灰色系统预测
- 格式:doc
- 大小:574.00 KB
- 文档页数:15
什么是灰色预测法?灰色预测是就灰色系统所做的预测。
所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰色系统。
一般地说,社会系统、经济系统、生态系统都是灰色系统。
例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。
灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。
尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。
灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。
其用等时距观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。
简言之,灰色预测模型是通过少量的、不完全的信息,建立灰色微分预测模型,对事物发展规律作出模糊性的长期描述(模糊预测领域中理论、方法较为完善的预测学分支)。
灰色系统的概念是由邓聚龙教授于1982年提出的,它描述部分信急己知,部分未知介于黑白系统之间的系统。
GM(1,1)模型是灰色理论中较常用的预测方法,它以定性分析为先导,定量与定性结合,对离散序列建立微分方程以及白化方程,一般要经历思想开发、因素分析、量化、动态化、优化五个步骤。
灰色系统通过对原始数据的整理来寻求其变化规律,这是一种就数据寻找数据的现实规律的途径,称为灰色序列的生成。
生成数通过对原始数据的整理寻找数的规律,分为三类:a、累加生成:通过数列间各时刻数据的依个累加得到新的数据与数列。
灰色预测原理及实例
一、灰色预测原理
灰色预测,是指根据动态系统的过去试验数据和实测数据,利用灰色规律进行预测的一种数学方法。
灰色预测的基本思想是:由内在原理和系统的实际运行数据,建立有关系的关于未来时间的数学模型,即所谓的灰色系统模型,从而建立未来状态的预测模型。
二、灰色预测实例
1、灰色模型在汽车行业的应用
汽车行业是一个特殊的行业,其市场受到很多因素的影响,因此,在汽车行业预测中,灰色模型能够很好地发挥其优势。
首先,根据汽车市场的详细统计数据,如汽车生产量、销售量,可以采集过去一定时间段内(如一年、两年)汽车的生产量及销售量等数据,将这些数据经过一定的模型处理,形成一个灰色模型,利用该模型可以预测汽车行业的今后发展趋势。
2、灰色模型在电力行业的应用。
灰色预测与决策灰色系统中的预测与决策部分主要包括序列算子生成;GM 预测模型即GM(1,1),GM(1,N),GM(0,N),GM(2,1),Verhulst及GM(r,h)模型和离散灰色模型等;灰色系统预测;灰色关联分析;灰色聚类评估;灰色决策模型等内容。
我们知道灰色系统理论是研究少数据,贫信息不确定性问题的新方法,是通过对原始数据的挖掘、整理中寻求其变化规律。
而且传统的GM(1,1)模型利用的数据是近指数,低增长的数据,所以就需要我们对数据进行处理。
这里可以用缓冲算子、初值化生成算子、均值化生成算子、区间值化生成算子减少干扰或函数变换即对数变换、平移变换、开方变换、余弦函数变换、正切函数变换、负指数函数变换、幂函数变换、中心位似函数变换等缩小级比偏差,使数据适于建模。
1、灰色预测部分:1)、数据经过以上的处理后,基本适于建模,传统的预测模型有GM(1,1)模型,其原始形式如下: ()()b k ax k x =+)()(10,其基本形式如下:()()b k az k x =+)()(10, 此方程是用均值()()k z 1代替()()k x 1,使得数据更平滑,其中()()()()()()k x k x k z 111121)(+-=,叫做方程的背景值,-a 是发展系数,b 是灰作用量。
这里的a,b 是利用最小二乘法求出来的。
白化方程为:()()b k ax dtdx =+)(11 时间响应函数为:()()()()a b e a b x t x t a +⎪⎭⎫ ⎝⎛-=--1111)( 时间响应序列为:()()()a b e a b x k x ak +⎪⎭⎫ ⎝⎛-=+-∧1)1(01 还原值是:()()()()()()()()()ak a e a b x e k x k x k x -∧∧∧⎪⎭⎫ ⎝⎛--=-+=1110110 模型的求解是先用最小二乘法将a,b 求出,再利用白化微分方程求出解。
灰色系统预测重点内容:灰色系统理论的产生和发展动态,灰色系统的基本概念,灰色系统与模糊数学、黑箱方法的区别,灰色系统预测GM (1,1)模型,GM(1,N)模型,灰色系统模型的检验,应用举例。
1灰色系统理论的产生和发展动态1982邓聚龙发表第一篇中文论文《灰色控制系统》标志着灰色系统这一学科诞生。
1985灰色系统研究会成立,灰色系统相关研究发展迅速。
1989海洋出版社出版英文版《灰色系统论文集》,同年,英文版国际刊物《灰色系统》杂志正式创刊。
目前,国际、国内200多种期刊发表灰色系统论文,许多国际会议把灰色系统列为讨论专题。
国际著名检索已检索我国学者的灰色系统论著500多次。
灰色系统理论已应用范围已拓展到工业、农业、社会、经济、能源、地质、石油等众多科学领域,成功地解决了生产、生活和科学研究中的大量实际问题,取得了显著成果。
2灰色系统的基本原理2.1灰色系统的基本概念我们将信息完全明确的系统称为白色系统,信息未知的系统称为黑色系统,部分信息明确、部分信息不明确的系统称为灰色系统。
系统信息不完全的情况有以下四种:1.元素信息不完全2.结构信息不完全3.边界信息不完全4.运行行为信息不完全2.2灰色系统与模糊数学、黑箱方法的区别主要在于对系统内涵与外延处理态度不同;研究对象内涵与外延的性质不同。
灰色系统着重外延明确、内涵不明确的对象,模糊数学着重外延不明确、内涵明确的对象。
“黑箱”方法着重系统外部行为数据的处理方法,是因果关系的两户方法,使扬外延而弃内涵的处理方法,而灰色系统方法是外延内涵均注重的方法。
2.3灰色系统的基本原理 公理1:差异信息原理。
“差异”是信息,凡信息必有差异。
公理2:解的非唯一性原理。
信息不完全,不明确地解是非唯一的。
公理3:最少信息原理。
灰色系统理论的特点是充分开发利用已有的“最少信息”。
公理4:认知根据原理。
信息是认知的根据。
公理5:新信息优先原理。
新信息对认知的作用大于老信息。
灰色系统预测GM(1,1)模型及其Matlab 实现预备知识(1)灰色系统白色系统是指系统内部特征是完全已知的;黑色系统是指系统内部信息完全未知的;而灰色系统是介于白色系统和黑色系统之间的一种系统,灰色系统其内部一部分信息已知,另一部分信息未知或不确定。
(2)灰色预测 灰色预测,是指对系统行为特征值的发展变化进行的预测,对既含有已知信息又含有不确定信息的系统进行的预测,也就是对在一定范围内变化的、与时间序列有关的灰过程进行 预测。
尽管灰过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此得到的数据集合具备潜在的规律。
灰色预测是利用这种规律建立灰色模型对灰色系统进行预测。
目前使用最广泛的灰色预测模型就是关于数列预测的一个变量、一阶微分的GM(1,1)模型。
它是基于随机的原始时间序列,经按时间累加后所形成的新的时间序列呈现的规律可用一阶线性微分方程的解来逼近。
经证明,经一阶线性微分方程的解逼近所揭示的原始时间序列呈指数变化规律。
因此,当原始时间序列隐含着指数变化规律时,灰色模型GM(1,1)的预测是非常成功的。
1 灰色系统的模型GM(1,1)1.1 GM(1,1)的一般形式设有变量X (0)={X (0)(i),i=1,2,...,n}为某一预测对象的非负单调原始数据列,为建立灰色预测模型:首先对X (0)进行一次累加(1—AGO, Acumulated Generating Operator)生成一次累加序列:X (1)={X (1)(k ),k =1,2,…,n}其中X (1)(k )=∑=ki 1X (0)(i)=X (1)(k -1)+ X (0)(k ) (1) 对X (1)可建立下述白化形式的微分方程:dtdX )1(十)1(aX =u (2)即GM(1,1)模型。
上述白化微分方程的解为(离散响应): ∧X (1)(k +1)=(X (0)(1)-a u )ak e -+au(3)或∧X (1)(k )=(X (0)(1)-a u ))1(--k a e +au (4)式中:k 为时间序列,可取年、季或月。
数学建模——灰色预测模型灰色预测模型(Grey Forecasting Model)是一种用于预测不确定性数据的数学模型。
它适用于那些缺乏充分历史数据、不具备明显的规律性趋势或周期性的情况。
灰色预测模型基于灰色系统理论,通过分析数据的变化趋势和规律,来进行预测。
该模型在处理少量数据、缺乏趋势规律的情况下,具有一定的优势。
灰色预测模型的基本思想:灰色预测模型基于“白化(Whitening)”和“黑化(Blackening)”的思想,将不确定性数据分为“白色”和“黑色”两部分。
其中,“白色”代表已知数据,具有规律性和趋势,可以进行预测;而“黑色”代表未知数据,缺乏规律,需要进行预测。
通过建立数学模型,将“白色”和“黑色”数据进行融合,得出预测结果。
灰色预测模型的基本步骤:1.建立灰色数列:将原始数据分成“白色”和“黑色”两部分,构建灰色数列。
2.建立灰色微分方程:对“白色”数列进行微分,得到一阶或高阶微分方程。
3.求解微分方程:求解微分方程,得到预测模型的参数。
4.进行预测:利用已知的模型参数,对“黑色”数据进行预测,得出未来的趋势。
示例:用灰色预测模型预测销售量假设你是一家新开设的小型餐厅的经营者,你希望预测未来三个月的月销售量。
然而,你的餐厅刚刚开业不久,历史销售数据有限,且不具备明显的趋势。
这种情况下,你可以考虑使用灰色预测模型来预测销售量。
步骤:1.建立灰色数列:将已知的销售数据分为“白色”(已知数据)和“黑色”(未知数据)两部分。
2.建立灰色微分方程:对“白色”销售数据进行一阶微分,得到灰色微分方程。
3.求解微分方程:根据灰色微分方程的形式,求解微分方程,得到模型的参数。
4.进行预测:利用求解得到的模型参数,对“黑色”销售数据进行预测,得到未来三个月的销售量趋势。
这个例子中,灰色预测模型可以帮助你基于有限的历史销售数据,预测未来的销售趋势。
虽然该模型的精确度可能不如其他更复杂的方法,但在缺乏充足数据时,它可以提供一种有用的预测工具。
实验四1. 实验项目名称 灰色系统预测模型 2.实验目的要求掌握灰色系统检验方法,尤其是GM(1.1)模型 2. 实验环境使用灰色系统理论建模软件 4.实验内容与实验步骤1.灰色预测时关于残差、关联度、方差比和小误差概率的检验准则M(1,1)模型的检验分为三个方面:残差检验;关联度检验;后验差检验。
(1)残差检验:对模型值和实际值的残差进行逐点检验。
首先按模型计算(1)ˆ(1)xi +,将(1)ˆ(1)xi +累减生成(0)ˆ()x i ,最后计算原始序列(0)()x i 与(0)ˆ()x i 的绝对残差序列及相对残差序列,并计算平均相对残差。
给定α,当φα<,且n φα<成立时,称模型为残差合格模型。
(2)关联度检验:即通过考察模型值曲线和建模序列曲线的相似程度进行检验。
按前面所述的关联度计算方法,计算出(0)ˆ()x i 与原始序列(0)()x i 的关联系数,然后算出关联度,根据经验,关联度大于0.6便是满意的。
(3)后验差检验:即对残差分布的统计特性进行检验。
若对于给定的00C >,当0C C <时,称模型为均方差比合格模型;如对给定的00P >,当0P P >时,称模型为小残差概率合格模型。
若相对残差、关联度、后验差检验在允许的范围内,则可以用所建的模型进行预测,否则应进行残差修正。
2.实验的基本程序、基本步骤和运行结果现在已知我国从2002年-2013年的每年的专利申请量的数据,试建立灰色预测模型并且预测2014年我国的专利申请量的情况。
2.1在excel 表格中输入以下数据2.2计算并累加设时间序列为X(0)=(x(0)(1), x(0)(2), x(0)(3),x(0)(4)………………………………. x(0)(12))=(205396,251238,278943,345074…………… 1505574)计算并累加X(0)的1-AGO序列为(累加)(1)(1)(1)(1)(1)x(1)(12))得到下图2.3对X(1)做紧邻均值生成令Z(1)(k)=(0.5x(1)(K)+0.5X(1)(K-1)),k=1,2,3,4…….13;2.4计算灰微分方程打开灰色系统理论建模软件,找到GM(1.1)模型,在第一行输入205396,251238,278943,345074,383157,470342,586734,717144,877611,1109428,1411080, 1792177,2083483得到方程X (0)(K)-0.2099Z (1)(K)=138316.4494即模型的方程为X^(k+1)=1044777.462*e 0.2140k-839381.4621 2.5估计值运算(1)由预测公式,计算X^(1),在E2中输入=($C$2-$E$11/$E$12)*EXP(-$E$12*(B2-1))+$E$11/$E$12,复制到E3:E7中;(2)累减生成X^(0),在F7中输入=E7-E6,复制到F3,在F2中输入=E2-0;3.模型检验3.1检验一:残差和相对残差检验 原始序列X (0)=(x (0)(1), x (0)(2), x (0)(3),x (0)(4)………………………………. x (0)(12)) 相应的银行模拟序列(0)(0)(0)(0)(0)ˆˆˆˆˆ(1)(2)(3)..............(12)XX X X X =+++ 残差为X (0)-(0)ˆX,得出残差序列如下相对残差(X (0)-(0)ˆX)/X (0)由平均相对残差为0.7551%,而第12期残差为1.2707%,均远小于5%,因此模型较好,预测精度高。
灰色预测模型GM (1,1)§1 预备知识灰色预测是就灰色系统所做的预测。
所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰箱系统。
一般地说,社会系统、经济系统、生态系统都是灰色系统。
例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。
灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。
尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。
平面上有数据序列()()(){}n n y x y x y x ,,,,,,2211 ,大致分布在一条直线上。
设回归直线为:b ax y +=,要使所有点到直线的距离之和最小(最小二乘),即使误差平方和()∑=--=ni i i b ax y J 12最小。
J 是关于a , b的二元函数。
由()()()()⎪⎪⎩⎪⎪⎨⎧=-⋅--⋅=∂∂=-⋅--⋅=∂∂∑∑==0120211ni ii i ni i i i i b x a y b J x b x a y a J()()⎪⎪⎩⎪⎪⎨⎧=--=--⇒∑∑==00112ni i i n i i i i i b a y bx ax y x 则得使J 取极小的必要条件为:⎪⎩⎪⎨⎧=+=+⋅∑∑∑∑∑=i iii n i i i y nb x a y x x b x a 12(*)()()()()()()()⎪⎪⎩⎪⎪⎨⎧--=--=∑∑∑∑∑∑∑∑∑∑∑22222i i i i i i i i i i i i i x x n y x x x y b x x n y x y x n a (1) 以上是我们熟悉的最小二乘计算过程。
什么是灰色预测法?灰色预测是就灰色系统所做的预测。
所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰色系统。
一般地说,社会系统、经济系统、生态系统都是灰色系统。
例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。
灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。
尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。
灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。
其用等时距观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。
编辑本段灰色预测的类型1、数列预测。
对某现象随时间的顺延而发生的变化所做的预测定义为数列预测。
例如对消费物价指数的预测,需要确定两个变量,一个是消费物价指数的水平。
另一个是这一水平所发生的时间。
2、灾变预测。
对发生灾害或异常突变时间可能发生的时间预测称为灾变预测。
例如对地震时间的预测。
3、系统预测。
对系统中众多变量间相互协调关系的发展变化所进行的预测称为系统预测。
例如市场中替代商品、相互关联商品销售量互相制约的预测。
4、拓扑预测。
将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测未来该定值所发生的时点。
编辑本段为了弱化原始时间序列的随机性在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据处理后的时间序列即称为生成列。
灰色系统理论在预测领域的应用一、灰色系统理论概述灰色系统理论是一种针对缺乏数据或信息不完全不确定性问题的理论,对于这些问题的预测或者决策提供了一种方法。
它是中国学者陈纳德于1982年提出的,并且在中国获得了成功地应用,成为国际上新兴的研究方向之一。
灰色系统理论建立在不确定性信息的基础上,所处理的数据量较小,数据来源不确定,但灰度值分布比较明显,比如股市、气候、疾病等领域,这些领域数据都存在不确定性,所以适合应用灰色系统理论。
二、灰色系统模型灰色系统理论主要应用灰色系统模型进行分析。
灰色系统模型的本质是一种数学模型,它通过数学方法,整合有限的信息资源、利用有限的数据,建立出一组模型来描述这些问题,使模型能够更好地反映系统的特性。
灰色系统模型的优点是能够利用少量的数据来预测未来的趋势,并且减少对数据的要求。
而与其他预测模型相比,灰色系统模型所需的数据量是最少的。
三、灰色系统理论在预测领域的应用1、天气预测天气预测是大众常关心的话题,气象数据来源复杂,计算分析复杂,灰色模型的应用可以充分利用气象数据的6倍次方分之一的样本数据量,减少数据对模型的要求,提高预测准确度。
较为实用的天气预测模型是GM(1,1)模型。
该模型具有计算简单、便于实施等优点,当然准确率上还有提升空间。
2、金融市场预测金融市场变化快速,灰色系统理论模型可以很好地利用各种现有的市场状况进行预测。
在股票交易市场中,常用的灰色系统理论是GM(1,1)模型,根据历史数据和市场情况,进行分析建立模型,进行未来趋势预测等。
3、疾病预测疾病预测是一项重要的医学组成部分,它可以早期发现疾病,及时采用有效的预防措施来遏制疾病的蔓延。
灰色系统理论可以根据病毒在人群中的传染力和人口迁移等因素,对流行病的发展趋势进行预测,更加准确地早期预测传染病的流行。
4、能源预测能源预测一直是复杂的问题,而灰色系统理论的应用可得以解决。
灰色系统理论可以将能源消耗的趋势和变化因素进行分析,建立一个科学、可靠的能源预测模型。