河北省衡水中学高一数学必修一自助餐 1.3.1函数的最值(一)
- 格式:doc
- 大小:69.00 KB
- 文档页数:2
高一数学必修1 函数的最值【学习导航】知识网络学习要求1.了解函数的最大值与最小值概念; 2.理解函数的最大值和最小值的几何意义; 3.能求一些常见函数的最值和值域.自学评价1.函数最值的定义:一般地,设函数()y f x =的定义域为A .若存在定值0x A ∈,使得对于任意x A ∈,有0()()f x f x ≤恒成立,则称0()f x 为()y f x =的最大值,记为max 0()y f x =;若存在定值0x A ∈,使得对于任意x A ∈,有0()()f x f x ≥恒成立,则称0()f x 为()y f x =的最小值,记为min 0()y f x =;2.单调性与最值:设函数()y f x =的定义域为[],a b ,若()y f x =是增函数,则max y =()f a ,min y =()f b ;若()y f x =是减函数,则max y =()f b ,min y =()f a .【精典X 例】一.根据函数图像写单调区间和最值:例1:如图为函数()y f x =,[]4,7x ∈-的图象,指出它的最大值、最小值及单调区间.【解】 由图可以知道:当 1.5x =-时,该函数取得最小值2-;当3x =时,函数取得最大值为3;函数的单调递增区间有2个:( 1.5,3)-和(5,6);该函数的单调递减区间有三个:(4, 1.5)--、(4,5)和(6,7)二.求函数最值:例2:求下列函数的最小值: (1)22y x x =-; (2)1()f x x=,[]1,3x ∈. 【解】(1)222(1)1y x x x =-=-- ∴当1x =时,min 1y =-; (2)因为函数1()f x x =在[]1,3x ∈上是单调减函数,所以当3x =时函数1()f x x=取得最小值为13.听课随笔追踪训练一1.函数2()4(0)f x x mx m =-+>(,0]-∞上的最小值(A )()A 4 ()B 4-()C 与m 的取值有关 ()D 不存在0 ,最大值是32. 2. 函数()f x =的最小值3.求下列函数的最值:(1)4()1,{1,0,1,2}f x x x =+∈-;(2)()35,[3,6]f x x x =+∈ 析:值,所以求函数的最值的方法有时和求函数值域的方法是相仿的. 解(1)(1)(1)2f f =-=;(0)1f =;(2)17f = 所以当0x =时,min 1y =;当2x =时max 17y =; (2)函数()35f x x =+是一次函数,30>故()35f x x =+在区间[3,6]所以当3x =时,min 14y =; 当6x =时,max 23y =;【选修延伸】含参数问题的最值:例3:求2()2f x x ax =-,[0,4)x ∈值.【解】22()()f x x a a =--,称轴为x a =的抛物线.[]min ()(0)0f x f ==; ①若0a ≤,则()f x 在[0,4)[]2min ()()f x f a a ==-;②若04a <<,③若4a ≥,则()f x 在[0,4)()f x 的最小值不存在.点评:含参数问题的最值,一般情况下,我们先将参数看成是已知数,但不能解了我们再进行讨论!思维点拔:一、利用单调性写函数的最值?我们可以利用函数的草图,如果函数在区间[,]a c 上是图像连续的,且在[,]a b 是单调递增的,在[,]b c 上是单调递减的,则该函数在区间[,]a c 上的最大值一定是在x b =处取得;同理,若函数在区间[,]a c 上是图像连续的,且在[,]a b 是单调递减的,在[,]b c 上是单调递增的,则该函数在区间[,]a c 上的最小值一定是在x b =处取得.追踪训练1.函数)1(11)(x x x f --=的最大值是( D)()A 54()B 45()C 43()D 34 2. y=x 2+12-x 的最小值为( C ) A.0B.43C.1D 不存在.3. 函数2()21(0)f x ax ax a =++>在区间[3,2]-上的最大值为4,则a =____38____. 4.函数23(0)()5(0)x x f x x x +<⎧=⎨-≥⎩的最大值为5. 5.已知二次函数2()21f x ax ax =++在[]3,2-上有最大值4,某某数a 的值.解:函数2()21f x ax ax =++的对称轴为1x =-,当0a >时,则当2x =时函数取最大值4,即814a +=即38a =; 当0a <时,则当1a =-时函数取得最大值4,即14a -=,即3a =-所以,38a =或3a =-。
函数的最值问题(高一)一.填空题:1. ()35,[3,6]f x x x =+∈的最大值是 。
1()f x x =,[]1,3x ∈的最小值是 。
2.函数y =的最小值是 ,最大值是3.函数212810y x x =-+的最大值是 ,此时x =4.函数[]23,3,21x y x x -=∈--+的最小值是 ,最大值是5.函数[]3,2,1y x x x =-∈--的最小值是 ,最大值是6.函数y=2-x -21+x 的最小值是。
y x =-的最大值是7.函数y=|x+1|–|2-x| 的最大值是 最小值是 .8.函数()21f x x =-在[2,6]上的最大值是 最小值是 。
9.函数y =x x213+-(x ≥0)的值域是______________.10.二次函数y=-x 2+4x 的最大值11. 函数y=2x 2-3x+5在[-2,2]上的最大值和最小值 。
12.函数y= -x 2-4x+1在[-1 , 3]上的最大值和最小值13.函数f (x )=)1(11x x --的最大值是 222251x x y x x ++=++的最大值是14.已知f (x )=x 2-6x +8,x ∈[1,a ]并且f (x )的最小值为f (a ),则a 的取值范围是15.函数y= –x 2–2ax(0≤x ≤1)的最大值是a 2,那么实数a 的取值范围是16.已知f (x )=x 2-2x +3,在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是17. 若f(x)= x 2+ax+3在区间[1,4]有最大值10,则a 的值为:18.若函数y=x 2-3x -4的定义域为[0,m],值域为[-25/4,-4],则m 的取值范围是19. 已知f (x )=-x 2+2x+3 , x ∈[0,4],若f (x )≤m 恒成立,m 范围是 。
二、解答题20.已知二次函数 在 上有最大值4,求实数 a 的值。
三人行学堂学科老师个性化教案教师 陈永福学生姓名上课日期 上课时段 年 月 日 到 学科数学年级高一(上) 必修一类型新课讲解□ 复习课讲解□教学目标教学内容 单调性与最大(小)值学习问题解决1、函数单调性的证明及判断方法2、由函数的单调性求参数的取值范围3、由函数的单调性解不等式4、求函数的最大(小)值知识清单1、增函数与减函数的定义 条件 一般地,设函数f (x )的定义域为I :如果对于定义域I 内某个区间D 上的 两个自变量的值x 1,x 2,当x 1 <x 2时结论 那么就说函数f(x)在区间D 上是 函数 那么就说函数f(x)在区间D 上是函数图示2、如果函数)(x f y =在区间D 上是 函数或 函数,那么就说函数)(x f y =在这一区间具有(严格的)单调性,区间D 叫做函数)(x f y =的 。
3、函数的最大(小)值一般地,设函数)(x f y =的定义域为I ,如果存在实数M 满足 (1)对于任意的I x ∈,都有 (1)对于任意的I x ∈,都有 (2)存在I x ∈0,使得 (2)存在I x ∈0,使得 那么就称M 是函数)(x f y =的最大值 那么就称M 是函数)(x f y =的最小值方法探究一、函数单调性的证明及判断方法 方法点拨1、函数单调性的证明:现阶段只能用定义证明,其步骤为(1)取值:设x 1,x 2为该区间内任意两个自变量的值,且x 1 <x 2;(2)作差变形:作差f(x 1)-f(x 2),并通过通分、因式分解、配方、有理化等方法,向有利于判断差值符号的方向变形;(3)定号:确定差值的符号,当符号不确定时,可考虑分类讨论; (4)作结论:根据定义作出结论;其中最关键的步骤为作差变形,在变形时一般尽量化成几个最简因式的乘积或几个完全平方式,直到符号判断水到渠成。
2、函数单调性的判断方法(1)图像法:先作出函数图象,利用图象直观判断函数单调性;(2)直接法:就是对于我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接判断它们单调性。
高中数学学习材料(灿若寒星 精心整理制作)(1)2()871;f x x x =-++(2)3()1log ;f x x =+(3)()416x f x =- (4)2412()2x x f x x +-=-题型二 判断函数零点的个数例2 求函数()2log(1)2x f x x =++-的零点个数。
题型三 判断函数零点所在大致区间[例3]方程3log 3x x +=的解所在区间为 ( )(),0,2A (),1,2B (),2,3C (),3,4D1、函数24y x =-的零点是 ( )A x=0B x=1C x=2D (2,0)2、下列函数存在零点的是 ( ) A 4y x = B.3log y x =C.21y x x =++D.3x y =3、函数()()2ln 1f x x x =+-的零点所在的大致区间是 ( )A 、(0, 1)B 、(1,2)C 、(2,e )D 、(3, 4 )4、求下列函数的零点:(1)()244f x x x =---;(2)()()()21433x x x f x x --+=-5、试判断方程32x x =在区间[1,2]内是否有实数解。
同步测控1.已知函数()y f x =在区间[a,b]上的图像是连续不断的一条曲线,且有()()()0,f a f b a b << 则()y f x =( )A 、在区间[a,b]上可能没有零点B 、在区间[a,b]上至少有一个零点C 、在区间[a,b]上至多有一个零点D 、在区间[a,b]上有一个零点2.函数y x =的零点是()A.(0,0 )B.0x =C. 1x = D 不存在3.函数2()2f x x x =-的零点个数是()A.0B.1C.2D.34.设0x 是方程ln 4x x +=的解,则0x 属于区间()A.(0,1)B.(1,2)C.(2,3)D.(3,4)5.函数()1f x mx =-在(0,1)内有零点,则实数m 的取值范围是 。
高中数学学习材料(灿若寒星 精心整理制作)1.一辆汽车在某段路程中的行驶路程关于时间变化的图象如图所示,那么图象所对应的函数模型是…( )A 一次函数B 二次函数C 指数函数D 对数函数2.某厂日产手套总成本y (元)与手套日产量x (副)的关系式为54000y x =+,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为( )A200副 B400副C 600副 D800副3.在一次数学实验中,采集到如下一组数据:x -2.0 -1.0 0 1.00 2.00 3.00y 0.24 0.51 1 2.02 3.98 8.02则x ,y 的函数关系与下列哪类函数最接近?(其中b a ,为待定系数) ( )A b ax y +=B x b y =C b ax y +=2D xb y = 4.一天,亮亮发烧了,早晨6时他烧得很厉害,吃过药后感觉好多了,中午12时亮亮的体温基本正常,但是下午18时他的体温又开始上升,直到半夜24时亮亮才感觉身上不那么发烫了。
则下列各图能基本上反映出亮亮这一天(0时~24时)体温的变化情况的是( )0 x y5.某物体一天中的温度T 是时间t 的函数:603)(3+-=t t t T ,时间单位为小时,温度单位为摄氏度(c 0)。
若0=t 为中午12时,其前取值为负,后取值为正,则上午8时的温度是6.将进货单价为8元的商品按10元一个销售,每天可卖出100个,若这种商品的销售单价每涨1元,日销售量相应减少10个,为了获得最大利润,此商品的销售单价应为多少元?7.某市出租车规定3千米内起步价8元(即行程不超过3千米,一律收费8元),若超过3千米,除起步价外,超过部分再按1.5元/千米收费计价,若乘客与司机约定按四舍五入以元计费不找零,下车后乘客付了16元,求乘客乘车里程的范围。
8.某单位用木料制作如图所示的框架,框架的下部是一组邻边长分别为):(,m y x 单位的矩形,上部是等腰直角三角形,要求框架的总面积为82m(1) 写出y 关于x 的函数关系式;(2) 写出用料l 与x 的函数关系式。
河北省衡水中学高中数学1.1.3集合的基本运算(一)学案新人教A版必修1第一篇:河北省衡水中学高中数学 1.1.3集合的基本运算(一)学案新人教A版必修11.1.3集合的基本运算(一)一、学习目标1.理解并集、交集的含义,会求两个简单集合的并集与交集.2.体验通过实例的分析和阅读来自学探究集合间的关系与运算的过程,培养学生的自学阅读能力和自学探究能力.3.能使用Venn图表达集合的关系及运算,体会Venn图的作用.二、自学导引1、一般的,由所有属于的元素组成的集合,称为集合A与集合B 的并集,记作A Y B(读作“A并B”),即A Y B=.2、由属于的所有元素组成的集合,称为集合A与集合B的交集,记作A I B(读作“A交B”),即A I B=.3、A I A=,A Y A=,A I∅=,A Y∅=.4、若A⊆B,则A I B=,A Y B=.5、A I BA,A I BB,AA Y B,A I BA Y B.三、典型例题1、求两个集合的交集与并集例1求下列两个集合的交集和并集⑴A={1,2,3,4,5},B={-1,0,1,2,3};⑵A={x|x<-2},B={x|x>-5}.变式迁移1⑴设集合A={x|x>-1},B={x|-2<x<2}A Y B等于()A{x|x>-2}B.{x|x>-1}C.{x|-2<x<-1}D.{x|-1<x<2}⑵若将⑴中A改为A={x|x>a},求A Y B.2、已知集合的交集、并集求参数的问题例2已知集合A=-4,2a-1,a{2},B={a-5,1-a,9},若A I B={9},求a的值.3、交集、并集性质的综合应用例3设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.⑴若A I B=B,求a的值;⑵若A Y B=B,求a的值。
变式迁移3已知集合A={x|-2≤x≤5},B={x|2m-1≤x≤2m+1},若A Y B=A,求实数m的取值范围.4、课堂练习1.已知A={0,1,2,3,4},B={3,0,5,6},则A I B等于()A{0,3}B.{0,1,2,3,4}C.{3,0,5,6}D.{0,1,2,3,4,5,6}2.已知M={x|x-2<0},N={x|x+2>0}则M I N等于()A.{x|x<2或x>-2}B.{x|-2<x<2}C.{x|x<2}D.{x|x>-2}23.已知集合M={x|y=x-1},,N={y|y=x2-1}那么M I N等于A.∅B.NC.MD.R4.若集合A={1,3,x},B=1,x2,A Y B={1,3,x},则满足条件的实数x的个数有{}()A.1个B.2个C.3 个D.4个二、填空题5.满足条件M Y{}1={1,2,3}的集合M的个数是.6.已知A I{-1且A⊆{-2,0,1}={0,1},0,1,2},则满足上述条件的集合A共有个.7.已知集合A={x|-1≤x≤2},B={x|2a<x<a+3}且满足A I B=∅,则实数a的取值范围是.8.已知集合A=1,4,a2-2a,B=a-2,a2-4a+2,a2-{}1,3},则A Y B=.3a+3,a2-5a},若A I B={10个高考试题1.集合A={x|-1≤x≤2},B={x|x<1},则A⋂(CRB)=(A){x|x>1}(B){x|x≥1}(C){x|1<x≤2}(D){x|1≤x≤2}{⎧⎪2.若集合A=⎨xlog1x≥⎪2⎩1⎫⎪⎬,则ðRA= 2⎪⎭⎛⎫⎛⎫(-∞,0]Y+∞,+∞+∞)A、B、 C、(-∞,0]Y D、+∞) ⎪⎪2⎪2⎪⎝⎭⎝⎭3.集合P={x∈Z0≤x<3},M={x∈Rx2≤9}则PIM=(A){1,2}(B){0,1,2}(C){x|0≤x<3}(D){x|0≤x≤3}4.若集合A={x-2<x<1},B={x0<x<2}则集合A ∩B= A.{x-1<x<1}B.{x-2<x<1} C.{x-2<x<2}D.{x0<x<1}第二篇:河北省衡水中学高中数学 1.1.1集合的含义与表示(一)学案新人教A版必修1高一数学必修一学案:1.1.1集合的含义与表示(一)一、学习要求:了解集合的含义,体会元素与集合的“属于”关系。
一、选择题:1.下列各式中成立的一项 ( ) A 7177)(m n m n= B .31243)3(-=- C.43433)(y x y x +=+ D .3339=2.化简)31()3)((656131212132b a b a b a ÷-的结果 ( )A .a 6B .a -C .a 9-D .29a3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)(C .)()]([)(Q n x f nx f n ∈=D . )()]([·)]([)(+∈=N n y f x f xy f n n n4.函数210)2()5(--+-=x x y ( )A .}2,5|{≠≠x x xB .}2|{>x xC }5|{>x xD .}552|{><<x x x 或5.若指数函数x a y =在[-1,1]上的最大值与最小值的差是1,则底数 a 等于 ( )A .251+ B . 251+- C .251± D . 215± 6.当a ≠0时,函数y ax b =+和y b ax =的图象只可能是( )7.函数||2)(x x f -=的值域是 ( ) A .]1,0( B .)1,0( C .),0(+∞ D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( )A .)1,1(-B . ),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.函数22)21(++-=x x y 得单调递增区间是 ( )A .]21,1[-B .]1,(--∞C .),2[+∞D .]2,21[ 10.已知2)(xx e e x f --=,则下列正确的是 ( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数二、填空题:11.已知函数f (x )的定义域是(1,2),则函数)2(xf 的定义域是 .12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 . 13.计算⎪⎪⎭⎫ ⎝⎛-÷++-33433233421428a b a ab a ab a = . 14.已知-1<a <0,则三个数331,,3a a a 由小到大的顺序是 . 三、解答题:15.已知函数)1(122>-+=a a a y x x 在区间[-1,1]上的最大值是14,求a 的值.参考答案(6)一、DCDDD AAD D A二、11.(0,1); 12.(2,-2); 13.32a ; 14.a a a 3331<< ;三、15.解: )1(122>-+=a a a y x x , 换元为)1(122a t at t y <<-+=,对称轴为1-=t . 当1>a ,a t =,即x =1时取最大值,略解得 a =3 (a = -5舍去)。