液压系统基本原理
- 格式:docx
- 大小:85.06 KB
- 文档页数:51
液压转动系统的工作原理
液压转动系统是一种基于液体流动的动力传动系统,使用压力液体来传递驱动力,实现转动运动。
其工作原理如下:
1. 液压系统:液压转动系统由液压泵、液压阀、液压缸和液压液等组成。
液压泵通过输入机械能,将液体压力增加,并将压力液送入液压阀。
2. 液压阀:液压阀是控制液压流动方向、压力和流量的装置。
根据控制信号,液压阀将压力液导向液压缸的顶部和底部。
3. 液压缸:液压缸是转动机构的执行元件,由气缸体、活塞和密封件组成。
在液压缸工作过程中,压力液进入液压缸的其中一端,使活塞向另一端运动。
4. 转动运动:当压力液进入液压缸一侧时,活塞受到液压力的作用向另一侧移动。
由于活塞与转动机构连接,所以活塞的运动会带动转动机构进行旋转。
5. 控制信号:液压转动系统通过改变液压阀的控制信号来实现转动方向的改变和速度的调节。
不同的控制信号可以使液压阀打开或关闭,从而改变液压缸的工作状态。
通过上述工作原理,液压转动系统可以转换输入的机械能为转动运动,广泛应用于工业生产中的各种转动设备和机械装置中。
液压原理讲解
液压原理是利用液体在封闭的管道系统中传递力和能量的物理原理。
它基于帕斯卡定律,即在静止的封闭液体中,压力施加于液体的任意一点,都会均匀传递到所有方向和所有部分。
这使得液压系统能够传递大量的力,并且功率损失较小。
液压系统主要由液压液体、液压泵、液压马达(液压马达和液压缸在原理上是相同的)、液压阀和液压缸等组成。
液压泵通过旋转产生高压力的液体供应给液压系统。
当高压的液体通过液压阀进入液压马达或液压缸时,液体的流动会产生压力差,从而推动活塞或使液压马达旋转,实现力的传递或能量转换。
液压系统有以下几个基本原理:
1. 帕斯卡定律:液压系统中的压力会均匀传递到各个部分,不受液体容器形状和位置的影响。
2. 液体不可压缩性:当液压系统中的液压液体受力时,液体几乎不被压缩,因此能够保持较稳定的力传递。
3. 液体静力学平衡:液压系统中的液压液体在管道中保持平衡,实现力的传递和平衡。
4. 流体动力学:液压系统通过流动的液体实现力和能量的传递,液体的流动速度和压力会受到管道内部阻力的影响。
液压系统应用广泛,常见于工程机械、制造业、运输设备、航空航天等领域。
它具有力大、体积小、传动距离远、传递效率高等优点。
同时,液压系统的控制灵活性也很高,可以通过调整液压阀的位置和流量来实现力和速度的精确控制。
液压系统工作原理液压系统是一种利用液体传递能量并实现各种机械运动的系统。
液压系统广泛应用于工程机械、航空航天、冶金设备等领域,其工作原理是通过液体的压力传递力量和控制机械运动。
本文将介绍液压系统的工作原理及其相关组成部分。
一、液压系统的工作原理液压系统的工作原理基于两个基本原则:压力传递原理和压力控制原理。
1. 压力传递原理压力传递原理是液压系统工作的基础,它通过液体的压力传递力量。
在液压系统中,液体被泵入主压力线路,产生压力。
这个压力作用于液压活塞上,使其产生力,并将力传递给被控制的机械装置。
液体在系统中的传递速度快,因此能够实现高速运动。
2. 压力控制原理液压系统还依赖于压力控制原理来确保系统的安全和稳定运行。
压力控制主要由压力阀完成。
在液压系统中,通过调整压力阀的开度,可以控制系统中的压力大小。
这样一来,液压系统就能够根据实际需求进行力量的传递和控制。
二、液压系统的组成部分液压系统由多个组成部分构成,下面将介绍其中的三个重要组成部分:液压泵、液压缸和控制阀。
1. 液压泵液压泵是液压系统中的心脏,它负责将液体从液压油箱中吸入,并通过压力的形式送入主压力线路。
液压泵有多种类型,常见的有齿轮泵、柱塞泵和叶片泵。
液压泵的工作原理是通过机械力的作用,将液体压缩并推动到系统中。
2. 液压缸液压缸是液压系统中的执行元件,它接受液压泵输出的压力,并将其转化为机械能。
液压缸由一个活塞和一个活塞杆组成。
当液压泵输出的压力作用于液压缸的活塞上时,活塞会受到力的作用而产生运动。
3. 控制阀控制阀是液压系统中的关键元件,它用于控制液体的流动方向和流量大小。
常见的控制阀有单向阀、溢流阀和比例阀等。
通过调整控制阀的位置和开闭状态,可以实现液体的流动控制和压力控制。
三、液压系统的应用液压系统广泛应用于各个领域,其优势在于传动力大、反应迅速、控制方便等。
以下是液压系统在几个领域的应用举例:1. 工程机械:液压系统在挖掘机、起重机等工程机械中得到了广泛应用。
液压系统工作原理液压系统是一种利用液体传递能量的技术,它广泛应用于各种机械设备和工业生产中。
液压系统的工作原理是通过液体在密闭容器中的传递和控制,实现力和动力的转换。
本文将从液压系统的基本原理、液压传动装置和液压控制元件三个方面对液压系统的工作原理进行详细介绍。
一、液压系统的基本原理液压系统的基本原理是利用液体在密闭容器中传递力和动力。
液压系统由液压泵、液压传动装置、液压储能器、液压控制元件等组成。
液压泵通过旋转驱动,产生高压油液;液压传动装置通过液压油液的传递和控制,实现力和动力的传递;液压储能器用于储存能量,平衡液压系统的压力波动;液压控制元件用于控制和调节油液的流量、压力和方向。
液压系统的工作原理基于Pascal定律,即在液体中施加的压力会均匀传递到液体中的每一个点上,并且施加在液体容器的任何一个部分上的外力会被液体传递到其他部分上。
根据Pascal定律,液压系统中的压力传递是无损耗和连续的。
二、液压传动装置液压传动装置是液压系统中将液体的力和动力传递到执行机构的装置。
常见的液压传动装置有液压缸和液压马达。
液压缸是利用液体的压力产生直线运动的装置。
液压缸由活塞、油缸和密封元件等组成。
当液压油液进入油缸时,活塞受到液体的压力作用而产生运动,实现力的传递。
液压马达是利用液体的压力产生旋转运动的装置。
液压马达由转子、止推板和密封元件等组成。
当液压油液进入液压马达时,液压马达的转子受到液体的压力作用而产生旋转运动,实现动力的传递。
三、液压控制元件液压控制元件用于控制和调节液压系统中的油液流量、压力和方向。
常见的液压控制元件有液控单向阀、液控换向阀、比例阀和伺服阀等。
液控单向阀用于控制油液的单向流动,防止油液倒流。
液控换向阀用于控制油液的方向,将油液流向不同的液压元件。
比例阀用于根据输入的电信号来调节油液的流量或压力,实现对液压系统的精确控制。
伺服阀是一种能根据输入信号精确调节油液压力和流量的液压控制元件。
液压系统的三大工作原理液压系统是一种利用液体传递能量的工程系统,广泛应用于各种工业和机械领域。
液压系统主要通过液压传动来实现各种功能,其工作原理主要包括流体静力传递、流体动力传递和流体功率控制。
下面我们将详细介绍液压系统的三大工作原理。
一、流体静力传递流体静力传递是液压系统的基本工作原理之一。
液压系统利用流体传递力和压力,通过液体在封闭的管道中传输力量。
当液体被压缩或者受到外力作用时,会产生压力,这种压力会沿管道传递到其他部位,从而实现力的传递和转换。
流体静力传递工作原理的核心是帕斯卡定律,即液体在静态状态下所受的压力均匀传递到液体中的任何一个点。
这种原理使得液压系统可以利用液体传递力量和压力,实现远距离、大力量的传递,具有高效、稳定的特点。
二、流体动力传递流体动力传递是液压系统实现各种机械运动和动作的重要工作原理。
液压系统通过控制液体的流动速度和方向,从而控制液压缸、液压马达等执行元件的运动。
在流体动力传递中,利用液体流动产生的动能和动压,将能量传递到执行元件,实现机械装置的各种运动。
通过控制液体的流动和压力,可以实现精准的位置控制、速度控制和力量控制,使液压系统在各种工程应用中具有很高的灵活性和可控性。
三、流体功率控制流体功率控制是液压系统的另一个重要工作原理。
液压系统利用液体传递和转换能量,实现各种机械设备的驱动和操作。
通过控制液体的压力、流量和流速,可以实现对动力的调节和控制,从而满足不同工况下的功率需求。
流体功率控制不仅可以实现机械装置的精准运动和操作,还可以提高能源利用效率,减小机械设备的功率损耗。
液压系统在流体功率控制方面具有优良的特性,可以在复杂工况下灵活地控制功率输出,提高设备的工作效率和性能。
总结以上所述为液压系统的三大工作原理,即流体静力传递、流体动力传递和流体功率控制。
这三大工作原理共同构成了液压系统的基本工作原理,使其具有了高效、稳定、灵活和可控的特性,广泛应用于各种工程领域。
液压原理的基本知识
液压原理是一种利用液压力,在液体的作用下实现动力传递和操作的原理。
它可以实现大力量的传递,用较小的动力输入可以实现大量力量的输出,是传统机械传动所不能比拟的。
液压原理的基本原理是利用液体的可压缩性,利用压力就可以产生力量,这种力量可以用来改变物体的形状或者使物体移动。
液压的基本原理有以下几点:
1. 压力传递:液体的压力在其容器内传递,传递的过程中不会损失能量。
2. 压力导致物体变形:当液体的压力足够大时,它可以使受压物体变形,产生力量。
3. 液体的压力会改变其体积:液体的压力不断变化,会导致液体的体积发生变化,同时也会产生力量。
4. 液体的压力会改变其粘度:液体的粘度也会受到压力的影响,当压力变化时,液体的粘度也会发生变化,从而产生力量。
5. 液体的压力会改变其流量:当压力变化时,液体的流量也会发生变化,从而能够调节液体的流量,产生力量。
液压原理的应用非常广泛,它可以用于汽车制动系统,液压悬挂,
液压升降机等。
它的优点是,可以用较小的动力输入实现大量力量的输出,使用简单,可靠性高,可以实现高速,高效率的传动。
总之,液压原理是一种利用液体的可压缩性,利用压力就可以产生力量,并能够实现大量力量的输出,应用非常广泛,是传统机械传动所不能比拟的。
液压系统(完整)介绍一、液压系统的基本概念液压系统,是一种利用液体传递压力和能量的动力传输系统。
它主要由液压泵、液压缸(或液压马达)、控制阀、油箱、油管等部件组成。
液压系统广泛应用于各类机械设备中,如挖掘机、起重机、汽车制动系统等,其优势在于结构紧凑、输出力大、操作简便。
二、液压系统的工作原理液压系统的工作原理基于帕斯卡原理,即在密闭容器内,液体受到的压力能够大小不变地向各个方向传递。
具体来说,液压系统的工作过程如下:1. 液压泵:将机械能转化为液体的压力能,为系统提供动力源。
2. 液压缸(或液压马达):将液体的压力能转化为机械能,实现直线或旋转运动。
3. 控制阀:调节液体流动方向、压力和流量,实现对液压系统的控制。
4. 油箱:储存液压油,为系统提供油源。
5. 油管:连接各液压部件,传递压力和能量。
三、液压系统的分类1. 水基液压系统:以水作为工作介质,具有环保、成本低等优点,但易腐蚀金属、密封性能较差。
4. 气液联动液压系统:以气体和液体为工作介质,结合了气压传动和液压传动的优点,适用于特殊场合。
四、液压系统的关键部件详解1. 液压泵:作为液压系统的“心脏”,液压泵负责将低压油转化为高压油,为整个系统提供动力。
常见的液压泵有齿轮泵、叶片泵和柱塞泵等。
每种泵都有其独特的特点和适用范围,选择合适的液压泵对系统的性能至关重要。
2. 液压缸:液压缸是系统的执行元件,它将液压油的压力能转化为机械能,实现直线往复运动或推送力量。
根据结构不同,液压缸可分为活塞式、柱塞式和膜片式等。
3. 控制阀:控制阀是液压系统的“大脑”,它负责调节和分配液压油流动的方向、压力和流量。
常用的控制阀包括方向阀、压力阀和流量阀等,它们共同确保系统按照预定的要求稳定运行。
4. 滤清器:液压油中的杂质会对系统造成损害,滤清器的作用就是过滤液压油中的杂质,保护系统的正常运行。
合理选择和使用滤清器,对延长液压系统寿命具有重要意义。
五、液压系统的优势与应用1. 优势:力量大:液压系统能够实现大范围的力矩放大,轻松完成重物搬运等任务。
液压站液压系统原理液压站是一种利用液体传递能量和控制机械设备的装置。
液压站由液压泵、液压阀、加油油箱、工作油路和控制部件等组成。
液压系统原理是基于帕斯卡定律的,即压力传递原理。
液压站工作原理如下:1. 液压泵:液压泵通过转动提供液体的动能,将液体吸入泵腔并推送液压机械。
液压泵有很多类型,如齿轮泵、柱塞泵等。
液压站中常用的是柱塞泵,其工作原理是通过柱塞在气缸中上下运动,形成吸入和排出两个腔体,实现液体的吸入和推送。
2. 液压阀:液压站中的液压阀用于控制和调整液体的流量和压力。
液压阀有很多种类,分别用于不同的控制目的,如方向控制阀、溢流阀、压力阀等。
液压阀的工作原理是通过阀芯的移动来改变液体的流动方向和压力大小。
3. 加油油箱:液压站的加油油箱用于储存液体,并通过油箱上的滤网过滤杂质。
油箱还具有冷却液体的功能,通过油箱中的散热器将液体的热量散发出去,保持系统的温度稳定。
4. 工作油路:液压站的工作油路是液体传输和控制的路径,液体从泵送到执行元件(液压缸或液压马达)进行动作传输。
工作油路包括液压管道、接头、密封件和管路连接件等。
5. 控制部件:液压站的控制部件用于接收和处理来自执行元件的反馈信号,并根据需要发出控制信号,调整液压泵和液压阀的工作状态。
控制部件有很多种类,如压力开关、位置传感器、流量计等。
液压站的工作原理是基于帕斯卡定律,该定律是物理学中的一个基本定律,描述了液体在封闭容器中的压力传递机制。
帕斯卡定律表明,一个封闭容器中的液体,任何地方施加的压力都会被均匀地传递到容器的其他部分。
液压站利用这一原理,通过控制液体压力和流量,实现各种机械设备的动作传输和控制。
具有以下优点:1. 力量大:由于液体是不可压缩的,液压系统可以提供更大的力,适用于需要较大力的工作环境。
2. 灵活性高:液压系统可以通过控制液体压力和流量来实现精确的运动控制,适用于需要高精度和多功能的应用。
3. 安全可靠:液压系统的传动部件少,摩擦小,减少了机械故障的可能性。
液压系统工作原理
液压系统是一种利用液体来传递力量和控制运动的技术。
它基于液体的不可压缩性和体积不变性的原理,通过液体在密闭的管路中传递压力来实现机械装置的工作。
液压系统由液压泵、液压元件、液压控制阀以及液压油箱等组成。
液压系统的工作原理如下:
1. 液压泵负责产生高压流体:液压泵利用驱动装置(如电动机)带动泵叶片旋转,将液体吸入并压缩。
液压泵产生的高压流体被送到液压系统中。
2. 液压元件传递力量和控制运动:在液压系统中,液压元件包括液压缸、液压马达和液压缸阀。
液压流体通过液压阀控制进出液压元件,实现对机械装置的控制。
液压缸通过将液压流体的压力转化为机械运动,产生直线运动。
液压马达则将液压流体的压力转化为旋转运动。
3. 液压控制阀控制流动方向和压力:液压控制阀是液压系统中的关键组件,用于控制液体的流动方向和压力。
通过合理的液压阀组合和控制,可以实现对液压系统的精确控制。
4. 液压油箱储存液压油及冷却液:液压系统中的液压油用来传递压力和润滑液压元件。
液压油箱作为液压油的储存器,还起到冷却液压油的作用,保证系统的正常运行温度。
总之,液压系统的工作原理是利用液体的性质来传递力量和控
制运动。
通过液压泵产生高压流体,液压元件将液压流体的压力转化为机械运动,液压控制阀控制流动方向和压力,液压油箱储存液压油及冷却液,实现了液压系统的正常运行。
液压系统基本原理图 YT4543型动力滑台液压系统图1—背压阀;2—顺序阀;3、6、13、15—单向阀;4、16—节流阀;5—压力继电器;7—液压缸;8—行程阀;9—电磁阀;10—调速阀;11—先导阀;12—换向阀;14—液压泵第一节液压传动的发展史液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,1795年英国约瑟夫布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。
1905年将工作介质水改为油,又进一步得到改善。
第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速。
液压元件大约在19 世纪末20 世纪初的20年间,才开始进入正规的工业生产阶段。
1925 年维克斯发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。
20 世纪初康斯坦丁尼斯克(GConstantimsco)对能量波动传递所进行的理论及实际研究;1910年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。
第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。
应该指出,日本液压传动的发展较欧美等国家晚了近20 多年。
在1955 年前后, 日本迅速发展液压传动,1956 年成立了“液压工业会”。
近20~30 年间,日本液压传动发展之快,居世界领先地位。
液压传动有许多突出的优点,因此它的应用非常广泛,如一般工。
业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。
第二节液压系统地组成一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件和液压油。
一、动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。
液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵。
二、执行元件(如液压缸和液压马达)的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。
三、控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。
根据控制功能的不同,液压阀可分为压力控制阀、流量控制阀和方向控制阀。
压力控制阀又分为溢流阀(安全阀)、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调速阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。
根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。
四、辅助元件包括油箱、滤油器、油管及管接头、密封圈、压力表、油位油温计等。
五、液压油是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等几大类。
第三节液压的原理一、它是由两个大小不同的液缸组成的,在液缸里充满水或油。
充水的叫“水压机”;充油的称“油压机”。
两个液缸里各有一个可以滑动的活塞,如果在小活塞上加一定值的压力,根据帕斯卡定律,小活塞将这一压力通过液体的压强传递给大活塞,将大活塞顶上去。
设小活塞的横截面积是S1,加在小活塞上的向下的压力是F1。
于是,小活塞对液体的压强为P=F1/SI,能够大小不变地被液体向各个方向传递”。
大活塞所受到的压强必然也等于P。
若大活塞的横截面积是S2,压强P在大活塞上所产生的向上的压力F2=PxS2截面积是小活塞横截面积的倍数。
从上式知,在小活塞上加一较小的力,则在大活塞上会得到很大的力,为此用液压机来压制胶合板、榨油、提取重物、锻压钢材等。
二、液压的优缺点与机械传动、电气传动相比,液压传动具有以下优点:1、液压传动的各种元件,可以根据需要方便、灵活地来布置。
2、重量轻、体积小、运动惯性小、反应速度快。
3、操纵控制方便,可实现大范围的无级调速(调速范围达2000:1)。
4、可自动实现过载保护。
5、一般采用矿物油作为工作介质,相对运动面可自行润滑,使用寿命长;6、很容易实现直线运动。
7、很容易实现机器的自动化,当采用电液联合控制后,不仅可实现更高程度的自动控制过程,而且可以实现遥控。
液压传动也存在着一些缺点:1、由于流体流动的阻力和泄露较大,所以效率较低。
如果处理不当,泄露不仅污染场地,而且还可能引起火灾和爆炸事故。
2、由于工作性能易受到温度变化的影响,因此不宜在很高或低的温度条件下工作。
3、液压元件的制造精度要求较高,因而价格较贵。
4、由于液体介质的泄漏及可压缩性影响,不能得到严格的传动比。
5、液压传动出故障时不易找出原因;使用和维修要求有较高的技术水平。
第四节液压系统的三大顽疾一、发热由于传力介质(液压油)在流动过程中存在各部位流速的不同,导致液体内部存在一定的内摩擦,同时液体和管路内壁之间也存在摩擦,这些都是导致液压油温度升高的原因。
温度升高将导致内外泄漏增大,降低其机械效率。
同时由于较高的温度,液压油会发生膨胀,导致压缩性增大,使控制动作无法很好的传递。
解决办法:发热是液压系统的固有特征,无法根除只能尽量减轻。
使用质量好的液压油、液压管路的布置中应尽量避免弯头的出现、使用高质量的管路以及管接头、液压阀等。
二、振动液压系统的振动也是其痼疾之一。
由于液压油在管路中的高速流动而产生的冲击以及控制阀打开关闭过程中产生的冲击都是系统发生振动的原因。
强的振动会导致系统控制动作发生错误,也会使系统中一些较为精密的仪器发生错误,导致系统故障。
解决办法:液压管路应尽量固定,避免出现急弯。
避免频繁改变液流方向,无法避免时应做好减振措施。
整个液压系统应有良好的减振措施,同时还要避免外来振源对系统的影响。
三、泄漏液压系统的泄漏分为内泄漏和外泄漏。
内泄漏指泄漏过程发生在系统内部,例如液压缸活塞两边的泄漏、控制阀阀芯与阀体之间的泄漏等。
内泄漏虽然不会产生液压油的损失,但是由于发生泄漏,既定的控制动作可能会受到影响,直至引起系统故障。
外泄漏是指发生在系统和外部环境之间的泄漏。
液压油直接泄漏到环境中,除了会影响系统的工作环境外,还会导致系统压力不够引发故障。
泄漏到环境中的液压油还有发生火灾的危险。
解决办法:采用质量较好的密封件,提高设备的加工精度。
另:对于液压系统这三大顽疾,有人进行了总结:“发烧、拉稀带得瑟”。
YT4543型组合机床动力滑台液压传动系统(应用举例)组合机床是由通用部件和部分专用部件组成的高效、专用、自动化程度较高的机床。
它能完成钻、扩、铰、镗、铣、攻丝等工序和工作台转位、定位、夹紧、输送等辅助动作,可用来组成自动线。
这里只介绍组合机床动力滑台液压系统。
动力滑台上常安装着各种旋转着的刀具,其液压系统的功能是使这些刀具作轴向进给运动,并完成一定的动作循环。
图和表分别表示YT4543型组合机床动力滑台液压系统原理图和动作循环表。
这个系统用限压式变量叶片泵供油,用电液换向阀换向,用行程阀实现快进和工进速度的切换,用电磁阀实现两种工进速度的切换,用调速阀使进给速度稳定。
在机械和电气的配合下,能够实现“快进→一工进→二工进→死挡铁停留→快退→原位停止”的半自动循环。
其工作情况如下所述。
1.快进按下起动按钮,电磁铁1YA通电吸合,控制油路由泵14经电磁先导阀11左位、单向阀15,进入液动阀12的左端油腔,液动阀12左位接系统,液动阀12的右端油腔回油经节流器16和阀11的左位回油箱,液动阀处于左位。
主油路:泵14→单向阀13→液动阀12左位→行程阀8(常态位)→液压缸左腔(无杆腔)。
回油路:液压缸右腔→阀12左位→单向阀3→阀8→液压缸左腔。
由于动力滑台空载,系统压力低,液控顺序阀关闭,液压缸成差动连接,且变量泵14有最大的输出流量,滑台向左快进(活塞杆固定,滑台随缸体向左运动)。
表YT4543型动力滑台液压系统的动作循环表2.一工进快进到一定位置,滑台上的行程挡块压下行程阀8,使原来通过阀8进入液压缸无杆腔的油路切断。
此时阀9的电磁铁3YA处于断电状态,调速阀4接入系统进油路,系统压力升高。
压力的升高,一方面使液控顺序阀2打开,另一方面使限压式变量泵的流量减小,直到与经过调速阀4后的流量相同为止。
这时进入液压缸无杆腔的流量由调速阀4的开口大小决定。
液压缸有杆腔的油液则通过液动阀12后经液控顺序阀2和背压阀1回油箱(两侧的压力差使单向阀3关闭)。
液压缸以第一种工进速度向左运动。
3.二工进当滑台以一工进速度行进到一定位置时,挡块压下行程开关,使电磁铁3YA通电,经阀9的通路被切断。
此时油液需经调速阀4与10才能进入液压缸无杆腔。
由于阀10的开口比阀4小,滑台的速度减小,速度大小由调速阀10的开口决定。
3.死挡铁停留当滑台以二工进速度行进到碰上死挡铁后,滑台停止运动。
液压缸无杆腔压力升高,压力继电器5发出信号给时间继电器(图中未表示),使滑台在死挡铁上停留一定时间后再开始下一动作。
滑台在死挡铁上停留,主要是为了满足加工端面或台肩孔的需要,使其轴向尺寸精度和表面粗糙度达到一定要求。
当滑台在死挡铁上停留时,泵的供油压力升高,流量减少,直到限压式变量泵流量减小到仅能满足补偿泵和系统的泄漏量为止,系统这时处于需要保压的流量卸荷状态。
3.快退当滑台在死挡铁上停留一定时间(由时间继电器调整)后,时间继电器发出使滑台快退的信号。
此时电磁铁1YA断电,2YA通电,阀11和阀12处于右位。
进油路:泵14→阀13→液动阀12右位→液压缸右腔;回油路:液压缸左腔→单向阀6→阀12右位→油箱。
由于此时为空载,系统压力很低,泵14输出的流量最大,滑台向右快退。
3.原位停止当滑台快退到原位时,挡块压下原位行程开关,使电磁铁1YA、2YA和3YA都断电,阀11和阀12处于中位,滑台停止运动,泵14通过阀12的中位卸荷(这时系统处于压力卸荷状态)。
YT4543型组合机床动力滑台液压系统包括以下一些基本回路:由限压式变量叶片泵和进油路调速阀组成的容积节流调速回路,差动连接快速运动回路,电液换向阀的换向回路,由行程阀、电磁阀和液控顺序阀等联合控制的速度切换回路以及中位为M型机能的电液换向阀的卸荷回路等。
液压系统的性能就由这些基本回路所决定。
该系统有以下几个特点:①采用了由限压式变量叶片泵和进油路调速阀组成的容积节流调速回路。
它既能满足系统调速范围大,低速稳定性好的要求,又提高了系统的效率。
进给时,在回油路上增加了一个背压阀,这样一方面可改善速度稳定性,另一方面可使滑台能承受一定的与运动方向一致的切削力(负值负载)。