对数与对数运算教案
- 格式:doc
- 大小:229.50 KB
- 文档页数:6
2.2.1 对数与对数运算第一课时 对数的概念 三维目标定向 〖知识与技能〗理解对数的概念,掌握对数恒等式及常用对数的概念,领会对数与指数的关系。
〖过程与方法〗 从指数函数入手,引出对数的概念及指数式与对数式的关系,得到对数的三条性质及对数恒等式。
〖情感、态度与价值观〗增强数学的理性思维能力及用普遍联系、变化发展的眼光看待问题的能力,体会对数的价值,形成正确的价值观。
教学重难点:指、对数式的互化。
教学过程设计 一、问题情境设疑引例1:已知2524,232==,如果226x =,则x = ? 引例2、改革开放以来,我国经济保持了持续调整的增长,假设2006年我国国内生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国内生产总值比2006年翻两番?分析:设经过x 年国内生产总值比2006年翻两番,则有a a x4%)81(=+,即1.08 x = 4。
这是已知底数和幂的值,求指数的问题,即指数式ba N =中,求b 的问题。
能否且一个式子表示出来?可以,下面我们来学习一种新的函数,他可以把x 表示出来。
二、核心内容整合1、对数:如果)10(≠>=a a N a x且,那么数x 叫做以a 为底N 的对数,记作Nx a log =。
其中a 叫做对数的底数,N 叫做真数。
根据对数的定义,可以得到对数与指数间的关系:当 a > 0且1a ≠时,Nx N a a x log =⇔=(符号功能)——熟练转化如:1318log 131801.101.1=⇔=x x ,4 2 = 16 ⇔ 2 = log 4 162、常用对数:以10为底10log N写成lg N ;自然对数:以e 为底log e N写成ln N (e = 2.71828…)3、对数的性质:(1)在对数式中N = a x > 0(负数和零没有对数);(2)log a 1 = 0 , log a a = 1(1的对数等于0,底数的对数等于1);(3)如果把b a N =中b 的写成log a N ,则有N a N a =log (对数恒等式)。
对数与对数运算教案一、教学目标1.了解对数的概念和性质。
2.掌握对数的换底公式。
3.能够运用对数运算解决实际问题。
二、教学重点1.对数的换底公式的掌握。
2.对数运算的实际应用。
三、教学难点1.对数的换底公式的理解与应用。
2.对数运算在实际问题中的灵活运用。
四、教学过程1.导入(5分钟)通过提问的方式引入对数的概念,例如:什么是指数?怎样求指数运算的结果?对数与指数有何关系等。
2.知识讲解与演示(25分钟)(1)对数的概念与性质:先简要介绍对数的概念,即以一些数为底,使结果等于一些数的指数运算。
然后讲解对数的性质,包括对数的唯一性、对数的基本法则等。
3.练习与巩固(25分钟)(1)讲解练习题:组织学生进行对数运算的练习,包括计算对数的值、利用对数解决方程等。
逐步提高题目的难度,以巩固学生的基本技能。
(2)拓展练习:根据实际问题设置应用题,引导学生运用对数解决实际问题,如物种数量的估算、露营地数量的计算等。
培养学生的问题解决能力和分析能力。
4.深化与延伸(20分钟)(1)对数运算的实际意义:通过一些具体的实际例子,讲解对数运算在生活中的应用,如音量的计算、地震强度的测量等。
让学生感受到对数运算在实际问题中的重要性。
(2)拓展延伸:引导学生深入思考对数的概念和性质,并做一些拓展性的练习,如求对数的近似值、应用对数解决复杂方程等。
拓宽学生的数学思维。
五、课堂小结与展望(5分钟)对本节课的内容进行小结,回顾所学的知识点和技能。
展望下节课的内容,为下一步学习打下基础。
六、作业布置布置适量的练习题作业,巩固对数与对数运算的知识与技能的掌握。
七、教学反思通过本节课的教学,学生对对数和对数运算有了初步的了解。
对数的换底公式的掌握是此节课的难点和重点,需要进行反复的练习和巩固。
通过设置实际问题的应用题,培养学生的问题解决能力和应用能力。
同时,教师需要耐心引导学生思考和讨论,帮助学生更好地理解和掌握数学知识。
§2.2.1 对数与对数运算(第2课时)--对数的运算法则一、教学内容分析:本节课课程标准要求理解对数的运算法则,能灵活运用对数运算法则进行对数运算.本节课是在学习了“对数的概念"后进行的,它是上节内容的延续与深入,同时也是研究学习后续知识对数函数的必备基础知识.高考大纲中要求要理解对数的概念及其运算法则。
二、教学目标:知识与技能目标:理解并掌握对数法则及运算法则,能初步运用对数的法则和运算法则解题.过程与方法目标:通过法则的探究与推导,培养从特殊到一般的概括思想,渗透化归思想及逻辑思维能力. 情感态度与价值观目标:通过法则探究,激发学习的积极性.培养大胆探索,实事求是的科学精神.三、教学重难点:教学重点:对数的运算法则及推导和应用;教学难点:对数运算法则的探究与证明.四、教具准备:幻灯片、课件、多媒体五、教学方法本课采用“探究——发现”教学模式六、 教学过程:(一)复习引入1、对数的定义及对数恒等式log b a N b a N =⇔= (a >0,且a ≠1,N >0)2、指数的运算法则;m n m n m n m na a a a a a +-⋅=÷= ()mn n m a a =我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算法则,得出相应的对数运算法则吗?(二)运算法则(1)我们知道m n m n a a a +⋅=,那m n +如何表示,能用对数式运算吗?解: ,,m n m n m n a a a M a N a +⋅===设 于是,m n MN a +=由对数的定义得到log ,m a M a m M =⇔=log n a N a n N =⇔=log m n a MN a m n MN +=⇔+=N M MN a a a log log log +=即:两数积的对数,等于各数的对数的和。
提问:你能根据指数的法则按照以上的方法推出对数的其它法则吗?(2)我们知道 ,那m n -如何表示,能用对数式运算吗?即:两数商的对数,等于被除数的对数减去除数的对数。
对数及其对数运算教案教案标题:对数及其对数运算教案目标:1. 理解对数的概念和性质。
2. 掌握对数的运算法则。
3. 能够灵活运用对数进行计算和问题解决。
教学重点:1. 对数的定义和性质。
2. 对数的运算法则。
3. 对数在实际问题中的应用。
教学难点:1. 灵活运用对数的运算法则。
2. 将对数应用于实际问题的解决。
教学准备:1. 教师准备:教案、教学课件、黑板、白板笔、计算器等。
2. 学生准备:教材、笔记本、计算器等。
教学过程:Step 1:导入新知识1. 引入对数的概念:通过举例子和问题引导学生思考,了解对数的背景和应用场景。
2. 提出问题:如果一个数的对数是3,那么这个数是多少?Step 2:对数的定义和性质1. 讲解对数的定义:对数是指数运算的逆运算,即log_a(b) = c等价于a^c = b。
2. 引导学生理解对数的性质:对数的底数必须大于0且不等于1,对数的真数必须大于0。
Step 3:对数的运算法则1. 讲解对数的运算法则:对数的乘法法则、对数的除法法则、对数的幂法则和对数的换底法则。
2. 通过例题演示和练习巩固对数的运算法则。
Step 4:实际问题的应用1. 引导学生分析实际问题中的对数运算应用:例如,解决指数增长问题、测量声音强度问题等。
2. 指导学生通过建立数学模型和运用对数进行问题求解。
Step 5:课堂练习和总结1. 给学生分发练习题,让学生独立或合作完成。
2. 总结本节课的重点内容和要点,强调对数的定义、性质和运算法则的重要性。
教学延伸:1. 给学生布置相关的课后作业,巩固对数的概念和运算法则。
2. 鼓励学生在实际生活中寻找更多对数的应用场景,并进行探究和分享。
教学评估:1. 课堂练习:通过课堂练习检查学生对对数的理解和运用能力。
2. 学生表现:观察学生在课堂上的参与和表现,评估其对对数的掌握程度。
教学资源:1. 教学课件:包含对数的定义、性质和运算法则的讲解和例题演示。
掌握对数的基本运算法则——对数运算法则教案一、教学目标1.掌握对数的定义,了解对数的意义和应用。
2.掌握对数的基本运算法则,包括对数相乘、对数相除、对数的乘方和除方等四大基本运算规则。
3.发现和理解对数运算规则与指数运算规则之间的联系,形成对数与指数相互转化的思维方式。
二、知识点分析1.对数的定义对数是一个数对另一个数的幂的指数。
它的本质是求幂的逆运算了。
比如,对于某个数b (b>0且不为1),x是另一个正数,那么用y表示x的对数和b是底数,就是:$$ y=log_bx $$读作“以b为底,x的对数是y”。
例如,2^3 = 8,那么以2为底,8的对数是几呢?$$ log_2 8 = 3 $$因此,8的对数是3,可以写作log2 8 = 3。
2.对数的意义及应用对数与指数的重要性源于它们是描述倍增或倍减量级的理想工具。
对数函数不仅在数学中用得广泛,也被广泛地应用于其他各种领域,例如:也被广泛地用于科学研究(光谱学、热力学、电子学、天文学)到统计分析(比如标准正态分布)等等。
3.对数的基本运算法则(1)对数相乘$$ log_{b}x + log_{b}y = log_{b}(x * y) $$(2)对数相除$$ log_{b}x - log_{b}y = log_{b}(x / y) $$(3)对数的乘方$$ log_{b}x^n = n*log_{b}x $$(4)对数的除方$$ log_{b}(x/y) = log_{b}x - log_{b}y $$三、教学方法本课程采用交互式教学法与游戏式教学法相结合的方式,包括课堂讲解、小组讨论、互动游戏和练习测试等环节。
在课堂讲授中,教师通过生动形象的例子讲解,引发学生对于对数学习的兴趣和好奇心。
在小组讨论环节,鼓励学生交流思考,培养学生的合作精神和团队意识。
在互动游戏环节中,采用数字海战游戏,帮助学生快速掌握对数的基本运算法则,提高学生的课堂互动和兴趣。
对数运算教案【篇一:高中数学对数与对数运算教案】《对数与对数运算》教案xx大学数学与统计学院xxx一、教学目标1、知识目标:理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的相互转换;理解对数的运算性质,形成知识技能;2、能力目标:通过实例让学生认识对数的模型,让学生有能力去解决今后有关于对数的问题,同时让学生学会观察和动手,通过做练习,使学生感受到理论与实践的统一,锻炼学生的动手能力;3、分析目标:通过让学生分组进行探究活动,在探究中分析各种思维的技巧,掌握对数运算的重要性质。
二、教学理念为了调动学生学习的积极性,使学生化被动为主动,从学习中体会快乐。
本节课我引导学生从实例出发,引发学生的思考,从中认识对数的模型,体会对数的必要性。
在教学重难点上,我步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率。
让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。
三、教法学法分析1、教法分析新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。
本着这一原则,在教学过程中我主要采用以下教法:实例引入法、开放式探究法、启发式引导法。
2、学法分析“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识。
学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。
在学法选择上,我主要采用:观察发现法、小组讨论法、归纳总结法。
四、教材分析本节讲对数的概念和运算性质主要是为后面学习对数函数做准备。
这在解决一些日常生活问题及科研中起着十分重要的作用。
同时,通过对数概念的学习,对培养学生对立统一、相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义。
五、教学重点与难点重点:(1)对数的定义;(2)指数式与对数式的相互转化及其条件。
难点:(1)对数概念的理解;(2)对数运算性质的理解;(3)换底公式的应用。
高中数学教案:对数与对数运算教学目标:1. 理解对数的定义和性质;2. 掌握对数的运算法则;3. 能够利用对数解决实际问题。
教学重点:1. 对数的定义和性质;2. 对数的运算法则。
教学难点:对数运算的应用。
教学准备:教师准备好黑板、白板、彩色粉笔、教科书、练习册等教材。
教学过程:Step1 导入教师可以通过提问激发学生对对数的了解和认识,如:你们知道什么是对数吗?对数有哪些性质呢?Step2 引入教师在黑板上写下对数的定义:如果a^x=b,那么x就是以a为底b的对数,记作x=log_a b,其中a是底数,b是真数。
让学生进行解读和理解。
Step3 对数的性质1. 对数的底数必须大于0且不等于1;2. log_a a=1;3. log_a 1=0;4. log_a (m*n)=log_a m + log_a n;5. log_a (m/n) = log_a m - log_a n;6. log_a m^p = p * log_a m;教师可以结合教材上的例题来讲解这些性质,并通过示意图等方式帮助学生理解。
Step4 对数的运算法则教师介绍对数的运算法则,如:log_a (mn) = log_a m + log_a n,log_a (m/n) = log_a m - log_a n,log_a m^p = p * log_a m,等等。
通过实例演示和练习,帮助学生掌握这些运算法则。
Step5 解决实际问题教师通过一些实际问题的例子,如物种繁殖问题、地震震级问题等,引导学生使用对数进行运算,解决问题。
Step6 练习教师布置一些练习题,让学生在课下巩固对对数和对数运算的理解和掌握。
Step7 总结与拓展教师对本节课的内容进行总结,并对下一节课的内容进行预告和拓展,如指数函数的概念和性质。
Step8 课堂作业布置课堂作业,让学生对本节课所学内容进行巩固和复习。
Step9 教学反思教师对本节课上的教学进行反思,并做好备课记录,以便下次备课和教学参考。
一、教学目标1.能熟练进行对数式与指数式的相互转化,了解常用对数和自然对数两种常用形式的对数;2.会运用对数的运算法则和换底公式进行对数运算。
并能将对数的运算法则和指数的运算法则进行区分和联系;3.应用换底公式时,能根据题目条件正确选择以什么量为底,能进行不同底之间的转化运算。
二、基础知识回顾与梳理【回顾要求】1.阅读必修一第72—80页,完成以下任务:(1)对数的概念?底数和真数的有何要求?(2)对数式与指数式是如何互化的?变与不变的有哪些?(3)自然对数与常用对数是什么?记忆。
(4)对数的性质与运算法则?(5)换底公式是如何推导来的?(6)重点题目:P74:7;P80:10,11,122、对数式与指数式的区别与联系?【要点解析】1、关于对数的底数和真数从对数的实质看:如果a b=N(a>0且a≠1),那么b叫做以a为底N的对数,即b=log a N.它是知道底数和幂求指数的过程.底数a从定义中已知其大于0且不等于1;N在对数式中叫真数,在指数式中,它就是幂,所以它自然应该是大于0的.2、指数式a b =N 与对数式log a N =b 的关系以及这两种形式的互化是对数运算法则的关键.3、指数运算的实质是指数式的积、商、幂的运算,对于指数式的和、差应充分运用恒等变形和乘法公式;对数运算的实质是把积、商、幂的对数转化为对数的和、差、积.4、在运算性质log a M n =n log a M 时,要特别注意条件,在无M >0的条件下应为log a M n =n log a |M |(n ∈N *,且n 为偶数).5、注意对数恒等式、对数换底公式及等式log a b =1log b a在解题中的灵活应用. 三、诊断练习1、教学处理:本课的主要内容是对数运算,故培养学生的基本运算能力尤为重要,所以本课在教学时应注意多留出时间给学生动笔去做,以练为主,以讲为辅。
2、诊断练习点评题1.给出四个等式(1)lg(lg10)0=;(2)lg(ln )0e =;(3)若l g 100x =,则10x =;(4)若ln x e =,则2x e =。
对数与对数运算教案对数与对数运算教案对数与对数运算教案1一、教学目标1、知识与技能(1)理解对数的概念,了解对数与指数的关系;(2)能够进行指数式与对数式的互化;(3)理解对数的性质,掌握以上知识并培养类比、分析、归纳能力;2、过程与方法3、情感态度与价值观(1)通过本节的学习体验数学的严谨性,培养细心观察、认真分析分析、严谨认真的良好思维习惯和不断探求新知识的精神;(2)感知从具体到抽象、从特殊到一般、从感性到理性认知过程;(3)体验数学的科学功能、符号功能和工具功能,培养直觉观察、探索发现、科学论证的良好的数学思维品质、二、教学重点、难点教学重点(1)对数的定义;(2)指数式与对数式的互化;教学难点(1)对数概念的理解;(2)对数性质的理解;三、教学过程:四、归纳总结:1、对数的概念一般地,如果函数ax=n(a0且a≠1)那么数x叫做以a为底n 的对数,记作x=logan,其中a叫做对数的底数,n叫做真数。
2、对数与指数的互化ab=n?logan=b3、对数的基本性质负数和零没有对数;loga1=0;logaa=1对数恒等式:alogan=n;logaa=nn五、课后作业课后练习1、2、3、4六、板书设计对数与对数运算教案21教学目标1、理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质,掌握以上知识并形成技能。
2、通过事例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化。
3、通过学生分组探究进行活动,掌握对数的重要性质。
通过做练习,使学生感受到理论与实践的统一。
4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识。
2学情分析现阶段大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的'信心不足,对数学存在或多或少的恐惧感。
通过对指数与指数幂的运算的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼。
课 题:2.2.1 对数与对数运算(2)教学目的:1.掌握对数的运算性质,并能理解推导这些法则的依据和过程;2.能较熟练地运用法则解决问题; 教学重点:对数运算性质教学难点:对数运算性质的证明方法. 授课类型:新授课课时安排:1课时教 具:多媒体教学过程: 一、复习引入:1.对数的定义 b N a =log 其中 a ∈),1()1,0(+∞ 与 N ∈),0(+∞2.指数式与对数式的互化3.重要公式: (1)N a Na=log(2)N >0. (3)01log =a . (4)log =a a4.指数运算法则(1)a m ·a n =a m+n(2)am÷a n =a m-n(3)(a m )n =a mn 二、新授内容:自学探究:思考1:将指数式M=a p ,N=a q化为对数式,结合指数的运算性质能否将M ·N= a p·a q=a p+q化为对数式?成果展示:由M=a p ,N=a q得 由M ·N= a p ·a q=a p+q 得从而得小组合作 思考2:结合前面的推导,由指数式 又能得到什么样的结论? 成果展示: 由从而得思考3:结合前面的推导,由指数式 又能得到什么样的结论? 成果展示:log ,log a ap M q N ==log ()a p q M N +=⋅log ()log log a a a M N M N ⋅=+(0,1,0,0)>≠>>且a a M N pp qq M a a N a -==log log log aa a Mp q M N N=-=-()n p n npM a a ==(0,1,0,0)>≠>>且a a M N pp qq M a a N a -==由 得小组讨论:通过对上述对数运算性质的推导可得,对数的运算性质: 如果a>0,且a ≠1,M>0,N>0,n ∈R 那么:说明:上述证明是运用转化的思想,将指数式化成对数式,并利用幂的运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式①简易语言表达:“积的对数 = 对数的和”…… ②有时逆向运用公式:如110log 2log 5log 101010==+③对公式容易错误记忆,要特别注意:N M MN a a a log log )(log ⋅≠ ,N M N M a a a log log )(log ±≠±三、讲授范例:例1 用x a log ,y a log ,z a log 表示下列各式:log )2(;(1)log zxy aa 解:(1)zxya log =a log (xy )-a log z=a log x+a log y- a log z (2)32log zyx a=a log (2x 3log )z y a -()n p n npM a a ==log log n a a M np n M ==(a 0,a 1,M 0,n R)>≠>∈且log ()log log a a a M N M N⋅=+log log log a a a M p q M N N=-=-log log n aaM np n M === a log 2x +a log 3log z y a -=2a log x+y a a log 31log 21-变式练习 用lg x,lg y,lg z表示下列各式:(1) lg (xyz ); (2)lg z xy 2; (3)zxy 3lg ; (4)z y x2lg解:(1) lg (xyz )=lg x+lg y+lg z;(2) lg zxy 2=lg x2y -lg z=lg x+lg 2y -lg z=lg x+2lg y-lg z;(3) zxy 3lg=lg x3y -lg z =lg x+lg 3y -21 lg z =lg x+3lg y-21 lg z;(4)z y x zy x 22lg lg lg-=)lg (lg lg 212z y x +-= z y x lg lg 2lg 21--=例2 计算(1)2log (74×52), (2)lg 5100解:(1)2log (74×25)= 2log 74+ 2log 52= 2log 722⨯+ 2log 52 = 2×7+5=19(2)lg 5100=5lg1052log10512== 变式练习1.求下列各式的值:(1)2log 6-2log 3 (2)lg 5+lg 2(3)5log 3+5log 31 (4)3log 5-3log 15解:(1)2log 6-2log 3=2log 362log 2=1(2)lg 5+lg 2=lg (5×2)=lg 10=1(3) 5log 3+5log 31=5log (3×31)=5log 1=0(4) 3log 5-3log 15=3log 155=3log 31=-3log 3=-1.四、课堂练习:五、小结:本节课学习了以下内容:对数的运算法则,公式的逆向使用六、课后作业: 习题2.2A 组3、4题。
对数和对数的运算教案(总8页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除2.2.1对数与对数运算(三课时)教学目标:1.理解并记忆对数的定义,对数与指数的互化,对数恒等式及对数的性质.2.理解并掌握对数运算法则的内容及推导过程.3.熟练运用对数的性质和对数运算法则解题.4.对数的初步应用.教学重点:对数定义、对数的性质和运算法则教学难点:对数定义中涉及较多的难以记忆的名称,以及运算法则的推导教学方法:学导式教学过程设计第一课时师:(板书)已知国民生产总值每年平均增长率为7.2%,求20年后国民生产总值是原来的多少倍?生:设原来国民生产总值为1,则20年后国民生产总值y=(1+7.2%)20=1.07220,所以20年后国民生产总值是原来的1.07220倍.师:这是个实际应用问题,我们把它转化为数学中知道底数和指数,求幂值的问题.也就是上面学习的指数问题.师:(板书)已知国民生产总值每年平均增长率为7.2%,问经过多年年后国民生产总值是原来的4倍?师:(分析)仿照上例,设原来国民生产总值为1,需经x年后国民生产总值是原来的4倍.列方程得:1.072x=4.我们把这个应用问题转化为知道底数和幂值,求指数的问题,这是上述问题的逆问题,即本节的对数问题.师:(板书)一般地,如果a(a>0,a≠1)的x次幂等于N,就是x=,那么数x就叫做以a为底N的对数(logarithm),记作x=log a N,其中a NN叫做对数式.a叫做对数的底数,N叫做真数,式子loga对数这个定义的认识及相关例子:N实际上就是指数式中的指数x的一种新的记法.(1)对数式loga(2)对数是一种新的运算.是知道底和幂值求指数的运算.=这个式子涉及到了三个量a,x,N,由方程的观点可得“知二实际上x a N求一”.知道a,x可求N,即前面学过的指数运算;知道x(为自然数时)、N=;知道a,N可以求x,即今天可求a a要学习的对数运算,记作log a N= x.因此,对数是一种新的运算,一种知道底和幂值求指数的运算.而每学一种新的运算,首先要学习它的记法,对数运算的记法为log a N,读作:以a为底N的对数.请同学注意这种运算的写法和读法.师:下面我来介绍两个在对数发展过程中有着重要意义的对数.师:(板书)对数log a N(a>0且a≠1)在底数a=10时,叫做常用对数(common logarithm),简记lgN;底数a=e时,叫做自然对数(natural logarithm),记作lnN,其中e是个无理数,即e≈2.718 28…….师:实际上指数与对数只是数量间的同一关系的两种不同形式.为了更深式子名称a x N指数式对数式a x=NlogaN=x练习1 把下列指数式写成对数形式:4611(1)5625;(2)2;(3) 5.73643m-⎛⎫===⎪⎝⎭练习2 把下列对数形式写成指数形式:12(1)log164;(2)lg0.012;(3)ln10 2.303=-=-=练习3 求下列各式的值:(两名学生板演练习1,2题(过程略),一生板演练习三.)因为22=4,所以以2为底4的对数等于2.因为53=125,所以以5为底125的对数等于3.(注意纠正学生的错误读法和写法.)例题(教材第73页例题2)师:由定义,我们还应注意到对数式log a N=b中字母的取值范围是什么?生:a>0且a≠1;x∈R;N∈R.师:N∈R(这是学生最易出错的地方,应一开始让学生牢牢记住真数大于零.)生:由于在实数范围内,正数的任何次幂都是正数,因而a x=N中N总是正数.师:要特别强调的是:零和负数没有对数.师:定义中为什么规定a>0,a≠1?(根据本班情况决定是否设置此问.)生:因为若a<0,则N取某些值时,x可能不存在,如x=log(-2)8不存在;若a=0,则当N不为0时,x不存在,如log02不存在;当N为0时,x可以为任何正数,是不唯一的,即log 00有无数个值;若a=1,N 不为1时,x 不存在,如log 13不存在,N 为1时,x 可以为任何数,是不唯一的,即log 11有无数多个值.因此,我们规定:a >0,a ≠1.(此回答能培养学生分类讨论的数学思想.这个问题从a x =N 出发回答较为简单.)练习4 计算下列对数:lg10000,lg0.01,2log 42,3log 273,lg10510,5111255og .师:请同学说出结果,并发现规律,大胆猜想.生:2log 42=4.这是因为log 24=2,而22=4. 生:3log 273=27.这是因为log 327=3,而33=27. 生:lg10510=105.生:我猜想log a N a N =,所以5111255og =1125.师:非常好.这就是我们下面要学习的对数恒等式. 师:(板书)log a N a N =(a >0,a ≠1,N >0).(用红笔在字母取值范围下画上曲线) (再次鼓励学生,并提出更高要求,给出严格证明.)(学生讨论,并口答.)生:(板书)证明:设指数等式a b =N ,则相应的对数等式为log a N=b ,所以a b =log a N a N = 师:你是根据什么证明对数恒等式的? 生:根据对数定义.师:(分析小结)证明的关键是设指数等式a b =N .因为要证明这个对数恒等式,而现在我们有关对数的知识只有定义,所以显然要利用定义加以证明.而对数定义是建立在指数基础之上的,所以必须先设出指数等式,从而转化成对数等式,再进行证明.师:掌握了对数恒等式的推导之后,我们要特别注意此等式的适用条件. 生:a >0,a ≠1,N >0.师:接下来观察式子结构特点并加以记忆. (给学生一分钟时间.)师:(板书)2log 28=?2log 42=?生:2log 28=8;2log 42=2.师:第2题对吗错在哪儿师:(继续追问)在运用对数恒等式时应注意什么? (经历上面的错误,使学生更牢固地记住对数恒等式.)生:当幂的底数和对数的底数相同时,才可以用公式log a N a N =. (师用红笔在两处a 上重重地描写.) 师:最后说说对数恒等式的作用是什么? 生:化简!师:请打开书74页,做练习4.(生口答.略)师:对对数的定义我们已经有了一定认识,现在,我们根据定义来进一步研究对数的性质.师:负数和零有没有对数并说明理由.生:负数和零没有对数.因为定义中规定a >0,所以不论x 是什么数,都有a x >0,这就是说,不论x 是什么数,N=a x 永远是正数.因此,由等式x=log a N 可以看到,负数和零没有对数.师:非常好.由于对数定义是建立在指数定义的基础之上,所以我们要充分利用指数的知识来研究对数.师:(板书)性质1:负数和零没有对数. 师:1的对数是多少?生:因为a 0=1(a >0,a ≠1),所以根据对数定义可得1的对数是零. 师:(板书)1的对数是零. 师;底数的对数等于多少?生:因为a 1=a ,所以根据对数的定义可得底数的对数等于1. 师:(板书)底数的对数等于1.师:给一分钟时间,请牢记这三条性质. 练习:课本第74页练习1、2、3、4题。
第二章基本初等函数(I)2.2.1 对数与对数运算本节教学分析 (1)三维目标知识与技能 理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质,掌握以上知识并形成技能.过程与方法 通过实例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化.通过学生分组探究进行活动,掌握对数的重要性质.通过做练习,使学生感受到理论与实践的统一.情感态度与价值观 培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识. (2)教学重点 1.对数的概念;2.对数式与指数式的相互转化. (3)教学难点对数性质的推导 (4)教学建议大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感,通过对指数与指数幂的运算的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼.因此,学生已具备了探索、发现、研究对数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法.学生是教学的主体,本节课要给学生提供各种参与机会.为了调动学生学习的积极性,使学生化被动为主动,本节课可利用多媒体辅助教学,引导学生从实例出发,从中认识对数的模型,体会引入对数的必要性.在教学重难点上,步步设问、启发学生的思维,通过课堂练习、探究活动、学生讨论的方式来加深理解,很好地突破难点和提高教学效率,让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。
新课导入设计导入一 思考:(P 62思考题)13 1.01xy =⨯中,哪一年的人口数要达到18亿、20亿、30亿……,该如何解决?即:1820301.01, 1.01, 1.01,131313x x x ===在个式子中,x 分别等于多少? 象上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数(引出对数的概念).导入二 1.问题1:庄子:一尺之棰,日取其半,万世不竭(1)取4次,还有多长?(2)取多少次,还有0.125尺? (得到:41()2=?,1()2x =0.125⇒x =?)2.问题2:假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍? ( 得到:(18%)x +=2⇒x =? )问题共性:已知底数和幂的值,求指数 怎样求呢?例如:课本实例由1.01x m =求x 。
对数教学设计优秀10篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!对数教学设计优秀10篇《对数与对数函数》教学计划篇一指对数的运算教案设计一、反思数学符号:“”“”出现的背景1.数学总是在不断的发明创造中去解决所遇到的问题。
2.2 对数函数2.2.1 对数与对数运算第1课时对数1.理解对数的概念,掌握对数的性质,能进行简单的对数计算.(重点、难点)2.理解指数式与对数式的等价关系,会进行对数式与指数式的互化.(重点) 3.理解常用对数、自然对数的概念及记法.[基础·初探]教材整理1 对数及相关概念阅读教材P62前四个自然段,完成下列问题.1.对数的定义一般地,如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.2.常用对数与自然对数(1)常用对数:我们将以10为底的对数叫做常用对数,并把log10N简记为lg_N.(2)自然对数:在科学技术中常使用以无理数e≈2.718 28…为底数的对数,以e为底的对数称为自然对数,并且把logeN简记为l n_N.判断(正确的打“√”,错误的打“×”)(1)因为(-2)4=16,所以log(-2)16=4.( )(2)对数式log32与log23的意义一样.( )(3)对数的运算实质是求幂指数.( )【解析】(1)×.因为对数的底数a应满足a>0且a≠1,所以(1)错;(2)×.log32表示以3为底2的对数,log23表示以2为底3的对数,所以(2)错;(3)√.由对数的定义可知(3)正确.【答案】(1)×(2)×(3)√教材整理2 指数与对数的关系以及对数的基本性质阅读教材P62最后三行至P63“例1”以上部分,完成下列问题.1.对数与指数的关系由此可得到对数恒等式:alog a N=N(a>0且a≠1,N>0).2.对数的基本性质性质1 零和负数没有对数性质2 1的对数为零,即log a1=0(a>0且a≠1)性质3 底的对数等于1,即log a a=1(a>0且a≠1)(1)若log3x=3,则x=( )A.1 B.3C.9 D.27【解析】∵log3x=3,∴x=33=27.【答案】 D(2)ln 1=________,lg 10=________.【解析】∵log a1=0,∴ln 1=0,又log a a=1,∴lg 10=1.【答案】0 1[小组合作型]对数的概念(1)对数式lg(2x-1)中实数x的取值范围是________;(2)对数式log (x -2)(x +2)中实数x 的取值范围是________.【精彩点拨】 根据对数式中底数大于0且不等于1,真数大于0求解. 【自主解答】 (1)由题意可知对数式lg (2x -1)中的真数大于0,即2x -1>0,解得x >12,所以x 的取值范围是⎝ ⎛⎭⎪⎫12,+∞. (2)由题意可得⎩⎨⎧x +2>0x -2>0x -2≠1,解得x >2,且x ≠3,所以实数x 的取值范围是(2,3)∪(3,+∞).【答案】 (1)⎝ ⎛⎭⎪⎫12,+∞ (2)(2,3)∪(3,+∞)根据对数式的底数大于0且不等于1,真数大于0,列出不等式组,可求得对数式中字母的取值范围.[再练一题]1.对数式log (2x -3)(x -1)中实数x 的取值范围是______.【导学号:97030093】 【解析】 由题意可得⎩⎨⎧x -1>02x -3>02x -3≠1,解得x >32,且x ≠2,所以实数x的取值范围是⎝ ⎛⎭⎪⎫32,2∪(2,+∞).【答案】 ⎝ ⎛⎭⎪⎫32,2∪(2,+∞)指数式与对数式的互化(1)将下列的对数式化为指数式或将指数式化为对数式:①43=64;②ln a =b ;③⎝ ⎛⎭⎪⎫12m =n ;④lg 1 000=3;⑤log 128=-3.(2)设log a 2=m ,log a 3=n ,求a 2m +n .【精彩点拨】 (1)根据a x =N ⇔log a N =x (a >0且a ≠1,N >0)求解; (2)由于a ,b 是指数,所以可考虑用对数式表示出a ,b ,再把它们代入式子中.【自主解答】 (1)①因为43=64,所以log 464=3. ②因为ln a =b ,所以e b =a .③因为⎝ ⎛⎭⎪⎫12m =n ,所以log 12n =m .④因为lg 1 000=3,所以103=1 000.⑤因为log 128=-3,所以⎝ ⎛⎭⎪⎫12-3=8.(2)∵log a 2=m ,∴a m =2,∴a 2m =4. ∵log a 3=n ,∴a n =3, ∴a 2m +n =a 2m ·a n =4×3=12.1.指数式与对数式的互化互为逆运算,在利用a x =N ⇔log a N =x (a >0且a ≠1,N >0)互化时,要分清各字母分别在指数式和对数式中的位置.2.在对数式、指数式的互化求值时,要注意灵活运用指数的定义、性质和运算法则,尤其要注意条件和结论之间的关系,进行正确的相互转化.[再练一题]2.设a =log 310,b =log 37,则3a -b 的值为( ) A.107 B.710 C.1049 D.4910【解析】 由a =log 310,b =log 37,得3a =10,3b =7.故3a -b=3a 3b =107.【答案】 A [探究共研型]对数的基本性质探究1 你能推出对数恒等式alog a N =N (a >0且a ≠1,N >0)吗? 【提示】 因为a x =N ,所以x =log a N ,代入a x =N 可得alog a N =N . 探究2 如何解方程log 4(log 3x )=0?【提示】 借助对数的性质求解,由log 4(log 3x )=log 41,得log 3x =1,∴x =3.(1)设5log 5(2x -1)=25,则x 的值等于( ) A .10 B .13 C .100D .±100(2)若log (2x 2-1)(3x 2+2x -1)=1,求x 的值. 【精彩点拨】 (1)利用对数恒等式alog a N =N 求解; (2)利用“底数”的对数为1,求解.【自主解答】 (1)由5log 5(2x -1)=25,得2x -1=25,所以x =13. 【答案】 B(2)由log (2x 2-1)(3x 2+2x -1)=1, 得⎩⎨⎧3x 2+2x -1=2x 2-13x 2+2x -1>02x 2-1>0且2x 2-1≠1,解得x =-2.对数恒等式是利用对数的定义推导出来的,要注意其结构特点:它们是同底的;指数中含有对数的形式;其值为对数的真数.[再练一题]3.已知log 2(log 3(log 4x ))=log 3(log 4(log 2y ))=0,求x +y 的值. 【导学号:97030094】【解】 ∵log 2(log 3(log 4x ))=0, ∴log 3(log 4x )=1,∴log 4x =3, ∴x =43=64. 同理求得y =16. ∴x +y =80.1.下列说法: ①零和负数没有对数;②任何一个指数式都可以化成对数式;③以10为底的对数叫做常用对数; ④以e 为底的对数叫做自然对数.其中正确命题的个数为( ) A .1 B .2 C .3D .4【解析】 ①③④正确,②不正确,只有a >0,且a ≠1时,a x =N 才能化为对数式.【答案】 C2.已知log x 8=3,则x 的值为( ) A.12B .2C .3D .4 【解析】 由log x 8=3,得x 3=8,∴x =2. 【答案】 B3.若对数log (x -1)(4x -5)有意义,则x 的取值范围是( ) 【导学号:97030095】 A.54≤x <2 B.52<x <2 C.54<x <2或x >2 D .2≤x ≤3 【解析】 x 应满足⎩⎨⎧4x -5>0x -1>0x -1≠1,∴x >54,且x ≠2.【答案】 C4.已知log x 116=-4,则x =( )A.12 B .1 C .2 D .4【解析】 ∵log x 116=-4,∴x -4=116,即1x 4=116.又∵x >0,且x ≠1,∴x =2.【答案】 C5.求下列各式中的x :(1)log 2x =-23;(2)log5(log2x)=0.【解】(1)x=2-23=⎝⎛⎭⎪⎫1223.(2)log2x=1,x=2.。
2.2 对数函数 2.2.1 对数与对数运算整体设计教学分析我们在前面的学习过程中,已了解了指数函数的概念和性质,它是后续学习的基础,从本节开始我们学习对数及其运算.使学生认识引进对数的必要性,理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.教材注重从现实生活的事例中引出对数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.教师要尽量发挥电脑绘图的教学功能,教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.根据本节内容的特点,教学中要注意发挥信息技术的力量,使学生进一步体会到信息技术在数学学习中的作用,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持. 三维目标1.理解对数的概念,了解对数与指数的关系;理解和掌握对数的性质;掌握对数式与指数式的关系;通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,并掌握化简求值的技能;运用对数运算性质解决有关问题.培养学生分析、综合解决问题的能力;培养学生数学应用的意识和科学分析问题的精神和态度.2.通过与指数式的比较,引出对数的定义与性质;让学生经历并推理出对数的运算性质;让学生归纳整理本节所学的知识.3.学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;通过对数的运算法则的学习,培养学生的严谨的思维品质;在学习过程中培养学生探究的意识;让学生感受对数运算性质的重要性,增加学生的成功感,增强学习的积极性. 重点难点教学重点:对数式与指数式的互化及对数的性质,对数运算的性质与对数知识的应用. 教学难点:对数概念的理解,对数运算性质的推导及应用. 课时安排 3课时教学过程第1课时 对数与对数运算(1)导入新课思路1.1.庄子:一尺之棰,日取其半,万世不竭.(1)取4次,还有多长?(2)取多少次,还有0.125尺?2.假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍? 抽象出:1.(21)4=?(21)x =0.125⇒x=? 2.(1+8%)x =2⇒x=?都是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢?像上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数〔引出对数的概念,教师板书课题:对数与对数运算(1)〕.思路2.我们前面学习了指数函数及其性质,同时也会利用性质解决问题,但仅仅有指数函数还不够,为了解决某些实际问题,还要学习对数函数,为此我们先学习对数〔引出对数的概念,教师板书课题:对数与对数运算(1)〕.新知探究 提出问题(对于课本P 572.1.2的例8) ①利用计算机作出函数y=13×1.01x 的图象.②从图象上看,哪一年的人口数要达到18亿、20亿、30亿…? ③如果不利用图象该如何解决,说出你的见解? 即1318=1.01x ,1320=1.01x ,1330=1.01x ,在这几个式子中,x 分别等于多少? ④你能否给出一个一般性的结论?活动:学生讨论并作图,教师适时提示、点拨.对问题①,回忆计算机作函数图象的方法,抓住关键点.对问题②,图象类似于人的照片,从照片上能看出人的特点,当然从函数图象上就能看出函数的某些点的坐标.对问题③,定义一种新的运算.对问题④,借助③,类比到一般的情形. 讨论结果:①如图2-2-1-1.图2-2-1-1②在所作的图象上,取点P,测出点P 的坐标,移动点P,使其纵坐标分别接近18,20,30,观察这时的横坐标,大约分别为32.72,43.29,84.04,这就是说,如果保持年增长率为1个百分点,那么大约经过33年,43年,84年,我国人口分别约为18亿,20亿,30亿.③1318=1.01x ,1320=1.01x ,1330=1.01x ,在这几个式子中,要求x 分别等于多少,目前我们没学这种运算,可以定义一种新运算,即若1318=1.01x ,则x 称作以1.01为底的1318的对数.其他的可类似得到,这种运算叫做对数运算.④一般性的结论就是对数的定义:一般地,如果a(a>0,a≠1)的x 次幂等于N,就是a x =N,那么数x 叫做以a 为底N 的对数(logarithm),记作x=log a N,其中a 叫做对数的底数,N 叫做真数. 有了对数的定义,前面问题的x 就可表示了: x=log 1.011318,x=log 1.011320,x=log 1.011330. 由此得到对数和指数幂之间的关系:例如:42=16⇔2=log 416;102=100⇔2=log 10100;421=2⇔21=log 42;10-2=0.01⇔-2=log 100.01①为什么在对数定义中规定a>0,a≠1?②根据对数定义求log a 1和log a a(a>0,a≠1)的值. ③负数与零有没有对数? ④Na alog =N 与log a a b =b(a>0,a≠1)是否成立?讨论结果:①这是因为若a <0,则N 为某些值时,b 不存在,如log (-2)21; 若a=0,N 不为0时,b 不存在,如log 03,N 为0时,b 可为任意正数,是不唯一的,即log 00有无数个值;若a=1,N 不为1时,b 不存在,如log 12,N 为1时,b 可为任意数,是不唯一的,即log 11有无数个值.综之,就规定了a >0且a≠1. ②log a 1=0,log a a=1.因为对任意a>0且a≠1,都有a 0=1,所以log a 1=0. 同样易知:log a a=1.即1的对数等于0,底的对数等于1.③因为底数a >0且a≠1,由指数函数的性质可知,对任意的b ∈R ,a b >0恒成立,即只有正数才有对数,零和负数没有对数. ④因为a b =N,所以b=log a N,a b =a Na alog =N,即a Na alog =N.因为a b =a b ,所以log a a b =b.故两个式子都成立.(a Na alog =N 叫对数恒等式)思考我们对对数的概念和一些特殊的式子已经有了一定的了解,但还有两类特殊的对数对科学研究和了解自然起了巨大的作用,你们知道是哪两类吗? 活动:同学们阅读课本P 68的内容,教师引导,板书. 解答:①常用对数:我们通常将以10为底的对数叫做常用对数.为了简便,N 的常用对数log 10N 简记作lgN.例如:log 105简记作lg5;log 103.5简记作lg3.5. ②自然对数:在科学技术中常常使用以无理数e=2.718 28……为底的对数,以e 为底的对数叫自然对数,为了简便,N 的自然对数log e N 简记作lnN. 例如:log e 3简记作ln3;log e 10简记作ln10. 应用示例思路1例1将下列指数式写成对数式,对数式写成指数式: (1)54=625;(2)2-6=641;(3)(31)m =5.73; (4)log 2116=-4;(5)lg0.01=-2;(6)ln10=2.303.活动:学生阅读题目,独立解题,把自己解题的过程展示在屏幕上,教师评价学生,强调注意的问题.对(1)根据指数式与对数式的关系,4在指数位置上,4是以5为底625的对数. 对(2)根据指数式与对数式的关系,-6在指数位置上,-6是以2为底641的对数.对(3)根据指数式与对数式的关系,m 在指数位置上,m 是以31为底5.73的对数. 对(4)根据指数式与对数式的关系,16在真数位置上,16是21的-4次幂. 对(5)根据指数式与对数式的关系,0.01在真数位置上,0.01是10的-2次幂. 对(6)根据指数式与对数式的关系,10在真数位置上,10是e 的2.303次幂. 解:(1)log 5625=4;(2)log 2641=-6;(3)log 315.73=m; (4)(21)-4=16;(5)10-2=0.01;(6)e 2.303=10. 思考指数式与对数式的互化应注意哪些问题?活动:学生考虑指数式与对数式互化的依据,回想对数概念的引出过程,理清对数与指数幂的关系,特别是位置的对照.解答:若是指数式化为对数式,关键要看清指数是几,再写成对数式.若是对数式化为指数式,则要看清真数是几,再写成幂的形式.最关键的是搞清N 与b 在指数式与对数式中的位置,千万不可大意,其中对数的定义是指数式与对数式互化的依据. 变式训练课本P 64练习 1、2.例2求下列各式中x 的值: (1)log 64x=32-;(2)log x 8=6; (3)lg100=x;(4)-lne 2=x. 活动:学生独立解题,教师同时展示学生的作题情况,要求学生说明解答的依据,利用指数式与对数式的关系,转化为指数式求解.解:(1)因为log 64x=-32,所以x=6432-=(2))32(6-⨯=2-4=161.(2)因为log x 8=6,所以x 6=8=23=(2)6.因为x>0,因此x=2. (3)因为lg100=x,所以10x =100=102.因此x=2.(4)因为-lne 2=x,所以lne 2=-x,e -x =e 2.因此x=-2.点评:本题要注意方根的运算,同时也可借助对数恒等式来解. 变式训练求下列各式中的x : ①log 4x=21;②log x 27=43;③log 5(log 10x )=1. 解:①由log 4x=21,得x=421=2;②由log x 27=43,得x 43=27,所以x=2734=81;③由log 5(log 10x )=1,得log 10x=5,即x=105.点评:在解决对数式的求值问题时,若不能一下子看出结果,根据指数式与对数式的关系,首先将其转化为指数式,进一步根据指数幂的运算性质算出结果.思路2例1以下四个命题中,属于真命题的是( ) (1)若log 5x=3,则x=15 (2)若log 25x=21,则x=5 (3)若log x 5=0,则x=5 (4)若log 5x=-3,则x=1251 A.(2)(3) B.(1)(3) C.(2)(4) D.(3)(4) 活动:学生观察,教师引导学生考虑对数的定义. 对数式化为指数式,根据指数幂的运算性质算出结果. 对于(1)因为log 5x=3,所以x=53=125,错误;对于(2)因为log 25x=21,所以x=2521=5,正确;对于(3)因为log x 5=0,所以x 0=5,无解,错误; 对于(4)因为log 5x=-3,所以x=5-3=1251,正确. 总之(2)(4)正确. 答案:C点评:对数的定义是对数形式和指数形式互化的依据. 例2对于a >0,a≠1,下列结论正确的是( )(1)若M=N,则log a M=log a N (2)若log a M=log a N,则M=N (3)若log a M 2=log a N 2,则M=N(4)若M=N,则log a M 2=log a N 2 A.(1)(3) B.(2)(4) C.(2) D.(1)(2)(4) 活动:学生思考,讨论,交流,回答,教师及时评价. 回想对数的有关规定.对(1)若M=N,当M 为0或负数时log a M≠log a N,因此错误; 对(2)根据对数的定义,若log a M=log a N,则M=N,正确; 对(3)若log a M 2=log a N 2,则M=±N,因此错误;对(4)若M=N=0时,则log a M 2与log a N 2都不存在,因此错误. 综上,(2)正确. 答案:C点评:0和负数没有对数,一个正数的平方根有两个. 例3计算:(1)log 927;(2)log 4381;(3)log )32((2-3);(4)log 345625.活动:教师引导,学生回忆,教师提问,学生回答,积极交流,学生展示自己的解题过程,教师及时评价学生.利用对数的定义或对数恒等式来解.求式子的值,首先设成对数式,再转化成指数式或指数方程求解.另外利用对数恒等式可直接求解,所以有两种解法.解法一:(1)设x=log 927,则9x =27,32x =33,所以x=23; (2)设x=log 4381,则(43)x =81,34x =34,所以x=16; (3)令x=log )32(+(2-3)=log )32(+(2+3)-1,所以(2+3)x =(2+3)-1,x=-1; (4)令x=log 345625,所以(345)x =625,534x=54,x=3.解法二:(1)log 927=log 933=log 9923=23; (2)log 4381=log 43(43)16=16; (3)log )32(+(2-3)=log )32(+(2+3)-1=-1;(4)log 345625=log 345(345)3=3.点评:首先将其转化为指数式,进一步根据指数幂的运算性质算出结果,对数的定义是转化和对数恒等式的依据. 变式训练课本P 64练习 3、4. 知能训练1.把下列各题的指数式写成对数式:(1)42=16;(2)30=1;(3)4x =2;(4)2x =0.5;(5)54=625;(6)3-2=91;(7)(41)-2=16. 解:(1)2=log 416;(2)0=log 31;(3)x=log 42;(4)x=log 20.5;(5)4=log 5625; (6)-2=log 391;(7)-2=log 4116. 2.把下列各题的对数式写成指数式:(1)x=log 527;(2)x=log 87;(3)x=log 43;(4)x=log 731; (5)log 216=4;(6)log 3127=-3;(7)logx3=6;(8)log x 64=-6;(9)log 2128=7;(10)log 327=a.解:(1)5x =27;(2)8x =7;(3)4x =3;(4)7x =31;(5)24=16;(6)(31)-3=27;(7)(3)6 =x;(8)x -6=64;(9)27=128;(10)3a =27. 3.求下列各式中x 的值: (1)log 8x=32-;(2)log x 27=43;(3)log 2(log 5x )=1;(4)log 3(lgx )=0.解:(1)因为log 8x=32-,所以x=832-=(23)32-=)32(32-⨯=2-2=41;(2)因为log x 27=43,所以x 43=27=33,即x=(33)34=34=81;(3)因为log 2(log 5x )=1,所以log 5x=2,x=52=25; (4)因为log 3(lgx )=0,所以lgx=1,即x=101=10. 4.(1)求log 84的值;(2)已知log a 2=m,log a 3=n,求a 2m +n 的值.解:(1)设log 84=x,根据对数的定义有8x =4,即23x =22,所以x=32,即log 84=32; (2)因为log a 2=m,log a 3=n,根据对数的定义有a m =2,a n =3,所以a 2m +n =(a m )2·a n =(2)2·3=4×3=12.点评:此题不仅是简单的指数与对数的互化,还涉及到常见的幂的运算法则的应用. 拓展提升请你阅读课本75页的有关阅读部分的内容,搜集有关对数发展的材料,以及有关数学家关于对数的材料,通过网络查寻关于对数换底公式的材料,为下一步学习打下基础. 课堂小结(1)对数引入的必要性;(2)对数的定义;(3)几种特殊数的对数;(4)负数与零没有对数;(5)对数恒等式;(6)两种特殊的对数. 作业课本P 74习题2.2A 组 1、2. 【补充作业】1.将下列指数式与对数式互化,有x 的求出x 的值. (1)521-=51;(2)log 24=x;(3)3x =271; (4)(41)x=64;(5)lg0.000 1=x;(6)lne 5=x. 解:(1)521-=51化为对数式是log 551=21-; (2)x=log 24化为指数式是(2)x=4,即22x=22,2x=2,x=4; (3)3x =271化为对数式是x=log 3271,因为3x =(31)3=3-3,所以x=-3; (4)(41)x =64化为对数式是x=log 4164,因为(41)x =64=43,所以x=-3; (5)lg0.0001=x 化为指数式是10x =0.0001,因为10x =0.000 1=10-4,所以x=-4;(6)lne 5=x 化为指数式是e x =e 5,因为e x =e 5,所以x=5.2.计算51log 53log333+的值.解:设x=log 351,则3x =51,(321)x =(51)21,所以x=log513.所以351log 5log 3333+=513log 35+=515+=556. 3.计算Nc b c b a a log log log ∙∙(a>0,b>0,c>0,N>0).解:Nc b c b a alog log log ∙∙=Nc c b b log log ∙=Nc clog =N.设计感想本节课在前面研究了指数函数及其性质的基础上,为了运算的方便,引进了对数的概念,使学生感受到对数的现实背景,它有着丰富的内涵,和我们的实际生活联系密切,也是以后学习对数函数的基础,鉴于这种情况,安排教学时,无论是导入还是概念得出的过程,都比较详细,通俗易懂,要反复练习,要紧紧抓住它与指数概念之间的联系与区别,结合指数式理解对数式,强化对数是一种运算,并注意对数运算符号的理解和记忆,多运用信息化的教学手段,顺利完成本堂课的任务,为下一节课作准备. (设计者:路致芳)。
对数与对数函数1.对数的定义如果a x =N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2.对数的性质与运算及换底公式 (1)对数的性质(a >0且a ≠1):①log a 1=0;②log a a =1;③a log a N =N . (2)对数的换底公式基本公式:log a b =log c blog c a (a ,c 均大于0且不等于1,b >0).(3)对数的运算法则:如果a >0且a ≠1,M >0,N >0,那么 ①log a (M ·N )=log a M +log a N , ②log a MN =log a M -log a N ,③log a M n =n log a M (n ∈R ). 3.对数函数的图像与性质a >10<a <1图像定义域 (0,+∞)值域 R 定点 过点(1,0)单调性 在(0,+∞)上是增函数 在(0,+∞)上是减函数 函数值正负当x >1时,y >0; 当0<x <1,y <0当x >1时,y <0; 当0<x <1时,y >04.反函数指数函数y =a x (a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图像关于直线y =x 对称.1.在运算性质log a M n =n log a M 中,易忽视M >0. 2.解决与对数函数有关的问题时易漏两点: (1)函数的定义域; (2)对数底数的取值范围. [试一试]1.(2013·苏中三市、连云港、淮安二调)“M >N ”是“log 2M >log 2N ”成立的____________条件(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”).2.(2014·常州期末)函数f (x )=log 2(4-x 2)的值域为________.1.对数值的大小比较的基本方法(1)化同底后利用函数的单调性;(2)作差或作商法; (3)利用中间量(0或1);(4)化同真数后利用图像比较. 2.明确对数函数图像的基本点(1)当a >1时,对数函数的图像“上升”; 当0<a <1时,对数函数的图像“下降”.(2)对数函数y =log a x (a >0,且a ≠1)的图像过定点(1,0),且过点(a,1)⎝⎛⎭⎫1a ,-1,函数图像只在第一、四象限. [练一练]1.函数y =log a (3x -2)(a >0,a ≠1)的图像经过定点A ,则A 点坐标是________.2.(2013·全国卷Ⅱ改编)设a =log 32,b =log 52,c =log 23,则a ,b ,c 的大小关系为________.考点一对数式的化简与求值计算下列各题:(1)lg 37+lg 70-lg 3-(lg 3)2-lg 9+1;(2)12lg 3249-43lg 8+lg 245[类题通法]对数运算的一般思路(1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算性质化简合并.(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.考点二对数函数的图像及应用[典例] (1)(2014·南通期末)如图,矩形ABCD 的三个顶点A ,B ,C 分别在函数y =log22x ,y =x 12,y =⎝⎛⎭⎫22x 的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.(2)当0<x ≤12时,4x <log a x ,则a 的取值范围是________.若本例(2)变为:若不等式(x -1)2<log a x 在x ∈(1,2)内恒成立,则实数a 的取值范围为________.[类题通法]应用对数型函数的图像可求解的问题(1)对一些可通过平移、对称变换作出其图像的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图像问题,利用数形结合法求解. [针对训练]已知函数f (x )=⎩⎪⎨⎪⎧lg x , 0<x ≤10,⎪⎪⎪⎪-12x +6, x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围是________.考点三对数函数的性质及应用[典例] 已知函数f (x )=log 4(ax 2+2x +3). (1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由.[类题通法]求复合函数y =f (g (x ))的单调区间的步骤(1)确定定义域;(2)将复合函数分解成基本初等函数y =f (u ),u =g (x ); (3)分别确定这两个函数的单调区间;(4)若这两个函数同增或同减,则y =f (g (x ))为增函数,若一增一减,则y =f (g (x ))为减函数,即“同增异减”. [针对训练]已知f (x )=log a (a x -1)(a >0且a ≠1). (1)求f (x )的定义域; (2)判断函数f (x )的单调性.[课堂练通考点]1.(2014·深圳第一次调研)设f (x )为定义在R 上的奇函数,当x >0时,f (x )=log 3(1+x ),则f (-2)=________.2.(2013·广东高考改编)函数y =lg (x +1)x -1的定义域是________.。
2.2.1对数与对数运算(三)(一)教学目标1.知识与技能:(1)掌握换底公式,会用换底公式将一般的对数化为常用对数或自然对数,并能进行一些简单的化简和证明.(2)能将一些生活实际问题转化为对数问题并加以解答.2.过程与方法:(1)结合实例引导学生探究换底公式,并通过换底公式的应用,使学生体会化归与转化的数学思想.(2)通过师生之间、学生与学生之间互相交流探讨,培养学生学会共同学习的能力.(3)通过应用对数知识解决实际问题,帮助学生确立科学思想,进一步认识数学在现实生活、生产中的重要作用.3.情感、态度与价值观(1)通过探究换底公式的概念,使学生体会知识之间的有机联系,感受数学的整体性,激发学生的学习兴趣,培养学生严谨的科学精神.(2)在教学过程中,通过学生的相互交流,培养学生灵活运用换底公式的能力,增强学生数学交流能力,同时培养学生倾听并接受别人意见的优良品质.(二)教学重点、难点1.教学重点:(1)换底公式及其应用.(2)对数的应用问题.2.教学难点:换底公式的灵活应用.(三)教学方法启发引导式通过实例研究引出换底公式,既明确学习换底公式的必要性,同时也在公式推导中应用对数的概念和对数的运算性质,在教学中可以根据学生的不同基础适当地增加具体实例,便于学生理解换底公式的本质,培养学生从具体的实例中抽象出一般公式的能力.利用换底公式“化异为同”是解决有关对数问题的基本思想方法,它在求值或恒等变形中起着重要作用,在解题过程中应注意:(1)针对具体问题,选择恰当的底数;(2)注意换底公式与对数运算性质结合使用;(3)换底公式的正用与逆用.(四)教学过程(2)aa +-3)3(4.归纳 总结1.换底公式及其应用条件(注意字母的范围).2.解决实际问题的一般步骤:学生先自回顾反思,教师点评完善.形成知识体系.课后 作业作业:2.2 第三课时 习案 学生独立完成巩固新知提升能力备选例题例1 已知log 189 = a ,18b = 5,求log 3645. 【解析】方法一:∵log 189 = a ,18b = 5, ∴log 185 = b , 于是)218(log )59(log 36log 45log 45log 1818181836⨯⨯== =2log 15log 9log 181818++=aba b a -+=++2918log 118. 方法二:∵log 189 = a ,18b = 5, ∴lg9 = alg18,lg5 = blg8,∴9lg 18lg 25lg 9lg 918lg)59lg(36lg 45lg 45log 236-+=⨯===aba ab a -+=-+218lg 18lg 218lg 18lg .【小结】(1)利用换底公式可以把题目中不同底的对数化成同底的对数,进一步应用对数运算的性质;(2)题目中有指数式和对数式时,要注意指数与对数互化,统一成一种形式. 例2 我们都处于有声世界里,不同场合,人们对音量会有不同的要求,音量大小的单位是分贝(dB),对于一个强度为I 的声波,分贝的定义是:y = 10lgI I. 这里I 0是人耳能听到的声音的最低声波强度,I 0 = 10-12w/m 2,当I = I 0时,y = 0,即dB = 0.(1)如果I = 1w/m 2,求相应的分贝值;(2)70dB 时声音强度I 是60dB 时声音强度I′的多少倍? 【解析】(1)∵I=1w/m 2, ∴y =10lg120110lg 10I I -= 1210lg101012lg10120()dB ==⨯=(2)由70 = 10lg 0I I,即7lg 0=I I ,∴7010=I I ,又60 = 10lg0I I ',即lg 0I I '=6,∴0I I '=106. ∴67001010='='I I I II I =10,即I = 10I ′答: (1)I = 1w/m 2,相应的分贝值为120()dB ; (2)70dB 时声音强度I 是60dB 时声音强度I′的10倍。
高一数学学案 时间 2010年2.2.1 对数与对数运算教学目的:(1)理解对数的概念;(2)能够说明对数与指数的关系;(3)掌握对数式与指数式的相互转化.教学重点:对数的概念,对数式与指数式的相互转化教学难点:对数概念的理解.教学过程:一、引入课题1.1.庄子:一尺之棰,日取其半,万世不竭.(1)取4次,还有多长?(2)取多少次,还有0.125尺?2.假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?抽象出:1.(21)4=?(21)x =0.125⇒x=? 2.(1+8%)x =2⇒x=?都是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢?像上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数二、新课教学1.对数的概念一般地,如果N a x=)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数(Logarithm ),记作:N x a log =a — 底数,N — 真数,N a log — 对数式 说明:○1 注意底数的限制0>a ,且1≠a ; ○2 x N N a ax =⇔=log○3 注意对数的书写格式. 提出问题①根据对数定义求log a 1和log a a(a>0,a≠1)的值.②N a alog =N 与log a a b =b(a>0,a≠1)是否成立?.对数的性质(1)负数和零没有对数;(2)1的对数是零:01log =a ;(3)底数的对数是1:1log =a a ;(4)对数恒等式:N aN a =log ;(5)n a n a =log .两个重要对数:①常用对数:我们通常将以10为底的对数叫做常用对数.为了简便,N 的常用对数log 10N 简记作lgN.例如:log 105简记作lg5;log 103.5简记作lg3.5.②自然对数:在科学技术中常常使用以无理数e=2.718 28……为底的对数,以e 为底的对数叫自然对数,为了简便,N 的自然对数log e N 简记作lnN.例如:log e 3简记作ln3;log e 10简记作ln10.应用示例例1将下列指数式写成对数式,对数式写成指数式:(1)54=625;(2)2-6=641;(3)(31)m =5.73; (4)log 2116=-4;(5)lg0.01=-2;(6)ln10=2.303.例2求下列各式中x 的值:(1)log 64x=32-;(2)log x 8=6; (3)lg100=x;(4)-lne 2=x.三.课堂练习1.求下列各式中的x :①log 4x=21;②log x 27=43;③log 5(log 10x )=1.2.以下四个命题中,属于真命题的是( )(1)若log 5x=3,则x=15 (2)若log 25x=21,则x=5 (3)若log x 5=0,则x=5 (4)若log 5x=-3,则x=1251 A.(2)(3) B.(1)(3) C.(2)(4) D.(3)(4)3.对于a >0,a≠1,下列结论正确的是( )(1)若M=N,则log a M=log a N (2)若log a M=log a N,则M=N (3)若log a M 2=log a N 2,则M=N(4)若M=N,则log a M 2=log a N 2A.(1)(3)B.(2)(4)C.(2)D.(1)(2)(4)4.把下列各题的指数式写成对数式:(1)42=16;(2)30=1;(3)4x =2;(4)2x =0.5;(5)54=625;(6)3-2=91;(7)(41)-2=16.5.把下列各题的对数式写成指数式:(1)x=log 527;(2)x=log 87;(3)x=log 43;(4)x=log 731;(5)log 216=4;(6)log 3127=-3;(7)log x 3=6;(8)log x 64=-6;(9)log 2128=7;(10)log 327=a.6.求下列各式中x 的值:(1)log 8x=32;(2)log x 27=43;(3)log 2(log 5x )=1;(4)log 3(lgx )=0.7.(1)求log 84的值;(2)已知log a 2=m,log a 3=n,求a 2m +n 的值.8..下列关于指数式和对数式的变化,不正确的一组是 ( )A .0101=与10log 10=B .131273-=与2711log 33=- C .3log 92=与293= D .5log 51=与155= 9.下列各式中,x 最大的是 ( )A .12log 3x =- B .2log 2x =C .5log 1x =D .3x =10.已知log 7[log 3(log 2x)]=0,那么x21-等于( )A .31 B . C . D . 11.计算:(1)71log 57-=(2) 9log 27= ; (3)625=12.①已知33log 4x =-,则x= ; ②已知()2221log 3211x x x ⎛⎫⎪⎝⎭-+-=,则x= . 13.①已知3log 35x =-,则x= ; ②已知7log 28x =,则x= .14.已知12()x f x a-=,(lg )f a =试求a 的值.。
[数学教案-对数]对数1.理解对数的概念,掌握对数的运算性质.(1) 了解对数式的由来和含义,清楚对数式中各字母的取值范围及与指数式之间的关系.能认识到指数与对数运算之间的互逆关系.(2) 会利用指数式的运算推导对数运算性质和法则,能用符号语言和文字语言描述对数运算法则,并能利用运算性质完成简单的对数运算.(3) 能根据概念进行指数与对数之间的互化.2.通过对数概念的学习和对数运算法则的探究及证明,培养学生从特殊到一般的概括思维能力,渗透化归的思想,培养学生的逻辑思维能力.3.通过对数概念的学习,培养学生对立统一,相互联系,相互转化的思想.通过对数运算法则的探究,使学生善于发现问题,揭示数学规律从而调动学生思维的积极参与,培养学生分析问题,解决问题的能力及大胆探索,实事求是的科学精神.教学建议教材分析(1) 对数既是一个重要的概念,又是一种重要的运算,而且它是与指数概念紧密相连的.它们是对同一关系从不同角度的刻画,表示为当<sub> </sub>时,<sub> </sub>.所以指数式<sub> </sub>中的底数,指数,幂与对数式<sub> </sub>中的底数,对数,真数的关系可以表示如下:(2) 本节的教学重点是对数的定义和运算性质,难点是对数的概念.对数首先作为一种运算,由<sub> </sub>引出的,在这个式子中已知一个数<sub> </sub>和它的指数求幂的运算就是指数运算,而已知一个数和它的幂求指数就是对数运算(而已知指数和幂求这个数的运算就是开方运算),所以从方程角度来看待的话,这个式子有三个量,知二求一.恰好可以构成以上三种运算,所以引入对数运算是很自然的,也是很重要的,也就完成了对<sub> </sub>的全面认识.此外对数作为一种运算除了认识运算符号“<sub> </sub>”以外,更重要的是把握运算法则,以便正确完成各种运算,由于对数与指数在概念上相通,使得对数法则的推导应借助指数运算法则来完成,脱到过程又加深了指对关系的认识,自然应成为本节的重点,特别予以关注.对数运算的符号的认识与理解是学生认识对数的一个障碍,其实<sub> </sub>与+,<sub> </sub>等符号一样表示一种运算,不过对数运算的符号写在前面,学生不习惯,所以在认识上感到有些困难.教法建议(1)对于对数概念的学习,一定要紧紧抓住与指数之间的关系,首先从指数式中理解底数<sub> </sub>和真数<sub> </sub>的要求,其次对于对数的性质<sub> </sub>及零和负数没有对数的理解也可以通过指数式来证明,验证.同时在关系的指导下完成指数式和对数式的互化.(2)对于运算法则的探究,对层次较高的学生可以采用“概念形成”的学习方式通过对具体例子的提出,让形式的认识由感性上升到理性,由特殊到一般归纳出法则,再利用指数式与对数式的关系完成证明,而其他法则的证明应引导学生利用已证结论完成,强化“用数学”的意识.(3)对运算法则的认识,首先可以类比指数运算法则对照记忆,其次强化法则使用的条件或者说成立的条件是保证左,右两边同时都有意义,因此要注意每一个对数式中字母的取值范围.最后还要让学生认清对数运算法则可使高一级的运算转化为低一级的运算,这样不仅加快了计算速度,也简化了计算方法,显示了对数计算的优越性.教学设计示例对数的运算法则教学目标1.理解并掌握对数性质及运算法则,能初步运用对数的性质和运算法则解题.2.通过法则的探究与推导,培养学生从特殊到一般的概括思想,渗透化归思想及逻辑思维能力.3.通过法则探究,激发学生学习的积极性.培养大胆探索,实事求是的科学精神.教学重点,难点重点是对数的运算法则及推导和应用难点是法则的探究与证明.教学方法引导发现法教学用具投影仪教学过程()一. 引入新课我们前面学习了对数的概念,那么什么叫对数呢?通过下面的题目来回答这个问题.如果看到<sub> </sub>这个式子会有何联想?由学生回答(1)<sub> </sub>(2) <sub> </sub>(3)<sub> </sub> (4)<sub> </sub>.也就要求学生以后看到对数符号能联想四件事.从式子中,可以出从概念上讲,对数与指数就是一码事,从运算上讲它们互为逆运算的关系.既然是一种运算,自然就应有相应的运算法则,所以我们今天重点研究对数的运算法则.二.对数的运算法则(板书)对数与指数是互为逆运算的,自然应把握两者的关系及已知的指数运算法则来探求对数的运算法则,所以我们有必要先回顾一下指数的运算法则.由学生回答后教师可用投影仪打出让学生看:<sub> </sub>,<sub> </sub>,<sub> </sub>.然后直接提出课题:若<sub> </sub>是否成立?由学生讨论并举出实例说明其不成立(如可以举<sub> </sub>而<sub> </sub>),教师在肯定结论的正确性的同时再提出<sub> </sub>可提示学生利用刚才的反例,把<sub> </sub>5改写成<sub> </sub>应为<sub> </sub>,而32=2<sub> </sub>,还可以让学生再找几个例子,<sub> </sub>.之后让学生大胆说出发现有什么规律?由学生回答应有<sub> </sub>成立.现在它只是一个猜想,要保证其对任意<sub> </sub>都成立,需要给出相应的证明,怎么证呢?你学过哪些与之相关的证明依据呢?学生经过思考后找出可以利用对数概念,性质及与指数的关系,再找学生提出证明的基本思路,即对数问题先化成指数问题,再利用指数运算法则求解.找学生试说证明过程,教师可适当提示,然后板书.证明:设<sub> </sub>则<sub> </sub>,由指数运算法则得<sub> </sub><sub> </sub>,即<sub> </sub>.(板书)法则出来以后,要求学生能从以下几方面去认识:(1) 公式成立的条件是什么?(由学生指出.注意是每个真数都大于零,每个对数式都有意义为使用前提条件).(2)能用文字语言叙述这条法则:两个正数的积的对数等于这两个正数的对数的和.(3)若真数是三个正数,结果会怎样?很容易可得<sub> </sub>.(条件同前)(4)能否利用法则完成下面的运算:例1:计算(1)<sub> </sub> (2)<sub> </sub> (3)<sub> </sub>由学生口答答案后,总结法则从左到右使用运算的级别降低了,从右到左运算是升级运算,要求运算从双向把握.然后提出新问题:<sub> </sub>.可由学生说出<sub> </sub>.得到大家认可后,再让学生完成证明.证明:设<sub> </sub>则<sub> </sub>,由指数运算法则得<sub> </sub><sub></sub>.教师在肯定其证明过程的同时,提出是否还有其它的证明方法?能否用上刚才的结论?有的学生可能会提出把<sub> </sub>看成<sub> </sub>再用法则,但无法解决<sub> </sub>计算问题,再引导学生如何回避<sub> </sub>的问题.经思考可以得到如下证法<sub> </sub>.或证明如下<sub> </sub>,再移项可得证.以上两种证明方法都体现了化归的思想,而且后面的证法中使用的拆分技巧“化减为加”也是会经常用到的.最后板书法则2,并让学生用文字语言叙述法则2.(两个正数的商的对数等于这两个正数的对数的差)请学生完成下面的计算(1)<sub> </sub> (2)<sub> </sub>.计算后再提出刚才没有解决的问题即<sub> </sub>并将其一般化改为<sub></sub> 学生在说出结论的同时就可给出证明如下:设<sub> </sub>则<sub> </sub><sub> </sub>,<sub> </sub>.教师还可让学生思考是否还有其它证明方法,可在课下研究.将三条法则写在一起,用投影仪打出,并与指数的法则进行对比.然后要求学生从以下几个方面认识法则(1) 了解法则的由来.(怎么证)(2) 掌握法则的内容.(用符号语言和文字语言叙述)(3) 法则使用的条件.(使每一个对数都有意义)(4) 法则的功能.(要求能正反使用)三.巩固练习例2.计算(1)<sub> </sub>(2)<sub> </sub>(3)<sub> </sub> (4)<sub> </sub>(5)<sub> </sub> (6)<sub> </sub>解答略对学生的解答进行点评.例3.已知<sub> </sub> ,用<sub> </sub>的式子表示(1)<sub> </sub>(2)<sub> </sub>(3) <sub> </sub>.由学生上黑板写出求解过程.四.小结1.运算法则的内容2.运算法则的推导与证明3.运算法则的使用五.作业略六.板书设计二.对数运算法则例1 例31. 内容(1)(2)(3)例2 小结2. 证明3. 对法则的认识(1)条件(2)功能探究活动试研究如下问题.(1)已知<sub> </sub>求证:<sub> </sub>或<sub> </sub> (2)若<sub> </sub>都是正数且至少有一个不为1,且<sub></sub><sub> </sub>,则<sub> </sub>之间的关系是_____________________.。
§2.2.1对数与对数运算(第一课时)
一、教学目标
(1)知识与技能目标
1、理解对数的概念;
2、能够进行指数式与对数式的互化;
3、理解对数恒等式并能运用于有关的对数计算;
4、能够初步运用对数的性质的运算法则解决相关问题;
(2)过程与方法目标
1、通过对对数定义的探究,渗透转化的数学思想方法,体验辨证唯物主义教育.
2、通过探究与活动,明白考虑问题要细致,说理要明确;
3、通过探究对数和指数之间的互化,培养发现问题、分析问题、解决问题的能力.
(3)情感态度与价值观目标
1、通过本节的学习体验数学的严谨性,培养细心观察、认真分析分析、严谨认真的良好思维习惯和不断探求新知识的精神;
2、感知从具体到抽象、从特殊到一般、从感性到理性认知过程;
3、体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质.
二、教学重点、难点
教学重点
(1)对数的定义;
(2)指数式与对数式的互化;
(3)对数的运算法则及推导和应用;
教学难点
(1)对数概念的理解;
(2)运算法则的探究与证明;
三、 教辅手段
运用多媒体辅助教学、板书、讲练结合;
四、 教学模式
采用引导发现模式——教师创设问题情境、启发讲授,引导学生思考并加以探索学习;
五、 教学过程
(一)温故知新
回顾上节课的指数的概念及运算性质,
根据指数的知识可以很容易得出22=4、52=32,但是当2=26x
时,此时的x 的值为多少呢? 把这个用来引入的问题抛给学生,引起学生的学习兴趣,接着分析讲解问题之后引出对数的概念; 问题如下:
庄子:一尺之棰,日取其半,万世不竭。
(1)取4次,还有多长?
(2)取多少次,还有0.125尺?
分析如下:
1次 2次 3次 4次 … n 次 12 212⎛⎫ ⎪⎝⎭ 312⎛⎫ ⎪⎝⎭ 412⎛⎫ ⎪⎝⎭ … 12n
⎛⎫ ⎪⎝⎭ ∴(1)取第4次的长度为:4
12⎛⎫ ⎪⎝⎭
; (2)12x ⎛⎫ ⎪⎝⎭=0.125,根据以往所学,可以求出x =3; (二) 引出概念
(1)多媒体展示出定义:
定义:一般地,如果 的x 次幂等于N , 就是 x
a N = ,那么数x 叫做 a 为底 N 的对数,记作log a x N = ,a 叫做对数的底数,N 叫做真数。
注:1)在定义中注意底数a 的取值 ; 2)在x
a N =中,,有次可以知道负数和0,没有对数;
()1,0≠>a a a ()1,0≠>a a a
说明:对数的定义中为什么规定 呢? 1) 若0a <时,则N 为某些值时,x 值不存在,如=-2a ,=8N 时,2log 8x -= 不存在;或者x 为
某些值时,N 值不存在(无意义),12,2
a x =-=
时,N = 2) 若0a =时,则N 为某些值时,x 值不存在(值不唯一)
如:0a =,2N =时,0log 2x =不存在(也可表述为:0的多少次幂等于2?);
0a =,0N =时,0log 0x =有无数多个值,值不唯一(0的任何次幂等于0)
; 3) 若1a =时,则N 为某些值时,x 值不存在(值不唯一)
如:1a =,2N =时,1log 2x =不存在(也可表述为:1的多少次幂等于2?);
1a =,1N =时,1log 1x =有无数多个值,值不唯一(也可表述为:1的任何次幂等于1);
(2)介绍两种特殊的对数;
1)常用对数:通常一10为底的对数叫做常用对数,为了简便,N 的常用对数10log N 简记为lg N ;
2)自然对数:在科学技术中常使用以无理数 2.71828
e =为底的对数,以e 为底的对数叫做自然对数,
并把log e N 简记为ln N ;
(3)给出定义之后,列表,对比指数式与对数式中的各个字母的具体含义,通过对比,让同学们能够加深对对数这个概念的理解; 另外,根据指数与对数的关系,可以得到关于对数的下列结论:负数和零没有对数, , (该部分板书)
(三)运用概念
初步应用对数的知识;
对数式与指数式的互化;
运用对数的运算性质进行简单的对数运算;
[例题分析]
课堂练习(1):
求下列各式中x 的值:
(1) (2) (3) (4) (四)介绍对数的运算性质
(1)两数积的对数,等于各数的对数的和;
()1,0≠>
a a a log 10a =log 1
a a =64
2log 3x =-log 86x =lg100x =2ln
e x -=
(2)两数商的对数,等于被除数的对数减去除数的对数;
(3)幂的对数等于幂指数乘以底数的对数.
[例题分析]
课堂练习:
使用 , , 表示下式: (1) (2)
(五)小结
(1)对数的概念
(2)互换(对数与指数会互换)
(3)对数的运算性质
(六)作业
1、认真复习
2、P75 习题2.2 B 组:1、4、5
(七)板书设计
六、 教学中体现的数学思想
1、 探索发现的数学思想
log a x log a y log a z 2log a x y 2log a yz
2、归纳转化的数学思想
3、从特殊到一般的数学思想
七、教学反思
多媒体的应用,使本节数学概念课不再枯燥乏味,课堂变得生动,学生学得主动,让学生亲自参与知识的生成过程,使抽象复杂的概念与性质变得具体形象,学生掌握得更加牢固;不仅仅是教师的讲授、演示的过程,也可以让同学们多参与到课堂中来,比如增加互动环节,此时教师与学生之间不再是单一的教学关系,而是共同探讨、共同学习,不但达到教学的效果,还间接地架起了师生间友谊和相互理解相互沟通的桥梁;课外探究题设置又将激发学生的兴趣,带领学生进入关于对数的更进一步的思考和探究中,达到知识在课堂以外的延伸。