]1[][)(=n a φ即]1[][)(=n aφ)(1)(n a n ≡∴φ5 子环、环的同态1. 证明,一个环的中心是一个交换子环.证 设N 是环的中心.显然N O ∈ N b a ∈,,x 是环的任意元N b a b a x xb x bx ax x b a ∈-⇒-=-=-=-)()( N ab ab x b xa b ax xb a bx a x ab ∈⇒=====)()()()()()(是子环,至于是交换环那是明显的.2. 证明, 一个除环的中心是个域.证 设!是除环!是中心 由上题知N 是R 的交换子环,1R ∈显然N ∈1,即N 包含非零元,同时这个非零元1是的单位元.R x N a ∈∈,即xa ax = N a x a xa x axa xaa axa∈⇒=⇒=⇒=------111111N ∴!是一个域3. 证明, 有理数域是所有复数b a bi a ,(+是有理数)作成的域)(i R 的唯一的真子域. 证 有理数域R 是)(i R 的真子域.设F !是)(i R 的一个子域,则R F ⊇(因为R 是最小数域) 若,F bi a ∈+ 而0≠b则)(i F F F i =⇒∈这就是说,R 是)(i R 的唯一真子域.4. 证明, )(i R 有且只有两自同构映射.证 有理数显然变为其自己. 假定α→i则由i i =⇒-=⇒-=αα1122或 i -=α这就证明完毕. 当然还可以详细一些:bi a bi a +→+:1φbi a bi a -→+:2φ21,φφ确是)(i R 的两个自同构映射.现在证明只有这两个.若bi a i +=→αφ: (有理数变为其自己)则由12)(12222-=+-=+⇒-=abi b a bi a i 1,0222-=-=b a ab若 102-=⇒=a b 是有理数,在就出现矛盾,所以有0=a 因而.1±=b 在就是说, 只能i i → 或i i -→i5. 3J 表示模3的剩余类所作成的集合.找出加群3J 的所有自同构映射,这找出域3J !的所有自同构映射.证 1)对加群3J 的自同构映射 自同构映射必须保持!00←→ 故有i i →:1φ2)对域3J 的自同构映射.自同构映射必须保持00←→,11←→ 所有只有i i →:φ6. 令R 是四元数除环, R 是子集=S {一切)}0,(a 这里a 阿是实数,显然与实数域-S 同构.令-R 是把R 中S 换成-S 后所得集合;替R 规定代数运算.使-≅R R ,分别用k j i ,,表示R 的元),,0(),1,0(),0,(i i ,那么-R 的元可以写成d c b a dk cj bi a ,,,(+++是实数)的形式(参看.3.3 习题5). 验证.1222-===k j i ,.,,j ik ki i kj jk k ji ij =-==-==-=证 1)对a a →)0,(:φ来说显然-≅S S 2)=S {一切)}0,(a a 实数 =-S {一切()0,a a 实数 βα,{(=R 一切)}0,(a 复数对)(αβ是不属于S 的R 的元. =-R βα,{(一切}a规定a a →→)0,(),,(),(:βαβαψ由于S 与-S 的补足集合没有共同元,容易验证ψ是R 与-R 间的一一映射. 规定-R 的两个唤的和等于它们的逆象的和的象. -R 的两个元的积等于它们的逆象的积的象.首先,这样规定法则确是-R 的两个代数运算.其次,对于这两个代数运算以及R 的两个代数运算来说在ψ之下-≅R R (3)由.3.3习题5知),0)(0,()1,0)(0,()0,)(0,()0,(),(i d c i b a di c bi a +++=++ 这里 d c b a ,,, 实数这是因为令),0(),1,0(),0,(i k j i i ===(4)1)0,1()0,)(0,(2-=-==i i i1)0,1()1,0)(1,0(2-=-==j 1)0,1()1,0)(1,0(2-=-==k k i ij -===)1,0()1,0)(0,( k i i ji -=-==),0()0,)(1,0(同样j ik ki i kj jk =-==-=,6 多项式环1. 证明, 假定R 是一个整环,那么R 上的一个多项式环][x R 也是一个整环. 证 R !是交换环][x R ⇒交换环, R 有单位元11⇒是][x R 的单位元, R 没有零因子][x R ⇒没有零因子事实上,0,)(10≠++=a x a x a a x f nn0,)(10≠++=m mm b x b x b b x g则mn m n x b a b a x g x f +++= 00)()(因为R 没有零因子,所以0≠m n b a 因而0)()(≠x g x f 这样][x R 是整环2. 假定R 是模7的剩余类环,在][x R 里把乘积 ])3[]4])([4[]5[]3([23+--+x x x x 计算出来解 原式=]2[]5[]4[]5[]5[]5[]3[]5[345345++++=-++-x x x x x x x x3. 证明:(ⅰ) ],[],[1221ααααR R =(ⅱ) 若n x x x ,,,21 是R 上的无关未定元,那么每一个i x 都是R 上的未定元. 证 (ⅰ)=],[21ααR {一切}211221i i i i aαα∑{],[12=ααR 一切}112212j j j j aαα∑由于=∑211221i i i i aαα112212j j j j a αα∑ 因而=],[21ααR ],[12ααR(ⅱ)设00=∑=nk ki k x a 即∑=+-nk n i h i i k x x x x x a 00010101因为n x x x ,,21是R 上的无关未定元,所以即i x 是R 上的未定元4. 证明:(ⅰ) 若是n x x x ,,21和n y y y ,,21上的两组无关未定元,那么],,[],,[2121n n y y y R x x x R ≅(ⅱ) R !上的一元多项式环][x R 能与它的一个真子环同构. 证 (ⅰ)),,(),,(:2121n n y y y f x x x f →φ 根据本节定理3 ],,[~],,[2121n n y y y R x x x R容易验证),,(),,(212211n n x x x f x x x f ≠),,(),,(212211n n y y y f y y y f ≠⇒ 这样],,[],,[2121n n y y y R x x x R ≅(ⅱ)令{][=x R 一切}2210nn x a x a a +++显然][][2x R x R ⊂ 但][2x R x ∉不然的话m m m m x b x b x b x b x b b x 22102210 ++-⇒++=这与x 是R 上未定元矛盾. 所以][2x R 是][x R 上未定元显然 故有(ⅰ)}[][2x R x R ≅这就是说,][2x R 是][x R 的真子环,且此真子环与][x R 同构.7 理想1. 假定R 是偶数环,证明,所有整数r 4是ϑ的一个理想,等式!对不对? 证 R r r r r ∈∈2121,,4,4ϑϑ∈-=-)(4442121r r r r R r r ∈-21ϑ∈=∈)(4)4(,'1'1'r r r r R r R r r ∈'1ϑ∴ 是R 的一个理想. 等式 )4(=ϑ不对这是因为R 没有单位元,具体的说)4(4∈但ϑ∉42. 假定R 是整数环,证明.1)7,3(=证 R 是整数环,显然)1(=R .1)7,3(=又 )7,3()7(13)2(1∈+-=1)7,3(=∴3. 假定例3的R 是有理数域,证明,这时),2(x 是一个主理想.证 因为2与x 互素,所以存在)(),(21x P x P 使),2(11)()(221x x xP x P ∈⇒=+),2()1(][x x R ==∴ 。
《近世代数》试卷1(时间120分钟)二、判断题(对打“√”,错打“×”,每小题2分,共20分)1. ()循环群的子群是循环子群。
2. ()满足左、右消去律的有单位元的半群是群。
3. ()存在一个4阶的非交换群。
4. ()素数阶的有限群G的任一子群都是G的不变子群。
5. ()无零因子环的特征不可能是2001。
6. ()无零因子环的同态象无零因子。
7. ()模97的剩余类环Z97是域。
8. ()在一个环中,若左消去律成立,则消去律成立。
9. ()域是唯一分解整环。
10. ()整除关系是整环R的元素间的一个等价关系。
一、填空题(共20分,第1、4、6小题各4分,其余每空2分)1. 设A、B是集合,| A |=3,| B |=2,则共可定义个从A到B的映射,其中有个单射,有个满射,有个双射。
2. 设群G是24阶群,G中元素a的阶是6,则元素a2的阶为,子群H=< a3>的在G中的指数是。
3. 设G=< a>是10阶循环群,则G的非平凡子群的个数是。
4. 在模12的剩余环R={[0], [1], ……, [11]}中,[5]+[10]=,[5]·[10]=,方程x2=[1]的所有根为。
5. 环Z6的全部零因子是。
6. 整环Z[√-3 ]不是唯一分解整环,因为它的元素α=在Z[√-3 ]中有两种本。
(共30分)1.设S3是3次对称群,a=(123)∈S3.(1)写出H=< a>的所有元素.(2)计算H的所有左陪集和所有右陪集.(3)判断H是否是S3的不变子群,并说明理由.2. 求模18的剩余类加群(Z18,+,[0])的所有子群及这些子群的生成元。
3. 在整数环Z中,求由2004,125生成的理想A=(2004,125)。
四、证明题(共30分)1.设G是一个阶为偶数的有限群,证明(1)G中阶大于2的元素的个数一定为偶数;(2)G中阶等于2的元素的个数一定为奇数。
第一章集合A 的一个分类决定A的元间的一个等价关系;集合A元间的一个等价关系~决定A的一个分类。
第二章群的定义a.设G是一个非空集合,“▫”是其上一个二元运算,若满足1.“▫”满足结合律;2.{G,▫}中有单位元;3.{G,▫}每个元都与逆元则称{G,▫}是一个群,简称G是一个群。
b. 若G是一个有乘法的有限非空集合,且满足消去律。
群的性质1.单位元唯一;2.逆元唯一;3.若G是群,则对G中的任意元a、b,方程ax = b和xa = b都有唯一的解4.若G是群,则对任意G中的两个元素a、b, 有(ab)-1=b-1a-1注:可以推广到无限:111211m1m1m21ma...aaa)...aa(aG,a..,------=⇒∈∀,.a,a215.单位元是群中唯一的等幂元素(满足x2 = x的元叫等幂元)证:令x是等幂元,∴x=ex=(x-1x)x=x-1(xx)=x-1x=e。
6.群满足左右消去律。
推论:若G是有限群,则其运算表中的每一行(列)都是G中元的一个排列,而且不同行(列)的排列不同。
7.若群G的元a的阶是n(有限),则a k。
8.群中的任意元素a和他的逆元a-1具有相同的阶。
9.在有限群G中,每一元素具有一有限阶,且阶数至多为|G|。
交换群:若一个群中的任意两个元a、b,都满足ab = ba,则这个群为交换群。
元素的阶:G的一个元素a,能够使a m = e 的最小正整数m叫做a的阶,记为o(a)。
若是这样的m不存在,则称a是无限阶的。
有限群:若一个群的元的个数是一个有限整数,则称这个群为有限群,否则为无限群。
一个有限群的元的个数叫做这个群的阶。
定理:一个有乘法的有限集合G若是满足封闭性、结合律、消去律,那么,对于G的任意两个元a,b来说,方程ax = b 和 ya = b§5变换群定理1:假定G是集合A的若干个变换所作成的集合,并且G包含恒等变换ε。
若是对于上述乘法来说G做成一个群,那么G只包含A的一一变换。
《近世代数》试卷1(时间120分钟)二、判断题(对打“√”,错打“×”,每小题2分,共20分)1. ()循环群的子群是循环子群。
2. ()满足左、右消去律的有单位元的半群是群。
3. ()存在一个4阶的非交换群。
4. ()素数阶的有限群G的任一子群都是G的不变子群。
5. ()无零因子环的特征不可能是2001。
6. ()无零因子环的同态象无零因子。
7. ()模97的剩余类环Z97是域。
8. ()在一个环中,若左消去律成立,则消去律成立。
9. ()域是唯一分解整环。
10. ()整除关系是整环R的元素间的一个等价关系。
一、填空题(共20分,第1、4、6小题各4分,其余每空2分)1. 设A、B是集合,| A |=3,| B |=2,则共可定义个从A到B的映射,其中有个单射,有个满射,有个双射。
2. 设群G是24阶群,G中元素a的阶是6,则元素a2的阶为,子群H=< a3>的在G中的指数是。
3. 设G=< a>是10阶循环群,则G的非平凡子群的个数是。
4. 在模12的剩余环R={[0], [1], ……, [11]}中,[5]+[10]=,[5]·[10]=,方程x2=[1]的所有根为。
5. 环Z6的全部零因子是。
6. 整环Z[√-3 ]不是唯一分解整环,因为它的元素α=在Z[√-3 ]中有两种本。
(共30分)1.设S3是3次对称群,a=(123)∈S3.(1)写出H=< a>的所有元素.(2)计算H的所有左陪集和所有右陪集.(3)判断H是否是S3的不变子群,并说明理由.2. 求模18的剩余类加群(Z18,+,[0])的所有子群及这些子群的生成元。
3. 在整数环Z中,求由2004,125生成的理想A=(2004,125)。
四、证明题(共30分)1.设G是一个阶为偶数的有限群,证明(1)G中阶大于2的元素的个数一定为偶数;(2)G中阶等于2的元素的个数一定为奇数。
近世代数基础第三章环与域第三章环与域本章主要讨论两种代数系统,在⾼代中看到了,全体整数作⼀个环,全体有理数,全体实数或全体复数都作⼀个域,由此可见,环与域这两个概念的重要性。
§3.1 加群、环的意义●课时安排约1课时●教学内容本书P80-84定义:⼀个交换群叫做⼀个加群,假如我们把这个群的代数运算叫做加法,并且⽤符号+来表⽰。
在群中有零元、负元定义:⼀个集R叫做⼀个环,假如:1、R是⼀个加群;‘2、R对乘法运算封闭3、适合结合律4、两个分配律成⽴●教学重点加群和环的定义●教学难点环的运算性质的证明●教学要求了解加群和环的关系●布置作业P84 2●精选习题P84 1§3.2 交换律、单位元、零因⼦、整环●课时安排约1课时●教学内容本书P84-P89定义:⼀个环R叫做⼀个交环环,假如ab=ba不管a1b是R的哪两个元定义:⼀个环R的⼀个元e叫做⼀个单位元。
假如对R的任意元a来说,都有:ea = ae = a例1:书上P85定义:⼀个有单位元环的⼀个元b叫做a的⼀个逆元。
假如:ba=ab=1例2:P86定义:若是在⼀个环⾥a≠0,b≠0,但ab=0则a是环的⼀个左零因⼦,b是⼀个右零因⼦。
例3:P88定理:在⼀个没有零因⼦的环⾥两个消去律都成⽴。
a≠0,ab=ac=>b=c a≠0,ba=ca=>b=c反之也成⽴推论:在⼀个环⾥如果有⼀个消去律成⽴,那么另⼀个消去律也成⽴。
定义:⼀个环R叫做⼀个整环,假如:1、乘法适合交换律:ab=ba;2、R有单位元1:|a=a|=a3、R没有零因⼦:ab=0=>a=0或b=0●教学重点交换环、整环、单位元、零因⼦●教学难点剩余类环和定理的证明●教学要求掌握以上内容●布置作业P89 1,2,5●精选习题P89 3,4§3.3 除环、域●课时安排约1课时●教学内容P89-93例1:P90例2:P90定义:⼀个环R叫做⼀个除环,假如:1、R⾄少包含⼀个不等于零的元;2、R有⼀个单位元;3、R的每⼀个不等于零的元有⼀个逆元。
判断题1。
整数的整除关系是Z 的一个等价关系。
( )2.主理想环不一定是欧氏环,但主理想环一定是唯一分解环。
( )3。
若G 是60阶群,则G 有14阶子群。
( )4.在多项式环R [x]中,两个多项式积的次数等于两个多项式的次数的和。
( )5。
设G 是一个非空集合,在G 中定义了一个代数运算,称为乘法,如果(1)G 对乘法运算是封闭的(2)G 对乘法适合结合律(3)G 对乘法适合消去律,则G 构成群。
( )6。
偶数环2Z 是整环。
( )7。
若N ∆H ,H ∆G ,则N ∆G 。
( )8.在5S 中,(12)(345)的阶是3. ( )9。
在整数环Z 中,(—3)是极大理想。
( )10。
有限群都同构于一个置换群.( )11。
实数集R 关于数的乘法成群。
( )12。
设G 和G 都是群,G ϕ≅G , G N ∆, N=1-ϕ(N ), 则N ∆G,且--≅N G N G //。
( )13。
偶数环是有单位元的环。
( )14。
设整环{}Z b a b a I ∈-+=,3, 则4在I 中是唯一分解元。
( )15. 3次对称群3S 是循环群。
( )16。
设非空集合G 关于一个乘法运算满足以下四条:A )G 对于这个乘法运算是封闭的;B)∀a ,b,c ∈G ,都有(ab )c=a(bc )成立;C )存在e r ∈G ,使得∀a ∈G ,都有ae r =a 成立;D)∀a ∈G ,都存在a 1-∈G,使得a 1-a=e r 成立. 则G 关于这个乘法运算构成一个群。
( )17. 任何一个有限群都与一个循环群同构。
( )18。
若H 是群G 的一个非空有限子集,且∀a,b ∈H 都有ab ∈H 成立,则H 是G 的一个子群。
( )19。
若ϕ是群G 到G 的同态满射,N 是G 的一个不变子群,则ϕ(N )是G 的不变子群,且NG ≅)(N G ϕ . ( ) 20。
设R 是一个环,则下列三条是相互等价的。
无零因子环的特征设R 是一个无零因子环,那么关于R 的特征问题就有一种“新的感觉”. 定理1. 设R 是无零因子环,那么加群{}+,R 中每个非零元的阶都是一致的.本定理已在§2中论证过.上述定理告诉我们:非零的无零因子环R 中元素的阶只有二类:一类是零元0( 0的阶永远为1).而其余元素为另一类,它们或者都是无穷大,或都是同一个自然数n . 定理2. 若非零无零因子环R 的特征 ()∞= n R Ch ,那么n 必是一个素数. 本定理在§2中也已证过.由于整环,除环和域都是无零因子环,所以都满足上述性质,综合而言:推论:任一个整环,除环和域的特征或是无限大,或是一个素数p .下面介绍几个练习,以此作为结束本讲的内容.如果说本讲开始对环的特征的介绍,使人感到“高深莫测”的话,那下面的命题也许会让你踏实些.练习1: 设R a ∈≠0.如果a 不是零因子 ()a R Ch =⇒.证明: 若 ∞=a ,由本讲附注()∞=⇒R Ch .若 n a =( R 未必是无零因子环 ∴ n 未必是素数)0=na ,那么 ()().00..===∈∀b b na nb a R b 而a 不是左零因子0=⇒nb .由于n a =.由特征的定义()n R Ch ⇒.上练习提醒我们:非零环的特征就是任一个非零因子的阶.( ∴ 本讲结论是显而易见的)练习2. 若域F 的阶为偶数,即 n F 2=,那么 ().2=R Ch证明: (反证法) 若()2≠=p F Ch .那么 b a F b a ≠∈≠≠∀且0,0则 ()(){}0=b a . 显然F 中这样的p 阶循环子群只有有限个。
没有1+m 个.那么这1+m 个子群所含的中元素共有()1-+p m p 个.即 ()1-+p m p =偶数2=n .但()1-+p m p 不可能是偶数,矛盾.无零因子环的一个重要特性设},;{⋅+R 是一个无零因子环,那么加群},{+R 中每个非零元素的阶彼此必相同.并且,若有限时必是素数.说明:}0{.0,0≠∈≠≠∀R R b a 且设(ⅰ)若每个非零元的阶都是无限⇒它的阶都相同.(ⅱ)若0,||=+++=⇒=na a a na n a ∴)()(0nb a b na ==, .0≠a 且R 中无零因子..||0n b nb ≤⇒=⇒若m b =||则n m ≤,重复上述的证明,同理m n ≤⇒∴m n =.即 n b =||.由b a ,的任意性⇒它们的阶都相同.(ⅲ)若R 中每个非零元的阶都是n .如果n 是合数⇒21n n n =其中n n n <<21,1.∴))(()(021b n a n ab n ==,但由于0,0121≠⇒<<a n n n n 且 02≠b n ,进而知a n 1是左零因子,而b n 2是右零因子.⇒↑, ∴n 不是合数,又 1}0{≠⇒≠n R 即n 为素数.例4.},;{⋅+Z 作为整数环,易知是一个无零因子环.而加群},{+Z 中每个非零元a 的阶都是无穷大.例5.剩余类环7Z 是一个无零因子环,而加群},{7+Z 是7阶循环( 7是素数),进而知,群中每个非零元的阶为7.有单位元的环(幺环)设},;{⋅+R 为环,就加法”+”而言.加法群},{+R 中自然有单位元,习惯上换为群},{+R 的零元,并记为.对乘法”·”而言,},{⋅R 中是会有单位元呢?定义4.一个环},;{⋅+R 中若有元素e ,使得.R a ∈∀都有a ae ea ==,那么称这个元素e 叫做环},;{⋅+R 的单位元.习惯上,记单位为R 1注意:①环中的单位元R 1显然不只代表整数1.②并不是每个环都不得有单位元?R 1的.譬如偶数环Z 2.③环R 中若有单位元,那么这个单位元必是唯一的.并且我们规定:R a a R ∈∀=,10 和 n n n a a a )()(11---==④有单位元1的环有时候为了突出单位元,常记为}1,,;{R R ⋅+定义5.设}1,,;{R R ⋅+是一个幺环,如果R a ∈具有下列条件:R b ∈∃使R ba ab 1==那么称a 是R 中的可逆元.并称b 就是a 的逆元.注意2:①只有在幺环中才能谈论逆元的问题.②既使}1,,;{R R ⋅+是幺环,也不能保证每个元素都可逆.③在幺环R 中,若a 可逆,那么a 的逆元必是唯一的,习惯上记为1-a ,显然a a =--11)(.例6. ①因为偶数环Z 2中没有单位元,故Z 2中没有谈论逆元的“资格”.②整数环Z 中有单位元R 1(整数1).但除了1±外,,其余元都不可逆.③在)(F M n 中.单位元是E .而)(F M A n ∈可逆0||≠⇔A .思考题3.①“ 幺环中必有可逆元”对吗?②在][x F 中,)(x f 可逆的充要条件是什么?③若}0{=R —零环,R 中有单位元吗?④若幺环},0{≠R ,那01≠R 对吗?⑤左(右)零因子会是可逆元吗? 0会是可逆元吗?明示:设}1,,;{R R ⋅+是 幺环.那么①若a 可逆1-⇒a 也可逆,且a a =--11)(②若a 和b 都是R 中元素:那么:a 与b 都可逆ab ⇔可逆.③111)(---=a b ab结论2.设}1,,;{R R ⋅+是个幺环,由R 中所有可逆元构成的集合为 }|{可逆a R a S ∈=.那么},{⋅S 是一个乘法群.证明:由于R 1本身是可逆的.S R ∈⇒1.即 ∅≠S .(ⅰ).)(,111---=⇒∈∀a b ab S b a ∴S ab ∈(ⅱ)因为},{⋅R 是半群S ⇒满足结合律.(ⅲ)S R ∈1(ⅳ)S a ∈∀,则1-a 的逆元恰是S a a ∈⇒-1.由(ⅰ)~(ⅳ)},{⋅⇒S 是乘法群.域我们知道,整环是可变换的,而除环未必能变换,将这两者统一在一起.则得到一种新的代数体系—域.定义2:设除环R 是变换环,那么称R 为域,记为F .明示:域必是除环⇒域具有除环所有的性质.前面曾介绍的很多数环都是域(称为数域):有理数域Q ,实数域R ,复数域C .当p 为素数时,p Z 也是域,我们很容易发现:要找一个非域的除环是不容易的,下面“编造”出一个—四元数除环。
第二节 无零因子环的特征基本概念:环的特征.重点、难点: 环的特征及相关性质.上节我们看到环中有许多与普通数一样的运算性质,但下面的运算性质不但在一般的环里不成立,就是在域中也未必成立:00,(0)m a ma a a m ≠⇒=++≠∀≠∈ 个 (1)例如在有限域p 中,[]0,[]p p a a =∀∈ .事实上,(1)式是否成立完全由a 对于环R 的加法阶决定.下面我们再看一个例子.例1 假定12(),()G a G b ==是两个循环群,其中(),()o a n o b ==∞,它们的代数运算用"+"来表示,即12{|},{|}G ka k G mb m =∈=∈ .作 {(,)|,}R pa qb p q =∈ .定义运算为1122121211221212(,)(,)(,);(,)(,)(0,0),,,,.p a q b p a q b p a p a q b q b p a q b p a q b p p q q +=++=∀∈那么R 显然作成一个环.但这个环的元(a,0)对于加法来说的阶是n ,元(0,b )的阶是无穷大.上例说明了,在一个环中,两个不为零的元素对于加法的阶可能不相同.自然会问:对于什么样的特殊环,两个不为零的元素对于加法的阶是相同的?下面的定理告诉我们,在无零因子环中,上面的问题回答是肯定的.定理3.2.1 在一个没有零因子的环R 中,所有非零元(对于加法而言)的阶都是相同的。
证 如果R 的每一个非零元的阶都是无限大,那么结论显然成立.若存在0a R ≠∈,a 阶是有限整数n .(0)b R ∀≠∈,则有0()()00R na b a nb nb a ===≠⇒无零因子.从而,b 的阶()()o b n o a <=.同样可得,()()o a o b <.故有()(),,o a o b a b R =∀∈.定义3.2.1 一个无零因子环R 的非零元的相同的(对加法来说的)阶叫做环R 的特征,记为Ch(R).如域p 的特征为p .注1 若环的特征为无穷大,则称其特征为0,如Ch() =Ch( )=Ch( )=Ch()0= .注2 对于特征为0的环R ,(1)式是成立的.定理3.2.2 如果无零因子环R 的特征是有限整数n ,那么n 是一个素数.证 假设n 不是素数, ,任意0a R ≠∈有,但,这与环R 无零因子矛盾.推论3.2.3 域F 的特征要么是无穷大,要么是一个素数p .例2 设R 是特征为p 的交换环,,a b F ∀∈有()p p p a b a b +=+. 证 由于R 是交换环,故有1111()p p p p p p p p a b a c ab c ab b ---+=++++ . 注意|,1,, 1.i p p c i p =- 由Ch(R)=p 可知,0,1,, 1.i p i i p c a b i p -==- 于是结论成立. 作业:Page 97第1题,第3题,第4题。
第四节 多项式环
基本概念:多项式、未定元.
重点、难点: 未定元的概念、未定元的存在性.
本节中的环均指有单位元的交换环.设R 是环R '的子环,且二者有相同的单位元.
定义3.4.1 设'R α∈,记集合0101[]{|,,,,}n
n n R a a a a a a R n ααα=+++∈∈L L ?,
在[]R α中规定运算如下:
01010011010101()()()()());()(),.
n n n n n n n n m n n m n k i j
i j k
a a a
b b b a b a b a b a a a b b b
c c c c a b αααααααααααα+=+++++++=+++++++++⋅+++=+++=
∑L L L L L L 其中则[]R α构成一个环,称之为R 上的关于α的多项式环,称[]R α中的元素为R 上的关于α的多项式.
注1 []R α是R '中包含R 和α的最小子环.
注2 与高等代数中类似,对每个()[]f R αα∈,可以定义()f α的次数、系数、首项
系数等.
值得注意的是,可能存在不全为零的元素01,,,m a a a R ∈L ,使得
010m m a a a αα+++=L .例如,在i ∈£,但2110i +=.又如,若R α∈,则
1(1)0αα+-=.于是有下面的概念.
定义 3.4.2 设'x R ∈.若不存在不全为零的元素01,,,m a a a R ∈L ,使得
010,m m a a x a x m +++=∀∈L ?,则称x 是环R 上的一个未定元.称R 上关于x 的多项
式是为R 上的一元多项式.
自然会问:环R 上的未定元是否存在?
一般而言,对于给定的环R ', R '中未必含有环R 上的未定元.例如,环[]i ¢中就不含有¢上的未定元.但是有
定理3.4.1 假设R 是一个有单位元的交换环,则一定存在环R 上的未定元x ,因此 R 上的一元多项式环[]R x 是存在的.
上述结果可以推广到多个的情形,即有
定理3.4.2 假设R 是一个有单位元的交换环,n 为任意正整数,则一定存在环R 上的n 个无关的未定元1,,n x x L ,因此 R 上的多元多项式环1[,,]n R x x L 是存在的.
(其中无关的意思是指:
1
1111100,n n n n n
i i i i n i i i i i i a
x x a a R =⇔=∀∈∑L L L L L .
) 定理3.4.3 假设1[,,]n R x x L 和1[,,]n R ααL 都是有单位元的交换环R 上的多元多项式环,若1,,n x x L 是R 上的n 个无关的未定元,则一定存在环的同态满射
1111[,,][,,];(,,)(,,)n n n n R x x R f x x f αααα→L L L a L .
作业:
Page 109 第1题,第2题。