STM32汇编语言 左右跑马灯
- 格式:doc
- 大小:28.50 KB
- 文档页数:3
汇编语⾔实现led灯的跑马灯led实验1.看原理图看设备⼯作的原理(可能需要阅读芯⽚⼿册),看设备与cpu的连接关系GPIO具有输⼊输出功能。
输⼊:cpu想知道io引脚是⾼电平还是低电平那么就是输⼊⽅式输出:cpu想控制io引脚为⾼电平还是低电平那么就是输出⽅式跟电流的⽅向没有任何关系2. cpu的相关章节GPJ2CON control是配置这个引脚是什么功能GPJ2有8个引脚,每个引脚由con寄存器中的4个位进⾏配置GPJ2DAT 如果cpu要输出⾼电平或者低电平,就需要设置该寄存器,只有8位有效When the port is configured as input port, the correspondingbit is the pin state. When the port is configured as outputport, the pin state is the same as the corresponding bit.When the port is configured as functional pin, the undefinedvalue will be read.当配置为输⼊模式的时候,dat寄存器中的某⼀位的值由引脚设置,引脚是⾼电平是,对应的位为1,引脚为低电平时,对应的位为0当配置为输出模式的时候,dat寄存器中的某⼀位控制引脚的电平,对应的位为1时,对应的引脚输出⾼电平,对应的位为0时,对应的引脚输出为低电平其他功能模式时,读到的值是未定义的。
@gec210 light first led.globl _start_start:ldr r0,=0xe0200280mov r1,#1<<4str r1,[r0] @config pin0 output modemov r1,#0str r1,[r0,#4] @output low levelb . @same as while(1);arm-linux-gcc -c led.S -o led.o //编译不链接arm-linux-ld -Ttext 0x30008000 led.o -o led.elf //链接指定代码段起始位置arm-linux-objcopy -O binary led.elf led.bin //⽣成⼆进制执⾏⽂件arm-linux-objdump -D led.elf > led.dis //⽣成反汇编代码uboot的⼏个常⽤命令printenv 打印显⽰环境变量ipaddr=192.168.1.4 //开发板的ipserverip=192.168.1.2 //tftp服务器的ip设置为各⾃的ip,只是设置到内存,掉电就没有setenv ipaddr 192.168.1.xsetenv serverip 192.168.1.xsaveenv //保存到flash中,再次启动后为刚刚设置的值ping //单向的,只能从开发板ping电脑alive表⽰⽹络是通的,not alive表⽰⽹络不通tftp 30008000 led.bin //下载⼆进制⽂件到内存0x30008000地址go 30008000 //跳转到0x30008000运⾏程序@gec210 light first led.globl _start_start:ldr r0,=0xe0200280ldr r1,=(1<<0 | 1<<4 | 1<<8 | 1<<12)str r1,[r0] @config pin0-pin3 output modemov r1,#0str r1,[r0,#4] @output low levelb . @same as while(1);简单的makefileAPP=led$(APP).bin:$(APP).oarm-linux-ld -Ttext 0x30008000 $^ -o $(APP).elf arm-linux-objcopy -O binary $(APP).elf $@ arm-linux-objdump -D $(APP).elf > $(APP).dis cp $@ /home/gec/tftp/%.o:%.sarm-linux-gcc $^ -c -o $@%.o:%.Sarm-linux-gcc $^ -c -o $@%.o:%.carm-linux-gcc $^ -c -o $@clean:@rm -f $(APP).bin $(APP).elf $(APP).dis *.o四个灯同时点亮或者同时熄灭循环闪烁@gec210 light first led.globl _start_start:ldr r0,=0xe0200280ldr r1,=(1<<0 | 1<<4 | 1<<8 | 1<<12)str r1,[r0] @config pin0-pin3 output mode loop:mov r1,#0str r1,[r0,#4] @output low levelbl delaymov r1,#0xfstr r1,[r0,#4]bl delayb loopb . @same as while(1);delay:mov r4,#0xff00000delay1:subs r4,r4,#1bne delay1mov pc,lr#define GPJ2CON (unsigned long *)0xe0200280unsigned long *p = (unsigned long *)0xe0200280;p练习:第1个灯到第4个灯依次点亮,第4个灯到第1个灯依次熄灭,循环。
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;; STM32 LED左右跑马灯实验;;8个LED接在PE口(PE[0..7]);;LED先向右跑,跑完再向左跑,不停左右跑动;;2011-5-3 by 追梦;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;BIT6 EQU 0X00000040GPIOE EQU 0X40011800 ;GPIOE 地址GPIOE_CRL EQU 0X40011800 ;低配置寄存器GPIOE_CRH EQU 0X40011804 ;高配置寄存器GPIOE_ODR EQU 0X4001180C ;输出,偏移地址0Ch GPIOE_BSRR EQU 0X40011810 ;低置位,高清除偏移地址10h GPIOE_BRR EQU 0X40011814 ;清除,偏移地址14h IOPEEN EQU BIT6 ;GPIOE使能位RCC_APB2ENR EQU 0X40021018STACK_TOP EQU 0X20002000AREA RESET,CODE,READONLYDCD STACK_TOP ;MSP主堆栈指针DCD START ;复位,PC初始值ENTRY;指示开始执行STARTLDR R1,=RCC_APB2ENRLDR R0,[R1] ;读LDR R2,=IOPEENORR R0,R2 ;改STR R0,[R1] ;写,使能GPIOE时钟;PE[0..7] 8个引脚均设置成推挽式输出LDR R0,=0x33333333LDR R1,=GPIOE_CRLSTR R0,[R1]LDR R1,=GPIOE_ODRLDR R0,=0X7F ;初始时最高位点亮MOV R2,#0LOOPSTR R0,[R1]PUSH {R0}MOV R0,#300BL.W DELAY_NMS ;延时300msPOP {R0}ADD R2,#1CMP R2,#7BLE STA TE1CMP R2,#14BEQ RESTARTB STA TE2STA TE1 ;状态1,右循环移位BL.W ByteRor1 ;状态位右循环移一位B LOOPRESTARTMOV R2,#0STA TE2 ;状态2,左循环移位BL.W ByteRol1 ;状态位左循环移一位B LOOP;延时R0(ms),误差((R0-1)*4+12)/8us;延时较长时,误差小于0.1%DELAY_NMSPUSH {R1} ;2个周期DELAY_NMSLOOPSUB R0,#1MOV R1,#1000DELAY_ONEUSSUB R1,#1NOPNOPNOPCMP R1,#0BNE DELAY_ONEUSCMP R0,#0BNE DELAY_NMSLOOPPOP {R1}BX LR;子程序,将R0低八位右循环移一位,高位不变ByteRor1PUSH {R1,R2,R3}LDR R3,=0XFFFFFF00LSR R1,R0,#1AND R1,#0X0000007FAND R2,R0,#0X01LSL R2,#7ORR R1,R2AND R0,R3ORR R0,R1POP {R1,R2,R3}BX LR;子程序,将R0低八位左循环移一位,高位不变ByteRol1PUSH {R1,R2,R3}LDR R3,=0XFFFFFF00LSL R1,R0,#1AND R1,#0X000000FEAND R2,R0,#0X80LSR R2,#7ORR R1,R2AND R0,R3ORR R0,R1POP {R1,R2,R3}BX LREND。
6.1 STM32 IO简介本章将要实现的是控制ALIENTEK战舰STM32开发板上的两个LED实现一个类似跑马灯的效果,该实验的关键在于如何控制STM32的IO口输出。
了解了STM32的IO口如何输出的,就可以实现跑马灯了。
通过这一章的学习,你将初步掌握STM32基本IO口的使用,而这是迈向STM32的第一步。
这一章节因为是第一个实验章节,所以我们在这一章将讲解一些知识为后面的实验做铺垫。
为了小节标号与后面实验章节一样,这里我们不另起一节来讲。
在讲解STM32的GPIO之前,首先打开我们光盘的第一个固件库版本实验工程跑马灯实验工程(光盘目录为:“4,程序源码\标准例程-V3.5库函数版本\实验1跑马灯/USER/LED.Uv2”),可以看到我们的实验工程目录:图6.1.1 跑马灯实验目录结构接下来我们逐一讲解一下我们的工程目录下面的组以及重要文件。
①组FWLib下面存放的是ST官方提供的固件库函数,里面的函数我们可以根据需要添加和删除,但是一定要注意在头文件stm32f10x_conf.h文件中注释掉删除的源文件对应的头文件,这里面的文件内容用户不需要修改。
②组CORE下面存放的是固件库必须的核心文件和启动文件。
这里面的文件用户不需要修改。
③组SYSTEM是ALIENTEK提供的共用代码,这些代码的作用和讲解在第五章都有讲解,大家可以翻过去看下。
④组HARDWARE下面存放的是每个实验的外设驱动代码,他的实现是通过调用FWLib下面的固件库文件实现的,比如led.c里面调用stm32f10x_gpio.c里面的函数对led进行初始化,这里面的函数是讲解的重点。
后面的实验中可以看到会引入多个源文件。
⑤组USER下面存放的主要是用户代码。
但是system_stm32f10x.c文件用户不需要修改,同时stm32f10x_it.c里面存放的是中断服务函数,这两个文件的作用在3.1节有讲解,大家可以翻过去看看。
6.1 STM32 IO简介本章将要实现的是控制ALIENTEK战舰STM32开发板上的两个LED实现一个类似跑马灯的效果,该实验的关键在于如何控制STM32的IO口输出。
了解了STM32的IO口如何输出的,就可以实现跑马灯了。
通过这一章的学习,你将初步掌握STM32基本IO口的使用,而这是迈向STM32的第一步。
这一章节因为是第一个实验章节,所以我们在这一章将讲解一些知识为后面的实验做铺垫。
为了小节标号与后面实验章节一样,这里我们不另起一节来讲。
在讲解STM32的GPIO之前,首先打开我们光盘的第一个固件库版本实验工程跑马灯实验工程(光盘目录为:“4,程序源码\标准例程-V3.5库函数版本\实验1跑马灯/USER/LED.Uv2”),可以看到我们的实验工程目录:图6.1.1 跑马灯实验目录结构接下来我们逐一讲解一下我们的工程目录下面的组以及重要文件。
①组FWLib下面存放的是ST官方提供的固件库函数,里面的函数我们可以根据需要添加和删除,但是一定要注意在头文件stm32f10x_conf.h文件中注释掉删除的源文件对应的头文件,这里面的文件内容用户不需要修改。
②组CORE下面存放的是固件库必须的核心文件和启动文件。
这里面的文件用户不需要修改。
③组SYSTEM是ALIENTEK提供的共用代码,这些代码的作用和讲解在第五章都有讲解,大家可以翻过去看下。
④组HARDWARE下面存放的是每个实验的外设驱动代码,他的实现是通过调用FWLib下面的固件库文件实现的,比如led.c里面调用stm32f10x_gpio.c里面的函数对led进行初始化,这里面的函数是讲解的重点。
后面的实验中可以看到会引入多个源文件。
⑤组USER下面存放的主要是用户代码。
但是system_stm32f10x.c文件用户不需要修改,同时stm32f10x_it.c里面存放的是中断服务函数,这两个文件的作用在3.1节有讲解,大家可以翻过去看看。
实验三跑马灯实验实验目的:通过一个经典的跑马灯程序,了解STM32F1 的IO 口作为输出使用的方法。
通过代码控制ALIENTEK 战舰STM32 开发板上的两个LED:DS0 和DS1 交替闪烁,实现类似跑马灯的效果内容要点:1.硬件设计本章用到的硬件只有LED(DS0 和DS1)。
其电路在ALIENTEK 战舰STM32F103开发板上默认是已经连接好了的。
DS0 接PB5,DS1 接PE5。
所以在硬件上不需要动任何东西。
其连接原理图如图:2.软件设计跑马灯实验我们主要用到的固件库文件是:stm32f10x_gpio.c /stm32f10x_gpio.hstm32f10x_rcc.c/stm32f10x_rcc.hmisc.c/ misc.hstm32f10x_usart /stm32f10x_usart.h其中stm32f10x_rcc.h 头文件在每个实验中都要引入,因为系统时钟配置函数以及相关的外设时钟使能函数都在这个其源文件stm32f10x_rcc.c 中。
stm32f10x_usart.h 和misc.h 头文件在我们SYSTEM 文件夹中都需要使用到,所以每个实验都会引用。
首先,找到之前新建的Template 工程,在该文件夹下面新建一个HARDWARE的文件夹,用来存储以后与硬件相关的代码,然后在HARDWARE 文件夹下新建一个LED 文件夹,用来存放与LED 相关的代码。
新建led.h和led.c文件,一个外设对应一个.h和.c文件。
在Manage Components 管理里面新建一个HARDWARE 的组,并把led.c 加入到这个组里面,将led.h 头文件的路径加入到工程里面一般的头文件有固定的格式,多个地方调用头文件会重复引用,为了避免头文件内容重复引用,一般通过预编译的方式来写头文件。
一般的格式如下:#ifndef __LED_H#define __LED_H……#endif第一次调用时会将#define下面这一节全部定义,重复调用时,下面的东西就不会被引用。
跑马灯实验1 实验目的(1) 了解通用IO口的输出类型和初始化过程,学会对GPIO库函数的使用;(2) 掌握基本IO口的使用;(3) 利用GPIO函数和延时函数实现对LED灯的交替闪烁,实现类似跑马灯的效果。
2 实验任务(1) 编写程序,实现对LED1~LED8的轮流点亮;(2) 仿真调试,调整延时时间,利用仿真示波器观察延时时间长短;(3) 下载程序,观察跑马灯运行状况。
3 实验说明本实验将要实现的是控制实训平台上的8个LED灯实现一个类似跑马灯的效果,LED通过控制IO口的高低电平工作,因此实验的关键在于如何控制STM32的IO口输出。
4预习要求(1) 初始化IO口包括哪些基础设置。
(2)GPIO的输入输出模式。
5 实验步骤(1) 在实训平台上将IO口与LED(LED1~LED8)连接;(2) 复制工程模板文件夹,新建led.c和led.h文件,并将新建文件加入工程中;(3) 编写led.h文件,声明void LED_Init(void)初始化函数,宏定义LED1~LED8;(4) 编写led.c文件,建立void LED_Init(void)初始化函数,实现对LED灯用到的IO端口的配置,配置为推挽输出,速度为50MHZ;(5) 编写main()函数,实现对LED1~LED8的轮流点亮;(6) 软件仿真,调整延时时间,利用仿真示波器观察延时时间长短;(7) 下载程序,观察跑马灯的运行状况。
硬件设计本实验用到的硬件只有LED(LED1 ~ LED8)。
电路实训平台上默认是未连接好的,所以在硬件上需要根据自己的需要将其与MCU进行连接。
注意:LED的硬件为共阳极连接,需将IO口连接端置为低电平才能点亮。
LED模块原理图如4.1所示:图4.1 LED模块原理图软件设计(1) 新建文件,命名为跑马灯实验。
复制粘贴之前的Template工程。
图4.2 跑马灯实验文件(2) 新建LED文件。
在跑马灯实验文件夹下面新建一个HARDWARE的文件夹,用来存储与硬件相关的代码,然后在HARDWARE文件夹下新建一个LED 文件夹,用来存放与LED相关的代码,如图4.3所示。
STM32F4寄存器编写跑马灯例程最近由于在学习STM32看到别⼈⽤寄存器编程控制跑马灯,于是⾃⼰也想试⼀试。
可是试了好久终究弄不出来。
回头看了下库函数的调⽤关系才搞明⽩。
⾸先通过查看GPIOA的设置函数发现设置如下:void GPIO_Init(GPIO_TypeDef* GPIOx, GPIO_InitTypeDef* GPIO_InitStruct){uint32_t pinpos = 0x00, pos = 0x00 , currentpin = 0x00;/* Check the parameters */assert_param(IS_GPIO_ALL_PERIPH(GPIOx));assert_param(IS_GPIO_PIN(GPIO_InitStruct->GPIO_Pin));assert_param(IS_GPIO_MODE(GPIO_InitStruct->GPIO_Mode));assert_param(IS_GPIO_PUPD(GPIO_InitStruct->GPIO_PuPd));/* ------------------------- Configure the port pins ---------------- *//*-- GPIO Mode Configuration --*/for (pinpos = 0x00; pinpos < 0x10; pinpos++){pos = ((uint32_t)0x01) << pinpos;/* Get the port pins position */currentpin = (GPIO_InitStruct->GPIO_Pin) & pos;if (currentpin == pos){GPIOx->MODER &= ~(GPIO_MODER_MODER0 << (pinpos * 2));GPIOx->MODER |= (((uint32_t)GPIO_InitStruct->GPIO_Mode) << (pinpos * 2));if ((GPIO_InitStruct->GPIO_Mode == GPIO_Mode_OUT) || (GPIO_InitStruct->GPIO_Mode == GPIO_Mode_AF)){/* Check Speed mode parameters */assert_param(IS_GPIO_SPEED(GPIO_InitStruct->GPIO_Speed));/* Speed mode configuration */GPIOx->OSPEEDR &= ~(GPIO_OSPEEDER_OSPEEDR0 << (pinpos * 2));GPIOx->OSPEEDR |= ((uint32_t)(GPIO_InitStruct->GPIO_Speed) << (pinpos * 2));/* Check Output mode parameters */assert_param(IS_GPIO_OTYPE(GPIO_InitStruct->GPIO_OType));/* Output mode configuration*/GPIOx->OTYPER &= ~((GPIO_OTYPER_OT_0) << ((uint16_t)pinpos)) ;GPIOx->OTYPER |= (uint16_t)(((uint16_t)GPIO_InitStruct->GPIO_OType) << ((uint16_t)pinpos));}/* Pull-up Pull down resistor configuration*/GPIOx->PUPDR &= ~(GPIO_PUPDR_PUPDR0 << ((uint16_t)pinpos * 2));GPIOx->PUPDR |= (((uint32_t)GPIO_InitStruct->GPIO_PuPd) << (pinpos * 2));}}}GPIO_TypeDef端⼝设置结构体如下:typedef struct{__IO uint32_t MODER; /*!< GPIO port mode register, Address offset: 0x00 */__IO uint32_t OTYPER; /*!< GPIO port output type register, Address offset: 0x04 */__IO uint32_t OSPEEDR; /*!< GPIO port output speed register, Address offset: 0x08 */__IO uint32_t PUPDR; /*!< GPIO port pull-up/pull-down register, Address offset: 0x0C */__IO uint32_t IDR; /*!< GPIO port input data register, Address offset: 0x10 */__IO uint32_t ODR; /*!< GPIO port output data register, Address offset: 0x14 */__IO uint16_t BSRRL; /*!< GPIO port bit set/reset low register, Address offset: 0x18 */__IO uint16_t BSRRH; /*!< GPIO port bit set/reset high register, Address offset: 0x1A */__IO uint32_t LCKR; /*!< GPIO port configuration lock register, Address offset: 0x1C */__IO uint32_t AFR[2]; /*!< GPIO alternate function registers, Address offset: 0x20-0x24 */} GPIO_TypeDef;改机构体根据结构体成员函数的⼤⼩⾃⼰形成了针对⾸地址的偏移量。
实验一跑马灯-亮灯左移右移循环黄天佑 20132301155一、实验目的1、进一步熟悉keil C仿真软件及单片机实验板的使用。
2、了解并熟悉单片机I/O口和LED灯的电路结构,学会构建简单的流水灯电路。
3、掌握应用KEIL软件编辑、编译源汇编程序的操作方法。
4、了解单片机汇编语言程序的设计和调试方法。
二、实验原理1、实验板硬件电路图2、单片机流水灯程序设计(1)流水灯程序设计思路及程序流程。
实现流水灯的方法有很多,这里介绍一种。
(2)产生流水灯效果程序(逐条程序加注释)start:mov R0,#8 ; 设置左移8次mov A,#0FEH; 存入开始亮灯的位置LOOP: mov P0,A; 传送P0并输出ACALL DELAY; 调用延时程序RL A; 左移1位DJNZ R0,LOOP; 判断移送次数mov R1,#8; 设置右移8次LOOP1:RR A; 右移1位mov P0,A; 传送到P0口并输出ACALL DELAY; 调用延时程序DJNZ R1,LOOP1; 判断右移次数JMP start; 重新设定显示DELAY: mov R5,#10; 延时0.1s子程序D1: mov R6,#100;D2: mov R7,#100;DJNZ R7,$;DJNZ R6,D2;DJNZ R5,D1;RET ; 子程序返回END ; 程序结束三、实验步骤及调试过程1、汇编语言程序的编写与调试(1)新建一个工程(2)保存文件,设一个文件名(3)找到对应单片机的芯片,这里我们选AT89C51即可接着我们新建一个文本写程序(1)(2)保存文件名,注意文件名的后缀应该为.asm(汇编语言程序的格式)接着把我们的文本导入到工程里面去:(1)(2)点击Add,再Close即可2.汇编语言程序编译及下载(1)这里要设置一个输出.hex文件(2)点击生成工程相应的文件同时可以观察下面的结果:0 Error(s),即可。
第六章跑马灯实验STM32最简单的外设莫过于IO口的高低电平控制了,本章将通过一个经典的跑马灯程序,带大家开启STM32之旅,通过本章的学习,你将了解到STM32的IO口作为输出使用的方法。
在本章中,我们将通过代码控制ALIENTEK战舰STM32开发板上的两个LED:DS0和DS1交替闪烁,实现类似跑马灯的效果。
本章分为如下四个小节:6.1,STM32 IO口简介6.2,硬件设计6.3,软件设计6.4,仿真与下载6.1 STM32 IO简介本章将要实现的是控制ALIENTEK战舰STM32开发板上的两个LED实现一个类似跑马灯的效果,该实验的关键在于如何控制STM32的IO口输出。
了解了STM32的IO口如何输出的,就可以实现跑马灯了。
通过这一章的学习,你将初步掌握STM32基本IO口的使用,而这是迈向STM32的第一步。
STM32的IO口可以由软件配置成如下8种模式:1、输入浮空2、输入上拉3、输入下拉4、模拟输入5、开漏输出6、推挽输出7、推挽式复用功能8、开漏复用功能每个IO口可以自由编程,但IO口寄存器必须要按32位字被访问。
STM32的很多IO口都是5V兼容的,这些IO口在与5V电平的外设连接的时候很有优势,具体哪些IO口是5V兼容的,可以从该芯片的数据手册管脚描述章节查到(I/O Level标FT的就是5V电平兼容的)。
STM32的每个IO端口都有7个寄存器来控制。
他们分别是:配置模式的2个32位的端口配置寄存器CRL和CRH;2个32位的数据寄存器IDR和ODR;1个32位的置位/复位寄存器BSRR;一个16位的复位寄存器BRR;1个32位的锁存寄存器LCKR;这里我们仅介绍常用的几个寄存器,我们常用的IO端口寄存器只有4个:CRL、CRH、IDR、ODR。
CRL和CRH控制着每个IO口的模式及输出速率。
STM32的IO口位配置表如表6.1.1所示:表6.1.1 STM32的IO口位配置表STM32输出模式配置如表6.1.2所示:表6.1.2 STM32输出模式配置表接下来我们看看端口低配置寄存器CRL的描述,如图6.1.1所示:图6.1.1 端口低配置寄存器CRL各位描述该寄存器的复位值为0X4444 4444,从图6.1.1可以看到,复位值其实就是配置端口为浮空输入模式。
Eclipse + Keil MDK 3.5 STM32 软件模拟LED 跑马灯开发入门本人原来一直做JavaEE开发,最近想转到嵌入式开发,经过多方了解,先后了解了ARM7/9,最后选定从Cortex‐M3入手学习,目前市面上Cortex‐M3核的开发板大部分都是意法半导体STM32系列MCU,就以STM32来入门学习,也因为一直做JavaEE开发,对eclipse IDE 开发环境比较熟悉,并且用起来比较顺手,其基于eclipse的C/C++开发工具也很出色,其在后面陆续介绍。
之所以要eclipse+MDK是要用eclipse强大的C开发功能和Keil的调试功能各自的优点。
这也是最近学习所得。
1、开发环境搭建:其开发环境包括eclipse和MDK 开发环境,下面是具体软件的获取和安装方法:Java环境:eclipse是基于java的开发平台,首先系统要安装了Java虚拟机(JRE),到官网下载JRE:/javase/downloads/index.jsp,入图中下载即可,然后默认安装即可。
Eclipse IDE for C/C++ Developers:然后下载eclipse C/C++ IDE,地址是:/downloads/注意要下载windows版的。
只需要下载Eclipse IDE for C/C++ Developers (68 MB),该包已经集成了C/C++插件的,把下载的压缩包接压到任何目录即可,运行解压目录中的eclipse.exe,然后指定其工作区(WorkSpace)目录即可。
Windows下面GCC编译器:适用于Eclipse IDE for C/C++ Developers常用的GCC编译器有Cygwin和MinGW,这里使用Cygwin,以下下载地址:ftp://mcu123:mcu123@ftp:///upload_上传目录/freertos/cygwin_osdev_2009.iso.au/sourceforge/j/ji/jinix/cygwin_osdev_2009.iso或者/project/showfiles.php?group_id=201649&package_i d=277469&release_id=651579以上提供的Cygwin的其GCC版本都是最新版4.3.3,也可以下载其他的但大部分gcc都是3.4的,在本文的使用中其并无影响,这里只使用Eclipse IDE for C/C++ Developers开发功能和Keil的ARM编译器和调试功能。
stm32跑马灯实验报告STM32跑马灯实验报告引言:STM32是一款广泛应用于嵌入式系统开发的微控制器,具有高性能、低功耗和丰富的外设接口。
跑马灯实验是入门级的STM32实验项目,通过控制LED灯的亮灭顺序实现跑马灯效果。
本实验报告将详细介绍实验的目的、原理、实施步骤以及实验结果。
一、实验目的跑马灯实验旨在通过STM32的GPIO控制LED灯的亮灭,实现灯光在多个LED之间依次点亮和熄灭的效果。
通过这个实验,我们可以了解STM32的GPIO口的操作方式,掌握基本的STM32编程技巧。
二、实验原理STM32的GPIO口可以设置为输出模式,通过控制GPIO口的电平(高电平或低电平)来控制LED灯的亮灭。
跑马灯实验中,我们将多个LED连接到STM32的不同GPIO口上,通过依次改变GPIO口的电平状态,实现灯光在不同LED之间依次传递的效果。
三、实施步骤1. 准备材料:STM32开发板、杜邦线、若干个LED灯。
2. 连接电路:将多个LED分别连接到STM32的不同GPIO口上,确保极性正确。
3. 创建工程:使用Keil等开发环境创建STM32工程,并配置好相应的引脚。
4. 编写代码:在main函数中编写代码,通过设置GPIO口的电平状态实现跑马灯效果。
5. 编译烧录:编译代码生成可执行文件,并将其烧录到STM32开发板上。
6. 运行实验:将STM32开发板上电,观察LED灯的亮灭顺序是否符合预期。
四、实验结果经过实验,我们成功实现了跑马灯效果。
LED灯在不同的GPIO口之间依次点亮和熄灭,形成了流动的灯光效果。
通过调整代码中GPIO口的顺序和时间延迟,我们还可以改变灯光的流动速度和方向。
实验结果与预期一致,验证了我们的设计和实施的正确性。
五、实验总结通过这个实验,我们对STM32的GPIO控制和编程有了更深入的了解。
我们学会了如何通过改变GPIO口的电平状态来控制外部设备,掌握了基本的STM32编程技巧。
菜鸟学STM32之跑马灯微信公众号:⼩樊Study关注共同学习,问题或建议,请公众号留⾔作为⼀名程序员,在初步学习编程想必都绕不开⼀个最为基础的⼊门级⽰例“Hello World”,那么,在学习单⽚机时,最基础的⼊门⽰例是什么呢?没错,那就是“点亮⼀盏LED灯”本次将通过⼀个经典的跑马灯程序,带⼤家开启 STM32F4 之旅,通过本次的学习,你将了解到STM32F4 的 IO ⼝作为输出使⽤的⽅法。
我们将通过代码控制STM32F4 开发板上的两个 LED:DS0 和 DS1 交替闪烁,实现类似跑马灯的效果。
硬件连接GPIO⼯作⽅式4种输⼊模式:输⼊浮空输⼊上拉输⼊下拉模拟输⼊4种输出模式:开漏输出(带上拉或者下拉)开漏复⽤功能(带上拉或者下拉)推挽式输出(带上拉或者下拉)推挽式复⽤功能(带上拉或者下拉)4种最⼤输出速度:-2MHZ-25MHz-50MHz-100MHz软件设计led.c#include "led.h"////////////////////////////////////////////////////////////////////////////////////初始化PF9和PF10为输出⼝.并使能这两个⼝的时钟//LED IO初始化void LED_Init(void){GPIO_InitTypeDef GPIO_InitStructure;RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOF, ENABLE);//使能GPIOF时钟//GPIOF9,F10初始化设置GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_10;//LED0和LED1对应IO⼝GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;//普通输出模式GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;//推挽输出GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;//100MHzGPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;//上拉GPIO_Init(GPIOF, &GPIO_InitStructure);//初始化GPIOGPIO_SetBits(GPIOF,GPIO_Pin_9 | GPIO_Pin_10);//GPIOF9,F10设置⾼,灯灭}该代码⾥⾯就包含了⼀个函数 void LED_Init(void),该函数的功能就是⽤来实现配置 PF9和 PF10 为推挽输出。
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;; STM32 LED左右跑马灯实验
;;8个LED接在PE口(PE[0..7])
;;LED先向右跑,跑完再向左跑,不停左右跑动
;;2011-5-3 by 追梦;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
BIT6 EQU 0X00000040
GPIOE EQU 0X40011800 ;GPIOE 地址
GPIOE_CRL EQU 0X40011800 ;低配置寄存器
GPIOE_CRH EQU 0X40011804 ;高配置寄存器
GPIOE_ODR EQU 0X4001180C ;输出,偏移地址0Ch GPIOE_BSRR EQU 0X40011810 ;低置位,高清除偏移地址10h GPIOE_BRR EQU 0X40011814 ;清除,偏移地址14h IOPEEN EQU BIT6 ;GPIOE使能位
RCC_APB2ENR EQU 0X40021018
STACK_TOP EQU 0X20002000
AREA RESET,CODE,READONLY
DCD STACK_TOP ;MSP主堆栈指针
DCD START ;复位,PC初始值
ENTRY;指示开始执行
START
LDR R1,=RCC_APB2ENR
LDR R0,[R1] ;读
LDR R2,=IOPEEN
ORR R0,R2 ;改
STR R0,[R1] ;写,使能GPIOE时钟
;PE[0..7] 8个引脚均设置成推挽式输出
LDR R0,=0x33333333
LDR R1,=GPIOE_CRL
STR R0,[R1]
LDR R1,=GPIOE_ODR
LDR R0,=0X7F ;初始时最高位点亮
MOV R2,#0
LOOP
STR R0,[R1]
PUSH {R0}
MOV R0,#300
BL.W DELAY_NMS ;延时300ms
POP {R0}
ADD R2,#1
CMP R2,#7
BLE STA TE1
CMP R2,#14
BEQ RESTART
B STA TE2
STA TE1 ;状态1,右循环移位BL.W ByteRor1 ;状态位右循环移一位
B LOOP
RESTART
MOV R2,#0
STA TE2 ;状态2,左循环移位BL.W ByteRol1 ;状态位左循环移一位
B LOOP
;延时R0(ms),误差((R0-1)*4+12)/8us
;延时较长时,误差小于0.1%
DELAY_NMS
PUSH {R1} ;2个周期
DELAY_NMSLOOP
SUB R0,#1
MOV R1,#1000
DELAY_ONEUS
SUB R1,#1
NOP
NOP
NOP
CMP R1,#0
BNE DELAY_ONEUS
CMP R0,#0
BNE DELAY_NMSLOOP
POP {R1}
BX LR
;子程序,将R0低八位右循环移一位,高位不变ByteRor1
PUSH {R1,R2,R3}
LDR R3,=0XFFFFFF00
LSR R1,R0,#1
AND R1,#0X0000007F
AND R2,R0,#0X01
LSL R2,#7
ORR R1,R2
AND R0,R3
ORR R0,R1
POP {R1,R2,R3}
BX LR
;子程序,将R0低八位左循环移一位,高位不变ByteRol1
PUSH {R1,R2,R3}
LDR R3,=0XFFFFFF00
LSL R1,R0,#1
AND R1,#0X000000FE
AND R2,R0,#0X80
LSR R2,#7
ORR R1,R2
AND R0,R3
ORR R0,R1
POP {R1,R2,R3}
BX LR
END。