机械工程材料第十章铸钢与第十一章铸铁
- 格式:ppt
- 大小:4.35 MB
- 文档页数:30
铸钢和铸铁磁化曲线的解析表达磁化曲线是研究材料磁性的重要手段,它可以揭示材料的磁性特征和磁性变化规律。
铸钢和铸铁是重要的工程材料,对其磁性的研究具有重要意义。
本文将着重介绍铸钢和铸铁的磁性特征和磁化曲线的解析表达。
1. 铸钢的磁性特征铸钢是一种含有碳、铬、镍等元素的合金材料,具有优异的机械性能和耐腐蚀性能。
铸钢的磁性是由其化学成分和晶体结构决定的。
一般来说,铸钢具有磁性,但其磁性强度与碳含量和铬含量有关。
当铸钢中的碳含量较高时,其磁性较强,而铬含量较高时,其磁性较弱。
此外,铸钢的晶体结构也会影响其磁性,具有奥氏体结构的铸钢比具有马氏体结构的铸钢具有更强的磁性。
2. 铸铁的磁性特征铸铁是一种含有铁、碳、硅等元素的合金材料,具有优异的铸造性能和机械性能。
铸铁的磁性是由其化学成分和晶体结构决定的。
一般来说,铸铁具有磁性,但其磁性强度与碳含量和硅含量有关。
当铸铁中的碳含量较高时,其磁性较强,而硅含量较高时,其磁性较弱。
此外,铸铁的晶体结构也会影响其磁性,具有珠光体结构的铸铁比具有螺旋体结构的铸铁具有更强的磁性。
3. 磁化曲线的解析表达磁化曲线是描述材料在外磁场作用下磁化强度随磁场强度变化的曲线。
铸钢和铸铁的磁化曲线可以用以下公式表示:M = χH其中,M表示材料的磁化强度,χ表示材料的磁化率,H表示外磁场的强度。
铸钢和铸铁的磁化率可以用以下公式表示:χ = M/H在实际测量中,可以通过磁强计等仪器测量材料在不同磁场强度下的磁化强度,然后根据公式计算出磁化率和磁化曲线。
铸钢和铸铁的磁化曲线一般呈现出顺磁性或铁磁性的特征,其中铸钢的顺磁性更强,而铸铁的铁磁性更强。
4. 结论铸钢和铸铁是重要的工程材料,其磁性特征和磁化曲线的研究对于材料的应用和开发具有重要意义。
铸钢和铸铁的磁性特征与其化学成分和晶体结构密切相关,磁化曲线可以用磁化率和外磁场强度表示。
铸钢和铸铁的磁化曲线一般呈现出顺磁性或铁磁性的特征,其中铸钢的顺磁性更强,而铸铁的铁磁性更强。
2021年国家开放大学电大《机械制造基础》章节测试题参考答案第一章常用工程材料的基本知识边学边练1.金属材料在外力作用下,对变形和破裂的抵抗能力称为()a.硬度b.韧性c.塑性d.强度2.适于测试硬质合金、表面淬火刚及薄片金属的硬度的测试方法是()。
a.洛氏硬度b.以上方法都可以c.维氏硬度d.布氏硬度3.材料的冲击韧度越大,其韧性就()。
a.越差b.难以确定c.无影响d.越好4.金属材料在做疲劳试验时,试样所承受的载荷为()。
a.冲击载荷b.交变载荷c.静载荷d.无规律载荷5.()是α-Fe 中溶入一种或多种溶质元素构成的固溶体。
a.铁素体b.渗碳体c.奥氏体d.珠光体6.珠光体是一种()。
a.机械混合物b.金属化合物c.固溶体d.单相组织金属7.自位支承(浮动支承)其作用增加与工件接触的支承点数目,但()。
a. 0.25%b. 1.4%c. 0.6%d. 2.11%8.灰铸铁中的碳主要是以()形式存在。
a.团絮状石墨b.蠕虫状石墨c.球状石墨9.黄铜是由()合成。
a.铜和锌b.铜和镍c.铜和铝d.铜和硅本章测验一、单选题(每题10 分,共50 分)1.拉伸实验中,试样所受的力为()。
A.冲击载荷B.循环载荷C.交变载荷D.静载荷2.常用的塑性判断依据是()。
A.伸长率和断面收缩率B.断面收缩率和塑性C.塑性和韧性D.伸长率和塑性3.用金刚石圆锥体作为压头可以用来测试()。
A.维氏硬度B.洛氏硬度C.布氏硬度D.以上都可以4.金属疲劳的判断依据是()。
A.抗拉强度B.塑性C.疲劳强度D.强度5.牌号为45 号钢属于()。
A.普通碳素结构钢B.碳素工具钢C.铸造碳钢D.优质碳素结构钢二、判断题(每题10 分,共50 分)6.通常材料的力学性能是选材的主要指标。
(√)7.抗拉强度是表示金属材料抵抗最大均匀塑性变形或断裂的能力。
(√)8.冲击韧性是指金属材料在静载荷作用下抵抗破坏的能力。
(×)9.碳钢的含碳量一般不超过1.5%。
铸钢与铸铁的区别关于铸钢与铸铁的铸造问题铸钢与铸铁的铸造都是铸造铁合金——铸造铁与碳组成的铁碳合金,属黑色金属铸造。
一、铸钢与铸铁化学成分的区别钢铁均是含有少量合金元素和杂质的铁碳合金,按含碳量不同可分为:熟铁――含C小于0.05%钢――含C为0.05~2.0%铸铁是含碳量在2%以上的铁碳合金。
工业用铸铁一般含碳量为2%~4%。
碳在铸铁中多以石墨形态存在,有时也以渗碳体形态存在。
除碳外,铸铁中还含有1%~3%的硅,以及锰、磷、硫等元素。
合金铸铁还含有镍、铬、钼、铝、铜、硼、钒等元素。
碳、硅是影响铸铁显微组织和性能的主要元素。
铸铁可分为:①灰口铸铁。
含碳量较高(2.7%~4.0%),碳主要以片状石墨形态存在,断口呈灰色,简称灰铁。
熔点低(1145~1250℃),凝固时收缩量小,抗压强度和硬度接近碳素钢,减震性好。
用于制造机床床身、汽缸、箱体等结构件。
②白口铸铁。
碳、硅含量较低,碳主要以渗碳体形态存在,断口呈银白色。
凝固时收缩大,易产生缩孔、裂纹。
硬度高,脆性大,不能承受冲击载荷。
多用作可锻铸铁的坯件和制作耐磨损的零部件。
③可锻铸铁。
由白口铸铁退火处理后获得,石墨呈团絮状分布,简称韧铁。
其组织性能均匀,耐磨损,有良好的塑性和韧性。
用于制造形状复杂、能承受强动载荷的零件。
④球墨铸铁。
将灰口铸铁铁水经球化处理后获得,析出的石墨呈球状,简称球铁。
比普通灰口铸铁有较高强度、较好韧性和塑性。
用于制造内燃机、汽车零部件及农机具等。
⑤蠕墨铸铁。
将灰口铸铁铁水经蠕化处理后获得,析出的石墨呈蠕虫状。
力学性能与球墨铸铁相近,铸造性能介于灰口铸铁与球墨铸铁之间。
用于制造汽车的零部件。
⑥合金铸铁。
普通铸铁加入适量合金元素(如硅、锰、磷、镍、铬、钼、铜、铝、硼、钒、锡等)获得。
合金元素使铸铁的基体组织发生变化,从而具有相应的耐热、耐磨、耐蚀、耐低温或无磁等特性。
用于制造矿山、化工机械和仪器、仪表等的零部件。
铸钢用以浇注铸件的钢。
第十章铸造习题解答10-1 试述铸造生产的特点,并举例说明其应用情况。
答:铸造生产的特点有:①铸造能生产形状复杂,特别是内腔复杂的毛坯。
例如机床床身、内燃机缸体和缸盖、涡轮叫叶片、阀体等。
②铸造的适应性广。
铸造既可用于单件生产,也可用于成批或大量生产;铸件的轮廓尺寸可从几毫米至几十米,重量可从几克到几百吨;工业中常用的金属材料都可用铸造方法成形。
③铸造成本低。
铸造所用的原材料来源广泛,价格低廉,还可利用废旧的金属材料,一般不需要价格昂贵的设备。
④铸件的力学性能不及锻件,一般不宜用作承受较大交变、冲击载荷的零件。
⑤铸件的质量不稳定,易出现废品。
⑥铸造生产的环境条件差等。
10-2 型砂由哪些材料组成?试述型砂的主要性能及其对铸件质量的影响。
答:型砂由原砂、粘结剂和附加物组成。
型砂的主要性能有:①耐火度。
型砂的耐火度好,铸件不易产生粘砂缺陷。
②强度。
若强度不足,铸件易产生形状和砂眼等缺陷。
③透气性。
透气性差,浇注时产生的气体不易排出,会使铸件产生气孔缺陷。
④可塑性。
可塑性好,造型时能准确地复制出模样的轮廓,铸件质量好。
⑤退让性。
退让性不好,易使铸件收缩时受阻而产生内应力,引起铸件变形和开裂。
10-3 试列表分析比较整模造型、分模造型、挖砂造型、活块造型和刮板造型的特点和应用情况。
答:列表进行比较:10-4 试结合一个实际零件用示意图说明其手工造型方法和过程。
答:以双联齿轮毛坯手工造型为例,手工造型过程如下:①造下砂型——②造上砂型——③开外浇口、扎通气孔——④起出模样——⑤合型——⑥浇注铁水——⑦带浇口铸件。
10-5 典型浇注系统由哪几个部分组成?各部分有何作用?答:典型浇注系统由浇口杯、直浇道、横浇道和内浇道组成。
浇口杯的作用是将来自浇包的金属引入直浇道,缓和冲击分离熔渣。
直浇道为一圆锥形垂直通道,其高度使金属液产生一定的静压力,以控制金属液流入铸型的速度和提高充型能力。
横浇道分配金属液进入内浇道,并起挡渣的作用,它的断面一般为梯形,并设在内浇道之上,使得上浮的熔渣不致流入型腔。
铸铁和铸钢的区别铸铁和铸钢本质的区别在于化学成分不同,在工程上,一般认为含碳量高于2%为铁,低于此值为钢。
由于成分不同,所以组织性能也不一样,一般来说,铸钢的塑性和韧性较好,表现为延伸率、断面收缩率和冲击韧性好,铸铁的力学性能表现为硬而脆。
铸铁可分为:灰铸铁该铸铁中的碳大部分或全部以自由状态的片状石墨形式存在,其断口呈暗灰色,有一定的力学性能和良好的被切削性能。
白口铸铁白口铸铁是组织中完全没有或几乎完全没有石墨的一种铁碳合金,其断口呈白亮色,硬而脆,不能进行切削加工,很少在工业上直接用来制作机械零件。
由于其具有很高的表面硬度和耐磨性,又称激冷铸铁或冷硬铸铁。
麻口铸铁麻口铸铁是介于白口铸铁和灰铸铁之间的一种铸铁,其断口呈灰白相间的麻点状,性能不好,极少应用。
普通铸铁是指不含任何合金元素的铸铁,如灰铸铁、可锻铸铁、球墨铸铁等。
合金铸铁是在普通铸铁内加入一些合金元素,用以提高某些特殊性能而配制的一种高级铸铁。
如各种耐蚀、耐热、耐磨的特殊性能铸铁。
普通灰铸铁这种铸铁中的碳大部分或全部以自由状态的片状石墨形式存在,其断口呈暗灰色,有一定的力学性能和良好的被切削性能,普遍应用于工业中。
孕育铸铁这是在灰铸铁基础上,采用“变质处理”而成,又称变质铸铁。
其强度、塑性和韧性均比一般灰铸铁好得多,组织也较均匀。
主要用于制造力学性能要求较高,而截面尺寸变化较大的大型铸件。
可锻铸铁可锻铸铁是由一定成分的白口铸铁经石墨化退火而成,比灰铸铁具有较高的韧性,又称韧性铸铁。
它并不可以锻造,常用来制造承受冲击载荷的铸件。
球墨铸铁简称球铁。
它是通过在浇铸前往铁液中加入一定量的球化剂和墨化剂,以促进呈球状石墨结晶而获得的。
它和钢相比,除塑性、韧性稍低外,其他性能均接近,是兼有钢和铸铁优点的优良材料,在机械工程上应用广泛。
特殊性能铸铁这是一种有某些特性的铸铁,根据用途的不同,可分为耐磨铸铁、耐热铸铁、耐蚀铸铁等。
大都属于合金铸铁,在机械制造上应用较广泛。
铸钢和球墨铸铁铸钢和球墨铸铁是常见的金属材料,广泛应用于工业领域。
本文将分别介绍铸钢和球墨铸铁的特点、工艺和应用领域。
一、铸钢铸钢是一种以铁和碳为基础,经过熔炼、浇注和冷却等工艺制成的金属材料。
与普通钢相比,铸钢具有更高的韧性和强度,能够适应更复杂的工作环境和载荷。
铸钢的制造工艺主要包括熔炼、浇注、冷却和热处理等步骤。
首先,将合适比例的生铁、废钢和合金料放入炉中进行熔炼,通过调节炉温和熔炼时间,使得材料充分熔化并达到所需成分。
接下来,将熔融的钢液浇注到模具中,经过冷却过程,形成所需的铸钢件。
最后,对铸钢件进行热处理,消除内部应力、改善组织结构,提高材料的强度和韧性。
铸钢具有许多优点,如高强度、高韧性、耐磨损、耐腐蚀等。
它广泛应用于船舶、汽车、机械、建筑等领域,常见的铸钢制品有船舶零部件、汽车发动机缸体、大型机械设备等。
二、球墨铸铁球墨铸铁,又称球墨铸铁,是一种以铁、碳和球化剂为基础,通过球化处理制成的金属材料。
与灰铸铁相比,球墨铸铁具有更好的韧性和抗拉强度,能够满足更高的使用要求。
球墨铸铁的制造工艺主要包括材料配比、熔炼、球化处理和冷却等步骤。
首先,根据所需成分比例将生铁、废铁、废钢和添加剂等材料进行配比。
然后,将配料放入炉中进行熔炼,通过精确控制炉温和保持时间,使得材料充分熔化并达到所需成分。
接下来,将熔融的铁液进行球化处理,通过添加球化剂和冷却剂,使得铁液中的石墨形成球状结构,提高材料的韧性。
最后,将球墨铸铁浇注到模具中,经过冷却和固化,形成所需的铸件。
球墨铸铁具有许多优良性能,如高强度、高韧性、耐磨损、耐腐蚀等。
它广泛应用于汽车、机械、铁路、建筑等领域,常见的球墨铸铁制品有车底盘件、机械零部件、管道配件等。
铸钢和球墨铸铁是两种常见的金属材料,它们在工艺和应用领域上有一定的差异。
铸钢具有高强度和高韧性,适用于复杂的工作环境;而球墨铸铁具有更好的韧性和抗拉强度,能够满足更高的使用要求。
通过了解铸钢和球墨铸铁的特点和应用,我们可以更好地选择适合的材料,并在实际工程中发挥其优势。
碳的存在形式:石墨 --- 碳的一*种结晶形态(稳定相)金属化合物(亚稳定相)Fe3C 一、 铸铁的石墨化石墨化方式: 从液相或A 中直接析出石墨由Fe3C 分解得到石墨二、 影响石墨化因素1、 化学成分C 、Si S —— Mn —2、 冷却速度冷速慢一促进石墨化—强烈促进石墨化 强烈阻碍石墨化阻碍石墨化性能级低硬而脆 第七章铸铁铸铁中C 的存在形式: 碳化物(Fe3C )和石墨铸铁分类:白口铸铁,灰口铸铁,麻口铸铁灰口铸铁:灰铸铁(片状石墨),球墨铸铁(球状石墨)可锻铸铁(团絮状石墨)蠕墨铸铁(蠕虫状石墨)第一节铸铁的石墨化冷速快一抑制化 第二节灰铸铁一、灰铸铁的牌号、组织、性能、用途HT100HT150HT200/HT250HT300/HT350F +石墨(片) F+P +石墨(片) P +石墨(片) 孕育铸铁 铸铁=钢基体+石墨(片)性能:ob 、6比相同基体的钢低,抗压强度和硬度与钢接近铸造性好,减振性好,耐磨性好,缺口敏感性低,切削加工性好。
应用:床身,机架,箱体,缸体,导轨二、灰铸铁的热处理〃厂-珠光体+铁素体铸铁.〃/一铁素体铸铁图7-6 铸件壁厚和碳硅含位对铸铁组织的影响1、消除内应力退火2、消除白口组织,改善切削加工性退火3、表面淬火第三节球墨铸铁一、球墨铸铁的牌号、组织、性能、用途QT400-15 F + 石墨(球)QT500-7 F+P+石墨(球)QT700-2 P +石墨(球)(曲轴、连杆、凸轮轴、机床主轴)性能:力学性能接近相应组织的钢,耐磨性、减振性、os /ob比钢好二、球墨铸铁的热处理1、退火F +石墨(球)QT400-152、正火F+P+石墨(球)QT700-23、调质处理S回+石墨(球)QT800-24、等温淬火B下+石墨(球)QT900-2。
铸铁转型铸钢文章铸铁转型铸钢是一项重要的冶金工艺,旨在将铸铁材料转变为铸钢材料,以改善其性能和用途范围。
铸铁与铸钢在成分和结构上存在差异,铸铁中含有较高的碳含量,而铸钢中的碳含量相对较低。
通过转型,铸铁材料的碳含量可以减少,从而使其具备更好的强度、韧性和耐腐蚀性。
铸铁转型铸钢的过程可以分为几个关键步骤。
首先,铸铁材料需要经过加热处理,以提高其塑性和可变性。
然后,在高温下,通过控制加热时间和温度,使铸铁中的碳和其他杂质在一定程度上被氧化和还原。
这个过程被称为脱碳,其目的是降低铸铁中的碳含量。
在脱碳过程中,一些碳和杂质会被氧化成气体,从而逐渐减少铸铁的碳含量。
然后,通过冷却和淬火处理,铸铁中的碳会重新结晶并形成钢的晶粒。
通过这一系列的处理,铸铁材料就成功地转变为铸钢材料。
铸铁转型铸钢的优势不仅体现在性能上,还体现在用途范围的扩大上。
铸钢材料具有更高的强度和韧性,因此在工程领域中得到广泛应用。
它可以用于制造各种机械零件、工具和设备,以及建筑结构和汽车零部件等。
然而,铸铁转型铸钢过程中也存在一些挑战和难点。
首先,加热和冷却过程需要严格控制温度和时间,以确保材料的性能和结构得到最佳改善。
其次,脱碳过程中可能会产生大量的气体,需要采取相应的防护措施,以确保生产环境的安全和健康。
铸铁转型铸钢是一项复杂而重要的冶金工艺,通过控制加热、冷却和脱碳等过程,可以将铸铁材料转变为铸钢材料,以提高其性能和用途范围。
这项工艺在工程领域中应用广泛,为各种机械和结构的制造提供了可靠的材料基础。
随着技术的进步和工艺的改进,铸铁转型铸钢将继续发展,为人类的工业和生活带来更多的便利和发展机遇。