蛋白聚糖和细胞外基质
- 格式:ppt
- 大小:1.69 MB
- 文档页数:20
1)细胞内膜系统:是指细胞内在结构、功能及发生上相关的,由膜围绕的细胞器或细胞结构,主要包括,内质网、高尔基体、溶酶体等。
2)生物膜系统:只要是指单位膜构成的细胞质膜和由单位膜围成的各种细胞器,如线粒体、叶绿体、高尔基体、溶酶体等。
3)细胞识别:细胞通过表面受体与胞外信号分子(配体)选择性相互作用导致胞内一系列生理变化,最终表现为细胞整体的生物学效应的过程,是细胞通讯的重要环节。
4)细胞生物学:是研究细胞基本生命活动规律的科学,它在不同层次(显微、亚显微与分子水平)上研究细胞的结构、发育与调控,以及细胞间关系和在整个生命体中的作用。
5)受体:是一种能够识别和选择性结合某种配体(信号分子)的大分子,当与配体结合后,通过信号转到作用将胞外信号转换为胞内化学或物理的信号,以启动一系列过程,最最终表现为生物学效应。
6)分子开关:是使细胞内一系列信号传递的级联反应,能在正、负反馈两个方面得到精确控制的分子机制的蛋白质分子。
7)细胞凋亡:又叫程序性细胞死亡,是细胞主动发生的自然死亡过程,是一个主动的由基因决定的结束生命的过程,可以发生在生物体的生长发育直至死亡的整个生命过程及某些病理过程中。
8)细胞骨架:指真核细胞中的蛋白纤维网架体系,细胞骨架概念有狭义和广义之分,狭义的细胞骨架概念是指细胞质骨架,包括微丝、微管和中间纤维;广义的细胞骨架包括细胞核骨架、细胞质骨架、细胞膜骨架和细胞外基质。
9)细胞骨架系统:是由一系列特异的结构蛋白质装配而成的胞内网架系统,广泛分布于细胞结构的各个部分,在维持细胞形态与内部结构的合理排布中起支架作用。
10)蛋白质分选:新生肽由其合成部位正确地运转到其行使功能部位的过程,包括细胞质基质中合成多肽的分选途径和粗面内质网上合成多肽的分选途径。
(合成的蛋白质只有转运至细胞的正确部位,并装配成结构与功能的复合体才能参与细胞的生命活动,这一过程称为蛋白质分选)11)核小体:染色体的基本结构单元,是由组蛋白和200个碱基对的DNA双螺旋组成的球形小体。
细胞外基质材料的制备与组织工程应用研究细胞外基质(Extracellular Matrix,ECM)是一种位于细胞周围的复杂三维结构,它由多种不同的生物大分子组成,如胶原蛋白、弹性蛋白和蛋白聚糖等。
ECM在细胞生物学和组织学中起着重要的作用,对于维持组织结构和机能具有至关重要的影响。
基于对ECM的研究,科学家们尝试制备ECM材料并应用于组织工程等领域,以期能够促进组织再生和治疗疾病。
ECM的制备方法有很多种,其中一种常用的方法是从组织中提取。
通过脱细胞技术,可以将组织中的细胞和细胞器除去,留下ECM的结构框架和成分。
这种方法可以保持ECM的天然特性,并且较为简单。
制备出来的ECM材料可以用于体外培养细胞,模拟细胞在体内的生长环境,为细胞提供支持和指导。
此外,这种ECM材料还可以用于修复组织缺损、增强组织融合等。
除了从组织中提取ECM,科学家们还可以通过基因工程的方法制备特定成分的ECM材料。
例如,利用基因重组技术,可以大量表达特定的ECM成分,如胶原蛋白或弹性蛋白。
这种方法可以精确控制ECM材料的成分和结构,并使其具有特定的生物功能。
通过调控ECM材料中成分的比例和排列方式,可以实现对细胞行为的调控和引导,从而促进组织再生和治疗。
ECM材料在组织工程中有着广泛的应用。
例如,在骨组织工程中,科学家们可以利用ECM材料来构建人工骨骼。
他们首先通过脱细胞技术制备出ECM骨骼框架,然后再将干细胞种植到ECM材料上,通过体外培养和植入体内,可以使干细胞分化为骨细胞,从而实现骨组织的再生和修复。
这种方法在医学中有着重要的应用前景,可以用于治疗骨折、骨缺损等各种骨相关疾病。
此外,ECM材料还可以应用于心血管组织工程。
例如,科学家们可以利用ECM材料构建人工心脏血管,用于治疗心脏病患者的血管病变。
他们通过脱细胞技术制备出血管的ECM框架,然后再将患者自身的干细胞种植到ECM材料上,通过体外培养和植入体内,可以使干细胞分化为内皮细胞和平滑肌细胞,从而实现血管的再生和修复。
医学细胞生物学复习题答案1、外在膜蛋白:又称外周蛋白,占膜蛋白总量的20%~30%,完全位于脂双层之外,分布在胞质侧或胞外侧,一般通过非共价键附着在脂类分子头部极性区或跨膜蛋白亲水区的一侧,间接与膜结合。
其为水溶性蛋白,与膜结合较弱,一般用温和的方法如改变溶液的离子强度或pH,即可将它们从膜上别离下来,而不需破坏膜的根本结构。
〔P68〕2、主动运输:是载体蛋白介导的物质逆浓度梯度或电化学梯度由低浓度一侧向高浓度一侧进行的跨膜运输方式,要消耗能量。
(P81)3、膜泡运输:大分子和颗粒物质运输时并不直接穿过细胞膜,都是由膜包围形成膜泡,通过一些列膜囊泡的形成和融合来完成的转运过程。
〔P85〕4、胞吞作用:又称内吞作用或入胞作用,它是质膜内陷,包围细胞外物质形成胞吞泡,脱离质膜进入细胞内的转运过程。
根据胞吞物质的大小、状态及特异程度不同,可将胞吞作用分为三种类型:吞噬作用、吞饮作用及受体介导的内吞作用。
〔P85〕5、细胞外基质:是由细胞分泌到细胞外空间,由细胞分泌蛋白〔胶原和弹性蛋白、纤连蛋白、层粘连蛋白〕和多糖〔氨基聚糖、蛋白聚糖〕构成的精密有序的网络结构〔主要由凝胶样基质、纤维网架构成〕。
静态的发挥支持、连接、保水、保护等物理作用,动态的对细胞行为产生全方位的影响。
〔P241〕6、RGD序列:是指纤连蛋白和其他某些细胞外基质中所含有的可被细胞外表某些整联蛋白所识别的Arg-Gly-Asp三肽序列。
〔P251〕7、有丝分裂器:在中期细胞中,由染色体、星体、中心粒及纺锤体所组成的结构。
〔P282〕8.联会复合体:在联会的同源染色体之间,沿纵轴方向形成的一种特殊的结构称联会复合体。
主要成分为蛋白质,还有DNA、RNA等。
〔P285〕9.、细胞周期:细胞从上次分裂结束到下次分裂结束所经历的规律性变化称为细胞周期。
〔P279〕 10.、细胞分化:由单个受精卵产生的细胞,在形态结构、生化组成和功能等方面均具有明显的差异,将个体发育中形成这种稳定性差异的过程称为细胞分化。
名词解释蛋白聚糖
蛋白聚糖是一种生物大分子化合物,由蛋白质和多糖分子组成。
蛋白聚糖在生物体内起着重要的结构和功能作用。
蛋白质部分赋予
其特定的生物活性,而多糖部分则赋予其稳定性和可溶性。
蛋白聚
糖广泛存在于动植物组织中,包括细胞外基质、细胞膜、骨骼、软骨、皮肤和血管壁等。
它们在细胞间质和细胞外基质中起着支持和
结构维持的作用,也参与细胞间的信号传导和调控。
从化学结构上看,蛋白聚糖是由蛋白质和多糖分子通过共价键
结合而成。
蛋白质部分可以是各种不同的蛋白质,而多糖部分通常
是多糖链,如葡聚糖、软骨素等。
这种复合物的形成赋予了蛋白聚
糖独特的生物学功能和特性。
在生物体内,蛋白聚糖具有多种重要的生理功能。
它们可以提
供细胞外基质的支持和结构,维持组织的形态和机械强度。
此外,
蛋白聚糖还参与细胞间的信号传导,调节细胞增殖、分化和迁移等
生物学过程。
在动植物的生长发育过程中,蛋白聚糖也扮演着重要
的角色。
总的来说,蛋白聚糖是一类重要的生物大分子化合物,由蛋白
质和多糖分子组成,具有结构支持、信号传导和调节生物学过程等多种重要生理功能。
它们在生物体内广泛存在,并对细胞和组织的结构和功能发挥着重要作用。
一.细胞外基质的定义细胞外基质是指分布于细胞外空间的蛋白质和多糖纤维等交错形成的网络胶状结构体系,或简言之为细胞成分之外的组织成分的总称。
二.细胞外基质的生物学作用细胞外基质不仅将细胞整合在一起并决立其物理性质,而且对细胞的存活、形态、功能、增殖、分化、迁務及死亡等各种生物学行为加以调节。
细胞与细胞外基质是相辅相成、互相联系的。
一方面,细胞外基质的结构和功能的异常可作为细胞组织病理改变的重要生理指标;另一方而,结构和功能异常的细胞外基质也会作用于周囤的细胞及组织器官,进而促使和导致相关病理改变的发生。
三.细胞外基质的主要组分可分为三类:①氨基聚糖与蛋白聚糖-凝胶样基质;②胶原和弹性蛋白等-纤维网架,结构蛋白:③非胶原性黏合蛋白,包括纤连蛋白和层粘连蛋白-粘附成分1.氨基聚糖和蛋白聚糖1)氨基聚糖(1)结构:重复的二糖单位聚合而成的无分支直链多糖(2)分类:氨基聚糖的分子特性及分布(3)重要特征:2.与蛋白质链不同,该碳水化合物链不会折叠成致密结构,因此氨基聚糖在基质中占据很大的空间2.氨基聚糖带负电荷,具有强烈的亲水性和吸附阳离子能力。
氨基聚糖可与水分子结合形成凝胶,结果产生膨胀压可抵抗外界压力。
☆透明质酸:结构:最简单,无硫酸基团,含有大量亲水性的负电荷基团C00-,全部是由单纯的匍萄糖醛基和乙酰氨基匍萄糖二糖结构单位重复排列聚合而成。
形态:呈无规则卷曲状功能:赋予组织弹性、抗压性,并具有润滑剂的作用,促进细胞迁移、增殖降解:透明质酸酶2)蛋白聚糖结构:是由一条称之为核心蛋白质的多肽链与硫酸氨基聚糖共价结合的髙分子量复合物,是一种含糖量极高的糖蛋白。
核心蛋白为单链多肽,在同一个核心蛋白上可同时结合一个到上百个同一种类或不同种类的氨基聚糖链,形成大小不等的蛋白聚糖单体,若干个蛋白聚糖单体又能通过连接蛋白与透明质酸以非共价键结合形成蛋白聚糖多聚体。
2.胶原和弹性蛋口1)胶原胶原是细胞外基质中的一个纤维蛋白家族,是动物体内含量最多的蛋白质。