对数概念教学
- 格式:doc
- 大小:169.50 KB
- 文档页数:7
写教案能帮助教师更好地安排课堂教学时间,教案要结合实际的教学进度和学生的学习能力,才能更好地帮助学生提高学习效果,下面是范文社小编为您分享的对数及对数函数教案8篇,感谢您的参阅。
对数及对数函数教案篇1【学习目标】一、过程目标1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。
2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。
3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。
二、识技能目标1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。
2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。
三、情感目标1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的.学习兴趣。
2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。
教学重点难点:1对数函数的定义、图象和性质。
2对数函数性质的初步应用。
教学工具:多媒体学前准备】对照指数函数试研究对数函数的定义、图象和性质。
对数及对数函数教案篇2对数函数及其性质教学设计1.教学方法建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。
它既强调学习者的认知主体作用,又不忽视教师的指导作用。
高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟.在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式”教学方法。
将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。
其理论依据为建构主义学习理论。
它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。
2.学法指导新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。
对数概念教学设计导语对数是数学中一个重要的概念,广泛应用于各个领域,特别是在科学计算和数据处理方面。
然而,对数的概念对于学生来说可能比较抽象和难以理解。
因此,在对数概念的教学中,教师需要设计适当的教学方法和教学活动,帮助学生理解对数的基本概念和应用。
一、教学目标1. 理解对数的基本概念和定义;2. 掌握对数的计算方法和规则;3. 能够应用对数解决实际问题。
二、教学内容1. 对数的定义与性质;2. 对数的运算法则;3. 对数的应用。
三、教学过程1. 导入活动为了激发学生的学习兴趣,可以通过一个引人入胜的故事或实例引入对数的概念。
例如,可以讲述天文学家利用对数计算恒星的亮度,引导学生思考对数的作用和重要性。
2. 概念讲解在对数的概念讲解中,教师可以采用多媒体、演示等教学手段,以图形和实例来解释对数的定义和性质。
例如,可以通过展示一系列数值的对数和对应的指数,比较它们的关系和特点,帮助学生理解对数的含义和运算法则。
3. 计算方法教学对数的运算法则是学生理解对数的关键。
教师可以通过示范计算和实践练习的方式,引导学生掌握对数的加减乘除、指数与对数的互化等基本计算方法。
在教学过程中,可以设计一些趣味和实用的计算题目,增加学生的参与度和学习兴趣。
4. 应用练习为了帮助学生理解对数的应用,教师可以设计一些实际问题,让学生运用对数解决实际问题。
例如,可以提供一些与科学、工程或金融相关的问题,让学生运用对数进行计算和分析,培养学生综合运用对数知识的能力。
5. 总结回顾在教学结束时,教师要对整节课的内容进行总结回顾,强调对数的基本概念和运算法则,并鼓励学生提出问题和思考。
同时,可以布置一些作业和练习,巩固学生对对数概念的理解和应用。
四、教学评价教师可以通过课堂上的问答、小测验和作业评分等方式对学生的学习情况进行评价。
同时,也要鼓励学生相互评价和提出建议,以促进学生的互动和合作学习。
五、教学资源在对数概念教学中,教师可以使用多媒体软件、数学工具和教学材料等资源。
高一数学教案对数5篇高一数学教案对数1教学目标1.使学生掌握的概念,图象和性质.(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象.2.通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.3.通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.教学建议教材分析(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.(2)本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数在和时,函数值变化情况的区分.(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.教法建议(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是.(2)对底数的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.高一数学教案对数2教学目标1.使学生了解反函数的概念;2.使学生会求一些简单函数的反函数;3.培养学生用辩证的观点观察、分析解决问题的能力。
对数函数的概念教案教学内容:对数函数的概念教学目标:1. 理解对数函数的定义和特点。
2. 掌握对数函数的图像和性质。
3. 能够解决与对数函数相关的问题。
教学步骤:步骤一:引入对数函数的概念1. 首先让学生回顾指数函数的概念和性质。
2. 提出一个问题:如何求解指数方程$x^a=b$,其中$a$和$b$为已知的实数。
3. 引出对数函数的概念:对数函数是指数函数的逆运算,它可以表示为$\log_a{b}=x$,其中$a$为底数,$b$为底数为$a$的指数的真数,$x$为对数值。
4. 说明对数函数和指数函数之间的关系,即$\log_a{b}=x$等价于$a^x=b$。
5. 强调对数函数的定义域为正实数集,值域为实数集。
步骤二:对数函数的图像和性质1. 给出对数函数$y=\log_a{x}$的图像,其中$a>0$且$a\neq1$。
2. 分析对数函数的特点:(可以使用图像来帮助分析)a. 对数函数的图像在$x$轴的正半轴上,从左向右递增。
b. 对数函数的图像在$a=1$时不存在。
c. 对数函数的图像关于直线$y=x$对称。
d. 对数函数在$a>1$时是增函数,在$0<a<1$时是减函数。
步骤三:解决与对数函数相关的问题1. 给出一些与对数函数相关的问题,例如解对数方程、求对数函数的定义域和值域等。
2. 引导学生通过对数函数的性质和定义进行问题的求解。
步骤四:练习和总结1. 给学生一些练习题,测试他们对对数函数的掌握情况。
2. 结合学生的解题经验,总结对数函数的概念、图像和性质。
教学资源:1. PowerPoint演示文稿或黑板。
2. 课堂练习题。
评估方式:1. 课堂参与度和回答问题的质量。
2. 课后布置的作业完成情况。
3. 小测或考试。
对数的概念教案最终版一、教学目标1. 让学生理解对数的定义和性质,掌握对数的基本运算方法。
2. 培养学生运用对数解决实际问题的能力,提高逻辑思维和运算能力。
二、教学内容1. 对数的定义与性质2. 对数的运算方法3. 对数在实际问题中的应用三、教学重点与难点1. 对数的定义与性质2. 对数的运算方法3. 对数在实际问题中的应用四、教学方法1. 采用讲授法,讲解对数的定义、性质和运算方法。
2. 运用案例分析法,引导学生运用对数解决实际问题。
3. 利用数形结合法,直观展示对数函数的图像,帮助学生理解对数的概念。
五、教学过程1. 导入新课:通过复习指数函数,引出对数的概念。
2. 讲解对数的定义与性质:解释对数的定义,阐述对数的性质,如对数与指数的关系、对数的换底公式等。
3. 教授对数的运算方法:讲解对数的加减乘除运算规则,举例说明运算方法。
4. 应用练习:布置练习题,让学生运用对数解决实际问题,如计算复合利率、人口增长等。
5. 课堂小结:总结本节课所学内容,强调对数的概念、性质和运算方法。
6. 布置作业:布置课后作业,巩固所学知识。
7. 课后反思:教师对本节课的教学情况进行反思,针对学生的掌握情况,调整教学策略。
六、教学拓展1. 对数与自然底数e:介绍自然底数e的概念,解释e的对数——自然对数,及其在数学和物理中的重要性。
2. 对数与对数函数:讲解对数函数的定义,分析对数函数的性质,如单调性、奇偶性等。
3. 对数在科学计算中的应用:介绍对数在科学计算中的广泛应用,如测量、天文、生物等领域。
七、案例分析1. 利用对数计算复合利率:以存款利息为例,讲解如何利用对数计算复合利率。
2. 利用对数解决人口增长问题:以人口增长模型为例,讲解如何利用对数预测人口增长。
3. 利用对数分析信号传输:以电信行业为例,讲解如何利用对数分析信号传输过程中的衰减。
八、课堂互动1. 小组讨论:分组讨论对数在实际生活中的应用,分享各自的研究成果。
全国一等奖对数的概念教学设计一、教学目标1.理解对数的概念和性质。
2.能够正确地求解简单的对数运算。
3.培养学生的数学思维能力和解决问题的能力。
二、教学内容1.对数的概念2.对数的性质3.对数的运算三、教学过程第一步:导入(10分钟)1.引入对数的概念:可以通过举例子或问题引入,例如“我们知道1÷2=0.5,2的多少次方等于1÷2呢?”2.让学生根据问题思考,引导他们猜想2的多少次方等于1÷2,引出对数的概念。
第二步:概念讲解(20分钟)1. 对数的定义:如果a的x次方等于N,那么称x是以a为底N的对数,记作logₐN=x。
2.对数的意义:对数是一种指数运算的逆运算,它可以用来求解指数方程。
3. 对数的性质:将对数的定义列举出来,让学生猜测对数的性质,例如logₐ1=0,logₐa=1等。
4.通过举例子和问题,让学生验证对数的性质。
第三步:例题讲解与练习(30分钟)1. 解释对数的换底公式:logₐN=logᵦN/logᵦa。
2. 讲解对数的运算法则:logₐ(N×M)=logₐN+logₐM,以及logₐ(N/M)=logₐN-logₐM。
3.给学生提供一些例题进行讲解,让学生掌握对数的运算。
4.给学生一些练习题,巩固对数的运算法则。
第四步:应用拓展(15分钟)1.通过实际问题的引入,让学生了解对数在生活中的应用,例如震级为什么要用对数表示等。
2.提供一些拓展题,让学生进行解答和思考,培养他们的数学思维能力和解决问题的能力。
第五步:总结(5分钟)1.让学生归纳总结对数的概念和性质。
2.提问学生对对数的运算法则有什么理解和掌握。
四、教学评估1.在例题讲解与练习环节,教师可以通过观察学生解题的过程,检查学生对对数的运算法则的掌握情况。
2.在应用拓展环节,教师可以观察学生解答实际问题的能力来评估他们对对数的应用理解情况。
3.可以设计一个小测验来检查学生对对数的概念和性质的理解程度。
对数教学设计【优秀5篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!对数教学设计【优秀5篇】高中数学对数教学教案有哪些篇一教学目标1.理解并掌握对数性质及运算法则,能初步运用对数的性质和运算法则解题。
全国一等奖对数的概念教学设计教学设计:全国一等奖对数的概念一、教学目标:1.知识与技能:了解对数的概念和性质,掌握对数的运算规则和应用。
2.情感与态度:培养学生的数学观念,激发学生对数学的兴趣。
3.过程与方法:培养学生独立思考和解决问题的能力。
二、教学重点与难点:1.教学重点:对数的概念和性质,对数的运算规则和应用。
三、教学过程:1.导入(10分钟)教师通过展示数学竞赛获奖证书的图片,引起学生对全国数学竞赛一等奖的兴趣。
然后提问:你认为数学竞赛获奖证书上的对数概念和指数有什么关系?2.概念讲解(20分钟)教师通过引导学生回忆指数的概念和运算规则,然后引入对数的概念。
教师解释对数就是指数的逆运算,即a^x=b,那么x就是以a为底数,以b为真数的对数,记作 loga b。
教师通过具体的例子和公式展示对数的运算过程和性质。
3.讨论与练习(30分钟)教师将学生分成小组进行讨论和练习。
每个小组选择一个实际问题,通过对数的运算来解决问题。
例如:地一天的雨量为1000毫升,下雨的时间为10小时,问每小时的平均降雨量是多少?学生通过计算log10 1000/10得到结果。
然后小组间进行交流分享,并由代表小组汇报结果。
4.归纳总结(10分钟)教师引导学生总结对数的性质和运算规则,并解答学生提出的问题。
教师与学生一起完成对数的性质总结表格,例如:性质一:loga (mn) = loga m + loga n性质二:loga (m/n) = loga m - loga n性质三:loga (m^p) = ploga m5.拓展与应用(20分钟)教师提供更多的实际问题让学生练习对数的运用。
例如:城市的人口每年递增10%,请问经过n年后的人口是原来的多少倍?学生通过计算log1.1^(n-1)得到结果。
随后,学生再提出其他实际问题,并互相交流解决的方法。
6.作业布置(5分钟)教师布置练习题,要求学生自主完成,并鼓励学生提出更多实际问题和解决方法。
对数的概念教学设计
引言
在数学学科中,对数是一种非常重要的概念,它在许多领域中都有着广泛的应用。
掌握对数的概念不仅对于学习数学本身有着重要意义,还能为应用科学和工程领域的问题建模和求解提供便利。
本文将介绍对数的概念,并设计一节针对初中生的对数教学课程。
一、对数的引入
1. 导入知识
引入对数的概念可以从一些实际问题开始,例如:假设一辆车的速度是每小时60公里,我们可以用一个表达式来描述这辆车行驶的距离与时间的关系。
但如果我们想知道20小时后这辆车行驶的距离,通过计算表达式的值往往比较繁琐。
这时,我们可以引入对数的概念,使得问题的求解更加简便。
2. 引入对数符号
介绍对数的符号,在这里我们可以用log表示。
3. 对数的定义
对数是指数的逆运算。
通过对数的引入,我们可以将指数运算转化为对数运算来求解问题。
二、对数的性质
1. 对数的基本性质
介绍对数的基本性质,例如log(a*b) = log(a) + log(b)和log(a^b) = b*log(a),以及log(1) = 0和log(a^a) = a,这些性质是对数运算中非常有用的基本定理。
2. 对数的换底公式
介绍对数的换底公式log(a,b) = log(c,b)/log(c,a),其中a、b、c是对数的底数。
三、对数的应用
1. 对数在等比数列中的应用
介绍等比数列及其性质,通过对数的概念,我们可以用对数函数来描述等比数列中的元素。
例如,公比为2的等比数列1,2,4,8……可以用对数函数来表示为log(2,1),log(2,2),log(2,4),log(2,8)。
对数的概念教案最终版一、教学目标1. 理解对数的定义和性质2. 掌握对数的运算规则3. 能够应用对数解决实际问题二、教学重点1. 对数的定义和性质2. 对数的运算规则三、教学难点1. 对数的性质的理解和应用2. 对数运算的规则的推导和应用四、教学准备1. 教学PPT2. 练习题五、教学过程1. 引入:通过讲解指数与对数的关系,引导学生思考对数的概念。
2. 讲解:讲解对数的定义,通过对数的性质和运算规则进行讲解,让学生理解对数的概念。
3. 练习:让学生通过练习题,巩固对数的定义和运算规则。
4. 应用:让学生应用对数解决实际问题,加深对对数概念的理解。
6. 作业:布置练习题,巩固对数的定义和运算规则。
7. 板书设计:对数的定义;对数的性质;对数的运算规则。
8. 课后反思:对本节课的教学效果进行反思,对学生的掌握情况进行评估,为下一步的教学做好准备。
9. 教学延伸:讲解对数的进一步应用,如对数函数和对数方程等。
10. 教学评价:通过学生的练习和课堂表现,对学生的学习效果进行评价。
六、教学策略1. 采用问题驱动的教学方法,引导学生通过探索和发现来理解对数的概念。
2. 使用多媒体教学资源,如动画和图表,帮助学生形象地理解对数的概念和性质。
3. 提供丰富的练习机会,让学生在实际操作中掌握对数的运算规则。
4. 鼓励学生进行合作学习,通过讨论和交流,加深对对数概念的理解。
七、教学评价1. 通过课堂提问,观察学生对对数概念的理解程度。
2. 通过练习题的完成情况,评估学生对对数运算规则的掌握程度。
3. 学生课后作业和对数应用题的解决情况,评价学生对对数的应用能力。
4. 综合学生的课堂表现和练习成绩,给予全面评价。
八、教学拓展1. 介绍对数在科学和工程领域中的应用,如地震监测、信号处理等。
2. 探讨对数与指数之间的关系,引导学生深入研究数学的内在联系。
3. 引入对数函数的概念,为后续的数学课程打下基础。
九、教学建议1. 在讲解对数的定义时,要注重与学生已有的数学知识相结合,建立对数与指数的联系。
对数的概念教案最终版一、教学目标:1. 让学生理解对数的定义和性质,能够正确地运用对数解决实际问题。
2. 培养学生对数的概念和运算能力,提高逻辑思维和解决问题的能力。
二、教学重点与难点:1. 重点:对数的定义、性质和对数运算。
2. 难点:对数的运算法则和应用。
三、教学准备:1. 教师准备PPT、教案、练习题等相关教学材料。
2. 学生准备笔记本、笔等学习用品。
四、教学过程:1. 导入:通过引入自然对数与指数函数的关系,激发学生学习对数的兴趣。
2. 新课导入:讲解对数的定义、性质和对数运算的基本法则。
3. 案例分析:举例讲解对数在实际问题中的应用,如人口增长、放射性衰变等。
4. 课堂练习:学生独立完成练习题,巩固所学知识。
5. 总结与拓展:对本节课内容进行总结,布置课后作业,引导学生思考对数在实际生活中的应用。
五、课后作业:1. 复习本节课所学内容,整理笔记。
2. 完成课后练习题,巩固对数的概念和运算。
3. 探索对数在其他领域的应用,如科学计算、经济学等。
4. 准备下一节课的学习内容。
六、教学评价:1. 通过课堂提问、练习题和课后作业,评估学生对对数概念的理解和运用能力。
2. 关注学生在解决问题时的思维过程,培养学生的创新意识和解决问题的能力。
3. 鼓励学生参与课堂讨论,提高学生的表达能力和合作精神。
七、教学策略:1. 采用直观演示、案例分析等教学方法,让学生形象地理解对数概念。
2. 通过循序渐进的练习,培养学生对数运算的熟练程度。
3. 创设问题情境,引导学生运用对数解决实际问题,培养学生的应用能力。
八、教学实践:1. 课堂讲解:详细讲解对数的定义、性质和对数运算的法则。
2. 练习巩固:安排适量练习题,让学生在课堂上完成,及时巩固所学知识。
3. 课后作业:布置针对性的课后作业,巩固对数的概念和运算。
九、教学反思:1. 课后认真总结课堂教学,反思教学效果,发现问题并及时调整教学方法。
2. 关注学生的学习反馈,了解学生对对数概念的理解程度,针对性地进行辅导。
对数教学设计优秀10篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!对数教学设计优秀10篇《对数与对数函数》教学计划篇一指对数的运算教案设计一、反思数学符号:“”“”出现的背景1.数学总是在不断的发明创造中去解决所遇到的问题。
对数的概念教案初中数学教学目标:1. 理解对数的定义和性质;2. 学会运用对数解决实际问题;3. 培养学生的逻辑思维能力和解决问题的能力。
教学重点:1. 对数的定义和性质;2. 对数的运算规律。
教学难点:1. 对数的概念的理解;2. 对数的运算规律的应用。
教学准备:1. 教学课件或黑板;2. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾指数的概念和运算规律;2. 提问:指数运算有什么特点?如何快速计算指数幂?二、新课讲解(15分钟)1. 介绍对数的定义:对数是指数的逆运算,用来表示幂的指数;2. 讲解对数的符号:以自然底数e为例,若a^x=N,则x叫做以a为底N的对数,记作x=log_aN;3. 引导学生理解对数的性质:对数的底数a>0且不等于1,对数的真数N>0;4. 讲解对数的运算规律:log_aM+log_aN=log_a(MN),log_aM-log_aN=log_a(M/N),log_aM^n=nlog_aM;5. 通过例题讲解如何运用对数解决实际问题,如计算幂的值、求解方程等。
三、课堂练习(15分钟)1. 布置练习题,让学生独立完成;2. 选几位学生上台展示解题过程,并讲解思路;3. 针对学生的解题过程中出现的问题进行讲解和指导。
四、课堂小结(5分钟)1. 回顾本节课所学内容,让学生总结对数的定义、性质和运算规律;2. 强调对数在实际问题中的应用。
五、课后作业(课后自主完成)1. 巩固对数的定义、性质和运算规律;2. 运用对数解决实际问题,如计算幂的值、求解方程等。
教学反思:本节课通过讲解对数的定义、性质和运算规律,让学生掌握对数的基本概念和应用方法。
在课堂练习环节,学生能够独立完成练习题,并对出现的问题进行讲解和指导。
但在课后作业的完成过程中,部分学生对对数的应用仍然存在困难,需要在今后的教学中加强对学生的个别辅导和指导。
总体来说,本节课的教学效果较好,学生对对数的概念有了较为深入的理解,能够运用对数解决实际问题。
对数的概念教案目标:让学生理解对数的概念,并学习如何使用对数来解决问题。
学习目标:1. 学生能够解释对数的概念。
2. 学生能够计算对数值。
3. 学生能够使用对数来解决实际问题。
准备工作:白板、黑板笔、教材、计算器。
教学步骤:引入活动:1. 引导学生回忆一下指数运算,并举例说明指数运算的基本规则。
介绍对数概念:2. 解释对数的定义:对于一个正数x,记作logb(x),是求解幂运算b^y = x中,未知数y的值。
其中,b被称为底数,x被称为真数,y被称为对数。
3. 以具体例子说明对数的概念:- 如果log2(8) = y,那么2^y = 8,可以通过多少次的2相乘等于8,求解y的值。
- 同样地,log10(100) = 2,因为10的2次方等于100。
4. 强调对数与幂运算的关系:对数跟幂运算是相互逆运算,通过对数可以得到幂运算的未知数的值。
解释对数运算的基本规则:5. 解释对数运算的基本规则:- logb(x * y) = logb(x) + logb(y)。
- logb(x / y) = logb(x) - logb(y)。
- logb(x^k) = k * logb(x)。
6. 举例说明上述对数运算的规则。
练习对数计算:7. 让学生解决一些简单的对数计算题目,以巩固他们对对数概念和运算规则的理解。
应用对数解决问题:8. 给学生提供一些实际问题,要求他们使用对数来解决这些问题。
例如:- 汽车加油站的价格为每升1.2元,如果一辆汽车加满油需要花费120元,那么汽车的油箱容量是多少升?- 一座房子每年的价值以1.5%的比例递增,如果房子的初始价值为80万元,那么在10年后房子的价值是多少万元?总结复习:9. 问答和回顾本课的重点内容,确保学生对对数的概念和运算规则有深入理解。
拓展练习:10.给学生一些拓展题,以提高他们对对数概念的理解和应用能力。
评估:通过对学生的课堂参与情况和作业完成情况进行评估。
对数的概念教案对数的概念教学目标:1、理解对数的概念1)理解对数的定义,了解对数式中各字母的取值范围及名称;2)理解指数与对数之间的互逆关系,能够进行对数式与指数式的互化;3)能够利用对数式与指数式的互化关系完成简单的运算。
2、通过对数概念的研究,使学生认识到指数与对数之间的互化关系,蕴含着数学中相互转化的思想,同时学生体会到类比研究方法在数学研究中的作用。
3、通过对数的研究,能利用相互联系的观点看问题,培养他们利用数学思想分析问题的意识。
教学重点:1、对数概念的正确理解;2、对数式与指数式的相互转化。
教学难点:1、对数式、指数式中各字母含义的区别理解;2、应用指数与对数的相互转化求值。
教学过程:一、问题情境:若3+2=5,则3=5-2;若3×2=6,则3=6÷2;若23=8,则3=。
思考:能否用2和8的来表示3?二、学生活动:活动1:引导学生观察在上面的几个式子中,都是求3,第一个3根据的加法逆运算用减法求出,第二个3用乘法的逆运算除法求出,那么第三个3能不能用指数式的逆运算求出来呢?指数式的逆运算又是什么呢?显然我们以前没有学过,所以今天我们研究一种新的数学运算——对数运算来解决这个问题。
三、构建数学:1、对数的定义:一般地,如果a(a>0,a≠1)的b的次幂等于N,即ab=N,那么就称b是以a为底的对数,记作log aN=b,其中a叫做对数的底数,N叫做真数。
注意:(1)a>0,a≠1。
2)ab=N⇔logaN=b。
3)注意对数的书写格式。
活动2:讨论并写出a、b、N在指数式和对数式中各自的名称?两种运算的关系就如同加减法和乘除运算一样,当数字的位置变发生了变化,其含义和名称也随之改变。
式子a名称b指数对数N幂值真数指数式a=N对数式logaN=bb底数底数2、两种特殊的对数:1)常用对数:以10为底的对数称为常用对数,并把log10N一般简记为lgN。
2)自然对数:以e为底的对数称为自然对数,e是一个无理数,e=2.…,正数N的自然对数logeN一般简记为lnN。
对数的概念
一、教学内容分析
本节课是新课标高中数学B版必修①中第二章对数函数内容的第一课时,也就是对数函数的入门。
对数函数对于学生来说是一个全新的函数模型,学习起来比较困难。
而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起十分重要的作用。
通过本节课的学习,可以让学生理解对数的概念,从而进一步深化对对数模型的认识与理解,为学习对数函数作好准备。
同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义。
二、学生学习情况分析
现阶段大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感。
通过对指数与指数幂的运算的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼。
因此,学生已具备了探索发现研究对数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法。
三、设计思想
学生是教学的主体,本节课要给学生提供各种参与机会。
为了调动学生学习的积极性,使学生化被动为主动。
本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中认识对数的模型,体会引入对数的必要性。
在教学重难点上,我步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率。
让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。
四、教学目标
1、理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质,掌握以上知识并形成技能。
2、通过事例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化。
3、通过学生分组探究进行活动,掌握对数的重要性质。
通过做练习,使学生感受到理论与实践的统一。
4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识。
五、教学重点与难点
重点:(1)对数的概念;(2)对数式与指数式的相互转化。
难点:(1)对数概念的理解;(2)对数性质的理解。
讲授新课二、对数式与指数式的互化:(5分钟)
幂底数← a →对数底数
指数← b →对数
幂← N →真数
思考:
①为什么对数的定义中要求底数a>0且a≠1?
②是否是所有的实数都有对数呢?
负数和零没有对数
让学生了解
对数与指数
的关系,明
确对数式与
指数式形式
的区别,a、
b和N位置
的不同,及
它们的含
义。
互化体
现了等价转
化这个重要
的数学思
想。
三、两个重要对数(2分钟)
①常用对数:
以10为底的对数N
10
log,简记为: lgN
②自然对数:
以无理数e=2.71828…为底的对数的对数N
e
log
简记为: lnN . (在科学技术中,常常使用以e为底的
对数)
注意:两个重要对数的书写
这两个重要
对数一定要
掌握,为以
后的解题以
及换底公式
做准备。
课堂练习(7分钟)
1 将下列指数式写成对数式:
(1)16
24=(2)
27
1
33=
-
(3)20
5=
a(4)45
.0
2
1
=
⎪
⎭
⎫
⎝
⎛b
2 将下列对数式写成指数式:
(1)3
125
log
5
=(2)2
3
log
3
1
-
=
(3)069
.1
log
10
-
=
a
3 求下列各式的值:
(1)64
log
2(2)
27
log
9
本练习让学
生独立阅读
课本P69例
1和例2后
思考完成,
从而熟悉对
数式与指数
式的相互转
化,加深对
对数的概念
的理解。
并
要求学生指
出对数式与
指数式互化
时应注意哪
些问题。
培
养学生严谨
的思维品
质。
巩固练习(10分钟)
1、课本P70 练习
2、提高训练
(1)已知x满足等式[]0
)
(log
log
log
2
3
5
=
x,求x
16
log
值
(2)求值:e
ln
100
1
lg
25
.6
log
5.2
+
+
巩固指数式
与对数式的
互化,巩固
对数的基本
性质及其应
用。
归纳小结
强化思想(3分钟)
1、引入对数的必要性----对数的概念
一般地,如果a(a>0且a≠1)的b次幂等于N,就是
b
a=N,那么数b叫做以a为底,N的对数。
记作
b
N
a
=
log
2 、指数与对数的关系
3、对数的基本性质
负数和零没有对数0
1
log=
a
1
log=
a
a
对数恒等式: N
a N a=
log
n
a n
a
=
log
总结是一堂
课内容的概
括,有利于
学生系统地
掌握所学内
容。
同时,
将本节内容
纳入已有的
知识系统
中,发挥承
上启下的作
用。
为下一
课时对数的
运算打下扎
实的基础。
作业布置一、课本P82 习题2.2 A组第1、2题
二、已知
y
x
a
a
=
=3
log
,
2
log,求y
x
a2
3+
的值
三、求下列各式的值:
5
log
22
23
log2
2-
5
log
29
34
log
2
13
3-
作业是学生
信息的反
馈,教师可
以在作业中
发现学生在
学习中存在
的问题,弥
补教学中的
不足。
板§2.2.1 对数的概念
七、教学反思
本教学设计先由引例出发,创设情境,激发学生对对数的兴趣;在讲授新课部分,通过结合多媒体教学以及一系列的课堂探究活动,加深学生对对数的认识;最后通过课堂练习来巩固学生对对数的掌握。