电导法测定表面活性剂临界胶束浓度(CMC)模板
- 格式:doc
- 大小:6.99 MB
- 文档页数:9
电导法测定水溶性表面活性剂的临界胶束浓度一、实验目的1、用电导法测定阴离子型表面活性剂十二烷基硫酸钠的临界胶束浓度(CMC),加深对表面活性剂性质的理解。
2、掌握电导仪的使用方法。
3、了解测量CMC的各种实验方法。
二、实验原理本实验通过水溶性表面活性剂的临界胶束浓度的测定掌握一些电化学测定方法。
表面活性剂是具有明显“两亲”性质的分子,既含有亲油的长链或支链(大于10-12个碳原子)非极性烷基,称为尾基,又含有亲水的极性基团(通常是离子化的) ,称为头基。
若按离子的类型分类,可分为三大类:①阴离子型表面活性剂②阳离子型表面活性剂③非离子型表面活性剂当表面活性剂溶于水中后,低浓度时呈分子状态分散在水中。
当溶液浓度增加到一定程度时,许多表面活性剂分子不但定向地吸附在水溶液表面,而且还会在溶液中发生定向排列而形成胶束。
随着表面活性剂在溶液中浓度的增长,球形胶束还可能转变成棒形胶束,以至层状胶束。
后者可用来制作液晶,它具有各向异性的性质。
表面活性物质在水中形成胶束所需的最低浓度称为临界胶束浓度,以CMC表示。
在CMC点上,由于溶液的结构改变导致其物理及化学性质(如表面张力、蒸气压、电导率、渗透压、浊度、增溶作用、去污能力、光学性质等) 与浓度的关系曲线出现明显转折,如图1所示。
这个现象是测定CMC的实验依据,也是表面活性剂的一个重要特性。
只有在表面活性剂的浓度稍高于其临界胶束浓度时,才能充分发挥其作用(润湿、乳化、去污、发泡等), 所以CMC是表面活性剂的一种重要量度。
图2 表面活性剂水溶液的物理性质和浓度关系浓度表面活性剂溶液的性质测定表面活性剂溶液的CMC 有各种方法,如表面张力法、电导法、染料法、增溶作用法等。
对于离子型表面活性剂溶液,当溶液浓度很稀时,电导率k 、摩尔电导率Λm 随浓度的变化规律和强电解质一样;但当溶液浓度达到临界胶束浓度时,随着胶束的生成,电导率发生改变,摩尔电导急剧下降(如图2、3)。
一、实验目的(1)掌握用电导法测定表面活性剂CMC的方法(2)掌握电导率仪的使用二、实验原理SAA溶液的许多物化性质随着胶束的形成而发生突变,因此临界胶束浓度(CMC)是SAA表面活性的重要量度之一。
测定CMC,掌握影响CMC的因素对于深入研究SAA的物理化学性质十分重要。
CMC是在一定温度下某SAA形成胶束的最低浓度。
通常以mol/L或g/L表示之。
一般离子SAA的CMC大致在10-2-10-3mol/L之间,非离子SAA的CMC则在10-4mol/L以下,CMC是衡量SAA的表面活性和SAA应用中的一个重要物理量。
因为CMC越小,则表示此种SAA形成胶束所需浓度越低,因此改变表面性质,起到润湿,乳化,增溶,起泡等作用所需的浓度也越低。
右图表面一典型的SAA水溶液的物理化学性质随C变化的关系。
可明显看出:在所有物理性质的变化中皆有一转折点。
而此较转折点又都在一个不大的范围内;这就说明表面现象(表面张力与界面张力随浓度变化有转折点)。
与内部性质(如当量电导、渗透压、以与去污浊度等)有统一的内在联系。
离子型SAA是由亲水的无机离子和亲油的有机离子构成的离子化合物,如同典型的无机盐一样,其在稀水溶液中分别以正负离子形式存在。
因而在稀水溶液中,电导率随C上升,但到达一定浓度后,出现一转折点,直线逐渐变缓。
三、实验仪器、药品仪器:电导率仪烧杯(100ml、7个)温度计(2支)容量瓶(250ml,7只)药品:SAA(1631)、蒸馏水四、实验步骤1、分别配制1631 的水溶液浓度为:4.00X10-4、5.140X10-4、6.70X10-4、8.20X10-4、10.85X10-4、13.6X10-4、16.54X10-4mol/L的溶液各250ml 2、将其在25℃、30℃、35℃恒温→测定各溶液的电导率(由稀→浓)→取3次测量值的平均值3、作K-C曲线4、由K-C曲线求不同t下的CMC值五、药品常数十六烷基三甲基溴化铵(1631):是阳离子SAA、分子式:C16H33(CH3)3NBr分子量:364.446 熔点:250-237℃,水溶性:13g/L(20℃)性质:呈白色或浅黄色结晶至粉末状,易溶于异丙醇、可溶于水、振荡时产生大量泡沫,具有优良的渗透、柔化、抗静电、生物降解性与杀菌消毒等功能。
电导法测定表面活性剂临界胶束浓度实验报告
一、实验目的
本实验旨在采用电导法测定表面活性剂的临界胶束浓度(CMC)。
二、实验原理
临界胶束浓度(CMC)是指表面活性剂在水中的浓度,当它
超过CMC时,溶液中的表面活性剂会形成胶束,从而使溶液
的电导率显著增加。
因此,电导率可以用来测定表面活性剂的CMC。
三、实验方法
1. 将50 mL溶液放入电导率仪中,以及一定量的表面活性剂,并将电导率仪设定为0.1 mS/cm。
2. 将表面活性剂的浓度逐步增加,并不断测量溶液的电导率,当电导率突然增加时,即可得到表面活性剂的CMC。
四、实验结果
表1 测定表面活性剂的CMC
| 浓度(g/L) | 电导率(mS/cm) |
| ------------ | ---------------- |
| 0.5 | 0.1 |
| 1.0 | 0.2 |
| 1.5 | 0.3 |
| 2.0 | 0.45 |
| 2.5 | 0.6 |
| 3.0 | 0.75 |
根据实验结果,表面活性剂的CMC为2.0 g/L。
五、实验总结
本实验采用电导法测定表面活性剂的CMC,结果表明,表面活性剂的CMC为2.0 g/L。
---------------------------------------------------------------最新资料推荐------------------------------------------------------临界胶束浓度(CMC)的测定一、实验目的(1)掌握用电导法测定表面活性剂 CMC 的方法(2)掌握电导率仪的使用二、实验原理SAA 溶液的许多物化性质随着胶束的形成而发生突变,因此临界胶束浓度(CMC)是SAA 表面活性的重要量度之一。
测定 CMC,掌握影响 CMC 的因素对于深入研究 SAA的物理化学性质十分重要。
CMC 是在一定温度下某 SAA 形成胶束的最低浓度。
通常以 mol/L 或 g/L 表示之。
一般离子 SAA 的 CMC 大致在 10-2-10-3mol/L 之间,非离子SAA 的 CMC 则在 10-4mol/L 以下,CMC 是衡量 SAA 的表面活性和SAA 应用中的一个重要物理量。
因为 CMC 越小,则表示此种 SAA 形成胶束所需浓度越低,因此改变表面性质,起到润湿,乳化,增溶,起泡等作用所需的浓度也越低。
右图表面一典型的 SAA 水溶液的物理化学性质随 C 变化的关系。
可明显看出:在所有物理性质的变化中皆有一转折点。
而此较转折点又都在一个不大的范围内;这就说明表面现象(表面张力及界面张力随浓度变化有转折点)。
与内部性质(如当量电导、渗透压、以及去污浊度等)有统一的1/ 9内在联系。
离子型 SAA 是由亲水的无机离子和亲油的有机离子构成的离子化合物,如同典型的无机盐一样,其在稀水溶液中分别以正负离子形式存在。
因而在稀水溶液中,电导率随 C 上升,但到达一定浓度后,出现一转折点,直线逐渐变缓。
三、实验仪器、药品仪器:电导率仪烧杯(100ml、7 个)温度计(2 支)容量瓶(250ml,7 只)药品:SAA(1631)、蒸馏水---------------------------------------------------------------最新资料推荐------------------------------------------------------3/ 9四、实验步骤 1、分别配制 1631 的水溶液浓度为:4.00X10-4、5.140X10-4、6.70X10-4、8.20X10-4、10.85X10-4、13.6X10-4、16.54X10-4mol/L 的溶液各 250ml 2、将其在25℃、30℃、35℃恒温→测定各溶液的电导率(由稀→浓)→取 3 次测量值的平均值 3、作 K-C 曲线 4、由 K-C 曲线求不同 t 下的 CMC 值五、药品常数十六烷基三甲基溴化铵(1631):是阳离子 SAA、分子式:C16H33(CH3)3NBr 分子量:364.446 熔点:250-237℃,水溶性:13g/L(20℃)性质:呈白色或浅黄色结晶至粉末状,易溶于异丙醇、可溶于水、振荡时产生大量泡沫,具有优良的渗透、柔化、抗静电、生物降解性及杀菌消毒等功能。
第12卷 第6期1997年12月电导率法测定表面活性剂的临界胶束浓度邹 耀 洪(常熟高等专科学校化学系 江苏215500)物化实验中测定表面活性剂临界胶束浓度(CMC)常用表面张力法[1],但精确测定表面活性剂水溶液的表面张力受到一些限制,如毛细管升高法中要准确地测定毛细管的半径、溶液的密度以及溶液对玻璃的接触角;滴体积法和滴重法需要知道校正因子;拉环法较难掌握表面平衡且不易恒温;最大气泡法溶液会强烈起泡。
为此,笔者在长期教学实践中用电导率法测定离子型表面活性剂的CMC,取得了方法简便、结果可靠的效果。
电导率法测定阳离子表面活性剂十六烷基三甲基溴化铵CM C 的结果如表1和图1。
表1 十六烷基三甲基溴化铵水溶液的电导率十六烷基三甲基溴化铵水溶液浓度c 10-4/(mol dm -3)电导率 10-4/(s m -1)T =298 2K T =303 2K T =308 2K2 6026 330 032 74.0141.345.148.75.4155.360.067.06.7071.278.087.28.1982.391.9100.910.8598.0111.0124.713.68103.9118.5133.616.54111.1128.0147.7图1 从电导率 浓度关系曲线求CMC1. 依据和方法十六烷基三甲基溴化铵为阳离子表面活性剂,其稀水溶液与强电解质稀溶液具有相同的导电规律,摩尔电导率 m 与c (c 为溶液的量浓度)、电导率 与c 均成线性关系。
本实验用电导率仪测定一系列不同浓度十六烷基三甲基溴化铵稀水溶液的电导率 ,作图确定 c 直线的转折点,从其对应的浓度求得CMC 。
该方法简单方便,实验结果准确,重复性好。
三个温度下测得的CMC 分别为9 18 10-4mol dm -3(T =298 2K)、9 20 10-4mol dm -3(T =303 2K)、9 23 10-4mol dm -3,均与文献值相同[2]。
实验6 电导法测定表面活性剂的临界胶束浓度一.实验目的1.用电导法测定十二烷基硫酸钠的临界胶束浓度。
2.了解表面活性剂的特性及胶束形成原理。
3.进一步掌握电导率仪的使用方法。
二.实验原理具有明显“两亲”性质的分子,即含有亲油的足够长的(大于10-12个碳原子)烃基,又含有亲水的极性基团(通常是离子化的),由这一类分子组成的物质称为表面活性剂,这类物质能使水的表面张力明显降低,如肥皂和各种合成洗涤剂等。
表面活性剂分子都是由极性部分和非极性部分组成的,若按离子的类型分类,可分为三大类:①阴离子型表面活性剂,如羧酸盐(肥皂),烷基硫酸盐(十二烷基硫酸钠),烷基磺酸盐(十二烷基苯磺酸钠)等;②阳离子型表面活性剂,主要是胺盐,如十二烷基二甲基叔胺和十二烷基二甲基氯化胺;③非离子型表面活性剂,如聚氧乙烯类。
表面活性剂进入水中,在低浓度时呈分子状态,并且三三两两地把亲油基团靠拢而分散在水中。
当溶液浓度加大到一定程度时,许多表面活性物质的分子立刻结合成很大的集团,形成“胶束”。
以胶束形式存在于水中的表面活性物质是比较稳定的。
表面活性物质在水中形成胶束所需的最低浓度称为临界胶束浓度(critical micelle concentration),简称CMC。
CMC 可看作是表面活性对溶液的表面活性的一种量度。
因为CMC越小,则表示此种表面活性剂形成胶束所需浓度越低,达到表面饱和吸附的浓度越低。
也就是说只要很少的表面活性剂就可起到润湿、乳化、加溶、起泡等作用。
在CMC点上,由于溶液的结构改变导致其物理及化学性质(如表面张力,电导,渗透压,浊度,光学性质等)同浓度的关系曲线出现明显的转折,如图1所示。
因此,通过测定溶液的某些物理性质的变化,可以测定CMC。
图1 十二烷基硫酸钠水溶液的物理性质和浓度的关系这个特征行为可用生成分子聚集体或胶束来说明,当表面活性剂溶于水中后,不但定向地吸附在溶液表面,而且达到一定浓度时还会在溶液中发生定向排列而形成胶束。
电导率测定表面活性剂的临界胶束浓度引言表面活性剂是一类具有显著表面活性的化学物质,广泛应用于日常生活和工业生产中。
表面活性剂在溶液中可以形成胶束结构,其中包括亲水头基团和疏水尾基团。
当表面活性剂浓度达到一定值时,会发生临界胶束浓度效应。
了解和测定表面活性剂的临界胶束浓度对于研究其胶束结构和应用具有重要意义。
本文将介绍电导率法测定表面活性剂的临界胶束浓度的原理和实验方法。
原理电导率法是测定溶液中物质浓度的一种常用方法。
在表面活性剂溶液中,当浓度低于临界胶束浓度时,溶液电导率主要由游离离子贡献,而当浓度超过临界胶束浓度时,由于表面活性剂形成了胶束结构,溶液电导率会显著增加。
因此,通过测量表面活性剂溶液的电导率随浓度变化的曲线,可以确定临界胶束浓度。
实验方法实验仪器和试剂所需实验仪器和试剂如下:•电导仪:用于测量溶液的电导率。
•玻璃容器:用于容纳表面活性剂溶液。
•表面活性剂:选择一种常用表面活性剂,如十二烷基硫酸钠等。
实验步骤1.准备一系列不同浓度的表面活性剂溶液。
可以通过逐步稀释高浓度溶液得到不同浓度的溶液。
每个浓度的溶液至少需要准备3个平行样品。
2.将所需浓度的表面活性剂溶液分别倒入各个玻璃容器中。
3.使用电导仪测量每个溶液的电导率,并记录测量值。
4.根据测量值绘制表面活性剂溶液电导率随浓度变化的曲线。
5.分析曲线,确定电导率发生显著变化的浓度点,该浓度即为表面活性剂的临界胶束浓度。
结果分析通过电导率测定表面活性剂的临界胶束浓度,根据实验数据绘制的电导率曲线可以得到明显的变化点。
该变化点对应的浓度即为表面活性剂的临界胶束浓度。
在实验过程中,可能会发现多个变化点,这是由于表面活性剂胶束结构的变化导致的。
因此,在分析结果时应注意该现象。
应用与展望电导率法测定表面活性剂的临界胶束浓度在实际应用中有着广泛的应用。
了解表面活性剂的临界胶束浓度可以帮助我们确定最佳使用浓度范围,例如在洗涤剂、乳化剂等应用中。
此外,通过调控表面活性剂的临界胶束浓度,还可以改变其溶液性质和应用特性,如增加溶液的稳定性、降低界面张力等。
一、实验目得(1)掌握用电导法测定表面活性剂CMC得方法(2)掌握电导率仪得使用二、实验原理SAA溶液得许多物化性质随着胶束得形成而发生突变,因此临界胶束浓度(CMC)就是SAA表面活性得重要量度之一。
测定CMC,掌握影响CMC得因素对于深入研究SAA 得物理化学性质十分重要。
CMC就是在一定温度下某SAA形成胶束得最低浓度。
通常以mol/L或g/L表示之。
一般离子SAA得CMC大致在10-2-10-3mol/L之间,非离子SAA得CMC则在10-4mol/L以下,CMC就是衡量SAA得表面活性与SAA应用中得一个重要物理量。
因为CMC越小,则表示此种SAA形成胶束所需浓度越低,因此改变表面性质,起到润湿,乳化,增溶,起泡等作用所需得浓度也越低。
右图表面一典型得SAA水溶液得物理化学性质随C变化得关系。
可明显瞧出:在所有物理性质得变化中皆有一转折点。
而此较转折点又都在一个不大得范围内;这就说明表面现象(表面张力及界面张力随浓度变化有转折点)。
与内部性质(如当量电导、渗透压、以及去污浊度等)有统一得内在联系。
离子型SAA就是由亲水得无机离子与亲油得有机离子构成得离子化合物,如同典型得无机盐一样,其在稀水溶液中分别以正负离子形式存在。
因而在稀水溶液中,电导率随C上升,但到达一定浓度后,出现一转折点,直线逐渐变缓。
三、实验仪器、药品仪器:电导率仪烧杯(100ml、7个) 温度计(2支)容量瓶(250ml,7只)药品:SAA(1631)、蒸馏水四、实验步骤1、分别配制1631 得水溶液浓度为:4、00X10-4、5、140X10-4、6、70X10-4、8、20X10-4、10、85X10-4、13、6X10-4、16、54X10-4mol/L得溶液各250ml2、将其在25℃、30℃、35℃恒温→测定各溶液得电导率(由稀→浓)→取3次测量值得平均值3、作K-C曲线4、由K-C曲线求不同t下得CMC值五、药品常数十六烷基三甲基溴化铵(1631):就是阳离子SAA、分子式:C16H33(CH3)3NBr分子量:364、446 熔点:250-237℃,水溶性:13g/L(20℃)性质:呈白色或浅黄色结晶至粉末状,易溶于异丙醇、可溶于水、振荡时产生大量泡沫,具有优良得渗透、柔化、抗静电、生物降解性及杀菌消毒等功能。
主页—> 实验内容—> 基础化学实验III(物理化学部分)电导法测定表面活性剂的临界胶束浓度一、实验目的及要求1.用电导法测定十二烷基硫酸钠的临界胶束浓度。
2.了解表面活性剂的特性及胶束形成原理。
3.掌握电导率仪的使用方法。
二、实验原理具有明显”两亲”性质的分子,即含有亲油的足够长的(大于10-12个碳原子)烃基,又含有亲水的极性基团(通常是离子化的),由这一类分子组成的物质称为表面活性剂,如肥皂和各种合成洗涤剂等,表面活性剂分子都是由极性部分和非极性部分组成的,若按离子的类型分类,可分为三大类:①阴离子型表面活性剂,如羧酸盐(肥皂),烷基硫酸盐(十二烷基硫酸钠),烷基磺酸盐(十二烷基苯磺酸钠)等;②阳离子型表面活性剂,主要是胺盐,如十二烷基二甲基叔胺和十二烷基二甲基氯化胺;③非离子型表面活性剂,如聚氧乙烯类。
表面活性剂进入水中,在低浓度时呈分子状态,并且三三两两地把亲油基团靠拢而分散在水中。
当溶液浓度加大到一定程度时,许多表面活性物质的分子立刻结合成很大的集团,形成”胶束”。
以胶束形式存在于水中的表面活性物质是比较稳定的。
表面活性物质在水中形成胶束所需的最低浓度称为临界胶束浓度(critical micelle concentration),简称CMC。
CMC可看作是表面活性对溶液的表面活性的一种量度。
因为CMC越小,则表示此种表面活性剂形成胶束所需浓度越低,达到表面饱和吸附的浓度越低。
也就是说只要很少的表面活性剂就可起到润湿、乳化、加溶、起泡等作用。
在CMC点上,由于溶液的结构改变导致其物理及化学性质(如表面张力,电导。
渗透压,浊度,光学性质等)同浓度的关系曲线出现明显的转折,如图1所示。
因此,通过测定溶液的某些物理性质的变化,可以测定CMC。
图1 十二烷基硫酸钠水溶液的物理性质和浓度的关系这个特征行为可用生成分子聚集体或胶束来说明,当表面活性剂溶于水中后,不但定向地吸附在溶液表面,而且达到一定浓度时还会在溶液中发生定向排列而形成胶束。
电导法测定表面活性剂的临界胶束浓度电导法是一种常用的物理方法,可以用于测定表面活性剂的临界胶束浓度(critical micelle concentration,CMC)。
表面活性剂是一种有机化合物,其分子具有特殊的结构,能显著降低液体的表面张力,使液体表面上的分子难以附着,从而减小表面张力,使液体更容易流动。
当表面活性剂分子在溶液中聚集形成胶束时,它们会在溶液中形成微观结构,使溶液表现出不同的性质。
电导法通过测量电导率的变化可以测定表面活性剂的临界胶束浓度。
电导法的基本原理是当电流通过溶液时,溶液中的离子会产生电导,电导的大小与离子浓度和离子迁移率有关。
在电导法测定表面活性剂的临界胶束浓度时,首先需要制备不同浓度的表面活性剂溶液,并测定它们的电导率。
随着表面活性剂浓度的增加,溶液的电导率会逐渐增加。
当表面活性剂浓度达到临界胶束浓度时,溶液的电导率会急剧增加,因此可以根据电导率的变化情况来确定临界胶束浓度。
在实验过程中,需要使用精密的电导率计来测量溶液的电导率。
电导率计的基本原理是测量两个电极之间的电阻随溶液中离子浓度的变化而变化,从而计算出溶液的电导率。
为了确保实验结果的准确性,还需要注意以下几点:1.确保实验温度恒定:表面活性剂的临界胶束浓度会受到温度的影响。
因此,在实验过程中需要控制溶液的温度,以避免温度变化对实验结果的影响。
2.避免电解质的干扰:在测定电导率时,如果溶液中含有其他电解质,会对电导率产生影响。
因此,在实验过程中需要使用去离子水来制备溶液,以避免其他电解质对实验结果的影响。
3.确保电极清洁:电导率计的电极在使用前需要用稀盐酸缓冲液浸泡,使用后需要清洗干净并晾干。
这样可以避免电极表面的污垢对实验结果的影响。
4.标准化溶液:在实验过程中需要使用标准化的氯化钾溶液来校准电导率计,以保证实验结果的准确性。
实验步骤如下:1.准备不同浓度的表面活性剂溶液,分别用去离子水配制。
2.将电导率计的电极插入每一个溶液中,测定其电导率。
电导法测定表面活性剂的临界胶束浓度一、实验目的1、掌握使用电导法测定十二烷基硫酸钠的临界胶束浓度(CMC 值)的原理与方法。
2.掌握电导率仪的使用方法。
二、实验原理表面活性剂分子是由具有亲水性的极性基团和具有憎水性的非极性基团所组成的有机化合物,当它们以低浓度存在于某一体系中时,可被吸附在该体系的表面上,采取极性基团向着水,非极性基团脱离水的表面定向,从而使表面自由能明显降低。
在表面活性剂溶液中,当溶液浓度增大到一定值时,表面活性剂离子或分子不但在表面聚集而形成单分子层,而且早溶液本体内部也三三两两的以憎水基相互靠拢,聚在一起形成胶束。
形成胶束的最低浓度称为临界胶束浓度(critical micelle concentration CMC )。
表面活性剂溶液的许多物理化学性质随着胶团的出现而发生突变,而只有溶液浓度稍高于CMC 时,才能充分发挥表面活性剂的作用,所以CMC 是表面活性剂的一种重要量度。
表面活性剂为了使自己成为溶液中的稳定分子,有可能采取的两种途径:一是把亲水基团流在水中,亲油基伸向油相或空气;二是让表面活性剂吸附在界面上,其结果是降低界面张力,形成定向排列的单分子膜,后者就形成了胶束。
由于胶束的亲水基方向朝外,与水分子相互吸引,使表面活性剂能稳定地溶于水中。
随着表面活性剂在溶液中浓度的增长,球形胶束还可能转变成棒形胶束,以至层状胶束,后者可用来制作液晶,它具有各向异性的性质。
原则上,表面活性剂随浓度变化的物理化学性质都可以用于测定CMC ,常用的方法有表面张力法、电导法、染料法等。
本实验采用电导法测定表面活性剂的电导率来确定CMC 值。
它是利用离子型表面活性剂水溶液的电导率随浓度的变化关系,作κ- c 曲线或Λm -c 1/2曲线,由曲线的转折点求出CMC 值。
对电解质溶液,其导电能力由电导G 衡量:G = κ(A/L ),其中κ是电导率(s·m -1),A/L 是电导池常数(m -1)。
电导法测定水溶性表面活性剂的临界胶束浓度实验报告电导法测定水溶性表面活性剂的临界胶束浓度实验十七电导法测定水溶性表面活性剂的临界胶束浓度一、目的要求1.用电导法测定十二烷基硫酸钠的临界胶束浓度2.了解表面活性剂的特性及胶束形成原理3.掌握电导仪的使用方法二、基本原理表面活性物质在水中形成胶束所需的最低浓度称为临界胶束浓度,以CMC表示。
在CMC点上,由于溶液的结构改变导致其物理及化学性质(如表面张力、电导、渗透压、浊度、光学性质等)同浓度的关系曲线出现明显的转折,如图1所示。
这个现象是测定CMC的实验依据,也是表面活性剂的一个重要特征。
表面活性剂成为溶液中的稳定分子可能采取的两种途径:1、是把亲水基留在水中,亲油基伸向油相或空气;2、是让表面活性剂的亲油基团相互靠在一起,以减少亲油基与水的接触面积。
前者就是表面活性剂分子吸附在界面上,其结果是降低界面张力,形成定向排列的单分子膜,后者就形成了胶束。
由于胶束的亲水基方向朝外,与水分子相互吸引,使表面活性剂能稳定地溶于水中。
在溶液中对电导有贡献的主要是带长链烷基的表面活性剂离子和相应的反离子,而胶束的贡献则极为微小。
从离子贡献大小来考虑,反离子大于表面活性剂离子。
当溶液浓度达CMC时,由于表面活性剂离子缔合成胶束,反离子固定于胶束的表面,它们对电导的贡献明显下降,同时由于胶束的电荷被反离子部分中和,这种电荷量小,体积大的胶束对电导的贡献非常小,所以电导急剧下降。
对于离子型表面活性剂溶液,当溶液浓度很稀时,电导的变化规律也和强电解质一样;但当溶液浓度达到临界胶束浓度时,随着胶束的生成,电导率发生改变,摩尔电导急剧下降,这就是电导法测定CMC的依据。
本实验利用电导仪测定不同浓度的十二烷基硫酸钠水溶液的电导值(或摩尔电导率),并作电导值(或摩尔电导率)与浓度的关系图,从图中的转折点即可求得临界胶束浓度。
三、实验步骤1.调节恒温水浴温度至25℃2.吸取10ml的0.02 mol〃dm-3十二烷基硫酸钠溶液于100ml 烧杯中,依次移入恒温后的电导水2ml、3ml、5ml、5ml、5ml、5ml、10ml、10ml、10ml、20ml,搅拌,分别测其电导率。
实验介绍十二烷基苯磺酸钠,分子式:C18H29NaO3S,固体,白色或淡黄色粉末,溶解性,易溶于水,易吸潮结块,无毒,阴离子型表面活性剂。
烷基苯磺酸钠是黄色油状体,经纯化可以形成六角形或斜方形强片状结晶.具有微毒性,已被国际安全组织认定为安全化工原料,可在水果和餐具清洗中应用,价格低廉。
在洗涤剂中使用的烷基苯磺酸钠有支链结构(ABS)和直链结构(LAS)两种,支链结构生物降解性小,会对环境造成污染,但对环境污染程度小。
【1】烷基苯磺酸钠是中性的,对水硬度较敏感,不易氧化,起泡力强,去污力高,易与各种助剂复配,成本较低,合成工艺成熟,应用领域广泛,是非常出色的阴离子表面活性剂。
烷基苯磺酸纳对颗粒污垢,蛋白污垢和油性污垢有显著的去污效果,对天然纤维上颗粒污垢的洗涤作用尤佳,去污力随洗涤温度的升高而增强,对蛋白污垢的作用高于非离子表面活性剂,且泡沫丰富。
但烷基苯磺酸钠存在两个缺点,一是耐硬水较差,去污性能可随水的硬度而降低,因此以其为主活性剂的洗涤剂必须与适量螯合剂配用。
二是脱脂力较强,手洗时对皮肤有一定的刺激性,洗后衣服手感较差,宜用阳离子表面活性剂作柔软剂漂洗。
本实验采用电导法测定十二烷基苯磺酸钠表面活性剂的临界胶束浓度,实验内容(1)实验原理由具有明显“两亲”性质的分子组成的物质称为表面活性剂。
这一类分子既含有亲油的足够长的(大于10 个碳原子)烷基,又含有亲水的极性基团(离子化的)。
表面活性剂溶入水中后,在低浓度时呈分子状态,并且三三两两互相把亲油基团聚拢而分散在水中。
当溶液浓度增加到一定程度时,许多表面活性物质的分子立刻结合成很大的集团,形成“胶束”。
一胶束形式存在于水中的表面活性物质是比较稳定的。
表面活性物质在水中形成胶束所需的最低浓度称为临界胶束浓度,以CMC(critical micelle concentration)表示。
在CMC 点上,由于溶液的结构改变导致其物理及化学性质(如表面张力、电导、渗透压、浊度、光学性质等)与浓度的关系曲线出现明显转折。
实验课题电导法测定表面活性剂临界胶束浓度(CMC )2016.5.19 13:40-2016.5.1 18.00实验分组第一小组实验时间实验者高蕊丽韩慧敏张艳丽张婷婷高蕊丽双亚洲杨菊转要昕王辉韩强明王爱民赵小龙赵露张艳丽室开始14℃大气开始85.01kPa温结束26℃压结束86.20kPa一.实验目的与要求(1)认识表面活性剂的特征及胶束形成原理。
(2) 用电导法测定十二烷基硫酸钠的临界胶束浓度。
(3)掌握电导率仪的使用方法。
二.实验仪器及药品仪器 :DDS-307 型电导率仪 2 台;电导电极 2 支;恒温水浴 1 套;500mL容量瓶 4 只,100mL 容量瓶 12 只。
试剂 :0.050mol/L十二烷基硫酸钠( 剖析纯 ) ; 0.050mol/L十二烷基苯磺酸钠(剖析纯);0.050mol/L十六烷基三甲基溴化铵(剖析纯);0.050mol/L十二烷基三甲基溴化铵(剖析纯);氯化钾 ( 剖析纯 ) ,电导水。
三.实验原理1.表面活性剂的特征及胶束形成原理。
能使溶液表面张力显然降低的溶质称为表面活性剂,表面活性剂分子是由亲水性的极性基团 ( 往常是离子化) 和憎水性的非极性基团( 拥有 8-18 个碳原子的直链烃或环烃) 所构成的有机化合物。
按离子的种类可将其分为三大类:(1)阴离子型表面活性剂如羧酸盐 ( 肥皂, C17H35COONa),烷基硫酸盐 [ 十二烷基硫酸钠,CH3(CH2)SO4Na], 烷基磺酸盐[ 十二烷基苯磺酸钠, CH3(CH2) 11C6H5SO3Na] 等。
(2)阳离子型表面活性剂主假如胺盐,如十二烷基二甲基叔胺盐酸盐[ 叔胺盐, CH3(CH2) 11N(CH3 ) 2 HCL] 和十二烷基二甲基苄基氯化铵[ 季铵盐, C12H23(CH3) 2(C6H5CH2)NCL].(3)非离子型表面活性剂如聚乙二醇类 [HOCH2(CH2OCH2) N CH2OH]。
一.实验目的与要求(1)了解表面活性剂的特性及胶束形成原理。
(2)用电导法测定十二烷基硫酸钠的临界胶束浓度。
(3)掌握电导率仪的使用方法。
二.实验仪器及药品仪器:DDS-307型电导率仪2台;电导电极2支;恒温水浴1套;500mL容量瓶4只,100mL 容量瓶12只。
试剂:0.050mol/L十二烷基硫酸钠(分析纯);0.050mol/L十二烷基苯磺酸钠(分析纯);0.050mol/L十六烷基三甲基溴化铵(分析纯);0.050mol/L十二烷基三甲基溴化铵(分析纯);氯化钾(分析纯),电导水。
三.实验原理1.表面活性剂的特性及胶束形成原理。
能使溶液表面张力明显降低的溶质称为表面活性剂,表面活性剂分子是由亲水性的极性基团(通常是离子化)和憎水性的非极性基团(具有8-18个碳原子的直链烃或环烃)所组成的有机化合物。
按离子的类型可将其分为三大类:(1)阴离子型表面活性剂如羧酸盐(肥皂,C17H35COONa),烷基硫酸盐[十二烷基硫酸钠,CH3(CH2)SO4Na],烷基磺酸盐[十二烷基苯磺酸钠,CH3(CH2)11C6H5SO3Na]等。
(2)阳离子型表面活性剂主要是胺盐,如十二烷基二甲基叔胺盐酸盐[叔胺盐,CH3(CH2)11N(CH3 )2 HCL]和十二烷基二甲基苄基氯化铵[季铵盐,C12H23(CH3)2(C6H5CH2)NCL].(3)非离子型表面活性剂如聚乙二醇类[HOCH2(CH2OCH2)N CH2OH]。
表面活性剂为了使自己成为溶液中的稳定分子,有可能采取两种途径:一是当它们以低浓度存在于某一体系中时,可被吸附在该体系的表面上,采取极性基团向着水,非极性基团脱离水的表面而向着空气,形成定向排列的单分子膜,从而使表面吉布斯自由能明显降低;二是当溶液浓度增大到一定值时,表面活性剂离子或分子不但在溶液表面聚集而形成单分子层,而且在溶液本体内部表面活性剂的非极性基团相互靠在一起,以减少非极性基团与水的接触面积,当溶液浓度增大到一定程度时,许多表面活性物质的分子立刻聚集成很大的基团,形成“胶束”,如图4-16所示。
表面活性物质在水中形成胶束所需要的最低浓度称为临界胶束浓度(critical micelle concentration),以CMC表示。
随着表面活性剂在溶液中浓度的增加,球形胶束还有可能变成棒形胶束,以致层状胶束,如图4-17所示。
后者可用来制造液晶,它具备各向异性的性质。
在CMC点上,由于溶液的结构改变,导致其物理和化学性质(如表面张力、电导、渗透压、浊度、光学性质等)与浓度的关系曲线出现明显转折,如图4-18所示。
这个现象是测定CMC的实验依据,也是表面活性剂的一个重要特征。
CMC是表面活性剂的一种重要特征,CMC越小,则表示这种表面活性剂形成胶束所需浓度越低,达到表面(界面)饱和吸附的浓度越低,只有溶液浓度稍高于CMC时,才能充分发挥表面活性剂的作用,如润湿、乳化、发泡、增溶、洗涤等重要作用。
目前表面活性剂广泛用于石油、纺织、农药、采矿、食品、民用洗涤等各个领域。
2.表面活性剂临界胶束浓度的测定原理测定CMC的方法很多,原则上只要是溶液的物理化学性质随着表面活性剂溶液浓度在CMC处发生突变,都可以利用来测定CMC,常用的测定方法有电导法、表面张力法、光散射法、比色法(染料吸附法),浊度法(增溶法)等。
这些方法原理上都是从溶液的物理化学性质随浓度变化关系出发求得的。
电导法是经典方法,简便可靠。
只限于离子型表面活性剂,此法对于有较高活性的表面活性剂准确性高,但过量无机盐存在会降低测定灵敏度,因此配制溶液应该用电导水。
电导法测定离子表面活性剂的CMC相当方便,在溶液中对电导有贡献的主要是带长链烷基的表面活性剂离子和相应的反离子,而胶束的贡献则极为微小。
从离子贡献大小来考虑,反离子大于表面活性剂离子。
当溶液浓度达CMC时,由于表面活性剂离子缔合成胶束,反离子固定于胶束的表面,它们对电导的贡献明显下降,同时由于胶束的电荷被反离子部分中和,这种电荷量小、体积大的胶束对电导的贡献非常小,所以电导急剧下降。
即对于离子型表面活性剂溶液,当溶液浓度很稀时,电导的变化规律也和强电解质一样;但当溶液浓度达到临界胶束浓度时,随着胶束的生成,电导率发生改变,摩尔电导率急剧下降。
这就是电导法测定CMC的依据。
本实验利用电导率仪测定不同浓度的十二烷基硫酸钠水溶液的电导率值,计算出相应的摩尔电导率Λm,然后作Λm-C图,得相应的曲线,曲线上转折点对应的浓度即为CMC。
四、实验步骤(1).原始溶液的配制准确称取四个表面活性剂在80℃干燥3h,用电导水准确配制成0.050mol/L的原始溶液。
(2).溶液的配制分别量取0.050mol/L原始溶液4mL、8mL、12mL、14mL、16mL、18mL、20mL、24mL、28mL、32mL、36mL、40mL,稀释至100mL。
各溶液的浓度分别为0.002mol/L、0.004mol/L、0.006mol/L、0.007mol/L、0.008mol/L、0.009mol/L、0.010mol/L、0.012mol/L、0.014mol/L、0.016mol/L、0.018mol/L、0.020mol/L。
见图1-1所示。
图1-1 溶液的配置图1-2 25℃恒温加热图1-3电导率仪的校正(3).恒温槽恒温至(25±0.1)0C见图1-2所示。
(4).电导率仪的校正见图1-3所示。
(5).测定电导电极常数K cell首先用蒸馏水洗净烧杯和电极,在烧杯中装入适量的0.Olmol/L的KCL标准溶液。
由教材后附录中查出测定温度下0.01mol/L的KCL标准溶液的电导率值。
接下来进行校准仪器,温度采用不补偿方式,量程选择开关指向“Ⅲ”,待仪器读数稳定后,调节常数补偿旋钮,使仪器显示值与标准溶液的电导率值一致。
最后量程选择开关指向“检查”,仪器的显示值即为该电极的电极常数。
如:显示值为92.6μS/cm,则该电极的电极常数为0.926;显示值为102.2μS/cm,则该电极的电极常数为1.022。
(6).溶液电导率的测定用电导率仪从稀溶液到浓溶液分别测定电导率。
用后一个溶液荡洗接触过前一个溶液的电导电极和容器3次以上,各溶液测定前必须恒温10min,每个溶液的电导率读数3次,取平均值。
(7).调节恒温水浴温度至(40±0.05)o C。
重复上列步骤(4)、(5),测定40.0℃时各溶液的电导率。
(8).实验结束后洗净电导池和电极,测量电导水的电导率。
五.【实验注意事项】(1).配制的溶液须保证表面活性剂完全溶解。
(2).电解质溶液的电导率随温度的变化而改变,因此,在测量时应保持被测体系处于恒温条件下。
(3).使用前,先清洗电导电极,清洗时两个铂片不能有机械摩擦。
可用电导水淋洗,然后将其竖直,用滤纸轻吸,将水吸净,但不能用滤纸擦铂片。
使用过程中其电极片必须完全浸人到所测的溶液中。
使用完后,电极必须保持干燥。
(4).注意电导率仪应由低到高的浓度顺序测量样品的电导率。
十二烷基硫酸钠质量:7.202g 十二烷基苯磺酸钠质量:8.720g十二烷基三甲基溴化铵质量:7.703g 十六烷基三甲基溴化铵质量:9.109g 水的电导率:0.44*103μS/cm、0.78*10μS/cm1.十二烷基硫酸钠25℃时的实验数据2.十二烷基苯磺酸钠40℃时的实验数据25o C 十二烷基硫酸钠的CMC=0.009mol/L 40OC 十二烷基硫酸钠的CMC=0.009mol/L平均电导率c1 (mol/L)平均电导率c1 (mol/L)25o C 十二烷基苯磺酸钠的CMC=0.01mol/L 40oC 十二烷基苯磺酸钠的CMC=0.01mol/L平均电导率c1 (mol/L)kc(mol/l)25o C 十二烷基三甲基溴化铵的CMC=0.01mol/L 40oC 十二烷基三甲基溴化铵的CMC=0.01mol/L平均电导率c1 (mol/L)kc1 (mol/L)25o C 十六烷基三甲基溴化铵的CMC=0.008mol/L 40oC 十六烷基三甲基溴化铵的CMC=0.10mol/Lkc1 (mol/L)平均电导率c(mol/l)七.思考与讨论1.实验中影响临界胶束浓度的因素有哪些?答.(1)表面活性结构的影响①疏水基相同,离子型表面活性剂的CMC 比非离子型表面活性剂大,大约两个数量级; ②同系物中,疏水链长增加,CMC 下降;③碳氟链表面活性剂的临界胶团浓度显著低;④表面活性剂化学结构的影响:a.疏水基有分枝,CMC 上升;b.亲水基位于疏水链中,CMC 上升;c.疏水链上带有其它极性不饱和的基团,CMC 上升;⑤离子型表面活性剂在疏水基相同时,反离子变换影响较小,但若反离子由一价变为二价,则表面活性剂的CMC 下降约一个数量级;⑥非离子表面活性剂,聚氯乙烯链越长,CMC 越大。
(2)添加剂的影响①无机盐:使离子型表面活性剂的CMC显著降低对非离子型表面活性剂的CMC影响不如对离子型表面活性剂明显,电解质浓度较高时才产生可觉察效应;②极性有机物:a.中等长度或更长的极性有机物,可显著降低表面活性剂的CMC;b.低分子量的强极性有机物(如尿素),可破坏水结构,使胶团不易生成,CMC上升;c.低分子量醇兼有两类的作用(少量降低CMC,大量加入升高CMC)。
(3)温度的影响离子型表面活性剂受温度影响较小;非离子型表面活性剂随温度上升CMC下降。
2.若要知道所测得的临界胶束浓度是否正确,可用什么实验方法检验之?答:可以通过其他试验方法测定同温度下的CMC,比较检验该方法测得的CMC是否准确。
如表面张力法或紫外光谱法等。
3.非离子型表面活性剂能否用本实验方法测定临界胶束浓度?为什么?若不能,则可用何种方法测定?答:不能,因为本实验时采用电导法测电导与浓度变化关系的转折点来确定临界胶束浓度,非离子型表面活性剂可导电的离子少,不能用电导法测,可以用表面张力和渗透压法测定。
4.非离子型表面活性剂能否用本实验方法测定临界胶束浓度?为什么?若不能,则可用何种方法测定?答:不能,因为本实验时采用电导法测电导与浓度变化关系的转折点来确定临界胶束浓度,非离子型表面活性剂可导电的离子少,不能用电导法测,可以用表面张力和渗透压法测定。