二叉树
- 格式:doc
- 大小:353.00 KB
- 文档页数:11
二叉树知识点总结1. 二叉树的性质1.1 二叉树的性质一:二叉树的深度二叉树的深度是指从根节点到叶子节点的最长路径长度。
对于一个空树而言,它的深度为0;对于只有一个根节点的树而言,它的深度为1。
根据定义可知,深度为k的二叉树中,叶子节点的深度值为k。
由此可知,二叉树的深度为所有叶子节点深度的最大值。
1.2 二叉树的性质二:二叉树的高度二叉树的高度是指从根节点到叶子节点的最短路径长度。
对于一个空树而言,它的高度为0;对于只有一个根节点的树而言,它的高度为1。
由此可知,二叉树的高度总是比深度大一。
1.3 二叉树的性质三:二叉树的节点数量对于一个深度为k的二叉树而言,它最多包含2^k - 1个节点。
而对于一个拥有n个节点的二叉树而言,它的深度最多为log2(n+1)。
1.4 二叉树的性质四:满二叉树满二叉树是一种特殊类型的二叉树,它的每个节点要么是叶子节点,要么拥有两个子节点。
满二叉树的性质是:对于深度为k的满二叉树而言,它的节点数量一定是2^k - 1。
1.5 二叉树的性质五:完全二叉树完全二叉树是一种特殊类型的二叉树,它的所有叶子节点都集中在树的最低两层,并且最后一层的叶子节点从左到右依次排列。
对于一个深度为k的完全二叉树而言,它的节点数量一定在2^(k-1)和2^k之间。
2. 二叉树的遍历二叉树的遍历是指按照一定的顺序访问二叉树的所有节点。
二叉树的遍历主要包括前序遍历、中序遍历和后序遍历三种。
2.1 前序遍历(Pre-order traversal)前序遍历的顺序是:根节点 -> 左子树 -> 右子树。
对于一个二叉树而言,前序遍历的结果就是按照“根-左-右”的顺序访问所有节点。
2.2 中序遍历(In-order traversal)中序遍历的顺序是:左子树 -> 根节点 -> 右子树。
对于一个二叉树而言,中序遍历的结果就是按照“左-根-右”的顺序访问所有节点。
2.3 后序遍历(Post-order traversal)后序遍历的顺序是:左子树 -> 右子树 -> 根节点。
二叉树的相关概念
1. 树:由节点和边组成的数据结构,满足以下条件:
- 有一个根节点,没有父节点
- 具有多个子节点
- 任何非根节点都有一个唯一的父节点
2. 二叉树:每个节点最多只有两个子节点的树。
- 左子树:一个节点的左侧子树。
- 右子树:一个节点的右侧子树。
- 父节点:一个节点的直接上级节点。
- 子节点:一个节点的直接下级节点。
- 叶子节点:没有子节点的节点。
3. 二叉搜索树:一种特殊的二叉树,满足以下条件:
- 如果左子树不为空,则左子树上所有节点的值都小于该节点的值;
- 如果右子树不为空,则右子树上所有节点的值都大于该节点的值;
- 左右子树也都是二叉搜索树。
4. 完美二叉树:在一颗二叉树中,所有非叶子节点都有两个子节点,并且所有
叶子节点都位于同一层的二叉树。
5. 满二叉树:在一颗二叉树中,每个非叶子节点都有两个子节点,而且所有叶子节点都在同一层。
6. 完全二叉树:在一颗二叉树中,除了最后一层和可能的最后一个节点外,其它层的节点数都是满的,并且最后一层的节点都集中在该层的左侧。
7. 平衡二叉树:一种二叉搜索树,任意节点的两个子树的高度差不超过1。
二叉树的自平衡
自平衡二叉树是一种特殊的二叉查找树(Binary Search Tree,BST),它在插入或删除节点时能够自动调整树的结构,以保持树的平衡性。
平衡性的维护有助于确保在查找、插入和删除等操作时,树的性能保持在较高水平。
常见的自平衡二叉树包括:
1.A VL树:A VL树是一种最早被发明的自平衡二叉树。
在A VL树中,任意节点的左右子树高度之差(平衡因子)不能超过1。
当进行插入或删除操作后,如果破坏了平衡性,A VL树会通过旋转操作(左旋或右旋)来重新平衡。
2.红黑树:红黑树是一种更为灵活的自平衡二叉树。
在红黑树中,每个节点都被标记为红色或黑色,并通过一些规则确保树的平衡性。
这些规则包括节点颜色的变换和树的旋转。
3.Splay树:Splay树在每次访问一个节点后,将该节点移动到树的根位置,以提高后续对该节点的访问速度。
Splay树不维持固定的平衡条件,但通过频繁的局部调整来实现整体的平衡。
4.Treap(树堆):Treap是一种随机化的自平衡二叉树,结合了二叉搜索树和堆的性质。
每个节点有一个随机的优先级值,通过调整节点的优先级和执行旋转来保持树的平衡。
这些自平衡二叉树的设计灵感各异,选择适当的树取决于应用的具体要求。
自平衡二叉树的主要优势是保持较低的查找、插入和删除操作的时间复杂度,使其在很多应用中都是一个有用的数据结构。
二叉树基本知识:
1.二叉树的定义:二叉树是每个结点最多有两个子树的树结构,它有五种基本形态:
二叉树可以是空集;根可以有空的左子树或右子树;或者左、右子树皆为空。
2.二叉树的性质:若规定根结点的层数为1,则一颗非空二叉树的第i层上最多有2^(i-1)
(i>0)个结点。
若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结
点数是2^K -1 (k >= 0)个。
对任何一颗二叉树,如果其叶子结点个数为n0,度为2的非叶子结点个数为n2,则有n0=n2+1。
3.二叉树的分类:二叉树有两大类,一是普通二叉树,二是特殊二叉树。
普通二叉树
是指除了满二叉树和完全二叉树之外的二叉树,特殊二叉树包括满二叉树和完全二叉树。
满二叉树是指所有层都完全填满的二叉树,而完全二叉树是指只有最下面两层结点度数可以小于2,并且最下面一层的叶子结点都位于本层中间位置的二叉树。
4.二叉树的遍历:二叉树的遍历主要有三种方法,分别是前序遍历、中序遍历和后序
遍历。
前序遍历是先访问根结点,然后遍历左子树,最后遍历右子树;中序遍历是先遍历左子树,然后访问根结点,最后遍历右子树;后序遍历是先遍历左子树,然后遍历右子树,最后访问根结点。
数据结构之⼆叉树(BinaryTree)⽬录导读 ⼆叉树是⼀种很常见的数据结构,但要注意的是,⼆叉树并不是树的特殊情况,⼆叉树与树是两种不⼀样的数据结构。
⽬录 ⼀、⼆叉树的定义 ⼆、⼆叉树为何不是特殊的树 三、⼆叉树的五种基本形态 四、⼆叉树相关术语 五、⼆叉树的主要性质(6个) 六、⼆叉树的存储结构(2种) 七、⼆叉树的遍历算法(4种) ⼋、⼆叉树的基本应⽤:⼆叉排序树、平衡⼆叉树、赫夫曼树及赫夫曼编码⼀、⼆叉树的定义 如果你知道树的定义(有限个结点组成的具有层次关系的集合),那么就很好理解⼆叉树了。
定义:⼆叉树是n(n≥0)个结点的有限集,⼆叉树是每个结点最多有两个⼦树的树结构,它由⼀个根结点及左⼦树和右⼦树组成。
(这⾥的左⼦树和右⼦树也是⼆叉树)。
值得注意的是,⼆叉树和“度⾄多为2的有序树”⼏乎⼀样,但,⼆叉树不是树的特殊情形。
具体分析如下⼆、⼆叉树为何不是特殊的树 1、⼆叉树与⽆序树不同 ⼆叉树的⼦树有左右之分,不能颠倒。
⽆序树的⼦树⽆左右之分。
2、⼆叉树与有序树也不同(关键) 当有序树有两个⼦树时,确实可以看做⼀颗⼆叉树,但当只有⼀个⼦树时,就没有了左右之分,如图所⽰:三、⼆叉树的五种基本状态四、⼆叉树相关术语是满⼆叉树;⽽国际定义为,不存在度为1的结点,即结点的度要么为2要么为0,这样的⼆叉树就称为满⼆叉树。
这两种概念完全不同,既然在国内,我们就默认第⼀种定义就好)。
完全⼆叉树:如果将⼀颗深度为K的⼆叉树按从上到下、从左到右的顺序进⾏编号,如果各结点的编号与深度为K的满⼆叉树相同位置的编号完全对应,那么这就是⼀颗完全⼆叉树。
如图所⽰:五、⼆叉树的主要性质 ⼆叉树的性质是基于它的结构⽽得来的,这些性质不必死记,使⽤到再查询或者⾃⼰根据⼆叉树结构进⾏推理即可。
性质1:⾮空⼆叉树的叶⼦结点数等于双分⽀结点数加1。
证明:设⼆叉树的叶⼦结点数为X,单分⽀结点数为Y,双分⽀结点数为Z。
平衡树——特点:所有结点左右子树深度差≤1排序树——特点:所有结点―左小右大字典树——由字符串构成的二叉排序树判定树——特点:分支查找树(例如12个球如何只称3次便分出轻重)带权树——特点:路径带权值(例如长度)最优树——是带权路径长度最短的树,又称Huffman树,用途之一是通信中的压缩编码。
1.1 二叉排序树:或是一棵空树;或者是具有如下性质的非空二叉树:(1)若左子树不为空,左子树的所有结点的值均小于根的值;(2)若右子树不为空,右子树的所有结点均大于根的值;(3)它的左右子树也分别为二叉排序树。
例:二叉排序树如图9.7:二叉排序树的查找过程和次优二叉树类似,通常采取二叉链表作为二叉排序树的存储结构。
中序遍历二叉排序树可得到一个关键字的有序序列,一个无序序列可以通过构造一棵二叉排序树变成一个有序序列,构造树的过程即为对无序序列进行排序的过程。
每次插入的新的结点都是二叉排序树上新的叶子结点,在进行插入操作时,不必移动其它结点,只需改动某个结点的指针,由空变为非空即可。
搜索,插入,删除的复杂度等于树高,期望O(logn),最坏O(n)(数列有序,树退化成线性表).虽然二叉排序树的最坏效率是O(n),但它支持动态查询,且有很多改进版的二叉排序树可以使树高为O(logn),如SBT,AVL,红黑树等.故不失为一种好的动态排序方法.2.2 二叉排序树b中查找在二叉排序树b中查找x的过程为:1. 若b是空树,则搜索失败,否则:2. 若x等于b的根节点的数据域之值,则查找成功;否则:3. 若x小于b的根节点的数据域之值,则搜索左子树;否则:4. 查找右子树。
[cpp]view plaincopyprint?1.Status SearchBST(BiTree T, KeyType key, BiTree f, BiTree &p){2. //在根指针T所指二叉排序樹中递归地查找其关键字等于key的数据元素,若查找成功,3. //则指针p指向该数据元素节点,并返回TRUE,否则指针P指向查找路径上访问的4. //最好一个节点并返回FALSE,指针f指向T的双亲,其初始调用值为NULL5. if(!T){ p=f; return FALSE;} //查找不成功6. else if EQ(key, T->data.key) {P=T; return TRUE;} //查找成功7. else if LT(key,T->data.key)8. return SearchBST(T->lchild, key, T, p); //在左子树继续查找9. else return SearchBST(T->rchild, key, T, p); //在右子树继续查找10.}2.3 在二叉排序树插入结点的算法向一个二叉排序树b中插入一个结点s的算法,过程为:1. 若b是空树,则将s所指结点作为根结点插入,否则:2. 若s->data等于b的根结点的数据域之值,则返回,否则:3. 若s->data小于b的根结点的数据域之值,则把s所指结点插入到左子树中,否则:4. 把s所指结点插入到右子树中。
【数据结构】⼆叉树【⼆叉树】 ⼆叉树是最为简单的⼀种树形结构。
所谓树形结构,其特征(部分名词的定义就不明确给出了,毕竟不是学术⽂章。
)在于: 1. 如果是⾮空的树形结构,那么拥有⼀个唯⼀的起始节点称之为root(根节点) 2. 除了根节点外,其他节点都有且仅有⼀个“⽗节点”;除此外这些节点还都可以有0到若⼲个“⼦节点” 3. 树中的所有节点都必须可以通过根节点经过若⼲次后继操作到达 4. 节点之间不会形成循环关系,即任意⼀个节点都不可能从⾃⾝出发,经过不重复的径路再回到⾃⾝。
说明了树形结构内部蕴含着⼀种“序”,但是不是线性表那样的“全序” 5. 从树中的任意两个节点出发获取到的两个任意⼦树,要不两者⽆交集,要不其中⼀者是另⼀者的⼦集 限定到⼆叉树,⼆叉树就是任意⼀个节点⾄多只能有两个⼦节点的树形结构。
也就是说,某个节点的⼦节点数可以是0,1或2。
由于可以有两个⼦节点,所以区别两个⼦节点可以将其分别定义为左⼦节点和右⼦节点。
但是需要注意的是,若⼀个节点只有⼀个⼦节点,那么也必须明确这个⼦节点是左⼦节点还是右⼦节点。
不存在“中⼦节点”或者“单⼦节点”这种表述。
由于上述规则对所有节点都⽣效,所以⼆叉树也是⼀个递归的结构。
事实上,递归就是⼆叉树⼀个⾮常重要的特点,后⾯还会提到很多通过递归的思想来建⽴的例⼦。
对于左⼦节点作为根节点的那颗⼆叉树被称为相对本节点的左⼦树,右⼦树是同理。
■ 基本概念 空树 不包含任何节点的⼆叉树,连根节点也没有 单点树 只包含⼀个根节点的⼆叉树是单点树 ⾄于兄弟关系,⽗⼦关系,长辈后辈关系是⼀⾔既明的就不说了。
树中没有⼦节点的节点被称为树叶(节点),其余的则是分⽀节点。
⼀个节点的⼦节点个数被称为“度数”。
正如上所说,⼆叉树任意节点的度数取值可能是0,1或2。
节点与节点之间存在关联关系,这种关联关系的基本长度是1。
通过⼀个节点经过若⼲个关联关系到达另⼀个节点,经过的这些关联关系合起来被称为⼀个路径。
数据结构二叉树知识点总结二叉树是指每个节点最多有两个子节点的树结构。
它是一种重要的数据结构,在算法和程序设计中被广泛应用。
下面是对二叉树的主要知识点进行详细总结。
1.二叉树的基本概念:-树节点:树的基本单元,包含数据项(节点值)和指向其他节点的指针。
-根节点:树的第一个节点。
-叶节点(又称为终端节点):没有子节点的节点。
-子节点:一些节点的下一级节点。
-父节点:一些节点的上一级节点。
-兄弟节点:拥有同一父节点的节点。
-深度:从根节点到当前节点的路径长度。
-高度:从当前节点到最远叶节点的路径长度。
2.二叉树的分类:-严格二叉树:每个节点要么没有子节点,要么有两个子节点。
-完全二叉树:除了最后一层外,其他层的节点数都达到最大,并且最后一层的节点依次从左到右排列。
-满二叉树:每个节点要么没有子节点,要么有两个子节点,并且所有叶节点都在同一层上。
-平衡二叉树:任意节点的两棵子树的高度差不超过13.二叉树的遍历:-前序遍历:根节点->左子树->右子树。
递归实现时,先访问当前节点,然后递归遍历左子树和右子树。
-中序遍历:左子树->根节点->右子树。
递归实现时,先递归遍历左子树,然后访问当前节点,最后递归遍历右子树。
-后序遍历:左子树->右子树->根节点。
递归实现时,先递归遍历左子树,然后递归遍历右子树,最后访问当前节点。
-层序遍历:从上到下,从左到右依次访问每个节点。
使用队列实现。
4.二叉查找树(BST):-二叉查找树是一种有序的二叉树,对于树中的每个节点,其左子树的节点的值都小于当前节点的值,右子树的节点的值都大于当前节点的值。
-插入操作:从根节点开始,递归地比较要插入的值和当前节点的值,根据比较结果向左或向右移动,直到找到插入位置为止。
-查找操作:从根节点开始,递归地比较要查找的值和当前节点的值,根据比较结果向左或向右移动,直到找到目标节点或到叶节点。
-删除操作:有三种情况:-被删除节点是叶节点:直接将其删除。
二叉树的基本概念一、引言二叉树是计算机科学中最基础的数据结构之一,它是由节点和边组成的树形结构,其中每个节点最多有两个子节点。
在计算机科学中,二叉树被广泛应用于搜索、排序、编译器等领域。
本文将详细介绍二叉树的基本概念。
二、定义二叉树是一种特殊的树形结构,其中每个节点最多有两个子节点。
通常将左子节点称为左子树,右子节点称为右子树。
三、基本术语1. 根节点:二叉树的顶层节点称为根节点。
2. 叶子节点:没有任何子节点的节点称为叶子节点。
3. 父节点和子节点:一个父亲可以有多个儿子,但是一个儿子只能有一个父亲。
4. 兄弟:具有相同父亲的两个或多个儿子称为兄弟。
5. 深度:从根到某个节点所经过的边数称为该节点的深度。
6. 高度:从某个节点到其所有后代中深度最大者加一(即包括该结点)称为该结点所在的二叉树的高度。
四、分类1. 满二叉树:一棵深度为k且有2^k-1个节点的二叉树称为满二叉树。
2. 完全二叉树:对于一棵深度为k的,有n个节点的二叉树,当且仅当其每一个节点都与深度为k的满二叉树中编号从1至n的节点一一对应时,称之为完全二叉树。
3. 平衡二叉树:平衡二叉树也称为AVL树,是一种自平衡的排序二叉搜索树。
它具有以下性质:左右子树高度差不超过1,并且左右子树也是平衡二叉树。
五、遍历遍历是指按照某种顺序访问每个节点。
常见的遍历方式有三种:1. 前序遍历(Pre-order):先访问当前节点,再依次遍历左子树和右子树。
2. 中序遍历(In-order):先依次遍历左子树,再访问当前节点,最后遍历右子树。
3. 后序遍历(Post-order):先依次遍历左子树和右子树,最后访问当前节点。
六、应用1. 搜索算法:在搜索算法中,二叉树被广泛应用于二分查找。
2. 排序算法:在排序算法中,二叉树被广泛应用于堆排序和快速排序。
3. 编译器:在编译器中,二叉树被广泛应用于语法分析和代码生成。
七、总结本文介绍了二叉树的基本概念、术语、分类、遍历以及应用。
第六章树第一部分:知识点知识脉络:重点:二叉树的性质、:I树的各种遍历方法及它g1所确定的序列问的关系、二又树上的基本运算算法的实现、二又树的线索化方法,构造赂夫曼树的方法。
难点:二叉树上各种算法,特别是遍历的非递归算法的设计。
一、二叉树的遍历的非递归算法1.先序遍历先将根结点入栈,然后只要栈不空,先出栈,然后沿着左子针依次访问沿途经过的子树根结点,同时将右指针进栈(以便递归访问左子树后访问右子树),如此重复,直至栈为空。
void PreOrderBiTree(BitTree T){ SqStack S;BitTree p;InitStack(&S); /* 初始化一个空栈*/Push(&S,T); /* 根结点指针进栈*/while(!EmptyStack(S)) /* 栈为空时算法结束*/{ Pop(S,&p); /* 弹栈,p指向(子树)根结点*/while(p){ printf("%d ",p->data); /* 访问根结点*/if(p->rchild) Push(S,p->rchild); /* 非空的右指针进栈*/p=p->lchild; /* 沿着左指针访问,直到左指针为空*/ }}2.中序遍历先沿着左指针走到最左下的结点同时将沿途经过的(子树)根结点指针进栈。
当走到空指针时,出栈得到一个结点并访问,然后跳到右子树上。
如此重复,直到指针为空并且栈为空为止。
void InOrderBitree(BitTree T){ SqStack S;BitTree p;InitStack(&S); /* 初始化一个栈*/p=T; /* p指向根结点*/while(p||!EmptyStack(S)) /* 当p为空且栈为空时算法结束*/{ while(p){ Push(S,p);p=p->lchild; /* 沿左指针走,沿途经过的(子树)根结点指针进栈*/ }Pop(S,&p);printf("%d ",p->data); /*当左指针为空时弹栈并访问该结点(子树根结点) */ p=p->rchild; /* 向右跳一步到右子树上继续进行遍历过程*/}}3.后序遍历void PostOrderBiTree(BitTree T){ SqStack S;BitTree p,q;InitStack(S);p=T;q=NULL;while(p||!EmptyStack(S)){ if(p!=q){ while(p){ Push(S,p);if(p->lchild) p=p->lchild;else p=p->rchild;}}if(S->top==S->base) break;GetTop(S,&q);if(q->rchild==p){ p=Pop(S);printf("%d ",p->data);}else p=q->rchild;}二、线索二叉树1、已知树T如下,画出它的三种线索二叉树先序线索二叉树(1)写出先序序列:ABDCEFG(2)为度不是2结点添加指针。
若没有左孩子,添加左孩子指针并指向直接前驱。
若没有右孩子,添加右孩子指针并指向直接后继。
中序线索二叉树后序线索二叉树中序序列:DBAFEGC 写出后序序列:DBFGECA2、中序线索二叉树的存储结构{BiThrTree p=Thrt->lchild;while(p!=Thrt){ while(p->ltag==0) p=p->lchild;printf("%d ",p->data);while(p->rtag==1&&p->rchild!=Thrt){ p=p->rchild;printf("%d ",p->data);}p=p->rchild;}}第二部分:习题一、选择题1.已知一算术表达式的中缀形式为 A+B*C-D/E ,后缀形式为ABC*+DE/-,其前缀形式为( )A .-A+B*C/DE B. -A+B*CD/E C .-+*ABC/DE D. -+A*BC/DE2.设有一表示算术表达式的二叉树(见右图), 它所表示的算术表达式是( )。
C. (A*B+C)/(D*E+(F-G )) D. A*B+C/D*E+F-G3. 算术表达式a+b*(c+d/e )的逆波兰式为( )A .ab+cde/*B .abcde/+*+C .abcde/*++D .abcde*/++4. 在下述结论中,正确的是( )。
①只有一个结点的二叉树的度为0; ②二叉树的度为2; ③二叉树的左右子树可任意交换;④深度为K 的完全二叉树的结点个数小于或等于深度相同的满二叉树。
A .①②③B .②③④C .②④D .①④5.若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是( )A .9B .11C .15D .不确定6. 一棵完全二叉树上有1001个结点,其中叶子结点的个数是( )。
A . 250B . 500C .254D .505E .以上答案都不对7.设树T 的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1 则T 中的叶子数为( )A .5B .6C .7D .88.设森林F 对应的二叉树为B ,它有m 个结点,B 的根为p,p 的右子树结点个数为n,森林F 中第一棵树的结点个数是( )A .m-nB .m-n-1C .n+1D .条件不足,无法确定9.设森林F 中有三棵树,第一,第二,第三棵树的结点个数分别为M1,M2和M3。
与森林F 对应的二叉树根结点的右子树上的结点个数是( )。
A .M1B .M1+M2C .M3D .M2+M310. 一棵二叉树高度为h,所有结点的度或为0,或为2,则这棵二叉树最少有( )结点A .2hB .2h-1C .2h+1D .h+111. 深度为h 的满m 叉树的第k 层有( )个结点。
(1=<k=<h)A .m k-1B .m k -1C .m h-1D .m h -112. 将有关二叉树的概念推广到三叉树,则一棵有244个结点的完全三叉树的高度()A .4B .5C .6D .713. 利用二叉链表存储树,则根结点的右指针是( )。
A .指向最左孩子B .指向最右孩子C .空D .非空14. 树的后根遍历序列等同于该树对应的二叉树的( ).A. 先序序列B. 中序序列C. 后序序列15.若二叉树采用二叉链表存储结构,要交换其所有分支结点左、右子树的位置,利用( )遍历方法最合适。
A.前序 B.中序 C.后序 D.按层次16. 在下列存储形式中,哪一个不是树的存储形式?()。
A.双亲表示法 B.孩子链表表示法 C.孩子兄弟表示法 D.顺序存储表示法17. 某二叉树中序序列为A,B,C,D,E,F,G,后序序列为B,D,C,A,F,G,E 则前序序列是:()A.E,G,F,A,C,D,B B.E,A,C,B,D,G,F C.E,A,G,C,F,B,D D.上面的都不对18. 上题的二叉树对应的森林包括多少棵树()。
A.l B.2 C.3 D.概念上是错误的19. 一棵非空的二叉树的先序遍历序列与后序遍历序列正好相反,则该二叉树一定满足()A.所有的结点均无左孩子 B.所有的结点均无右孩子C.只有一个叶子结点 D.是任意一棵二叉树20. 在二叉树结点的先序序列,中序序列和后序序列中,所有叶子结点的先后顺序()A.都不相同B.完全相同 C.先序和中序相同,而与后序不同D.中序和后序相同,而与先序不同21. 一棵左子树为空的二叉树在先序线索化后,其中空的链域的个数是:( )A.不确定 B. 0 C. 1 D. 222. 一棵左右子树均不空的二叉树在先序线索化后,其中空的链域的个数是:( )。
A. 0B. 1C. 2D. 不确定23. 若X是二叉中序线索树中一个有左孩子的结点,且X不为根,则x的前驱为( )A.X的双亲B.X的右子树中最左的结点C.X的左子树中最右结点D.X的左子树中最右叶结点24. 引入二叉线索树的目的是()A.加快查找结点的前驱或后继的速度 B.为了能在二叉树中方便的进行插入与删除C.为了能方便的找到双亲 D.使二叉树的遍历结果唯一25. 线索二叉树是一种()结构。
A.逻辑 B.逻辑和存储 C.物理 D.线性26. n个结点的线索二叉树上含有的线索数为()A.2n B.n-l C.n+l D.n27. 二叉树在线索后,仍不能有效求解的问题是()。
A.前(先)序线索二叉树中求前(先)序后继 B.中序线索二叉树中求中序后继C.中序线索二叉树中求中序前驱 D.后序线索二叉树中求后序后继28. 如果T2是由有序树T转换而来的二叉树,那么T中结点的后序就是T2中结点的()。
A.先序 B.中序 C.后序 D.层次序29.设给定权值总数有n 个,其哈夫曼树的结点总数为( ) 。
A.不确定 B.2n C.2n+1 D.2n-130.下述编码中哪一个不是前缀码()。
A.(00,01,10,11) B.(0,1,00,11)C.(0,10,110,111) D.(1,01,000,001)二、填空题1.在完全二叉树中,编号为i和j的两个结点处于同一层的条件是______。
2.一棵有n个结点的满二叉树有__(1)_个度为1的结点、有__(2)_个分支(非终端)结点和__(3)_个叶子,该满二叉树的深度为_(4)__。
3. 高度为K的完全二叉树至少有______个叶子结点。
4. 已知二叉树有50个叶子结点,则该二叉树的总结点数至少是______。
5. 设F是由T1,T2,T3三棵树组成的森林,与F对应的二叉树为B,已知T1,T2,T3的结点数分别为n1,n2和n3则二叉树B的左子树中有__(1)_个结点,右子树中有_(2)__个结点。
6. 如某二叉树有20个叶子结点,有30个结点仅有一个孩子,则该二叉树的总结点数为______。
7.对于一个具有n个结点的二元树,当它为一棵_(1)_二元树时具有最小高度,当它为一棵_(2)_时,具有最大高度。
8. 具有N个结点的二叉树,采用二叉链表存储,共有______个空链域。
9. 每一棵树都能唯一的转换为它所对应的二叉树。
若已知一棵二叉树的前序序列是BEFCGDH,对称序列是FEBGCHD,则它的后序序列是_(1)__。
设上述二叉树是由某棵树转换而成,则该树的先根次序序列是_(2)__。