模8的简化剩余系
- 格式:docx
- 大小:37.28 KB
- 文档页数:2
第二节剩余类与完全剩余系第三节缩系教学目的:1、掌握剩余类与完全剩余系的定义与基本性质;2、掌握缩系的定义与基本性质;3、证明及应用Wilson定理;4、证明及应用Fermat小定理、Euler定理的证明及应用;5、掌握Euler函数计算方法及其基本性质.教学重点:1、剩余类与完全剩余系的基本性质;2、证明及应用Wilson定理;3、证明及应用Fermat小定理;4、掌握Eule『函数计算方法及其基本性质.教学课时:8课时教学过程一、剩余类与完全剩余系由上一节我们知道,同余关系满足自反性、对称性、传递性,即对于整数集来说,同余是一个等价关系.这样,可以按同余关系将所有的整数分类.1、定义1给定正整数加,对于每个整数「,0<z<m-l,称集合K?("7)= { ??;n = i (mod m), neZ }是模加的一个剩余类.显然,每个整数必定属于且仅属于某一个(0</<^-1),而且,属于同一剩余类的任何两个整数对模皿是同余的,不同剩余类中的任何两个整数对模”?是不同余的.例如,模5的五个剩余类是K()(5)={…,—10,—5, 0,5, 10,…} &(5)={ ..,-9,-4 J,6 JI,-.- }心5)={ -,-8,-3,2,7,12,--- }心5)={ -,-7,-2,3,8,13,--. }辰(5)={…,_6,—1,4,9,14,…}2、定义2设〃是正整数,从模加的每一个剩余类中任取一个数尢(0 < z < m - 1 称集合{xo, 口…丸加-1}是模加的一个完全剩余系(或简称为完全系)・由于占的选取是任意的,所以模加的完全剩余系有无穷多个,通常称(i){0,1, 2,…,加一1}是模m的最小非负完全剩余系;—~ + 1, •••, — 1, 0, 1, •••, — }(当2 I AH)或(ii)乎…—…耳}(当2")是模血的绝对最小完全剩余系.例如,集合{0,6,7, 13,24}是模5的一个完全剩余系,集合{0, 1,2,3,4}是模5的最小非负完全剩余系.3.定理1整数集合A是模〃的完全剩余系的充要条件是(i) A中含有血个整数;(ii)A中任何两个整数对模血不同余.4、定理2设m> 1, a, Z?是整数,(a, m) = 1, {为,恋,…,“加}是模m的一个完全剩余系,贝!J{ori + b, 0X2 + b,…,ax m + b}也是模m的一个完全剩余系.证明:由定理1,只需证明:若XiHXj,贝Ijaxi + b^axj + b (mod m). (1) 事实上,若axi + b = axj + b (mod in),则axi = axj (mod tn),由此得到x: = Xj (mod m),因此Xi = Xj.所以式(1)必定成立.证毕5、定理3 设加1,叱N, AeZ, (A,阳)=1,又设X ={小/2,…,}, 丫 = {儿」2,…,%2},分别是模ni\与模m2的完全剩余系,则/? = { Ax + nuy; xeX, ye Y}是模ni\ni2的一个完全剩余系.证明:由定理1只需证明:若",卍UX, y\y H eY,并且Ax' + m\y' =Ax f, + 加]y" (mod 加”血),(2)事实上,由第一节定理5及式(2),有Ax' =Ax,r (mod m\) =^>=x n (mod m\)=x",再由式(2),又推出m\y' = m\y u (mod mi) =^> y r =y〃(mod /n2) =^>〉,=)'"•推论若加I,"?2W N,(mi, mi) = 1,贝!J当xi与兀2分别通过模加1与模”?2的完全剩余系时,加2兀1 + W1X2通过模加1加2的完全剩余系.6、定理4 设zn/eN (1 </</?),则当药通过模m, (1 <i <n)的完全剩余系时,X = X[ + 72? 1X2 + fUlin2^3+ …+ "7"兀2- 1兀”通过模m\m2 - m n的完全剩余系.证明:对n施行归纳法.当77 = 2时,由定理3知定理结论成立.假设定理结论当n=k时成立,即当七(2KR+1)分别通过模加的完全剩余系时,y = X2 + 加2兀3 + 加2加 1 + …+ my-mkXk +1通过模仍2加3…"《+1的完全剩余系.由定理3,当XI通过模加1的完全剩余系,总(2<i<k+ 1)通过模"•的完全剩余系时,X1 + 777 iy = X1 + 7771(X2 + 加2兀3 + …+ 加 2 …〃以不+ 1)=Xi + H1[X2 + 17772X3 + …+ 叭叱・・皿曲+ 1通过模mim2 - mk+i的完全剩余系.即定理结论对于n = k+\也成立.7、定理5设“wN, A:eZ (1 </<7t),并且满足下面的条件:(i )伽,呦=],1 <ij <n, i 工j;(ii)(A/, ") = 1, 1 <i<n;(iii)m: | Aj , 1 < z,j < n, i rj ・则当七(1 <Z</7)通过模"的完全剩余系&时,y = A[X{ + A 2X2 + …+通过模加"2…的完全剩余系.证明:由定理1只需证明:若1 </</?,则由A\x\ + A2X2' + …+ A n Xn =Aixi n + A2X2,r+ …+ A n Xn r (mod m\ ■ in n) (3) 可以得到xf = x!', \ <i <n.事实上,由条件(iii)及式(3)易得,对于任意的/, 1</</7,有A t Xi =AiXi,r (mod mi).由此并利用条件(ii)和第一节定理5推得x/ = x!' (mod mi),因此xi f=xr.例1设A = {X],X2,…,心}是模加的一个完全剩余系,以{x}表示x 的小数部分,证明:若(a, m) = 1,贝!J£{3}=知1)・i=\ m 2解:当X通过模加的完全剩余系时,俶+ b也通过模加的完全剩余系,因此对于任意的/ (!</•</«), axi + b-定与且只与某个整数j (1 <j</n)同余,即存在整数使得axi 4- Z? = km +j, (1 <j< m)从而評料郭叫用快酣77T m m例2设p>5是素数,…川-2},则在数列a9 2cb 3a, (/? - \ )a, pa中有且仅有一个数b,满足b = 1 (mod p).(5) 此外,若 b = ka,贝I JR HG,ke[2, 3, 2}.解:因为@,p)=l,所以由定理2,式(4)中的数构成模p的一个完全剩余系,因此必有数b满足式(5).设Z? = ka,那么(i ) k 工ci,否则,b = a2 = \ (mod p),即p | (o + 1)(“ - 1),因此# I d - 1 或 # I “ + 1,这与2<a <p -2矛盾;(ii)k 工 \ ,否则,Z? = ltz = 1 (mod /?),这与矛盾;(iii)R H-1,否贝lj, b- -a =\ (mod p),这与矛盾.若又有 L, 2<k r<p-2f使得b = k f a (modp),则k 'a三ka (mod p).因(c/,p)=l,所以k = k1 (mod p),从而p\k- k',这是不可能的.这证明了唯一性.8、定理6 (Wilson定理)设卩是素数,贝I」(p一1)! =-1 (mod p).ffi :不妨设p>5.由例2容易推出对于2,3,.・显-2,中的每个整 数“,都存在唯一的整数R, 2<k<p-2,使得ka 三 1 (mod /?). (6)因此,整数2,3,…,p_2可以两两配对使得式(6)成立.所以2-3 ..... (p - 2) = 1 (mod p),从而123 ....... (p - 2)(/? - \)=p - 1 = -1 (mod p).例3设m > 0是偶数,{如,。
完系、简系、剩余类定义1.剩余类:把关于模m同余的数归于一类,每类称为一个模m的剩余类. 即由关于模m同余的数组成的集合,每一个集合叫做关于模m的一个剩余类(又叫同余类).共有m个剩余类.设K r是余数为r的剩余类, 则K r={qm+r| m是模, r是余数, q∈Z}={a |a∈Z且a≡r(mod m)}.剩余类的性质:⑴Z=K0∪K1∪K2∪…∪K m−1,当i≠j时,K i∩K j=Ø;⑵对于∨−n∈Z,有唯一的r∈{0, 1, 2, …, m−1},使得n∈K r;⑶对∨−a, b∈Z,a, b∈K r ⇔a≡b (mod m)定义2.完系:设K0,K1,…,K m−1是模m的m个剩余类,从K r中各取一数a r 作为代表,则这样的m个数a0,a1,…,a m−1称为模m的一个完全剩余系,简称m的完系. 例如:1, 2, 3, …, m.若一组数y1, y2, …, y s满足:对任意整数a有且仅有一个y j,使得a≡y j (mod m),则y1, y2, …, y s是模m的完全剩余系.模m的完全剩余系有无穷多个,但最常用的是下面两个:①最小非负剩余系:0, 1, 2, 3, …, m−1;②最小绝对值剩余系:(随m的奇偶性略有区别) 当m=2k+1时,为−k, −k+1, …, −1, 0, 1, 2, …, k−1, k;当m=2k时,为−k+1, −k+2, …, −1, 0, 1, 2, …, k或−k, −k+1, …, −1, 0, 1, 2, …, k−2, k−1.例如,集合{0, 6, 7, 13, 24}是模5的一个完全剩余系,集合{0, 1, 2, 3, 4}是模5的最小非负完全剩余系.性质:(i) m个整数构成模m的一完全剩余系⇔两两对模m不同余;(ii) 若(a, m)=1,则x与ax+b同时跑遍模m的完全剩余系.完全剩余系的判断方法:定理1:a1, a2,…, a m是模m的一个完全剩余系⇔a i≡/a j (mod m), i≠j;定理2:设(a, m)=1, b∈Z, 若x1, x2, , x m是模m的一个完全剩余系,则ax1+b, ax2+b, …, ax m+b也是模m的一个完全剩余系;特别地,m个连续的整数构成模m的一个完系.设K r是模的一个剩余类, 若a, b∈K r,则a≡b(mod m), 于是(a, m)=(b, m).因此,若(a, m)=1,则K r中的任一数均与m互质, 这样,又可给出如下定义:定义3.简系:如果r与m互质,那么K r中每一个数均与m互质,称K r为与模m互质的剩余类.这样的剩余类共有φ(m)个,从中各取一个代表(共取φ(m)个),它们称为模m的简化剩余系,简称简系.当m为质数p时,简系由p−1个数组成.又如:m=6,在模6的六个剩余类中:K1={…, −11, −5, 1, 7, 13,…} K5={…, −7, −1, 5, 11, 17,…}是与模6互质的剩余类,数组1, 5;7, −7;1, −1;等等都是模6的简系.性质:①K r与模m互质⇔K r中有一个数与m互质;②与模m互质的剩余类的个数等于φ(m);③若(a, m)=1, 则x与ax同时跑遍模m的简化剩余系.简化剩余系的判断方法:定理3:a1,a2,…,aφ(m)是模m的简化剩余系⇔(a i, m)=1, 且a i≡/a j(mod m) (i≠j, i, j=1, 2, …, φ(m)).定理4:在模m的一个完全剩余系中,取出所有与m互质的数组成的数组,就是一个模m的简化剩余系.定理5:设(k, m)=1, 若a1, a2, …, aφ(m)是模m的简系, 则ka1, ka2, …, kaφ(m)也是模m的简系.这三个定理中,定理3与定理5是简化剩余系的判别方法,定理4是它的构造方法. 显然,模m的简化剩余系有无穷多个,但常用的是“最小简化剩余系”,即由1,2,…,m -1中与m 互质的那些数组成的数组.说明:由于任何整数都属于模m 的某一剩余类,所以,在研究某些整数性质时,选取适当的(模)m ,然后在模m 的每个剩余类中取一个“代表数”(即组成一个完全剩余系),当弄清了这些代表数的性质后,就可弄清对应的剩余类中所有数的性质,进而弄清全体整数的性质,这就是引入剩余类和完全剩余系的目的.例1、设n 为偶数,a 1, a 2,…, a n 与b 1, b 2,…, b n 均为模n 的完全剩余系,试证:a 1+b 1, a 2+b 2,…, a n +b n 不是模的完全剩余系.证明:假设a 1+b 1, a 2+b 2,…, a n +b n 是模的完全剩余系. ∴1(1)()1+2++(mod )22n i i i n n n a b n n =++≡≡≡∑ ∵a 1, a 2,…, a n 也是模的完全剩余系. ∴11(1)(mod )22n n i i i n n n a i n ==+≡=≡∑∑,同理有:1(mod )2n i i n b n =≡∑ 1()0(mod )n i i i a b n n =∴+≡≡∑,∴n |n2, 矛盾!故假设不成立,从而原命题成立.例2、设m >1, (a , m )=1,b ∈Z , 求和:∑-=+⋅10}{m i mb i a , 其中{x }为x 的小数部分. 解:∵i 取遍模m 的完系,令x i =a ·i +b ,则也取遍模m 的完系.故11110000111{}{}{}(1)22m m m m i i i k k x a i b k k m m m m m m m m ----====⋅+-====⨯-=∑∑∑∑总结:若a 1, a 2,…, a m 是模m 的一个完系,则①a 1+a 2+…+a m ≡1+2+…+m (mod m );②a 1·a 2·……·a m ≡1·2·…·m (mod m ); ③(a 1)n +(a 2)n +…+(a m )n ≡1n +2n +…+m n (mod m ).例3、已知m , n 为正整数, 且m 为奇数, (m , 2n -1)=1. 证明:m |∑=m k n k1.证明:∵1, 2, …, m 构成模m 的完系, (m , 2)=1,∴2, 4, …, 2m 也构成模m 的完系.∴)(mod )2(11m k k m k n m k n ∑∑==≡,即)(mod 0)12(1m k m k n n ≡-∑=. ∵(m , 2n -1)=1,∴∑=m k n k m 1|得证. 例4、求八个整数n 1, n 2,…, n 8满足:对每个整数k (-2014<k <2014),有八个整数a 1, a 2,…, a n ∈{−1, 0, 1},使得k =a 1n 1+a 2n 2+…+a 8n 8解:令G ={k | k =a 1+a 2·2+a 3·32+…+a n +1·3n ,a i ∈{−1, 0, 1},i =1,2,…,n +1}.显然max G =1+3+32+…+3n =3n +1-12(记为H ),min G =-1-3-32+…-3n =-H . 且G 中的元素个数有3n +1=2H +1个, 又∵G 中任意两数之差的绝对值不超过2H ,∴G 中的数对模2H +1不同余,∴G 的元素恰好是模2H +1的一个绝对值最小的完系,于是凡满足-H ≢k ≢H 的任意整数都属于G ,且可唯一地表示为a 1+a 2·2+a 3·32+…+a n +1·3n 形式,当n =7时,H =3208>2014,而n =6时,H =1043<2014,故n 1=1,n 2=3,…,n 8=37为所求.例5、已知p 为大于3的质数,且112+122+132+…+1(p -1)2=a b,a ,b ∈N *. (a , b )=1,证明:p a . 证明:对于不超过p −1的自然数k ,由于(k , p )=1,所以存在唯一的不超过p −1的自然数x ,满足1(mod )kx p ≡而且,当k =1或p −1有x =1或p −1,当22k p ≤≤-时,有22,x p x k ≤≤-≠,故当k 取遍1,2,……,p −1时,x 也取遍1,2,……,p −1,因为(,(1)!)1,1(mod )p p kx p -=≡由可得到(1)!(1)!(1)!(mod )(1)!(mod ),p p kx p p p x p k--≡--≡或所以 2211222211((1)!)((1)!)(1)(21)((1)!)((1)!)(mod )6p p k x p a p p p p p x p p b k --==----=≡-≡-∑∑ 因为p 是大于3的素数,所以p −1不小于4,所以(p −1)!含有因数6, 从而2(1)(21)((1)!)0(mod )6p p p p p ---≡,即2((1)!)0(mod )p a p b -≡, 因为(,(1)!)1p p -=,所以2(,((1)!))1p p -=,从而0(mod )0(mod )a p a p b≡⇒≡ 例6、(2003克罗地亚奥林匹克) 对于所有奇质数p 和正整数n (n ≣p ),试证:p n C ≡[n p] (mod p)例7、(第26届IMO) 设n 为正整数,整数k 与n 互质,且0<k <n . 令M ={1, 2, …, n −1}(n ≣3), 给M 中每个数染上黑白两种染色中的一种,染法如下:⑴对M 中的每个i ,i 与n −i 同色,⑵对M 中每个i ,i ≠k ,i 与|k −i |同色,试证:M 中所有的数必为同色.证明:∵(k , n )=1且0,1,2,…,n −1是一个模n 的最小非负完系,∴0·k ,1·k ,2·k ,…,(n −1)·k 也是一个模n 的完全剩余系.若设r j ≡j ·k (mod n )(其中1≢r j ≢n -1,j =1,2,…,n -1) ,则M ={1,2,…,n −1}={121,,,-n r r r } 下面只要证明r j 与r j +1(j =1,2,…,n −2)同色即可. 因为若如此,当r 1颜色确定后,M 中所有的数都r 1与同色. 由于(j +1)k ≡r j +1(mod n ),则r j +k ≡r j +1(mod n ),因此若r j +k <n ,则r j +1=r j +k ,由条件⑵知r j +1与| r j +1-k |=r j 同色;若r j +k >n ,由r j +1=r j +k -n ,由条件⑴知k -r j +1=n —r j 与n -(n —r j )=r j 同色,即k -r j +1与r j 同色, 由条件⑵知k -r j +1与|k -(k -r j +1)|=r j +1同色,因此r j +1与r j 同色.综上:此r j +1与r j 同色. 故M 中所有的数必为同色.例8、(2001第42届IMO)设n 为奇数且大于1,k 1, k 2,…, k n 为给定的整数,对于1, 2, …, n 的n !个排列中的每一个排列a =(a 1, a 2,…, a n ),记S (a )=∑=n i i ia k 1,试证:有两个排列b 和c ,使得n !| S (b )-S (c ).证明:假设对任意两个不同的b 和c ,均有S (b )≡/S (c )(mod n !),则当a 取遍所有1,2,…,n 的n !个排列时, S (a )也取遍模n !的一个完全剩余系,且每个剩余系恰好经过一次,所以()aS a ∑≡1+2+3+…+n !(mod n !)≡12(n !+1)n !≡n !2×n !+n !2≡n !2(mod n !) (n >1)其中()a S a ∑表示对取遍个排列求和(下同),下面用另一种方法计算1()()ni i a a i S a k a ==∑∑∑:对于k 1,i ∈{1,2,…,n },a i =1时,剩n -1个数,有(n -1)!个排列,a i =2时,有(n -1)!个排列,…∴k 1的系数为(n -1)!·(1+2+…+n )=12(n +1)!. ∴()a S a ∑=(1)!2n +1n i i k =∑ 但()a S a ∑=(1)!2n +1n i i k =∑≡0(mod n !) (∵n 为奇数),∴n !2≡0(mod n !), 矛盾. ∴n !| S (b )-S (c ).例9、设m 是给定的整数. 求证:存在整数a ,b 和k . 其中a ,b 均为奇数,k ≣0,使得2m =a 19+b 99+k ·21999.另解:设x ,y 为奇数,若x ≡/y (mod 21999),则x 19-y 19=(x -y )(x 18+x 17y +…+xy 17+y 18),∵x 18+x 17y +…+xy 17+y 18为奇数,∴x 18+x 17y +…+xy 17+y 18与21999互质,∴x 19≡/y 19(mod 21999)故当a 取遍模21999的简化剩余系时,a 19也取遍模21999的简化剩余系,∴一定存在a ,使得a 19≡2m -1(mod 21999),并且有无穷多个这样的a ,故2m -1-a 19=k ·21999令b =1,则2m =a 19+b 99+k ·21999. 当a 足够小时,不难知k ≣0.。
欧拉函数简介在讲欧拉函数之前先给出剩余类、完全剩余系、简化剩余系的概念。
按照某⼀模m的余数将全体整数进⾏分类,就可以引⼊下⾯的概念。
1. 剩余类:把全体整数按其对模m同余的数归为⼀类,称为剩余类。
2. 完全剩余系:在每⼀个对模m同余的剩余类中选出⼀个数构成的拥有m个元素的集合,称为完全剩余系,简称完系。
容易有如下结论: (1)任何m个连续整数构成对模m的完系。
(2)0,1,..,m-1构成对模m的最⼩⾮负剩余系。
(3)m=2k+1时:-k,-k+1,...,0,1,...,k构成对模m的最⼩绝对值完系; m=2k时:-k,-k+1,...,0,1,...,k-1构成对模m的最⼩绝对值完系。
(4)设gcd(b,m)=1,c为任意整数,a1,a2...am是对模m的⼀个完系,那么b*a1+c,b*a2+c,...,b*am+c也是对模m的⼀个完系。
3. 简化剩余系:在模m的每个剩余类中取⼀个和m互质的数构成的集合,称为简化剩余系。
容易得出⼀个剩余类中的所有元素要么都和m互质,要么都和m不互质。
然后给出欧拉函数的概念:4. 欧拉函数:把对模m的简化剩余系的元素个数称为m的欧拉函数,记为Φ(m). 显然欧拉函数表⽰0,1,...m-1中与m互质的数的个数。
有争议的⼀点是Φ(1)的值是0还是1,关于这⼀点取决于具体题⽬中的具体描述⽽定。
求欧拉函数的⽅法是先将m分解质因数p1,p2...pn,这些质因数两两互不相等,则Φ(m)=m*∏(1-1/pi)。
求⼀个连续区间的欧拉函数的⽅法如下: 可以⽤上述⽅法对每⼀个求⼀次,但这样⽐较慢,⼀个好的⽅法是筛法,如下⾯演⽰如何⽤筛法求1~10的欧拉函数: 设⼀个数组eu[11],eu[1]=1,eu[2]=2,...,eu[10]=10。
然后对每⼀个下标是2的倍数的元素乘以(1-1/2),则eu[2]=1,eu[4]=2,...,eu[10]=5,然后对每个下标是3的倍数的元素乘以(1-1/3),则eu[3]=2,eu[6]=2,eu[9]=6。
一、填空1. 若b 是任一正整数,则=),0(b 。
2. 若b 是任一整数,则=),0(b 。
3. [5.7]= {5.7}= [ 5.9]-= { 5.8}-=4. [1.2]= =}2.1{ [ 1.2]-= =-}2.1{5. 写出标准分解式(1)!20= .(2)30!=(3)32!= .6. !20中质因数2的指数是 。
在!40的标准分解式中质因数3的指数是 。
7. 同余式(mod )ax b m ≡有解的充要条件是 。
8. 不定方程ax by c +=,其中a,b 都是整数,且都不为零,方程有解的充分必要条件是 。
9. 设模为正整数m ,则整数的同余关系作为等价关系满足的三个基本性质是:(1) (自反性) ;(2) (对称性)若)(mod m b a ≡,则)(mod m a b ≡;(3) (传递性) 。
10. 写出模7的绝对最小完全剩余系: ,写出模7的最小非负完全剩余系: 模7的一组简化剩余系: .11. 欧拉函数2(7)ϕ= , =)10(ϕ ,=)37(ϕ ,=)120(ϕ 。
12. 求最大公因数 (169, 121)= ,(1859, 1753)= , (76501, 9719)= ,(48, 72, 108)= 。
13. 求最小公倍数 [21, 35 ]= ,[123, 321]= ,[138, 36]= ,[125, 725, 1125]= [128, 234, 524]= .14. 写出82798848的标准分解式 。
15. 写出51480的标准分解式 。
二、判断1.若)(mod m b a ≡,d 是m b a ,,的任一公因数,则)(mod d md b d a =。
() 2.模m 的一个简化剩余系中数的个数为1)(-m ϕ。
( )3.若)(m od 22m b a ≡成立,则)(mod m b a ≡。
( )4.若)2(mod b a ≡,则)2(mod 222b a ≡。
剩余类、剩余系、完全剩余系和简化剩余系学习笔记经常在⼀些数论题题解中看到剩余类、剩余系、完全剩余系、简化剩余系这⼏个名词,但总感觉⾃⼰对它们的概念理解得不是很深,⽽且还经常混淆,故写篇博客记录下⾃⼰所理解的剩余系相关知识,如有错误,欢迎路过的⼤佬指正。
剩余类(同余类)定义n n r∈[0,n−1]n C r=n∗x+r,x∈Znn=1145,r=14C14=1145x+141145−1131,14,1159性质剩余系定义n n n x x xnn=1145r={11,4,5,14}114514性质完全剩余系(完系)定义n n n n nnn=5{0,1,2,3,4}5{5,1,8,−3,14}5性质n r a∈Z,b∈Z gcd(n,a)=1a∗r i+b (i∈[0,n−1])n证明:命题 1 :如果r是⼀个模n的剩余系,那r i+b⼀定也构成⼀个模n的完全剩余系。
反证法,若r i+b不构成⼀个模n的完全剩余系,则存在两个元素同余n,即有r x+b≡r y+b(mod n),同余式两边同时减去b,有r x≡r y(mod n),与r是⼀个模n的剩余系这⼀前提⽭盾,命题 1 得证。
命题 2:若r是⼀个模n的完全剩余系,对于任意的整数a,若有gcd(a,n)=1,则a∗r i也构成⼀个模n的完全剩余系。
同样是反证法,若结论不成⽴,则有a∗r x≡a∗r y(mod n),因为gcd(a,n)=1,所以⼀定存在a mod p的逆元inv(a),同余式两边同时乘以inv(a),则有r x≡r y(mod n),与前提⽭盾,命题 2 得证。
这俩个命题都得证,所以a∗r i构成⼀个模n的完全剩余系,a∗r i+b也构成⼀个模n的完全剩余系,故性质得证。
简化剩余系(既约剩余系、缩系)定义nφ(n)n r nφ(n)φ(n)nn=10{1,3,7,9}10n=5{1,8,7,14}5n n性质n r a∈Z gcd(n,a)=1a∗r i n 参考资料国际惯例。
模8的简化剩余系
1 概述
模8的简化剩余系(Simplified Residue Number System,简称SRNS),又称模8简化残存系统,是一种用来处理电子计算机数据的
方法,通过使用模8的残差数字来进行算术操作来实现快速的计算机
流程。
SRNS通过模8算法將數據轉換為模8殘數表示,計算數據通過
對模8殘數擴展,達到快速計算的目的。
由於SRNS基於模8數字格式,它比傳統的梯度和九位的系統更為便捷,更為簡單。
同時SRNS也可以
搭配浮點數操作,以更合理的精度完成运算。
2 优势
其主要优势包括:(1)易于实现。
SRNS在构建方面比九位残余系统简单得多,可以大大简化实现步骤,提高实际应用率。
(2)快速。
SRNS不仅可以比九位残余系统更快地提取残余,而且每个操作也非常快,因此在实际运算中可以更快地处理数据。
(3)低耗能。
SRNS可以著名地更加有效地消耗计算机的能量,可以节省对计算机的电池使用
以及节省计算机的温度升高,从而大大提升计算机的随后环境效应。
(4)可扩展性。
SRNS可以很容易地扩展到多位模拟,因此可以更有效地处理复杂的运算。
3 应用
SRNS已经逐渐被广泛应用于科学和工程计算,尤其在密码技术,
声讯技术,多媒体处理,可编程逻辑阵列以及模式识别等领域中发挥
着重要作用。
SRNS也可以用于数据库和供应链管理系统中,通过使用高效的数
字方式存储和处理信息,可以更快地提取有用的信息,進而提高系統
的效率。
此外,SRNS也可以用于可穿戴式设备,如智能手表,运动饮料,
以及其他物联网设备,以便快速准确地获取信息。
4 结论
模8的简化剩余系(SRNS)是一种基於模8残差数字格式的高效
计算方法,SRNS可以有效减少数据转换及操作的耗费,提高数据计算
和处理的效率。
SRNS被广泛用于密码技术,数据库管理,可穿戴式设
备等领域,是一种非常有用的计算方法。
尽管SRNS可以擴展到多位
模拟,以便更有效地处理复杂的数值计算,但它的实现仍然相对简单,以及有利的低耗能特性,使它成为目前最为受欢迎的计算技术之一。