一轮复习17任意角的三角函数、同角公式与诱导公式
- 格式:doc
- 大小:190.50 KB
- 文档页数:4
【考点预测】知识点一:三角函数基本概念1.角的概念(1)任意角:①高中数学53个题型归纳与方法技巧总结篇专题17三角函数概念与诱导公式定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是{}Z k k S ∈+︒⋅==,αββ360.(3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.(4)象限角的集合表示方法:2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:rad 180π=︒,rad 1801π=︒,π︒=180rad 1.(3)扇形的弧长公式:r l ⋅=α,扇形的面积公式:22121r lr S ⋅==α.3.任意角的三角函数(1)定义:任意角α的终边与单位圆交于点)(y x P ,时,则y =αsin ,x =αcos ,)0(tan ≠=x xyα.(2)推广:三角函数坐标法定义中,若取点P )(y x P ,是角α终边上异于顶点的任一点,设点P 到原点O 的距离为r ,则r y =αsin ,r x =αcos ,)0(tan ≠=x xyα三角函数的性质如下表:三角函数定义域第一象限符号第二象限符号第三象限符号第四象限符号αsin R ++--αcos R+--+αtan }2|{Z k k ∈+≠,ππαα+-+-记忆口诀:三角函数值在各象限的符号规律:一全正、二正弦、三正切、四余弦.4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A(1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .三角函数线有向线段MP 为正弦线;有向线段OM 为余弦线;有向线段AT 为正切线知识点二:同角三角函数基本关系1.同角三角函数的基本关系(1)平方关系:1cos sin 22=+αα.(2)商数关系:)2(tan cos sin ππααααk +≠=;知识点三:三角函数诱导公式公式一二三四五六角)(2Z k k ∈+απαπ+α-απ-απ-2απ+2正弦αsin αsin -αsin -αsin αcos αcos 余弦αcos αcos -αcos αcos -αsin αsin -正切αtan αtan αtan -αtan -口诀函数名不变,符号看象限函数名改变,符号看象限【记忆口诀】奇变偶不变,符号看象限,说明:(1)先将诱导三角函数式中的角统一写作2n πα⋅±;(2)无论有多大,一律视为锐角,判断2n πα⋅±所处的象限,并判断题设三角函数在该象限的正负;(3)当n 为奇数是,“奇变”,正变余,余变正;当n 为偶数时,“偶不变”函数名保持不变即可.【方法技巧与总结】1.利用1cos sin 22=+αα可以实现角α的正弦、余弦的互化,利用αααtan cos sin =可以实现角α的弦切互化.2.“ααααααcos sin cos sin cos sin -+,,”方程思想知一求二.222(sin cos )sin cos 2sin cos 1sin 2ααααααα+=++=+222(sin cos )sin cos 2sin cos 1sin 2ααααααα-=+-=-22(sin cos )(sin cos )2αααα++-=【题型归纳目录】题型一:终边相同的角的集合的表示与区别题型二:等分角的象限问题题型三:弧长与扇形面积公式的计算题型四:三角函数定义题题型五:象限符号与坐标轴角的三角函数值题型六:同角求值—条件中出现的角和结论中出现的角是相同的题型七:诱导求值与变形【典例例题】题型一:终边相同的角的集合的表示与区别例1.(2022·全国·高三专题练习)与角94π的终边相同的角的表达式中,正确的是()A .245k π+ ,k Z ∈B .93604k π⋅+,k Z ∈C .360315k ⋅- ,k Z ∈D .54k ππ+,k Z ∈【答案】C 【解析】【分析】要写出与94π的终边相同的角,只要在该角上加2π的整数倍即可.【详解】首先角度制与弧度制不能混用,所以选项AB 错误;又与94π的终边相同的角可以写成92()4k k Z ππ+∈,所以C 正确.故选:C .例2.(2022·全国·高三专题练习)若角α的终边在直线y x =-上,则角α的取值集合为()A .2,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z B .32,4k k πααπ⎧⎫=+∈⎨⎬⎩⎭Z C .3,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z D .,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z 【答案】D 【解析】【分析】根据若,αβ终边相同,则2,k k Z βπα=+∈求解.【详解】解:,由图知,角α的取值集合为:()32,2,4421,2,44,4k k Z k k Z k k Z k k Z k k Z ππααπααπππααπααππααπ⎧⎫⎧⎫=+∈⋃=-∈⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫⎧⎫==+-∈⋃=-∈⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫==-∈⎨⎬⎩⎭故选:D.【点睛】本题主要考查终边相同的角,还考查了集合的运算能力,属于基础题.例3.(2022·上海市嘉定区第二中学高一阶段练习)设集合{}{}|45180,|135180,A k k Z k k Z αααα==︒+⋅︒∈⋃=︒+⋅︒∈,集合{}|4590,B k k Z ββ==︒+⋅︒∈,则()A .AB =∅ B .A BC .B AD .A B=【答案】D 【解析】【分析】考虑A 中角的终边的位置,再考虑B 中角的终边的位置,从而可得两个集合的关系.【详解】.45180,k k Z α=︒+⋅︒∈表示终边在直线y x =上的角,135180,k k Z α=︒+⋅︒∈表示终边在直线y x =-上的角,而4590,k k Z β=︒+⋅︒∈表示终边在四条射线上的角,四条射线分别是射线,0;,0;,0;,0y x x y x x y x x y x x =≥=-≤=≤=-≥,它们构成直线y x =、直线y x =-,故A B =.故选:D.【点睛】本题考查终边相同的角,注意180k α⋅︒+的终边与α的终边的关系是重合或互为反向延长线,而90k α⋅︒+的终边与α的终边的关系是重合或互为反向延长线或相互垂直,本题属于中档题.(多选题)例4.(2022·全国·高三专题练习)如果角α与角45γ+︒的终边相同,角β与45γ-︒的终边相同,那么αβ-的可能值为()A .90︒B .360︒C .450︒D .2330︒【答案】AC 【解析】根据终边相同可得角与角之间的关系,从而可得αβ-的代数形式,故可得正确的选项.【详解】因为角α与角45γ+︒的终边相同,故45360k γα ,其中k Z ∈,同理145360k βγ=-︒+⋅︒,其中1k Z ∈,故90360n αβ-=︒+⋅︒,其中n Z ∈,当0n =或1n =时,90αβ-=︒或450αβ-=︒,故AC 正确,令36090360n ︒=︒+⋅︒,此方程无整数解n ;令903060233n =︒+⋅︒︒即569n =,此方程无整数解n ;故BD 错误.故选:AC.(多选题)例5.(2022·全国·高三专题练习)下列条件中,能使α和β的终边关于y 轴对称的是()A .90αβ+=︒B .180αβ+=︒C .()36090k k αβ+=⋅︒+︒∈ZD .()()21180k k αβ+=+⋅︒∈Z 【答案】BD 【解析】【分析】根据α和β的终边关于y 轴对称时()180360k k αβ+=︒+︒∈Z ,逐一判断正误即可.【详解】根据α和β的终边关于y 轴对称时()180360k k αβ+=︒+︒∈Z 可知,选项B 中,180αβ+=︒符合题意;选项D 中,()()21180k k αβ+=+⋅︒∈Z 符合题意;选项AC 中,可取0,90αβ=︒=︒时显然可见α和β的终边不关于y 轴对称.故选:BD.例6.(2022·全国·高三专题练习)写出两个与113π-终边相同的角___________.【答案】3π,53π-(其他正确答案也可)【解析】【分析】利用终边相同的角的定义求解.【详解】设α是与113π-终边相同的角,则112,3k k Z παπ=-∈,令1k =,得53πα=-,令2k =,得3πα=,故答案为:3π,53π-(其他正确答案也可)【方法技巧与总结】(1)终边相同的角的集合的表示与识别可用列举归纳法和双向等差数列的方法解决.(2)注意正角、第一象限角和锐角的联系与区别,正角可以是任一象限角,也可以是坐标轴角;锐角是正角,也是第一象限角,第一象限角不包含坐标轴角.题型二:等分角的象限问题例7.(2022·浙江·高三专题练习)若18045,k k Z α=⋅+∈ ,则α的终边在()A .第一、三象限B .第一、二象限C .第二、四象限D .第三、四象限【答案】A 【解析】【分析】分21,k n n Z =+∈和2,k n n =∈Z 讨论可得角的终边所在的象限.【详解】解:因为18045,k k Z α=⋅+∈ ,所以当21,k n n Z =+∈时,218018045360225,n n n Z α=⋅++=⋅+∈ ,其终边在第三象限;当2,k n n =∈Z 时,21804536045,n n n Z α=⋅+=⋅+∈ ,其终边在第一象限.综上,α的终边在第一、三象限.故选:A.例8.(2022·全国·高三专题练习(理))角α的终边属于第一象限,那么3α的终边不可能属于的象限是()A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【解析】【分析】由题意知,222k k ππαπ<<+,k Z ∈,即可得3α的范围,讨论3k n =、31k n =+、32k n =+()n Z ∈对应3α的终边位置即可.【详解】∵角α的终边在第一象限,∴222k k ππαπ<<+,k Z ∈,则223363k k παππ<<+,k Z ∈,当3()k n n Z =∈时,此时3α的终边落在第一象限,当31()k n n Z =+∈时,此时3α的终边落在第二象限,当32()k n n Z =+∈时,此时3α的终边落在第三象限,综上,角α的终边不可能落在第四象限,故选:D.例9.(2022·全国·高三专题练习)θ是第二象限角,则下列选项中一定为负值的是()A .sin2θB .cos2θC .sin 2θD .cos 2θ【答案】C 【解析】表示出第二象限角的范围,求出2θ和2θ所在象限,确定函数值的符号.【详解】因为θ是第二象限角,所以22,2k k k Z ππθππ+<<+∈,则4242,k k k Z ππθππ+<<+∈,所以2θ为第三或第四象限角或终边在y 轴负半轴上,,所以sin 2θ<0.而,422k k k Z πθπππ+<<+∈,2θ是第一象限或第三象限角,正弦余弦值不一定是负数.故选:C .例10.(2022·全国·高三专题练习)已知角α第二象限角,且cos cos22αα=-,则角2α是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】C 【解析】【分析】由α是第二象限角,知2α在第一象限或在第三象限,再由coscos22αα=-,知cos02α≤,由此能判断出2α所在象限.【详解】因为角α第二象限角,所以()90360180360Z k k k α+⋅<<+⋅∈,所以()4518090180Z 2k k k α+⋅<<+⋅∈,当k 是偶数时,设()2Z k n n =∈,则()4536090360Z 2n n n α+⋅<<+⋅∈,此时2α为第一象限角;当k 是奇数时,设()21Z k n n =+∈,则()225360270360Z 2n n n α+⋅<<+⋅∈,此时2α为第三象限角.;综上所述:2α为第一象限角或第三象限角,因为coscos22αα=-,所以cos02α≤,所以2α为第三象限角.故选:C .【方法技巧与总结】先从α的范围出发,利用不等式性质,具体有:(1)双向等差数列法;(2)nα的象限分布图示.题型三:弧长与扇形面积公式的计算例11.(2022·浙江·镇海中学模拟预测)《九章算术》是中国古代的数学名著,其中《方田》章给出了弧田面积的计算公式.如图所示,弧田是由圆弧AB 及其所对弦AB 围成的图形.若弧田的弦AB 长是2,弧所在圆心角的弧度数也是2,则弧田的弧AB 长为_______,弧田的面积为_________.【答案】2sin1;211sin 1tan1-.【解析】【分析】(1)利用弧长公式解决,那么需要算出半径和圆心角;(2)用扇形的面积减去三角形的面积即可.【详解】由题意可知:111,,sin1sin1tan1tan1======AC BC BC AC AO OC ,所以弧AB 长122sin1sin1=⨯=,弧田的面积22111111222sin12tan1sin 1tan1⎛⎫=-=⨯⨯-⨯⨯=- ⎪⎝⎭扇形AOB AOB S S ,故答案为:2sin1;211sin 1tan1-.例12.(2022·全国·高考真题(理))沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图, AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在 AB 上,CD AB ⊥.“会圆术”给出 AB 的弧长的近似值s 的计算公式:2CDs AB OA=+.当2,60OA AOB =∠=︒时,s =()A B C D 【答案】B 【解析】【分析】连接OC ,分别求出,,AB OC CD ,再根据题中公式即可得出答案.【详解】解:如图,连接OC ,因为C 是AB 的中点,所以OC AB ⊥,又CD AB ⊥,所以,,O C D 三点共线,即2OD OA OB ===,又60AOB ∠=︒,所以2AB OA OB ===,则OC =2CD =所以()22222CD s AB OA =+=+=故选:B.例13.(2022·全国·高三专题练习)中国传统扇文化有着极其深厚的底蕴.按如下方法剪裁,扇面形状较为美观.从半径为r 的圆面中剪下扇形OAB ,使剪下扇形OAB,再从扇形OAB 中剪下扇环形ABDC 制作扇面,使扇环形ABDC 的面积与扇形OAB.则一个按上述方法制作的扇环形装饰品(如图)的面积与圆面积的比值为()ABCD2-【答案】D 【解析】【分析】记扇形OAB 的圆心角为α,扇形OAB 的面积为1S ,扇环形ABDC 的面积为2S ,圆的面积为S ,根据扇形面积公式,弧长公式,以及题中条件,即可计算出结果.【详解】记扇形OAB 的圆心角为α,扇形OAB 的面积为1S ,扇环形ABDC 的面积为2S ,圆的面积为S ,由题意可得,2112S r α=,21S S =2S r π=,所以()122124S Srαππ==,因为剪下扇形OAB ,所以22r r r παπ-=(3απ=,所以()()()2113244S S απππ====.故选:D.例14.(2022·浙江·赫威斯育才高中模拟预测)“圆材埋壁”是我国古代的数学著作《九章算术》中的一个问题,现有一个“圆材埋壁”的模型,其截面如图所示,若圆柱形材料的底面半径为1,截面圆圆心为O ,墙壁截面ABCD 为矩形,且1AD =,则扇形OAD 的面积是__________.【答案】6π##16π【解析】【分析】计算AOD ∠,再利用扇形的面积公式求解.【详解】由题意可知,圆O 的半径为1,即1OA OD ==,又1AD =,所以OAD △为正三角形,∴3AOD π∠=,所以扇形OAD 的面积是221112236S r AOD ππ=⨯⨯∠=⨯⨯=.故答案为:6π例15.(2022·全国·模拟预测)炎炎夏日,在古代人们乘凉时习惯用的纸叠扇可看作是从一个圆面中剪下的扇形加工制作而成.如图,扇形纸叠扇完全展开后,扇形ABC 的面积S 为22225cm π,若2BD DA =,则当该纸叠扇的周长C 最小时,BD 的长度为___________cm .【答案】10π【解析】【分析】设扇形ABC 的半径为r cm ,弧长为l cm ,根据扇形ABC 的面积S 为22225cm π,由212252rl π=得到rl ,然后由纸叠扇的周长2C r l =+,利用基本不等式求解.【详解】解:设扇形ABC 的半径为r cm ,弧长为l cm ,则扇形面积12S rl =.由题意得212252rl π=,所以2450rl π=.所以纸叠扇的周长260C r l π=+≥==,当且仅当22,450,r l rl π=⎧⎨=⎩即15r π=,30l π=时,等号成立,所以()15BD DA cm π+=.又2BD DA =,所以()1152BD BD cm π+=,所以()3152BD cm π=,故()10BD cm π=.故答案为:10π例16.(2022·全国·高三专题练习)已知扇形的周长为4cm ,当它的半径为________cm 和圆心角为________弧度时,扇形面积最大,这个最大面积是________cm 2.【答案】121【解析】【详解】24l r +=,则()21142222S lr r r r r ==-=-+,则1,2r l ==时,面积最大为1,此时圆心角2lrα ,所以答案为1;2;1.【方法技巧与总结】(1)熟记弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2(弧度制(0,2]απ∈)(2)掌握简单三角形,特别是直角三角形的解法题型四:三角函数定义题例17.(2022·广东·深圳市光明区高级中学模拟预测)已知角θ的终边过点()1,1A -,则sin()6πθ-=()ABCD【答案】D 【解析】【分析】由任意三角形的定义求出sin ,cos θθ,由两角差的正弦公式代入即可求出sin()6πθ-.【详解】因为角θ的终边过点()1,1A -,由任意三角形的定义知:sin θθ==sin()sin cos cos sin 666πππθθθ-=-=故选:D.例18.(2022·河北衡水·高三阶段练习)已知角α的终边经过点(-,则()tan sin 232πααπ⎛⎫++-= ⎪⎝⎭()A .32B .34-C.D【答案】D 【解析】【分析】利用三角函数的定义、诱导公式、二倍角公式以及弦化切可求得所求代数式的值.【详解】依题意,由三角函数的定义可知tan α=()22sin cos 2sin cos 2tan sin 23sin 22sin sin cos cos 2παπαααααπαπαααα⎛⎫+ ⎪⎛⎫⎝⎭++-=-=-- ⎪+⎛⎫⎝⎭+ ⎪⎝⎭22212sin cos 2tan tan sin cos tan 1ααααααα=--===++故选:D.例19.(2022·湖北武汉·模拟预测)已知角α的始边与x 轴非负半轴重合,终边上一点()sin 3,cos3P ,若02απ≤≤,则α=()A .3B .32π-C .532π-D .32π-【答案】C【分析】根据三角函数的定义求出tan α,结合诱导公式即可得解,注意角所在的象限.【详解】解:因为角α的终边上一点()sin 3,cos3P ,所以cos31tan 0sin 3tan 3α==<,又cos 30,sin 30<>,所以α为第四象限角,所以23,Z 2k k παπ=+-∈,又因02απ≤≤,所以532πα=-.故选:C.例20.(2022·北京·二模)已知角α的终边经过点34,55P ⎛⎫- ⎪⎝⎭,则sin 2α=()A .2425-B .725-C .725D .2425【答案】A 【解析】【分析】根据终边上的点确定角的正余弦值,再由二倍角正弦公式求sin 2α.【详解】由题设43sin ,cos 55αα==-,而4324sin 22sin cos 2()5525ααα==⨯⨯-=-.故选:A【方法技巧与总结】(1)任意角的正弦、余弦、正切的定义;题型五:象限符号与坐标轴角的三角函数值例21.(2022·全国·高三专题练习)如果cos 0θ<,且tan 0θ<,则sin cos cos θθθ-+的化简为_____.【答案】sin θ【解析】【分析】由cos 0θ<,且tan 0θ<,得到θ是第二象限角,由此能化简sin cos cos θθθ-+.解:∵cos 0θ<,且tan 0θ<,∴θ是第二象限角,∴sin cos cos sin cos cos sin θθθθθθθ-+=-+=.故答案为:sin θ.例22.(2022·河北·石家庄二中模拟预测)若角α满足sin cos 0αα⋅<,cos sin 0αα-<,则α在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】B 【解析】【分析】根据sin cos 0αα⋅<可知α是第二或第四象限角;根据第二或第四象限角正余弦的符号可确定结果.【详解】sin cos 0αα⋅< ,α 是第二或第四象限角;当α是第二象限角时,cos 0α<,sin 0α>,满足cos sin 0αα-<;当α是第四象限角时,cos 0α>,sin 0α<,则cos sin 0αα->,不合题意;综上所述:α是第二象限角.故选:B.例23.(2022·浙江·模拟预测)已知R θ∈,则“cos 0θ>”是“角θ为第一或第四象限角”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要【答案】B 【解析】【分析】利用定义法进行判断.【详解】充分性:当cos 0θ>时,不妨取cos 1,0θθ==时轴线角不成立.故充分性不满足;必要性:角θ为第一或第四象限角,则cos 0θ>,显然成立.故选:B.例24.(2022·重庆·高三开学考试)若tan 0θ>,则下列三角函数值为正值的是()A .sin θB .cos θC .sin 2θD .cos 2θ【答案】C 【解析】【分析】结合诱导公式、二倍角公式判断出正确选项.【详解】sin tan 0sin cos 0sin 22sin cos 0cos θθθθθθθθ=>⇒⋅>⇒=>,所以C 选项正确.当5π4θ=时,5ππtan 0,sin 0,cos 0,cos 2coscos 022θθθθ><<===,所以ABD 选项错误.故选:C例25.(2022·全国·高三专题练习(理))我们知道,在直角坐标系中,角的终边在第几象限,这个角就是第几象限角.已知点()cos ,tan P αα在第三象限,则角α的终边在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】B 【解析】【分析】本题首先可以根据题意得出cos 0α<、tan 0α<,然后得出sin 0α>,即可得出结果.【详解】因为点()cos ,tan P αα在第三象限,所以cos 0α<,tan 0α<,则sin 0α>,角α的终边在第二象限,故选:B.例26.(2022·全国·高三专题练习(理))已知sin 0,cos 0αα><,则()A .sin 20α>B .cos20α<C .tan02α>D .sin2α<【答案】C 【解析】【分析】由条件得到角α所在的象限,从而得到2α所在的象限,这样就可以得到答案.【详解】由sin 0,cos 0αα><知,α为第二象限角,所以2α为第一或第三象限角,所以tan02α>.故选:C.例27.(2022·江西南昌·三模(文))若角α的终边不在坐标轴上,且sin 2cos 2αα+=,则tan α=()A .43B .34C .23D .32【答案】A 【解析】【分析】结合易知条件和同角三角函数的平方关系即可求出cos α,从而求出sin α,根据sin tan cos ααα=即可求得结果.【详解】22sin cos 13cos 5sin 2cos 2ααααα⎧+=⇒=⎨+=⎩或cos 1α=,∵α的终边不在坐标轴上,∴3cos 5α=,∴34sin 2255α=-⨯=,∴sin 4tan cos 3ααα==.故选:A .例28.(2022·全国·高三专题练习(理))若α是第二象限角,则下列不等式正确的是()A .()cos 0α->B .tan02α>C .sin 20α>D .()sin 0α->【答案】B 【解析】【分析】根据α是第二象限角,分别求出四个选项中角所在的象限,再判断三角函数的符号,即可求解.【详解】对于A :因为()π2ππ2πZ 2k k k α+<<+∈,所以()ππ2π2πZ 2k k k α--<-<--∈,所以α-是第三象限角,所以()cos 0α-<,故选项A 不正确;对于B :因为()π2ππ2πZ 2k k k α+<<+∈,所以()ππππZ 422k k k α+<<+∈,当()2Z k n n =∈时,()ππ2π2πZ 422n n n α+<<+∈,此时2α是第一象限角,当()21Z k n n =+∈时,()5π3π2π2πZ 422n n n α+<<+∈,此时2α是第三象限角,所以2α是第一或第三象限角,所以tan02α>,故选项B 正确;对于C :因为()π2ππ2πZ 2k k k α+<<+∈,所以()π4π22π4πZ k k k α+<<+∈,所以2α是第三或第四象限角或终边落在y 轴非正半轴,所以sin 20α<,故选项C 不正确;对于D :因为()π2ππ2πZ 2k k k α+<<+∈,所以()ππ2π2πZ 2k k k α--<-<--∈,所以α-是第三象限角,所以()sin 0α-<,故选项D 不正确;故选:B.【方法技巧与总结】正弦函数值在第一、二象限为正,第三、四象限为负;.余弦函数值在第一、四象限为正,第二、三象限为负;.正切函数值在第一、三象限为正,第二、四象限为负.题型六:同角求值—条件中出现的角和结论中出现的角是相同的例29.(2022·安徽·合肥市第八中学模拟预测(文))若tan 2θ=-,则2sin 2cos 1θθ+的值为___________.【答案】23-【解析】【分析】利用二倍角公式和同角三角函数平方关系可构造正余弦齐次式,分子分母同除2cos θ,代入tan θ即可得到结果.【详解】2222sin 22sin cos 2tan 42cos 12cos sin 2tan 243θθθθθθθθ===-=-++++.故答案为:23-.例30.(2022·河北·沧县中学模拟预测)已知tan 3α=,则22sin 22sin cos2cos -=-αααα___________.【答案】43【解析】【分析】根据二倍角公式,结合同角三角函数齐次式关系求解即可.【详解】解:22222222sin 22sin 2sin cos 2sin 2tan 2tan 23234cos2cos sin tan 33---⨯-⨯====----ααααααααααα.故答案为:43例31.(2022·广东惠州·一模)已知tan 2α=,32παπ<<,则cos sin αα-=()A B .C D .【答案】A 【解析】【分析】由sin tan 2cos ααα==及22sin cos 1αα+=解出sin α与cos α即可求解.【详解】因为sin tan 2cos ααα==,且22sin cos 1αα+=,32παπ<<,所以sin α=cos α=,所以cos sin αα⎛-== ⎝⎭.故选:A.例32.(2022·全国·模拟预测)已知0πA <<,1sin cos 5A A +=,则1sin 21cos 2AA-=+()A .132B .118C .4918D .4932【答案】C 【解析】【分析】结合同角的平方关系以及二倍角公式即可求出结果.【详解】由1sin cos 5A A +=及22sin cos 1A A +=,解得4sin 5A =,3cos 5A =-或4cos 5A =,3sin 5A =-.因为sin 0A >,所以4sin 5A =,3cos 5A =-,所以24sin 22sin cos 25A A A ==-,227cos 2cos sin 25A A A =-=-,所以2411sin 2492571cos 218125A A +-==+-,故选:C.例33.(2022·海南·模拟预测)已知角α为第二象限角,tan 3α=-,则cos α=()A.BC.D【答案】A 【解析】【分析】由角所在的象限及同角三角函数的平方关系、商数关系求cos α即可.【详解】因为α是第二象限角,所以sin 0α>,cos 0α<,由sin tan 3cos ααα==-,22sin cos 1αα+=,可得:cos α=故选:A.例34.(2022·全国·高三专题练习)已知(,22ππα∈-,且212sin 5cos 9αα-=,则cos 2=α()A .13B .79-C .34-D .18【答案】B 【解析】【分析】利用同角公式化正弦为余弦,求出cos α的值,再利用二倍角的余弦公式求解即得.【详解】依题意,原等式化为:212(1cos )5cos 9αα--=,整理得:(4cos 3)(3cos 1)0αα+-=,因(,)22ππα∈-,则cos 0α>,解得:1cos 3α=,所以2217cos 22cos 12139αα⎛⎫=-=⨯-=- ⎪⎝⎭.故选:B例35.(2022·全国·高三阶段练习(理))若sin cos 2sin cos θθθθ+=-,则sin (1sin 2)sin cos θθθθ+=+()A .65-B .25-C .65D .25【答案】C 【解析】【分析】由已知得sin 3cos θθ=,从而sin ,cos θθ同号,即sin cos 0>θθ,然后由平方关系求得22cos ,sin θθ,进而求得sin cos θθ,求值式应用二倍角公式和平方关系变形后可得结论.【详解】因为sin cos 2sin cos θθθθ+=-,所以sin 3cos θθ=,所以sin ,cos θθ同号,即sin cos 0>θθ,22222sin cos 9cos cos 10cos 1θθθθθ+=+==,21cos 10θ=,从而29sin 10θ=,229sin cos 100θθ=,所以3sin cos 10θθ=,22sin (1sin 2)sin (sin cos 2sin cos )sin (sin cos )sin cos sin cos θθθθθθθθθθθθθθ+++==+++2936sin sin cos 10105θθθ=+=+=.故选:C .例36.(2022·广东广州·三模)已知sin cos x x +=()0,πx ∈,则cos2x 的值为()A .12B C .12-D .【答案】D 【解析】【分析】将sin cos x x +=2sin x cos x =-12<0,结合sin cos x x +=求出x 的范围,再利用22cos 2sin 21x x +=求解即可.【详解】解:将sin cos x x +=2sin x cos x =-12<0,所以π(,π)2x ∈,又因为sin cos x x +=0,所以π3π(,24x ∈,2x 3π(π,)2∈,又因为sin2x =-12,所以cos2x 故选:D.例37.(2022·湖北武汉·模拟预测)已知1sin cos 5θθ+=-,(0,)θπ∈,则sin cos θθ-=()A .15B .15-C .75D .75-【答案】C 【解析】【分析】利用平方关系,结合同角三角函数关系式,即可求解.【详解】()21sin cos 12sin cos 25θθθθ+=+=,242sin cos 025θθ=-<,()0,θπ∈ ,,2πθπ⎛⎫∴∈ ⎪⎝⎭,sin cos θθ>,()249sin cos 12sin cos 25θθθθ-=-=,所以7sin cos 5θθ-=.故选:C例38.(2022·山西晋中·模拟预测(理))若tan 1θ=-,则()cos 1sin 2sin cos θθθθ--等于()A .12B .2C .1-D .13-【答案】C 【解析】【分析】化简原式为2tan 1tan 1θθ-+即得解.【详解】解:原式()222cos sin 2sin cos cos cos (sin cos )=sin cos sin cos θθθθθθθθθθθθ-⋅+-=--22cos (sin cos )sin cos θθθθθ-=+2tan 12=1tan 12θθ--==-+.故选:C例39.(2022·湖北·模拟预测)已知()cos 3cos 02πααπ⎛⎫++-= ⎪⎝⎭,则3sin sin sin 2ααπα-=⎛⎫+ ⎪⎝⎭()A .35B .35C .310D .310-【答案】D 【解析】【分析】根据题意求出tan α,再将原式化简为:32sin sin tan tan 1sin 2αααπαα-=+⎛⎫+ ⎪⎝⎭,求解即可.【详解】因为()cos 3cos 02πααπ⎛⎫++-= ⎪⎝⎭,所以sin 3cos 0αα--=,所以tan 3α=-()232sin 1sin sin sin tan 3sin cos cos tan 110sin 2αααααααπααα--====-+⎛⎫+ ⎪⎝⎭.故选:D.【方法技巧与总结】(1)若已知角的象限条件,先确定所求三角函数的符号,再利用三角形三角函数定义求未知三角函数值.(2)若无象限条件,一般“弦化切”.题型七:诱导求值与变形例40.(2022·贵州·贵阳一中高三阶段练习(理))若π1sin 63α⎛⎫-= ⎪⎝⎭,则2πcos 23α⎛⎫+= ⎪⎝⎭()A .13B .13-C .79D .79-【答案】D 【解析】【分析】由三角函数的二倍角的余弦公式,结合诱导公式,即可求得答案.【详解】由题意得:2222πππππ27cos 22cos 12cos 12sin 113326699αααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=---=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选:D .例41.(2022·贵州·贵阳一中模拟预测(文))若1sin ,63a π⎛⎫+= ⎪⎝⎭则2cos 3a π⎛⎫+= ⎪⎝⎭()A .13B .13-C .79D .79-【答案】B 【解析】【分析】利用诱导公式计算可得;【详解】解:因为1sin 63a π⎛⎫+= ⎪⎝⎭,所以21cos cos sin 32663ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=++=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选:B.例42.(2022·青海·海东市教育研究室一模(理))()tan 165-︒=()A .2-B .2-+C .2D .2【答案】C 【解析】【分析】先利用诱导公式可得()tan 165tan15-︒=︒,在运用正切两角差公式()tan15tan 4530︒=︒-︒计算.【详解】()()()tan 165tan 18015tan15tan 4530-︒=-︒+︒=︒=︒-︒1tan 45tan 3021tan 45tan 30︒-︒===+︒︒故选:C .例43.(2022·安徽·合肥市第八中学模拟预测(文))已知2cos sin 022a ππα⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,则()tan -=πα()A .2B .—2C .12D .12-【答案】C 【解析】【分析】根据诱导公式五、六可得2sin cos 0αα+=,由同角三角函数的关系可得1tan 2α=-,结合诱导公式二计算即可.【详解】由已知得2sin cos 0αα+=,12sin cos tan 2ααα∴=-∴=-,,∴1tan()tan 2παα-=-=.故选:C【方法技巧与总结】(1)诱导公式用于角的变换,凡遇到与2π整数倍角的和差问题可用诱导公式,用诱导公式可以把任意角的三角函数化成锐角三角函数.(2)通过2,,2πππ±±±等诱导变形把所给三角函数化成所需三角函数.(3)2,,2παβππ±=±±±等可利用诱导公式把,αβ的三角函数化【过关测试】一、单选题1.(2022·宁夏·银川一中模拟预测(理))中国古代数学的瑰宝《九章算术》中记载了一种称为“曲池”的几何体,该几何体是上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分)现有一个如图所示的曲池,1AA 垂直于底面,13AA =,底面扇环所对的圆心角为2π,弧AD 长度是弧BC 长度的3倍,2CD =,则该曲池的体积为()A .92πB .5πC .112πD .6π【答案】D 【解析】【分析】利用柱体体积公式求体积.【详解】不妨设弧AD 所在圆的半径为R ,弧BC 所在圆的半径为r ,由弧AD 长度为弧BC 长度的3倍可知3R r =,22CD R r r =-==,所以1r =,3R =.故该曲池的体积22()364V R r ππ=⨯-⨯=.故选:D.2.(2022·海南中学高三阶段练习)二十四节气是中华民族上古农耕文明的产物,是中国农历中表示李节变迁的24个特定节令.如图,每个节气对应地球在黄道上运动15︒所到达的一个位置.根据描述,从立冬到立春对应地球在黄道上运动所对圆心角的弧度数为()A .π3-B .π2C .5π12D .π3【答案】B【解析】【分析】根据条件得到运行度数为6×15°,化为弧度即可得解.【详解】根据题意,立春是立冬后的第六个节气,故从立冬到立春相应于地球在黄道上逆时针运行了61590︒⨯=︒,所以从立冬到立春对应地球在黄道上运动所对圆心角的弧度数为π2.故选:B3.(2022·河北·模拟预测)已知圆锥的母线长为2,其侧面展开图是圆心角等于23π的扇形,则该圆锥的体积为()A B .1627πC D .1681π【答案】C 【解析】【分析】设圆锥的底面半径为r ,高为h ,则由题意可得2223r ππ=⨯,从而可求出半径r ,再求出h ,进而可求出其体积【详解】设圆锥的底面半径为r ,高为h ,则由题意可得2223r ππ=⨯,解得23r =,所以h ===所以圆锥的体积为22112333V r h ππ⎛⎫==⨯=⎪⎝⎭故选:C4.(2022·福建省福州格致中学模拟预测)已知角θ的大小如图所示,则1sin 2cos 2θθ+=()A .5-B .5C .15-D .15【答案】A 【解析】【分析】由图中的信息可知tan 54πθ⎛⎫+=- ⎪⎝⎭,化简1sin 2cos 2θθ+即可.【详解】由图可知,tan 54πθ⎛⎫+=- ⎪⎝⎭,()()()22222cos sin 1sin 2sin cos 2sin cos cos sin cos 2cos sin cos sin cos sin cos sin θθθθθθθθθθθθθθθθθθ+++++===--+-tantan 1tan 4tan 51tan 41tan tan 4πθθπθπθθ++⎛⎫===+=- ⎪-⎝⎭-;故选:A.5.(2022·江西·临川一中模拟预测(文))tan195︒=()A.2-B.2-+C .2D .2【答案】C 【解析】【分析】利用诱导公式及两角差的正切公式计算可得;【详解】解:()()tan195tan 18015tan15tan 4530︒=︒+︒=︒=︒-︒tan 45tan 301tan 45tan 30︒-︒=+︒︒12==故选:C6.(2022·江苏·南京市天印高级中学模拟预测)若21sin2512sin αα+=-,则tan α=()A .23-B .32-C .23D .32【答案】C 【解析】【分析】通过“1”的替换,齐次化,然后得到关于tan α的方程,解方程即可【详解】22221sin 2(cos sin )cos sin 1tan 512sin cos sin cos sin 1tan αααααααααααα++++====----,解得2tan 3α=故选:C7.(2022·四川成都·模拟预测(文))已知向量(3cos 2,sin )a αα= ,(2,cos 5sin )b αα=+ ,π0,2α⎛⎫∈ ⎪⎝⎭,若a b ⊥ ,则tan α=()A .2B .-2C .3D .34【答案】C 【解析】【分析】由a b ⊥可得向量的数量积等于0,化简可得6cos 2sin (cos 5sin )0αααα++=,结合二倍角公式以及同角的三角函数关系式化为226tan tan n 10ta ααα-++=,可求得答案.【详解】由题意a b ⊥可得0a b ⋅= ,即6cos 2sin (cos 5sin )0αααα++=,即2226(cos sin )sin cos 5sin 0ααααα-++=,故22226cos sin sin c sin os 0cos αααααα-++=,即226tan tan n 10ta ααα-++=,由于π0,2α⎛⎫∈ ⎪⎝⎭,故tan 3,tan 2αα==-(舍去),故选:C8.(2022·黑龙江·哈九中模拟预测(文))数学家华罗庚倡导的“0.618优选法”在各领域都应用广泛,0.618就是黄金分割比m =2sin18︒).A .4B 1+C .2D 1【答案】A 【解析】【分析】根据2sin18m ︒=,结合三角函数的基本关系式,诱导公式和倍角公式,即可求解.【详解】根据题意,可得2sin182cos72m =︒=︒,4sin144cos54︒==︒()4sin 90544cos544cos54cos54︒+︒︒===︒︒.故选:A .二、多选题9.(2022·全国·高三专题练习)下列说法正确的有()A .经过30分钟,钟表的分针转过π弧度B .1801radπ︒=C .若sin 0θ>,cos 0θ<,则θ为第二象限角D .若θ为第二象限角,则2θ为第一或第三象限角【答案】CD 【解析】【分析】对于A ,利用正负角的定义判断;对于B ,利用角度与弧度的互化公式判断;对于C ,由sin 0θ>求出θ的范围,由cos 0θ<求出θ的范围,然后求交集即可;对于D ,由θ是第二象限角,可得222k k ππθππ+<<+,k Z ∈,然后求2θ的范围可得答案【详解】对于A ,经过30分钟,钟表的分针转过π-弧度,不是π弧度,所以A 错;对于B ,1︒化成弧度是rad 180π,所以B 错误;对于C ,由sin 0θ>,可得θ为第一、第二及y 轴正半轴上的角;由cos 0θ<,可得θ为第二、第三及x 轴负半轴上的角.取交集可得θ是第二象限角,故C 正确;对于D :若θ是第二象限角,所以222k k ππθππ+<<+,则()422k k k Z πθπππ+<<+∈,当2()k n n Z 时,则22()422n n n Z πθπππ+<<+∈,所以2θ为第一象限的角,当21()k n n Z =+∈时,5322()422n n n Z πθπππ+<<+∈,所以2θ为第三象限的角,综上,2θ为第一或第三象限角,故选项D 正确.故选:CD.10.(2022·全国·高三专题练习)中国传统折扇文化有着极其深厚的底蕴,一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形(如图)的面积为1S ,圆心角为1α,圆面中剩余部分的面积为2S ,圆心角为2α,当1S 与2S0.618≈(黄金分割比)时,折扇看上去较为美观,那么()A .1127.5α=︒B .1137.5α=︒C.21)απ=D.12αα=【答案】BCD 【解析】【分析】利用扇形的面积公式以及角度制与弧度制的互化即可求解.【详解】设扇形的半径为R,由211122221212R S S R αααα===,故D 正确;由122ααπ+=,。
三角函数一、知识点 (一)角的概念的推广1、角:一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
其中顶点,始边,终边称为角的三要素。
角可以是任意大小的。
(1)角按其旋转方向可分为:正角,零角,负角。
①正角:习惯上规定,按照逆时针方向旋转而成的角叫做正角; ②负角:按照顺时针方向旋转而成的角叫做负角;③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角。
(2)在直角坐标系中讨论角:①角的顶点在原点,始边在x 轴的非负半轴上,角的终边在第几象限,就说这个角是第几象限角。
②若角的终边在坐标轴上,就说这个角不属于任何象限,它叫轴线角。
(3)终边相同的角的集合:设α表示任意角,所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为},360|{Z n n S ∈⋅+α=ββ= 。
集合S 的每一个元素都与α的终边相同,当0=k 时,对应元素为α。
2、弧度制和弧度制与角度制的换算(1)角度制:把圆周360等分,其中1份所对的圆心角是1度,用度作单位来度量角的制度叫做角度制。
(2)1弧度的角:长度等于半径长的圆弧所对的圆心角叫做1弧度的角。
规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。
任一已知角α的弧度数的绝对值rl =α||,这种以“弧度”作为单位来度量角的制度叫做弧度制。
(3)角度制与弧度制的互化:π=2360,π=180;815730.571801'≈≈π= rad ; rad 01745.01801≈π= 。
3、特殊角的三角函数值0 3045 60 90 120 135 150 1800 6π4π 3π 2π 32π 43π 65ππ sin 0 2122 23 1 232221 0 cos 1 232221 0 21- 22- 23- 1- tan 0 331 3 ⨯3- 1- 33- 0210 225 240 270 300 315 330 36067π 45π 34π 23π 35π 47π 611ππ2sin21- 22- 23- 1- 23- 22- 21- 04、平面直角坐标系中特殊线表示的角的集合:其中:Z n ∈,Z k ∈;x 轴正半轴 360⋅nπk 2 第一象限角平分线36045⋅+nπ+πk 24 x 轴负半轴 360180⋅+n π+πk 2 第二象限角平分线 360135⋅+nπ+πk 243 x 轴 180⋅n πk 第三象限角平分线 360225⋅+nπ+πk 245 y 轴正半轴 36090⋅+n π+πk 22第四象限角平分线 360315⋅+nπ+πk 247 y 轴负半轴 360270⋅+n π+πk 223 第一、三象限角平分线 18045⋅+n π+πk 4y 轴 18090⋅+nπ+πk 2 第二、四象限角平分线 180135⋅+n π+πk 43 坐标轴 90⋅n 2πk 象限角平分线 9045⋅+n 24π+πk 5、弧长及扇形面积公式:弧长公式:r l ⋅α=||扇形弧长,扇形面积公式:lr r S 21||212=⋅α=扇形,α是圆心角且为弧度制,r 是扇形半径。
第二讲 同角三角函数的基本关系式与诱导公式知识梳理·双基自测 知识梳理知识点一 同角三角函数的基本关系式 (1)平方关系: sin 2x +cos 2x =1 . (2)商数关系: sin xcos x =tan x .知识点二 三角函数的诱导公式重要结论1.同角三角函数基本关系式的变形应用:如sin x =tan x·cos x,tan 2x +1=1cos 2x,(sinx +cos x)2=1+2sin xcos x 等.2.诱导公式的记忆口诀“奇变偶不变,符号看象限”.“奇”与“偶”指的是诱导公式k·π2+α(k∈Z)中的整数k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 是奇数,则正、余弦互变;若k 为偶数,则函数名称不变.“符号看象限”指的是在k·π2+α(k∈Z)中,将α看成锐角时k·π2+α(k∈Z)所在的象限.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( × )(2)若α∈R ,则tan α=sin αcos α恒成立.( × )(3)sin (π+α)=-sin α成立的条件是α为锐角.( × ) (4)若sin (kπ-α)=13(k ∈Z),则sin α=13.( × )[解析] (1)根据同角三角函数的基本关系式知当α,β为同角时才正确.(2)cos α≠0时才成立.(3)根据诱导公式知α为任意角.(4)当k 为奇数和偶数时,sin α的值不同.题组二 走进教材2.(必修4P 22B 组T3改编)已知tan α=12,则sin α-cos α3sin α+2cos α=( A )A .-17B .17C .-7D .7[解析] sin α-cos α3sin α+2cos α=tan α-13tan α+2=12-13×12+2=-17.故选A.3.(必修4P 22B 组T2改编)化简cos α1-sin α1+sin α+sin α1-co s α1+cos α⎝⎛⎭⎪⎫π<α<3π2得( A )A .sin α+cos α-2B .2-sin α-cos αC .sin α-cos αD .cos α-sin α[解析] 原式=cos α1-sin α2cos 2α+sin α1-cos α2sin 2α,∵π<α<32π,∴cos α<0,sin α<0.∴原式=-(1-sin α)-(1-cos α)=sin α+cos α-2.4.(必修4P 29B 组T2改编)若sin(π+α)=-12,则sin(7π-α)= 12 ,cos ⎝ ⎛⎭⎪⎫α+3π2= 12 . [解析] 由sin(π+α)=-12,得sin α=12,则sin(7π-α)=sin(π-α)=sin α=12,cos ⎝ ⎛⎭⎪⎫α+3π2=cos ⎝ ⎛⎭⎪⎫α+3π2-2π=cos ⎝ ⎛⎭⎪⎫α-π2 =cos ⎝ ⎛⎭⎪⎫π2-α=sin α=12.题组三 走向高考5.(2019·全国卷Ⅰ)tan 255°=( D )A .-2- 3B .-2+ 3C .2- 3D .2+ 3[解析] 由正切函数的周期性可知,tan 255°=tan(180°+75°)=tan 75°=tan(30°+45°)=33+11-33=2+3,故选D.另:tan 225°=tan 75°>tan 60°=3,∴选D.6.(2015·福建)若sin α=-513,且α为第四象限角,则tan α的值等于( D )A.125B .-125C .512D .-512[解析] 因为sin α=-513,且α为第四象限角,所以cos α=1213,所以tan α=-512,故选D.7.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( A )A .-79B .-29C .29D .79[解析] 将sin α-cos α=43的两边进行平方,得sin 2α-2sin αcos α+cos 2α=169,即sin 2α=-79,故选A.考点突破·互动探究考点一 同角三角函数的基本关系式——师生共研 例1 (1)已知α为第三象限角,cos α=-817,则tan α=( D )A .-815B .815C .-158D .158(2)已知α是三角形的内角,且tan α=-13,则sin α+cos α的值为 -5 .(3)若角α的终边落在第三象限,则cos α1-sin 2α+2sin α1-cos 2α的值为 -3 .[解析] (1)因为α是第三象限角,cos α=-817,所以sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫-8172=-1517,故tan α=sin αcos α=158.选D.(2)由tan α=-13,得sin α=-13cos α,将其代入sin 2α+cos 2α=1,得109cos 2α=1,所以cos 2α=910,易知cos α<0,所以cos α=-31010,sin α=1010,故sin α+cos α=-105. (3)由角α的终边落在第三象限, 得sin α<0,cos α<0,故原式=cos α|cos α|+2sin α|sin α|=cos α-c os α+2sin α-sin α=-1-2=-3.名师点拨(1)已知一个角的三角函数值求这个角的其他三角函数值时,主要是利用公式sin 2α+cos 2α=1,tan α=sin αcos α求解,解题时,要注意角所在的象限.并由此确定根号前的正、负号,若不能确定角所在象限要分类讨论.(2)遇sin α,cos α的齐次式常“弦化切”,如:asin α+bcos αcsin α+dcos α=atan α+b ctan α+d ;sin αcos α=sin αcos α1=sin αcos αsin 2α+cos 2α=tan α1+tan 2α; sin 2α+sin αcos α-2cos 2α=sin 2α+sin αcos α-2cos 2αsin 2α+cos 2α=tan 2α+tan α-21+tan 2α. 〔变式训练1〕(1)若α是第二象限角,tan α=-512,则sin α=( C )A.15 B .-15C .513D .-513(2)已知α是第二象限角,化简1-cos 4α-sin 4α1-cos 6α-sin 6α= 23. (3)(2017·全国卷Ⅰ)已知α∈⎝ ⎛⎭⎪⎫0,π2,tan α=2,则cos ⎝ ⎛⎭⎪⎫α-π4= 31010 .[解析] (1)∵tan α=-512,∴sin αcos α=-512.∵sin 2α+cos 2α=1,∴sin 2α+⎝ ⎛⎭⎪⎫-125sin α2=1,∴sin α=±513.又α为第二象限角,∴sin α=513,故选C.(2)解法一:原式=1-cos 2α1+cos 2α-sin 4α1-cos 2α1+cos 2α+cos 4α-sin 6α =sin 2α1+cos 2α-sin 2αsin 2α1+cos 2α+cos 4α-sin 4α =2cos 2α1+cos 2α+cos 2α-sin 2α =2cos 2α3cos 2α=23. 解法二:∵1-cos 4α-sin 4α=1-(cos 2α+sin 2α)2+2sin 2αcos 2α=2sin 2αcos 2α, ∴原式=2sin 2αcos 2α1-cos 2α+sin 2αcos 4α-cos 2αsin 2α+sin 4α =2sin 2αcos 2α1-cos 4α-sin 4α+cos 2αsin 2α =2sin 2αcos 2α3sin 2αcos 2α=23. (3)由tan α=2得sin α=2cos α. 又sin 2α+cos 2α=1,所以cos 2α=15.因为α∈⎝ ⎛⎭⎪⎫0,π2,所以cos α=55,sin α=255.因为cos ⎝ ⎛⎭⎪⎫α-π4=cos αcos π4+sin αsin π4, 所以cos ⎝ ⎛⎭⎪⎫α-π4=55×22+255×22=31010. 考点二 诱导公式及其应用——多维探究 角度1 利用诱导公式化简三角函数式例2 (1)化简:sin ⎝ ⎛⎭⎪⎫-α-3π2sin ⎝ ⎛⎭⎪⎫3π2-αtan 22π-αcos ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2+αsin π+α= -1sin α .(2)化简1-2sin 10°sin 100°cos 80°-1-sin 2170°= -1 . [解析] (1)原式=cos α-cos αtan 2αsin α-sin α-sin α=-cos 2α·sin 2αcos 2αsin 3α=-1sin α. (2)∵cos 10°>sin10°,∴原式=1-2sin 10°cos 10°sin 10°-cos 10°=sin 210°-2sin 10°cos 10°+cos 210°sin 10°-cos 10°=|sin 10°-cos 10°|sin 10°-cos 10°=cos 10°-sin 10°-cos 10°-sin 10°=-1.角度2 “换元法”的应用例3 已知cos ⎝ ⎛⎭⎪⎫π6-θ=a ,则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ的值是 0 .[解析] 因为cos ⎝⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ =-cos ⎝ ⎛⎭⎪⎫π6-θ=-a.sin ⎝ ⎛⎭⎪⎫2π3-θ=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=cos ⎝ ⎛⎭⎪⎫π6-θ=a ,所以cos ⎝⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=0. 名师点拨(1)诱导公式的两个应用方向与原则:①求值:化角的原则与方向:负化正,大化小,化到锐角为终了. ②化简:化简的原则与方向:统一角,统一名,同角名少为终了.(2)注意已知中角与所求式子中角隐含的互余、互补关系、巧用诱导公式解题,常见的互余关系有π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等,互补关系有π3+α与2π3-α;π4+α与3π4-α等.〔变式训练2〕(1)(角度1)已知f(α)=sin α-3πcos 2π-αsin ⎝ ⎛⎭⎪⎫-α+3π2cos -π-αsin -π-α.①化简f(α);②若α是第三象限的角,且cos ⎝⎛⎭⎪⎫α-3π2=15,求f(α)的值. (2)(角度2)(2021·唐山模拟)已知α为钝角,sin ⎝ ⎛⎭⎪⎫π4+α=34,则sin ⎝ ⎛⎭⎪⎫π4-α= -74 ,cos ⎝⎛⎭⎪⎫α-π4= 34 .[解析] (1)①f(α)=sin α-3πcos 2π-αsin ⎝ ⎛⎭⎪⎫-α+3π2cos -π-αsin -π-α=-sin α·cos α·-cos α-cos α·sin α=-cos α.②因为cos ⎝ ⎛⎭⎪⎫α-3π2=-sin α,所以sin α=-15. 又α是第三角限的角, 所以cos α=-1-⎝ ⎛⎭⎪⎫-152=-265.所以f(α)=265.(2)sin ⎝⎛⎭⎪⎫π4-α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-α=cos ⎝ ⎛⎭⎪⎫π4+α, 因为α为钝角, 所以34π<π4+α<54π,所以cos ⎝ ⎛⎭⎪⎫π4+α<0.所以cos ⎝ ⎛⎭⎪⎫π4+α=-1-⎝ ⎛⎭⎪⎫342=-74.cos ⎝ ⎛⎭⎪⎫α-π4=sin ⎣⎢⎡⎦⎥⎤π2+⎝⎛⎭⎪⎫α-π4=sin ⎝ ⎛⎭⎪⎫π4+α=34.名师讲坛·素养提升sin x +cos x 、sin x -cos x 、sin xcos x 之间的关系例4 (2021·北京东城模拟)已知sin θ+cos θ=713,θ∈(0,π),则tan θ= -125. [解析] 解法一:因为sin θ+cos θ=713,θ∈(0,π)所以(sin θ+cos θ)2=1+2sin θcos θ=49169,sin θcos θ=-60169.由根与系数的关系,知sin θ,cos θ是方程x 2-713x -60169=0的两根,所以x 1=1213,x 2=-513.因为θ∈(0,π),所以sin θ>0.所以sin θ=1213,cos θ=-513,tan θ=sin θcos θ=-125.解法二:同解法一,得sin θcos θ=-60169,所以sin θcos θsin 2θ+cos 2θ=-60169,弦化切,得 tan θtan 2θ+1=-60169,解得tan θ=-125或tan θ=-512. 又θ∈(0,π),sin θ+cos θ=713>0,sin θcos θ=-60169<0.∴θ∈⎝ ⎛⎭⎪⎫π2,π,且sin θ>|cos θ|,∴⎪⎪⎪⎪⎪⎪sin θcos θ=|tan θ|>1,∴tan θ=-125.解法三:解方程组⎩⎪⎨⎪⎧sin θ+cos θ=713,sin 2θ+cos 2θ=1.得⎩⎪⎨⎪⎧sin θ=1213,cos θ=-513或⎩⎪⎨⎪⎧sin θ=-513,cos θ=1213.(舍去)故tan θ=-125.名师点拨sin x +cos x 、sin x -cos x 、sin xcos x 之间的关系为(sin x +cos x)2=1+2sin xcos x ,(sin x -cos x)2=1-2sin xcos x ,(sin x +cos x)2+(sin x -cos x)2=2.因此已知上述三个代数式中的任意一个代数式的值,便可求其余两个代数式的值. 〔变式训练3〕(1)(2021·山东师大附中模拟)已知-π2<α<0,sin α+cos α=15,则1cos 2α-sin 2α的值为( C ) A.75 B .725 C .257D .2425(2)若1sin α+1cos α=3,则s in αcos α=( A )A .-13B .13C .-13或1D .13或-1 [解析] (1)解法一:∵sin α+cos α=15,∴(sin α+cos α)2=125,∴sin αcos α=-1225,又α∈⎝ ⎛⎭⎪⎫-π2,0,∴sin α<0,cos α>0,∴cos α-sin α=sin α-cos α2=1-2sin αcos α=75.∴1cos 2α-sin 2α=1cos α-sin αcos α+sin α=257,故选C. 解法二:由解法一知⎩⎪⎨⎪⎧sin α+cos α=15,sin α-cos α=-75,得⎩⎪⎨⎪⎧cos α=45,sin α=-35.∴tan α=sin αcos α=-34.∴1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α=1+tan 2α1-tan 2α =1+9161-916=257,故选C.(2)由1sin α+1cos α=3,可得sin α+cos α=3sin αcos α,两边平方,得1+2sin αcosα=3sin 2αcos 2α,解得sin αcos α=-13或sin αcos α=1.由题意,知-1<sin α<1,-1<cos α<1,且sin α≠0,cos α≠0,所以sin αcos α≠1,故选A.。
专题17同角三角函数的基本关系和诱导公式5题型分类一、同角三角函数基本关系1、同角三角函数的基本关系(1)平方关系:22sin cos 1αα+=.(2)商数关系:sin tan ()cos 2k απααπα=≠+;【记忆口诀】奇变偶不变,符号看象限,说明:(1)先将诱导三角函数式中的角统一写作2n πα⋅±;(2)无论有多大,一律视为锐角,判断2n πα⋅±所处的象限,并判断题设三角函数在该象限的正负;(3)当n 为奇数是,“奇变”,正变余,余变正;当n 为偶数时,“偶不变”函数名保持不变即可.注:1、利用22sin cos 1αα+=可以实现角α的正弦、余弦的互化,利用sin tan cos =aa a可以实现角α的弦切互化.2、“sin cos sin cos sin cos αααααα+-,,”方程思想知一求二.222(sin cos )sin cos 2sin cos 1sin 2ααααααα+=++=+222(sin cos )sin cos 2sin cos 1sin 2ααααααα-=+-=-22(sin cos )(sin cos )2αααα++-=(一)同角求值(1)若已知角的象限条件,先确定所求三角函数的符号,再利用三角形三角函数定义求未知三角函数值.(2)若无象限条件,一般“弦化切”.(二)诱导求值与变形(1)诱导公式用于角的变换,凡遇到与2π整数倍角的和差问题可用诱导公式,用诱导公式可以把任意角的三角函数化成锐角三角函数.(2)通过2,,2πππ±±±等诱导变形把所给三角函数化成所需三角函数.(3)2,,2παβππ±=±±±等可利用诱导公式把,αβ的三角函数化(三)同角三角函数基本关系式和诱导公式的综合应用)利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式(π(四)三角恒等式的证明三角恒等式的证明中涉及到同角三角函数基本关系,和角公式,差角公式,二角公式,辅助角公式等基本知识点,理解和掌握这些基本知识点是解答该类问题的基础和关键原式得证【点睛】本题考查了利用同角三角函数关系证明三角函数恒等式,属于基础题.5-4.(2024高三·全国·专题练习)(1)求证:tan 2αsin 2α=tan 2α-sin 2α;(2)已知tan 2α=2tan 2β+1,求证:2sin 2α=sin 2β+1.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)将22sin 1cos αα=-代入左式,化简即可得到右式.(2)将sin tan cos ααα=,sin tan cos βββ=代入条件,通分化简得到2212cos cos αβ=,即2cos 2α=cos 2β,然后由22sin cos 1αα+=,将余弦化成正弦即可证得结论.【详解】解析:(1)tan 2αsin 2α=tan 2α(1-cos 2α)=tan 2α-tan 2αcos 2α=tan 2α-sin 2α,则原等式得证.(2)因为tan 2α=2tan 2β+1,所以22sin cos αα+1=222sin 1cos ββ⎛⎫+ ⎪⎝⎭,即2212cos cos αβ=,从而2cos 2α=cos 2β,于是2-2sin 2α=1-sin 2β,也即2sin 2α=sin 2β+1,则原等式得证.一、单选题1.(2024·全国·模拟预测)已知2cos tan sin 5xx x =+,则cos2x =()A .13B .79C .23D .59【答案】B【分析】利用三角函数的基本关系式得到关于sin x 的方程,再利用倍角公式即可得解.【详解】因为2cos tan sin 5x x x =+,又sin tan cos xx x=,所以sin 2cos cos sin 5x xx x =+,则222cos sin 5sin x x x =+,即2222sin sin 5sin x x x -=+,则23sin 5sin 20x x +-=,即()()3sin 1sin 20x x -+=,所以1sin 3x =或sin 2x =-(舍去),所以217cos212sin 1299x x =-=-⨯=.故选:B.2.(2024·四川巴中·模拟预测)勾股定理,在我国又称为“商高定理”,最早的证明是由东汉末期数学家赵爽在为《周髀算经》作注时给出的,他利用了勾股圆方图,此图被称为“赵爽弦图”.“赵爽弦图”是由四个全等的直角三角形和中间的一个小正方形组成的大正方形图案(如图所示),若在大正方形内随机取一点,该点落在小正方形内的概率为917,则“赵爽弦图”里的直角三角形中最小角的正弦值为()A .217B C .217D 【答案】D【分析】设正方形的边长1,较小的角为θ,则中间小正方形的边长为cos sin θθ-,由题意可得29(cos sin )17θθ-=,显然可得π04θ<<,即可得到cos sin 0θθ>>,从而求出sin θ.【详解】设正方形的边长1,较小的角为θ,则中间小正方形的边长为cos sin θθ-,由题意可得29(cos sin )17θθ-=,显然π04θ<<,所以cos sin 0θθ>>,所以cos sin 17θθ-=,又229cos sin 2cos sin 17θθθθ+-=,所以2cos si 8n 17θθ=,所以22225(cos sin )cos sin 2cos sin 17θθθθθθ+==++,所以cos sin 17θθ+=,所以sin 17θ=.故选:D3.(2024·全国·模拟预测)已知2π2cos 53θ⎛⎫-= ⎪⎝⎭,则19π13π2sin cos 105θθ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭()A .2-B .2C .23-D .23【答案】A【分析】利用已知的三角函数值,利用换元法,结合三角函数的诱导公式,可得答案.【详解】令25m πθ=-,则22,cos 53m m πθ=+=,从而19π13π19π2π2π13π2sin cos 2sin cos 10510555m m θθ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-++=-++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦3π2sin cos(3π)3cos 22m m m ⎛⎫=-++=-=- ⎪⎝⎭.故选:A.4.(2024·山西·模拟预测)已知α为锐角,且cos 6πα⎛⎫+= ⎪⎝⎭,则tan 3πα⎛⎫-= ⎪⎝⎭()A.2B.CD.2【答案】D【分析】注意到πππ632αα⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,利用同角三角函数的关系求角π6α+的正弦,再利用诱导公式求角π3α-的正弦、余弦,从而得到π3α-的正切.【详解】因为α为锐角,所以ππ2π,663α⎛⎫+∈ ⎪⎝⎭且πcos 6α⎛⎫+= ⎪⎝⎭,所以22πsin 06ππsin cos 166ααα⎧⎛⎫+> ⎪⎪⎪⎝⎭⎨⎛⎫⎛⎫⎪+++= ⎪ ⎪⎪⎝⎭⎝⎭⎩得πsin 6α⎛⎫+= ⎪⎝⎭由诱导公式得ππππsin sin cos 3266ααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ππcos sin 363αα⎛⎫⎛⎫-=+=⎪ ⎪⎝⎭⎝⎭.所以πsin π33tan π32cos 3ααα⎛⎫- ⎪⎛⎫⎝⎭-== ⎪⎛⎫⎝⎭- ⎪⎝⎭.故选:D5.(2024高三上·安徽合肥·阶段练习)已知角α为钝角,且角(02π)θθ<<终边上有一点()sin ,cos P αα-,则角θ=()A .πα+B .π2α+C .2πα-D .3π2α-【答案】B【分析】利用三角函数的诱导公式及三角函数的定义即可求解.【详解】点()sin ,cos P αα-,由诱导公式可化为ππcos ,sin 22P αα⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由三角函数的定义知,π2π2k θα=++,又因为α为钝角,02πθ<<,所以π2θα=+.故选:B.6.(2024高三上·宁夏银川·阶段练习)在平面直角坐标系中,在()1,3P 在角α终边上,则()()()3333sin πcos ππsin cos 2αααα++-⎛⎫--- ⎪⎝⎭的值为()A .1327B .1427C .1427-D .1413【答案】B【分析】根据三角函数的定义求角α的三角函数值,再利用诱导公式化简求值.【详解】因为点()1,3P 在角α终边上,则1x =,3y =,所以tan 3yxα==,()()()333333333sin πcos πsin cos 1114π227sin sin 2tan sin cos 2ααααααααα++---==+⎛⎫----- ⎪⎝⎭.故选:B7.(2024高三上·四川成都·期中)已知角α的顶点与坐标原点重合,始边与x 轴的正半轴重合,若角α的终边与23π角的终边相同,则sin()cos(2)3sin()2παπαπα+--=+()A1B1C.1D.1-【答案】C【分析】利用三角函数定义求得tan α=,再利用诱导公式化简即可.【详解】由题意得2tan tanπ3α==sin(π)cos(2π)sin cos sin cos sin cos tan 113ππcos cos sin()sin 22ααααααααααααα+------+====+=+-⎛⎫+-+ ⎪⎝⎭,故选:C.8.(2024·全国·模拟预测)已知直线:2310l x y +-=的倾斜角为θ,则()πsin πsin 2θθ⎛⎫-⋅-= ⎪⎝⎭()A .613B .613-C .25D .25-【答案】A【分析】根据直线一般方程可求得2tan 3θ=-,再利用诱导公式及同角三角函数之间的基本关系可得其结果.【详解】由直线l 的方程为2310x y +-=,得斜率2tan 3k θ==-,则()πsin cos sin πsin sin cos 21θθθθθθ-⋅⎛⎫-⋅-=-⋅= ⎪⎝⎭22222sin cos tan 63sin cos tan 113213θθθθθθ-⋅-====++⎛⎫-+ ⎪⎝⎭;故选:A .9.(2024·陕西宝鸡·一模)已知4ππsin 2sin 36αα⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,则πsin 23α⎛⎫+= ⎪⎝⎭()A .34-B .34C .45-D .45【答案】C【分析】先利用诱导公式对已知条件化简得ππcos 2sin 66αα⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭;再利用同角三角函数基本关系求出2π1sin 65α⎛⎫+= ⎪⎝⎭;最后利用二倍角公式即可求解.【详解】4π3πππsin sin cos 3266ααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-+⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.由4ππsin 2sin 36αα⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭可得:ππcos 2sin 66αα⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭.因为22ππsin cos 166αα⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,所以2π1sin 65α⎛⎫+= ⎪⎝⎭.所以2ππππ4sin 22sin cos 4sin 36665αααα⎛⎫⎛⎫⎛⎫⎛⎫+=++=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:C.10.(2024·全国·模拟预测)已知(ππtan cos 3cos 44ααα⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,则cos2α=()AB.2C .12-D .1-【答案】B 【分析】由诱导公式和同角三角函数关系得到(πtan 3tan 4αα⎛⎫=-+ ⎪⎝⎭,再利用正切和角公式得到方程,求出tan 1α=,利用余弦二倍角,齐次化求出答案.【详解】因为ππππcos sin sin 4244ααα⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以(ππtan cos 3sin 44ααα⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭⎝⎭,故(πtan 3tan 4αα⎛⎫=-+ ⎪⎝⎭,因为πtan tanπtan 14tan π41tan 1tan tan 4ααααα++⎛⎫+== ⎪-⎝⎭-,所以(tan 1tan 31tan ααα+=--,故)(2tan 21tan 30αα-+-=,解得tan 1α=,所以)()2222222211cos sin 1tan cos2cos sin 1tan 11ααααααα---=====+++-故选:B .11.(2024·全国·模拟预测)已知圆22:(1)(1)1C x y -+-=,过点()3,2P ,作圆C 的两条切线,切点分别为,A B ,则tan ACB ∠=()A .43-B .43C .12-D .34【答案】A【分析】设切线的方程为2(3)y k x -=-,求得圆心C到切线的距离1d ==,求得k 的值,得到4tan 3APB ∠=,结合180APB ACB ∠+∠=︒,即可求解.【详解】由题意知,圆22:(1)(1)1C x y -+-=的圆心为(1,1)C ,半径1r =,且切线PA ,PB 的斜率都存在,设切线的方程为2(3)y k x -=-,即320kx y k --+=,因为直线与圆相切,所以圆心C到切线的距离1d =,解得10k =或2k =43,所以4tan 3APB ∠=,在四边形APBC 中,因为90APC ABC ∠=∠= ,可得180APB ACB ∠+∠=︒,所以4tan tan(180)tan 3ACB APB APB ∠=-∠=-∠=-.故选:A .12.(2024·河南郑州·模拟预测)已知tan 2θ=,则3πsin sin 2θθ⎛⎫+= ⎪⎝⎭()A .35B .12C .12-D .25-【答案】D【分析】利用诱导公式,平方关系和商关系即可求解.【详解】3πsin sin sin cos 2θθθθ⎛⎫+=- ⎪⎝⎭222sin cos tan 2sin cos tan 15θθθθθθ=-=-=-++.故选:D13.(2024·陕西西安·二模)已知π5cos 513α⎛⎫-= ⎪⎝⎭,则7πsin 10α⎛⎫-= ⎪⎝⎭()A .513-B .513C .-1213D .1213【答案】A 【分析】因为7πππ1052αα⎛⎫-=-- ⎪⎝⎭,由诱导公式可得选项.【详解】7ππππ5sin sin cos 1052513ααα⎛⎫⎛⎫⎛⎫-=--=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:A.14.(2024·广东深圳·模拟预测)已知π4sin 35α⎛⎫+= ⎪⎝⎭,则5πcos 6α⎛⎫+ ⎪⎝⎭的值为()A .35-B .35C .45-D .45【答案】C 【分析】根据5πππ623αα⎛⎫+=++ ⎪⎝⎭,借助于诱导公式,即可求得结果.【详解】5πππcos cos 623αα⎡⎤⎛⎫⎛⎫+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ sin 3πα⎛⎫=-+ ⎪⎝⎭45=-,5πcos 6α⎛⎫∴+ ⎪⎝⎭的值为45-,故选:C15.(2024高三上·陕西西安·阶段练习)若1sin 3A =,则()sin 6A π-的值为()A .13B .13-C.3-D.3【答案】B【分析】本题考查诱导公式的基础运用,套用公式即可.【详解】利用诱导公式可得()()1sin 6sin sin 3A A A π-=-=-=-,故选:B.16.(2024高三上·陕西西安·阶段练习)若()1sin 2πα+=-,则cos α的值为()A .12±B .12CD.【答案】D【分析】先化简已知得1sin =2α,再求cos α的值.【详解】由()1sin 2πα+=-得1sin =2α,所以α在第一、二象限,所以cos =2α=±.故选:D.17.(2024·贵州贵阳·模拟预测)已知πsin sin 2θθ⎛⎫-+= ⎪⎝⎭,则tan θ=()A.B .1-C .1D【答案】B【分析】利用诱导公式以及同角三角函数的平方关系可得出关于sin θ、cos θ的方程组,求出这两个量的值,即可求得tan θ的值.【详解】因为πsin sin sin cos 2θθθθ⎛⎫-+=-= ⎪⎝⎭,由题意可得22sin cos sin cos 1θθθθ⎧-=⎪⎨+=⎪⎩sin 2cos 2θθ⎧=⎪⎪⎨⎪=-⎪⎩,因此,sin tan 1cos θθθ==-.故选:B.18.(2024高一下·湖南长沙·阶段练习)已知1sin cos 5αα+=,且()0,πα∈,sin cos αα-=()A .75±B .75-C .75D .4925【答案】C【分析】将已知等式两边平方,利用三角函数的基本关系求得2sin cos αα的值,结合α的范围确定sin α与cos α的正负,再利用完全平方公式及三角函数的基本关系可求得sin cos αα-的值.【详解】因为1sin cos 5αα+=,两边平方得()21sin cos 12sin cos 25αααα+=+=,故242sin cos 025αα=-<,所以sin α与cos α导号,又因为0πα<<,所以sin 0α>,cos 0α<,所以7sin cos 5αα-====.故选:C.19.(2024高三下·重庆渝中·阶段练习)已知θ是三角形的一个内角,且满足sin cos 5θθ-=,则tan θ=()A .2B .1C .3D .12【答案】A【分析】利用平方关系可求得42sin cos 5θθ=,可解得29(sin cos )5θθ+=,再结合θ是三角形的一个内角即可得sin ,cos θθ==tan 2θ=.【详解】将sin cos θθ-=两边同时平方可得112sin cos 5θθ-=,即42sin cos 5θθ=;所以29(sin cos )12sin cos 5θθθθ+=+=若sin +cos θθ=,解得sin θθ==,这与θ是三角形的一个内角矛盾,所以sin +cos θθ=,解得sin θθ==,此时求得tan 2θ=.故选:A.20.(2024高三上·北京·阶段练习)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于直线y x =对称,若4sin 5α=,则cos β=()A .45-B .45C .35-D .35【答案】B【分析】根据题意利用任意角的三角函数的定义,结合诱导公式可求得结果.【详解】因为平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于直线y x =对称,所以ππ,Z 24k k αβ+=+∈,即π2π,Z 2k k αβ+=+∈,所以π2π,Z 2k k βα=-+∈,因为4sin 5α=,所以π4cos cos 2πsin (Z)25k k βαα⎛⎫=-+==∈ ⎪⎝⎭,故选:B21.(2024·辽宁抚顺·模拟预测)已知(),0,a βπ∈,则“tan tan 1αβ=”是“2a πβ+=”的()A .充要条件B .既不充分也不必要条件C .充分不必要条件D .必要不充分条件【答案】D【分析】根据诱导公式的逆运用以及由三角函数的概念即可判断其充分性,由2a πβ+=代入tan α化简计算即可判断其必要性,从而得出结论.【详解】若tan tan 1αβ=,则1tan ta 2n tan παββ⎛⎫==- ⎪⎝⎭,故()2k k παπβ=+-∈Z ,即()2k k παβπ+=+∈Z .又()0,2αβπ+∈,故0k =或1k =,充分性不成立;若2παβ+=,即2παβ=-,所以1tan tan 2tan παββ⎛⎫=-= ⎪⎝⎭,所以tan tan 1αβ=,所以必要性成立.故选:D .22.(2024·陕西榆林·二模)已知π7π1cos cos 12125αα⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,则2πc 23os +α⎛⎫ ⎪⎝⎭=()A .2325-B .2325C .2425-D .2425【答案】C【分析】利用诱导公式和倍角公式化简求值.【详解】7ππππcos cos sin 1212212ααα⎛⎫⎛⎫⎛⎫+=++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由π7π1cos cos 12125αα⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,有ππ1cos sin 12125αα⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,两边平方得π11sin 2625α⎛⎫-+= ⎪⎝⎭,则π24sin 2625α⎛⎫+= ⎪⎝⎭,故2ππππ24cos 2+=cos 2+=sin 2=225366ααα⎛⎫⎛⎫⎛⎫+-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:C.23.(2024高三上·北京海淀·阶段练习)已知α为第二象限的角,且3cos 5α=-,则()sin πα-的值为()A .45B .45-C .35-D .35【答案】A【分析】先根据平方关系求出sin α,再利用诱导公式即可得解.【详解】因为α为第二象限的角,且3cos 5α=-,所以4sin 5α=,所以()4sin πsin 5αα-==.故选:A.24.(2024高一上·山西太原·阶段练习)已知π02α<<,且π1sin 34α⎛⎫-= ⎪⎝⎭,则5πsin 6α⎛⎫-= ⎪⎝⎭()A .4B .14-C .4D .14【答案】C【分析】根据角的范围及正弦值求出余弦值,进而利用诱导求出答案.【详解】因为π02α<<,所以ππ36π3α-<-<,又π1sin 34α⎛⎫-= ⎪⎝⎭,所以πcos 3α⎛⎫-== ⎪⎝⎭45πππππs 62in c 3sin cos os 33αααα⎛⎫⎛⎫⎛⎫⎛⎫-=+-=-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:C25.(2024·全国·模拟预测)已知π1tan 22θ⎛⎫+= ⎪⎝⎭,则()33sin 2cos sin πθθθ+=+()A .35B .56C .56-D .35-【答案】D【分析】结合诱导公式与同角三角函数的基本关系运算即可得.【详解】由题意得πsin cos 12πsin 2cos 2θθθθ⎛⎫+ ⎪⎝⎭==-⎛⎫+ ⎪⎝⎭,则tan 2θ=-,故()()33333322sin 2cos sin 2cos sin 2cos sin πsin sin sin cos θθθθθθθθθθθ+++==-+-+333323sin 2cos tan 2823sin sin cos tan tan 825θθθθθθθθ++-+=-=-=-=-++--.故选:D.26.(2024高三上·云南昆明·阶段练习)若π2αβ+=sin αβ+=tan α=()A.2BC .1D【答案】B【分析】由诱导公式可得出sin cos βα=,根据已知条件可得出关于sin α、cos α的方程组,解出这两个量的值,结合同角三角函数的商数关系可求得tan α的值.【详解】因为π2αβ+=,则π2βα=-,πsin sin cos 2αβαααα⎛⎫+=+-=+= ⎪⎝⎭联立22cos sin cos 1αααα+=+=⎪⎩sin cos αα⎧=⎨⎪=⎪⎩因此,sin tan cos 3ααα==故选:B.27.(2024高三上·四川成都·阶段练习)已知角α的终边过点()1,3,则πcos(π)cos()2αα-++的值是()A.B.C.D【答案】A【分析】利用三角函数定义,结合诱导公式计算得解.【详解】由角α的终边过点()1,3,得r =,31sin r r αα====,所以πcos(π)cos()cos sin 210105αααα-++=--=--=-.故选:A28.(2024高三上·安徽·阶段练习)在平面直角坐标系xOy 中,设角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,若角α的终边过点()4,3P -,则()3πsin 2cos π22αα⎛⎫++-= ⎪⎝⎭()A .1425-B .1425C .1725-D .1725【答案】A【分析】根据任意角的三角函数的定义可得sin α,再利用诱导公式、二倍角公式运算求解.【详解】由题意得,5OP ==,则3sin 5α=-,则()3πsin 2cos π2cos 2cos 22cos 22ααααα⎛⎫++-=--=- ⎪⎝⎭()22314212sin 212525α⎡⎤⎛⎫=--=-⨯-⨯-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.故选:A .29.(2024高三上·安徽·期中)已知()sin ,cos P θθ是角π3-的终边上一点,则tan θ=()A .B .C D 【答案】B【分析】由三角函数的定义可得sin ,cos θθ,进而由商数关系可求tan θ.【详解】因为()sin ,cos P θθ是角π3-的终边上一点,所以π1πcos sin ,sin cos 3232θθ⎛⎫⎛⎫-==-==- ⎪ ⎪⎝⎭⎝⎭,则sin tan cos 3θθθ==,故选:B.30.(2024高三上·安徽·期中)已知角θ的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点()2,4P -,则()cos 2cos 2πθπθ⎛⎫--+= ⎪⎝⎭()A .5-B .5-C .0D .5【答案】C【分析】根据终边上的点可求得:sinθ=cos θ=,再结合三角函数诱导公式从而求解.【详解】因为:r OP ==(O 为坐标原点),所以:由三角函数的定义,得sin θ==cos θ==所以:()cos 2cos sin 2cos 02πθπθθθ⎛⎫--+=+= ⎪⎝⎭.故C 项正确.故选:C.31.(2024高一上·江苏常州·阶段练习)若π1cos()63α+=,则5π5πcos()sin()63αα--+=()A .0B .23C.13+D.13-【答案】A【分析】利用整体代换法与诱导公式化简求值即可.【详解】依题,令π6t α+=,则15ππsin ,ππ366t t αα⎛⎫=-=-+=- ⎪⎝⎭,5π3ππ3π3262t αα+=++=+,所以5π5πcos()sin()63αα--+3π=cos(π)sin()2t t --+cos cos 0t t =-+=.故选:A32.(2024高三上·重庆永川·期中)已知π0,2θ⎛⎫∈ ⎪⎝⎭,π2tan tan 43θθ⎛⎫+=- ⎪⎝⎭,则πcos cos 22π4θθθ⎛⎫- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭()A .12-B .35-C .3D .53【答案】B【分析】由条件π2tan tan 43θθ⎛⎫+=- ⎪⎝⎭化简求得tan 3θ=,将所求式子利用三角恒等变换化简再根据同角三角函数关系式转化为正切求得结果.【详解】由π2tan tan 43θθ⎛⎫+=- ⎪⎝⎭,即tan 12tan 1tan 3θθθ+=--,又π0,2θ⎛⎫∈ ⎪⎝⎭,解得tan 3θ=,()()22πcos cos2sin cos sin2sin cos sinπsin cos4θθθθθθθθθθθ⎛⎫-⎪-⎝⎭∴==-+⎛⎫+⎪⎝⎭2222222sin cos sin tan tan333sin cos tan1315θθθθθθθθ---====-+++.故选:B.33.(2024高一下·山东潍坊·阶段练习)下列化简正确的是()A.()tanπ1tan1+=-B.()()sincostan360ααα-=-C.()()sinπtancosπααα-=+D.()()()cosπtanπ1sin2πααα---=-【答案】B【分析】应用诱导公式以及同角三角函数的基本关系对四个选项验证即可.【详解】对于A,由诱导公式得,()tanπ1tan1+=,故A错误;对于B,()()sin sin sincossintantan360cos aααααααα--===-- ,故B正确;对于C,()()sinπsintancosπcosααααα-==-+-,故C错误;对于D,()()()()()sincoscosπtanπcos tan cos1sin2πsin sinαααααααααα⋅----==-=---,故D错误.故选:B.二、多选题34.(2024·辽宁·模拟预测)设α为第一象限角,π1cos83α⎛⎫-=⎪⎝⎭,则()A.5π1sin83α⎛⎫-=-⎪⎝⎭B.7π1cos83α⎛⎫+=-⎪⎝⎭C.13πsin83α⎛⎫-=-⎪⎝⎭D.πtan8α⎛⎫-=-⎪⎝⎭【答案】BD【分析】首先由题意得π8α-是第一象限角,所以πsin 83α⎛⎫-=⎪⎝⎭,再利用诱导公式和同角三角函数关系式对选项逐个计算确定正确答案.【详解】由题意得π2π2π,Z 2k k k α<<+∈,则ππ3π2π2π,Z 888k k k α-<-<+∈,若π8α-在第四象限,则ππ1cos cos 8423α⎛⎫->=⎪⎝⎭,所以π8α-也是第一象限角,即πsin 8α⎛⎫-=⎪⎝⎭5πππππ1sin sin cos cos 828883αααα⎛⎫⎛⎫⎛⎫⎛⎫-=+-=-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,A 项错误;7πππ1cos cos πcos 8883ααα⎛⎫⎛⎫⎛⎫+=-+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,B 项正确;13π3ππππ1sin sin cos cos 828883αααα⎛⎫⎛⎫⎛⎫⎛⎫-=+-=--=--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,C 项错误;πsin ππ8tan tan 2π88cos 8αααα⎛⎫- ⎪⎛⎫⎛⎫⎝⎭-=--=-=- ⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭项正确.故选:BD.35.(江苏省宜兴中学、泰兴中学、泰州中学2023-2024学年高一上学期12月联合质量检测数学试卷)质点P 和Q 在以坐标原点O 1的圆O 上逆时针作匀速圆周运动,同时出发.P 的角速度大小为2rad /s ,起点为圆O 与x 轴正半轴的交点,Q 的角速度大小为5rad /s ,起点为角π3-的终边与圆O 的交点,则当Q 与P 重合时,Q 的坐标可以为()A .2π2πcos ,sin 99⎛⎫ ⎪⎝⎭B .ππcos ,sin 99⎛⎫- ⎪⎝⎭C .5π5πcos ,sin 99⎛⎫-- ⎪⎝⎭D .ππcos ,sin 99⎛⎫- ⎪⎝⎭【答案】ACD【分析】由题意列出重合时刻t 的表达式,进而可得Q 点的坐标,通过赋值对比选项即可得解.【详解】点Q 的初始位置1Q ,锐角1π3Q OP ∠=,设t 时刻两点重合,则π522π(N)3t t k k -∈=+,即π2π(N)93k t k +∈=,此时点ππcos 5,sin 533Q t t ⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即2π10π2π10πcos ,sin 9393k k Q ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(N)k ∈,当0k =时,2π2πcos ,sin 99Q ⎛⎫ ⎪⎝⎭,故A 正确;当1k =时,32π32πcos ,sin 99Q ⎛⎫ ⎪⎝⎭,即5π5πcos ,sin 99Q ⎛⎫-- ⎪⎝⎭,故C 正确;当2k =时,9,62π62πcos sin 9Q ⎛⎫ ⎪⎝⎭,即ππcos ,sin 99Q ⎛⎫- ⎪⎝⎭,故D 正确;由三角函数的周期性可得,其余各点均与上述三点重合,故B 错误,故选:ACD.36.(2024高一下·河南焦作·阶段练习)已知角,A B ,C 是锐角三角形ABC 的三个内角,下列结论一定成立的有()A .()sin sinBC A +=B .sin cos 22A B C +⎛⎫= ⎪⎝⎭C .()cos cos A B C +<D .sin cos A B<【答案】ABC【分析】根据三角形内角和及诱导公式,三角函数单调性一一判定选项即可.【详解】由题易知()()πsin sin πsin 2A B C A B C B C A A π⎛⎫++=<⇒+=-= ⎪⎝⎭、、,πsin sin cos 222A B C C +-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()()cos cos πcos 0cos A B C C C +=-=-<<,即A 、B 、C 结论成立.对于D ,由锐角三角形知,2A B π+>,得ππ022B A <-<<,因此πsin sin cos 2A B B ⎛⎫>-= ⎪⎝⎭,所以错误.故选:ABC37.(2024高一下·河北沧州·阶段练习)在△ABC 中,下列关系式恒成立的有()A .()sin sin ABC +=B .cos sin 22A B C +⎛⎫= ⎪⎝⎭C .()sin 22sin20A B C ++=D .()cos 22cos20A B C ++=【答案】ABC【分析】结合三角形的内角和定理和诱导公式,准确运算,即可求解.【详解】对于A 中,由()()sin sin sin A B C C π+=-=,所以A 正确;对于B 中由cos cos sin 2222A B C C π+⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,所以B 正确;对于C 中,由()()()sin 22sin2sin 2sin2sin 2sin2A B C A B C C Cπ⎡⎤⎡⎤++=++=-+⎣⎦⎣⎦()sin 22sin2sin2sin20C C C C π=-+=-+=,所以C 正确;对于D 中,()cos(22)cos2cos 2cos2cos[2()]cos2A B C A B C C Cπ⎡⎤++=++=-+⎣⎦()cos 22cos2cos2cos22cos2C C C C C π=-+=+=,所以D 错误.故选:ABC.38.(2024高一上·江苏无锡·阶段练习)下列结论正确的有()A .sin cos 63ππαα⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭B .52cos sin 063ππθθ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭C .()()22sin 15cos 751αα-++=D .()()22sin 15sin 751αα-++=【答案】ABD【解析】本题可通过诱导公式将sin 6απ⎛⎫+ ⎪⎝⎭转化为cos 3πα⎛⎫- ⎪⎝⎭,A 正确,然后通过诱导公式将5cos 6πθ⎛⎫+⎪⎝⎭转化为2sin 3πθ⎛⎫-- ⎪⎝⎭,B 正确,最后根据()()sin 15cos 75 αα-=+以及同角三角函数关系判断出C 错误以及D 正确.【详解】A 项:sin sin cos cos 63332πππππαααα⎛⎫⎛⎫⎛⎫⎛⎫+=+-=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,A 正确;B 项:因为522cos sin sin sin 6333ππππθθπθθ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=-+=---=-- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,所以52cos sin 063ππθθ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,B 正确;C 项:因为()()()sin 15sin 75cos 752πααα⎡⎤-=-+=+⎢⎥⎣⎦,所以()()()222sin 15cos 752cos 751ααα-++=+≠,C 错误;D 项:()()()()2222sin 15sin 75cos 75sin 751αααα-++=+++=,D 正确,故选:ABD.【点睛】关键点点睛:本题考查诱导公式以及同角三角函数关系的应用,考查的公式有sin cos 2παα⎛⎫+= ⎪⎝⎭、()cos cos αα=-、sin cos 2παα⎛⎫-= ⎪⎝⎭、22cos sin 1αα+=等,考查化归与转化思想,是中档题.39.(2024高一上·黑龙江齐齐哈尔·期末)已知下列等式的左右两边都有意义,则下列等式恒成立的是()A .cos 1sin 1sin cos x xx x-=+B .221sin 12tan sin cos tan x x x x x++=C .()()sin 53cos 37x x -=+D .()()sin 60cos 480x x -=+【答案】ABC【分析】对于A 、B ,由同角三角函数的基本关系进行化简证明即可,对于C 、D ,由诱导公式进行化简证明即可.【详解】对于A ,()()()()()22cos 1sin cos 1sin cos 1sin cos 1sin 1sin 1sin 1sin 1sin cos cos x x x x x x x x x x x x x x----====++--,故A 正确;对于B ,()2222222sin cos sin 1sin cos 2sin 12tan sin cos sin cos sin cos tan x x x x x x x x x x x x x x+++++===,故B 正确;对于C ,()()()sin 53sin 9037=cos 37x x x ⎡⎤-=-++⎣⎦,故C 正确;对于D ,()()()()cos 480=cos 0=cos 18060=cos 0126x x x x -⎡⎤++---⎣⎦,故D 错误.故选:ABC.三、填空题40.(2024·全国)若π10,,tan 22⎛⎫∈= ⎪⎝⎭θθ,则sin cos θθ-=.【答案】5-【分析】根据同角三角关系求sin θ,进而可得结果.【详解】因为π0,2θ⎛⎫∈ ⎪⎝⎭,则sin 0,cos 0θθ>>,又因为sin 1tan cos 2θθθ==,则cos 2sin θθ=,且22222cos sin 4sin sin 5sin 1+=+==θθθθθ,解得sin θ=或sin θ=(舍去),所以sin cos sin 2sin sin -=-=-=-θθθθθ故答案为:5-.41.(2024高一上·福建莆田·阶段练习)已知tan α=-2απ<<π,那么sin cos 1αα=+.【分析】由同角三角函数关系及已知条件求得1sin 33αα==-,代入目标式求值即可.【详解】由tan α=-2απ<<π,则1sin 33αα==-,所以sin cos 1αα=+.42.(2024高三·全国·对口高考)若sin cos 2sin cos x xx x-=+,求sin cos x x 的值为.【答案】310-/0.3-【分析】由已知求出tan 3x =-,再将sin cos x x 化为22sin cos sin cos x xx x+,利用齐次式法求值,即得答案.【详解】由sin cos 2sin cos x xx x-=+可得sin cos 2(sin cos ),sin 3cos x x x x x x -=+∴=-,因为cos 0x =不适合sin cos 2sin cos x xx x-=+,故cos 0x ≠,所以tan 3x =-,故222sin cos tan 33sin cos sin cos tan 19110x x x x x x x x -====-+++,故答案为:310-43.(2024高三上·江西南昌·阶段练习)若4tan 3θ=,则sin cos sin cos θθθθ-=+.【答案】17【分析】分式上下同除以cos θ,化弦为切,代入4tan 3θ=求值即可.【详解】4tan 3θ= ,sin 411sin cos tan 11cos 3sin 4sin cos tan 1711cos 3θθθθθθθθθθ----∴====++++.故答案为:17.44.(2024·上海浦东新·模拟预测)已知sin cos αα、是关于x 的方程2320x x a -+=的两根,则=a .【答案】56-【分析】先通过根与系数的关系得到sin ,cos αα的关系,再通过同角三角函数的基本关系即可解得.【详解】由题意:Δ41202sin cos 3sin cos 3a a αααα⎧⎪=-≥⎪⎪+=⎨⎪⎪=⎪⎩,所以13a ≤,所以()224sin cos 12sin cos 139a αααα+=+=+=,即650a +=,解得56a =-.故答案为:56-.45.(2024高三·全国·专题练习)已知1sin cos 4αα-=,则33sin cos αα-=.【答案】47128【分析】由立方差公式,得()()3322sin cos sin cos sin cos sin cos αααααααα-=-++.将1sin cos 4αα-=两边平方,解得15sin cos 32αα=,代入即可得解.【详解】由题知()()3322sin cos sin cos sin cos sin cos αααααααα-=-++,因为1sin cos 4αα-=,两边平方有112sin cos 16αα-=,所以15sin cos 32αα=,所以()3311547sin cos 1432128αα-=⨯+=.故答案为:47128.46.(2024高三上·安徽合肥·阶段练习)已知23sin 2m m α-=+,1cos 2m m α+=-+,且α为第二象限角,则()()sin 2024πcos 2023π2021πcos 2ααα+++=⎛⎫+ ⎪⎝⎭.【答案】73-/123-【分析】由已知可求出m 的取值范围,由同角三角函数的平方关系求出m 的值,可求出tan α的值,再利用诱导公式结合弦化切可求得所求代数式的值.【详解】因为23sin 2m m α-=+,1cos 2m m α+=-+,且α为第二象限角,则2302102m m m m -⎧>⎪⎪+⎨+⎪-<⎪+⎩,解得2m <-或32m >,因为22222223151010sin cos 12244m m m m m m m m αα-+-+⎛⎫⎛⎫+=+-== ⎪ ⎪++++⎝⎭⎝⎭,整理可得22730m m -+=,即()()2130m m --=,解得12m =(舍)或3m =,所以,233sin 25m m α-==+,14cos 25m m α+=-=-+,所以,sin 353tan cos 544ααα⎛⎫==⨯-=- ⎪⎝⎭,因此,()()sin 2024πcos 2023πsin cos 147112021πsin tan 33cos 2ααααααα+++-==-+=--=--⎛⎫+ ⎪⎝⎭.故答案为:73-.47.(2024·全国·模拟预测)若()223ππ1cos cos 714f x x x ⎡⎤⎤⎛⎫⎛⎫=--++ ⎪ ⎪⎢⎥⎥⎝⎭⎝⎭⎣⎦⎦,则()f x 的最大值为,()f x 的最小值为.【答案】91【分析】借助诱导公式将函数式转化,再利用两点间的距离公式将数转化为形,利用形的直观来求最值.【详解】因为πππ3π3πcos sin sin sin 1421477x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+=--=-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,=,此式可看作点(到点3π3πcos ,sin 77x x ⎡⎤⎛⎫⎛⎫--⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的距离.而点3π3πcos ,sin 77x x ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的轨迹是圆221+=m n .又点(到圆心()0,0的距离为2,所以()f x 的最大值()()2max 219f x =+=,()f x 的最小值()()2min 211f x =-=.故答案为:9;1【点睛】将所给函数式展开必将陷入命题人的圈套,此时要整体把握目标,借助诱导公式将函数式转化,再利用两点间的距离公式将数转化为形,利用形的直观来求最值,既简单又节省时间.本题不仅要求学生具备扎实的基本功,具有整体把握目标的能力,还对学生分析问题和解决问题的能力、逻辑推理能力、运算求解能力等要求较高.48.(2024·四川绵阳·三模)已知π,π2θ⎛⎫∈ ⎪⎝⎭,()sin π3θ+=-,则tan θ=.【答案】【分析】根据诱导公式以及同角关系即可求解.【详解】由()sin π3θ+=-得sin 3θ=,由π,π2θ⎛⎫∈ ⎪⎝⎭可得cos θ=-,故sin tan cos θθθ==故答案为:2-49.(2024·山西阳泉·三模)已知πsin 6α⎛⎫+= ⎪⎝⎭ππ,44α⎛⎫∈- ⎪⎝⎭,则πsin 3α⎛⎫-=⎪⎝⎭.【分析】整体法诱导公式结合同角三角函数关系求出答案.【详解】因为ππ,44α⎛⎫∈- ⎪⎝⎭,所以ππ5π,61212α⎛⎫+∈- ⎪⎝⎭,故πcos 06α⎛⎫+> ⎪⎝⎭,所以πcos 6α⎛⎫+= ⎪⎝⎭ππππsin sin cos 3266ααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦50.(2024·浙江温州·二模)已知tan x =,则23sin 2sin cos x x x -=.【分析】利用同角三角函数的关系化简23sin 2sin cos x x x -为齐次式,再代入tan x =.【详解】因为tan x =,所以2222223sin 2sin cos 3tan 2tan 3sin 2sin cos sin cos 1tan x x x x xx x x x x x---==++、()2231⨯-==+51.(2024·黑龙江哈尔滨·二模)已知tan 2θ=,则1sin 2cos 2θθ+的值是.【答案】5【分析】利用正弦、余弦的二倍角公式以及弦化切的公式先化简,在将tan 2θ=代入即可.【详解】因为tan 2θ=,所以2211sin 2cos 22sin cos cos sin θθθθθθ=++-2222cos sin 2sin cos cos sin θθθθθθ+=+-221tan 2tan 1tan θθθ+=+-221252212+==⨯+-,故答案为:5.52.(2024高三·全国·专题练习)已知()7sin cos 0π13ααα+=<<,则tan α=.【答案】125-【分析】由同角三角函数的平方关系和商数关系,并分析三角函数值的正负即可求解.【详解】解:已知7sin cos 13αα+=①,则()2sin cos 12sin cos 69491αααα+=+=,60sin cos 0169αα=-<,0πα<< ,sin 0α∴>,则cos 0α<,sin cos 0αα->,17sin cos13αα∴-===②,联立①②,得12sin 13α=,5cos 13α=-12tan 5α∴=-,故答案为:125-.53.(2024高三上·湖南衡阳·期中)已知sin cos 3αα-=-,则sin 2α=.【答案】79【分析】sin cos 3αα-=-平方,结合同角三角函数平方关系即正弦二倍角公式求解.【详解】sin cos αα-=两边平方得:()22sin cos 12sin cos 1sin 29ααααα-=-=-=,解得:7sin 29α=.故答案为:7954.(2024·全国·模拟预测)已知π1sin 35α⎛⎫-= ⎪⎝⎭,则cos 6α5π⎛⎫-=⎪⎝⎭.【答案】15/0.2【分析】由三角函数的诱导公式化简可得.【详解】由题可得5π5ππππ1cos cos cos sin 663235αααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:1555.(2024高三上·内蒙古包头·阶段练习)若πtan 4θ⎛⎫+= ⎪⎝⎭πtan 4θ⎛⎫-=⎪⎝⎭.【答案】【分析】以π4θ+为整体,根据诱导公式运算求解.【详解】由题意可得:πππ1tan tanπ442tan 4θθθ⎡⎤⎛⎫⎛⎫-=+-=-=- ⎪ ⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦+ ⎪⎝⎭故答案为:56.(2024高一下·黑龙江佳木斯·开学考试)已知()1sin 535α︒-=,且27090α-︒<<-︒,则()sin 37α︒+=.【答案】【分析】设53βα︒=-,37γα︒=+,则90βγ︒+=,90γβ︒=-,从而将所求式子转化成求cos β的值,利用α的范围确定cos β的符号.【详解】设53βα︒=-,37γα︒=+,那么90βγ︒+=,从而90γβ︒=-.于是()sin sin 90cos γββ︒=-=.因为27090α︒︒-<<-,所以143323β︒︒<<.由1sin 05β=>,得143180β︒︒<<.所以cos β===所以()sin 37sin 5αγ︒+==-.故答案为:57.(2024高一上·新疆乌鲁木齐·期末)已知角α的终边与单位圆221x y +=交于点1,2⎛⎫⎪⎝⎭y P ,则3πsin 2α⎛⎫-= ⎪⎝⎭.【答案】12-/-0.5【分析】根据任意角三角比的定义和诱导公式求解.【详解】因为角α的终边与单位圆221x y +=交于点1,2⎛⎫⎪⎝⎭y P ,所以||1r OP ==13π12sin cos 212x r αα⎛⎫-=-=-=-=- ⎪⎝⎭,故答案为:12-.58.(2024高一·全国·课后作业)若角α的终边落在直线y x =上,则co 3si 22n s παπα⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭-.【分析】化简得到3sin cos cos sin 22ππαααα⎛⎫⎫⎪⎪-++=--⎝⎭⎝⎭,考虑角α为第一或第三象限角两种情况,计算得到答案.【详解】因为角α的终边落在直线y x =上,所以角α为第一或第三象限角,3sin cos cos sin 22ππαααα⎛⎫⎛⎫⎪ ⎪-++=--⎝⎭⎝⎭,当角α为第一象限角时,cos sin αα==,cos sin αα--==当角α为第三象限角时,cos sin αα==cos sin 22αα--=+=或.四、解答题59.(2024高三·全国·专题练习)已知角α的终边落在直线2y x =上.求(1)4sin 2cos 5sin 3cos αααα-+的值;(2)25sin 3sin cos 2ααα+-的值.【答案】(1)613(2)165【分析】由角α的终边落在直线2y x =上可得tan 2α=,再根据同角函数的关系求解即可.【详解】(1)由角α的终边落在直线2y x =上可得tan 2α=则原式=4tan 28265tan 310313αα--==++;(2)原式222225sin 3sin cos 5tan 3tan 20616222sin cos tan 155αααααααα+++=-=-=-=++.60.(2024高一下·安徽·期中)已知角θ的顶点为坐标原点O ,始边为x 轴的非负半轴,终边与单位圆相交于点P (),x y ,若点P 位于x 轴上方且12x y +=.(1)求sin cos θθ-的值;(2)求44sin cos θθ+的值.【答案】(2)2332【分析】(1)根据cos sin θθ+,cos sin θθ-,cos sin θθ三个直接的关系,可得sin cos θθ-.(2)由4422sin cos 12sin cos θθθθ+=-可得.【详解】(1)由三角函数的定义,1cos sin 2θθ+=,sin 0θ>,两边平方,得221cos sin 2sin cos 4θθθθ++=则32sin cos 04θθ=-<,sin 0θ>,cos 0θ<,所以sin cos 0θθ->,sin cos2θθ-=.(2)由(1)知,3sin cos 8θθ=-,4422222923sin cos (sin cos )2sin cos 126432θθθθθθ+=+-=-⨯=.。
高三数学一轮复习——同角三角函数基本关系式及诱导公式1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sin αcos α=tan α⎝⎛⎭⎫α≠π2+k π,k ∈Z . 2.三角函数的诱导公式概念方法微思考1.使用平方关系求三角函数值时,怎样确定三角函数值的符号? 提示 根据角所在象限确定三角函数值的符号.2.诱导公式记忆口诀“奇变偶不变,符号看象限”中的奇、偶是何意义?提示 所有诱导公式均可看作k ·π2±α(k ∈Z )和α的三角函数值之间的关系,口诀中的奇、偶指的是此处的k 是奇数还是偶数.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( × ) (2)若α∈R ,则tan α=sin αcos α恒成立.( × )(3)sin(π+α)=-sin α成立的条件是α为锐角.( × ) (4)若sin(k π-α)=13(k ∈Z ),则sin α=13.( × )题组二 教材改编 2.若sin α=55,π2<α<π,则tan α= . 答案 -12解析 ∵π2<α<π,∴cos α=-1-sin 2α=-255,∴tan α=sin αcos α=-12.3.已知tan α=2,则sin α+cos αsin α-cos α的值为 .答案 3解析 原式=tan α+1tan α-1=2+12-1=3.4.化简cos ⎝⎛⎭⎫α-π2sin ⎝⎛⎭⎫5π2+α·sin(α-π)·cos(2π-α)的结果为 . 答案 -sin 2α解析 原式=sin αcos α·(-sin α)·cos α=-sin 2α.题组三 易错自纠5.已知sin θ+cos θ=43,θ∈⎝⎛⎭⎫0,π4,则sin θ-cos θ的值为 . 答案 -23解析 ∵sin θ+cos θ=43,∴sin θcos θ=718.又∵(sin θ-cos θ)2=1-2sin θcos θ=29,θ∈⎝⎛⎭⎫0,π4, ∴sin θ-cos θ=-23. 6.若sin(π+α)=-12,则sin(7π-α)= ;cos ⎝⎛⎭⎫α+3π2= . 答案 12 12解析 由sin(π+α)=-12,得sin α=12,则sin(7π-α)=sin(π-α)=sin α=12,cos ⎝⎛⎭⎫α+3π2=cos ⎝⎛⎭⎫α+3π2-2π=cos ⎝⎛⎭⎫α-π2 =cos ⎝⎛⎭⎫π2-α=sin α=12.同角三角函数基本关系式的应用1.已知α是第四象限角,sin α=-1213,则tan α等于( )A .-513 B.513 C .-125 D.125答案 C解析 因为α是第四象限角,sin α=-1213,所以cos α=1-sin 2α=513,故tan α=sin αcos α=-125. 2.已知α是三角形的内角,且tan α=-13,则sin α+cos α的值为 .答案 -105解析 由tan α=-13,得sin α=-13cos α,将其代入sin 2α+cos 2α=1, 得109cos 2α=1, 所以cos 2α=910,易知cos α<0,所以cos α=-31010,sin α=1010,故sin α+cos α=-105. 3.若角α的终边落在第三象限,则cos α1-sin 2α+2sin α1-cos 2α的值为 .答案 -3。
三角函数概念、同角三角函数关系式和诱导公式归纳总结知识点精讲一、基本概念(1)任意角---------⎧⎪⎨⎪⎩正角逆时针旋转而成的角;负角顺时针旋转而成的角;零角射线没旋转而成的角.角α(弧度)(,)∈-∞+∞.(2)角α的始边与x 轴的非负半轴重合,终边落在第几象限,α就叫做第几象限角,终边在坐标轴上的角不是象限角,称之坐标角(或象限界角、轴线角等) (3)弧度制度:半径为r 的圆心角α所对弧长为l ,则lrα=(弧度或rad ). (4)与角α(弧度)终边相同的角的集合为{}2,k k Z ββαπ=+∈,其意义在于α的终边逆时针旋转整数圈,终边位置不变. 注:弧度或rad 可省略(5)两制互化:一周角=036022rrππ==(弧度),即0180π=. 1(弧度)00018057.35718π⎛⎫'=≈= ⎪⎝⎭故在进行两制互化时,只需记忆0180π=,01180π=两个换算单位即可:如:005518015066π=⨯=;036361805ππ=⨯=. (6)弧长公式:l r α=((0,2])απ∈, 扇形面积公式:21122S lr r α==. 注:关于扇形面积公式的记忆,可以采用类似三角形面积公式的方法,把扇形的弧长类比成三角形的底,半径类比成三角形的高,则有11=22S lr =底高,如图4-1所示.二、任意角的三角函数1.定义已知角α终边上的任一点(,)P x y (非原点O ),则P到原点O的距离0r OP ==>.sin ,cos ,tan y x y r r xααα===.此定义是解直三角形内锐角三角函数的推广.类比,对y ↔,邻x ↔,斜r ↔, 如图4-2所示.2.单位圆中的三角函数线以α为第二象限角为例.角α的终边交单位圆于P ,PM 垂直x 轴于M , α的终边或其反向延长线交单位圆切线AT 于T ,如图4-3所示,由于取α为第二象限角,sin α=MP>0, cos α=OM<0, tan α=AT<0.3.三角函数象限符号与单调性在单位圆中1r ==,则:(1)sin yy rα==,即α终边与单位圆交点的纵坐标y 即为α的正弦值sin α. 如图4-4(a )所示,sin α的特征为:01101111.⎧⎪-⎪⎨⎪⎪--⎩上正、下负;上(90),下(270),左、右都为;按逆时针方向旋转,向上(一、四)象限为增,从增到,向下(二,三象限)为减,从减到 (2)cos xx rα==,即α终边与单位圆交点的横坐标x 即为的余弦值cos α. 如图4-4(b )所示,cos α的特征为:01101111.⎧⎪-⎪⎨⎪⎪--⎩右正、左负;右(0),左(180),上、下都为;按逆时针方向旋转,向右(三、四)象限为增,从增到,向左(一,三象限)为减,从减到 (3)tan yxα=.如图4-4(c )所示,tan α的特征为: 0.⎧⎪⎨⎪⎩一、三正,二、四负;上、下是(即不存在),左、右都是;逆时针方向旋转,各象限全增三、同角三角函数的基本关系、诱导公式 1. 同角三角函数的基本关系 平方关系:22sin cos 1αα+= 商数关系:sin tan cos ααα=2. 诱导公式(1)sin ()sin()sin ()n n n ααπα⎧+=⎨-⎩为偶数;为奇数cos ()cos()cos ()n n n ααπα⎧+=⎨-⎩为偶数;为奇数tan()tan ()n n απα+=为整数.(2)奇偶性.()()()sin -=-sin cos -=cos tan -=-tan αααααα,,.(3)1sin -=cos cos -=sin tan -=222tan πππαααααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,, 奇变偶不变,符号看象限,说明:(1)先将诱导三角函数式中的角统一写作2n πα⋅±;(2)无论有多大,一律视为锐角,判断2n πα⋅±所处的象限,并判断题设三角函数在该象限的正负;(3)当n 为奇数是,“奇变”,正变余,余变正;当n 为偶数时,“偶不变”函数名保持不变即可. 例如(1)sin +2πα⎛⎫⎪⎝⎭,因为+22ππαπ<<,所以sin +>02πα⎛⎫⎪⎝⎭,即sin +=cos 2παα⎛⎫⎪⎝⎭, (2)()sin +πα,因为3+2ππαπ<<,所以()sin +<0πα,即()sin +=-cos παα, 简而言之即“奇变偶不变,符号看象限”.题型归纳及思路提示题型1终边相同的角的集合的表示与区别 思路提示(1) 终边相同的角的集合的表示与识别可用列举归纳法和双向等差数列的方法解决.(2) 注意正角、第一象限角和锐角的联系与区别,正角可以是任一象限角,也可以是坐标轴角;锐角是正角,也是第一象限角,第一象限角不包含坐标轴角.例4.1终边落在坐标轴上的角的集合为( ) A. {},k k Zααπ=∈ B. ,2k k Z παα⎧⎫=∈⎨⎬⎩⎭C. ,2k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭D.,2k k N παα⎧⎫=∈⎨⎬⎩⎭分析 表示终边相同的角的集合,必有k Z ∈,而不是k N ∈.解析 解法 一:排除法.终边在坐标轴上的角有4种可能,x 轴正、负半轴,y 轴正、负半轴,取1,2,3,4,,k =可知只有选项B占有4条半轴,故选B. 解法二;推演法.终边在坐标轴上的角的集合为3113",2,,,,0,,,,2,",2222ππππππππ----可以看作双向等差数列,公差为2π,取初始角0α=,故0()2k k Z πα=+∈,故0()2k k Z πα=+∈⇒,2k k Z παα⎧⎫=∈⎨⎬⎩⎭故选B. 评注 终边在x 轴的角的集合,公差为π,取初始角0α=⇒{},k k Z ααπ=∈;终边在y 轴的角的集合,公差为π,取初始角2πα=⇒,2k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭.例4.2 请表示终边落在图4-5中阴影部分的角的集合.分析 本题是关于区域角的表示问题,需要借助终边相同角的集合表示知识求解,只需要把握区域角初始角的范围和终边相同角的集合的公差的大小即可顺利求解.解析 (1)如图4-5(a )所示阴影部分的角的集合表示为22,63k k k N ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭;(2)如图4-5(b )所示阴影部分的角的集合表示为222,63k k k N ππαπαπ⎧⎫-+≤≤+∈⎨⎬⎩⎭; (3)如图4-5(c )所示阴影部分的角的集合表示为21122,36k k k N ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭; (4)如图4-5(d )所示阴影部分的角的集合表示为,63k k k N ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭. 评注 任一角α与其终边相同的角,都可以表示成α与整数个周角的和,正确理解终边相同的角的集合中元素组成等差数列,公差为2π,即集合的周期概念,是解决本题的关键.变式1设集合M =⎩⎨⎧ x ⎪⎪⎭⎬⎫x =k 2·180°+45°,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 4·180°+45°,k ∈Z ,那么( ) A .M ⊆N B . N ⊆M C .M =ND .M ∩N =∅例4.3 下列命题中正确的是( )A. 第一象限角是锐角B. 第二象限角是钝角C.()0,απ∈,是第一、二象限角D. ,02πα⎛⎫∈-⎪⎝⎭,α是第四象限角,也叫负锐角 解析 第一象限角的集合为022,2k k k Z παπαπ⎧⎫+<<+∈⎨⎬⎩⎭,锐角的集合是是其真子集(即当0k =时)故选项A 错;同理选项B 错;选项C 中(0,)2ππ∈,但2π不是象限角,选项C 也错,故选D. 题型2 等分角的象限问题 思路提示先从α的范围出发,利用不等式性质,具体有:(1)双向等差数列法;(2)nα的象限分布图示. 例4.4 α 是第二象限角,2α是第 象限角解析 解法一:α与终边相同的角的集合公差为2π,该集合中每个月的一半组成的集合公差为π,取第二象限的一个初始集合,2ππ⎛⎫ ⎪⎝⎭,得2α的初始集合,42ππ⎛⎫⎪⎝⎭,对比集合以π公差旋转得2α的分布,如图4-6所示,得2α是第一、三象限角.解法二:如图4-7所示,α是第二象限角,2α是第一、三象限角,又若α是第四象限角,2α是第二、四象限角.解法三:取α=0120,000012036060,2402α+⇒=,即2α是第一、三象限角.评注 对于2α是第几象限角的问题,做选填题以记住图示最为便捷,解法三是一种只要答案的特值方法;解法一能准确找出2α的分布. 对于3α是第几象限角可使用象限分布图示的规律,如图4-8所示,那么对于“nα是第几象限角”的象限分布图示规律是什么?只需要把第一个象限平均分成n 部分,并从x 轴正向起,逆时针依次标注1,2,3,4,1,2,3,4,1,2,3,4…..,则数字(α终边所在象限)所在象限即为nα终边所在象限.例如:3α的象限分布图示如图4-8所示,若α为第一象限角,则3α为第一、二、三象限角.变式1 若α是第二象限角,则3α是第 象限角;若α是第二象限角,则3α的取值范围是 题型3 弧长与扇形面积公式的计算 思路提示(1) 熟记弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2(弧度制(0,2]απ∈)(2) 掌握简单三角形,特别是直角三角形的解法例4.5 有一周长为4的扇形,求该扇形面积的最大值和相应圆心角的大小. 解析:设扇形的半径为r ,弧长为l ,圆心角为α(弧度),扇形面积S.依题意0024r l r l >⎧⎪>⎨⎪+=⎩,12S lr =,则12S lr =11(42)(42)224r r r r =-=-32π 2π4π O yx 54π 图 4-62 3 1 4 x 4 13 2 y图 4-7O21422()142r r -+≤=,(当且仅当422r r -=时,即1r =时取“=”,此时2l =)故扇形的面积最大值为1,此时lrα==2(弧度).评注本题亦可解作21112212442l r S lr l r +⎛⎫==⋅≤= ⎪⎝⎭,当且仅当22l r ==,即2l =,1r =时“=”成立,此时lr α==2.本题可改为扇形面积为1,求周长的最小值,2C l r =+≥且112lr =得2lr =,故4C ≥(当且仅当22l r ==时“=”成立),扇形周长的最小值为4.变式1 扇形OAB 的圆心角∠OAB=1(弧度),则AB =() A. 1sin2 B. 6π C. 11sin 2D. 21sin 2变式2 扇形OAB ,其圆心角∠OAB=0120,其面积与其内切圆面积之比为 题型4 三角函数定义题 思路提示(1) 任意角的正弦、余弦、正切的定义; (2) 诱导公式;(3) 理解并掌握同角三角函数基本关系.例4.6 角α终边上一点(2sin 5,2cos5)P -,(0,2)απ∈,则α=( ) A. 52π-B. 35π-C. 5D.5+2π 解析 解法一:排队法. 005557.3286.5≈⨯=,是第四象限角,2sin50x =<,2cos50y =-<,2r ==,α是第三象限角.选项C 中,5是第四象限角,选项D 中,5+2π是第一象限角,故排除C 、D ;选项B 中, ()cos cos 35cos5απ=-=-,与cos sin 5xrα==矛盾,排除B ,故选A.解法二:推演法.由解法一,35,2πθαπθ'=+=+,,(0,)2πθθ'∈(这样设的原因是cos sin5α=),cos cos()απθ'=+=cos θ'-,3sin 5sin()cos 2πθθ=+=-⇒cos cos θθ'-=-⇒cos cos θθ'=,,(0,)2πθθ'∈⇒352πθθ'==-, ⇒35522ππαπ⎛⎫=+-=- ⎪⎝⎭故选A.变式1 已知角α终边上一点(2sin 2,2cos 2)P -,(0,2)απ∈,则α=( )A.2B.-2C.22π-D. 22π- 变式2 已知角α终边上一点22(2sin ,2cos )77P ππ-,则α=变式3 已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线2y x =上,则cos2θ=( ) A. 45-B. 35-C. 35D. 45题型5 三角函数线及其应用 思路提示正确作出单位圆中正弦、余弦、正切的三角函数线 一,利用三角函数线证明三角公式 例4.7 证明(1)()sin -=sin παα, (2)sin -=cos 2παα⎛⎫⎪⎝⎭(3)31tan =-2tan παα⎛⎫+⎪⎝⎭解析 (1)如图4-9所示,角-πα与α的终边关于y 轴对称,MP MP '=⇒()sin -=sin παα. (2)如图4-10所示,角-2πα与α的终边关于直线y x =对称.OM M P ''=⇒sin -=cos 2παα⎛⎫⎪⎝⎭(3) 如图4-11所示,.2311tan =k =--2tan tan OT πααα⎛⎫+=⎪⎝⎭评注 用单位圆中的三角函数线证明诱导公式是新课标的要求,必须掌握,重点在(),,2ππααα±-±.在(1)证明中易得()cos -=-cos παα,,相除得()tan -=-tan παα,,在(2)证明 中易得cos -=sin 2παα⎛⎫⎪⎝⎭,相除得1tan =2tan παα⎛⎫-⎪⎝⎭.角α与-πα的终边关于终边(即y 轴)对称,角-2πα与α的终边关于终边所在的直线y x =轴对称.一般地,角α,β的终边关于终边所在直线2αβ+轴对称二.利用三角函数线比较大小 例4.8 ,42ππα⎛⎫∈⎪⎝⎭,比较sin ,cos ,tan ααα的大小. 解析 如图4-12所示,,42ππα⎛⎫∈⎪⎝⎭,在单位圆中作出α的正弦线MP ,余弦线OM 和正切线AT ,显然有OM<MP<A T,故cos sin tan ααα<<.评注 由本例可看出,三角函数线可直观、形象地处理三角函数中的大小比较问题变式1 求证:(1)当角α的终边靠近y 轴时,cos sin αα<及tan 1α>; (2)当角α的终边靠近x 轴时,cos sin αα>及tan 1α<;变式2 (1)α为任意角,求证:cos sin 1αα+>; (2)0,2πα⎛⎫∈ ⎪⎝⎭,比较sin ,cos ,tan ααα的大小 变式3 比较大小 (1)sin 2,sin 4,sin 6 (2)cos 2,cos 4,cos6(3)tan 2,tan 4,tan 6 变式4 1sin tan ()tan 22ππαααα>>-<< ,则α∈() A. ,24ππ⎛⎫-- ⎪⎝⎭ B. ,04π⎛⎫- ⎪⎝⎭C. 0,4π⎛⎫⎪⎝⎭D. ,42ππ⎛⎫ ⎪⎝⎭三、利用三角函数线求解特殊三角方程例4.9 利用单位圆中的三角函数线求解下列三角方程: (1)1sin 22x =;(2)2cos 22x =;(3)tan 23x =.解析 (1)在单位圆中作为正弦为12的正弦线,如图4-13所示,得正弦为12的两条终边,即16πα=,256πα=,故226x k ππ=+或5226x k ππ=+,k Z ∈. 解得12x k ππ=+或512x k ππ=+,k Z ∈.(2)如图4-14所示14πα=,24πα=-,故224x k ππ=+或224x k ππ=-+,k Z ∈,解得8x k ππ=+或8x k ππ=-+,k Z ∈.(3)如图4-15所示,得13πα=,243πα=,公差为π,故23x k ππ=+,k Z ∈. 解得6x k ππ=+,k Z ∈.评注(1)sin 1α≤ ,cos 1α≤,tan x R ∈;(2)当1k <时,方程sin ,cos x k x k ==在[0,2)π有两解. 四、利用三角函数线求解特殊三角不等式例4.10利用单位圆,求使下列不等式成立 的角的集合. (1)1sin 2x ≤;(2)2cos 2x ≥;(3)tan 1x ≤.分析 这是一些较简单的三角函数不等式,在单位圆中,利用三角函数线作出满足不等式的角所在的区域,由此写出不等式的解集.解析 (1)如图4-16所示,作出正弦线等于12的角:5,66ππ,根据正弦上正下负,得在图4-16中的阴影区域内的每一个角均满足1sin 2x ≤,因此所求的角x 的集合为 51322,66xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭.(2)如图4-17所示,由余弦左负右正得满足2cos 2x ≥的角的集合为 22,44x k x k k Z ππππ⎧⎫-+≤≤+∈⎨⎬⎩⎭. (3)如图4-18所示,在[0,2]π内,作出正切线等于1的角5,44ππ:则在如图4-18所示的阴影区域内(不含y 轴)的每一个角均满足tan 1x ≤,因此所求的角的集合为,24x k x k k Z ππππ⎧⎫-+≤≤+∈⎨⎬⎩⎭.评注 解简单的三角不等式,可借助于单位圆中的三角函数线,先在[0,2]π内找出符合条件的角,再利用终边相同的角的表达式写出符合条件的所有角的集合,借助关于单位圆中的三角函数线,还可以比较三角函数值的大小.例4.11利用单位圆解下列三角不等式: (1)2sin 10α+>; (2)23cos 30α+≤; (3)sin cos αα>;(4)若02απ≤<,sin 3cos αα>,则则α∈() A. ,32ππ⎛⎫⎪⎝⎭ B. ,3ππ⎛⎫⎪⎝⎭ C. 4,33ππ⎛⎫⎪⎝⎭D. 3,32ππ⎛⎫ ⎪⎝⎭解析 (1)由题意1sin 2α>-,令1sin 2α=-,如图4-19所示,在单位圆中标出第三、四象限角的两条终边,这两条终边将单位圆分成上、下两部分,根据正弦上正下负,取α终边上面的部分,按逆时针从小到大标出16πα=-,2766ππαπ=+=,故不等式的解集为 722,66k k k Z ππαπαπ⎧⎫-+≤≤+∈⎨⎬⎩⎭.(2)如图4-20所示,3cos α≤标出3cos α=的角在单位圆中第二、三象限的两条终边,这两条终边将单位圆分成左,右两部分,根据余弦左负右正,取α终边在左侧的部分,按逆时针从小到大标出1566ππαπ=-=,2766ππαπ=+=,.故不等式的解集为 5722,66k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭. (3)sin cos αα>y x y x r r ⇒>⇒>.如图4-21所示,在单位圆中作出y x =所对的两个角14πα=,254πα=.这两个角的终边将单位圆分成上、下两部分.在上面的部分取2πα=,sin cos 22ππ>成立 ,故不等式的解集为522,44k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭. 注 本题也可通过线性规划的知识直接判断出表示y x >的平面区域为如图4-21所示的阴影部分.(4)sin 3cos αα>,得33y x y x r r>⇒>,如图4-22所示,在单位圆中标出3y x =所对的角13πα=,243πα=.,.这两个角的终边把单位圆分为上、下两部分,因为02απ≤<,在上面的部分取2πα=,sin 3cos αα>成立 ,所以取α终边上面的部分,故不等式的解集为433ππαα⎧⎫≤≤⎨⎬⎩⎭,故选C.评注 三角函数线的应用(1)证明 三角公式;(2)比较大小;(3)解三角方程;(4)求解三角不等式. 变式1 已知函数()3cos ,,()1f x x x x R f x =-∈≥若,则x 的取值范围() A. ,3xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ B. 22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ C. 5,66xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭D. 522,66x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭题型6 象限符号与坐标轴角的三角函数值思路提示正弦函数值在第一、二象限为正,第三、四象限为负;. 余弦函数值在第一、四象限为正,第二、三象限为负;. 正切函数值在第一、三象限为正,第二、四象限为负.例4.12(1)若()0,2απ∈,sin cos 0αα<,则α的取值范围是 ; (2)3tan 0sincos sincos 222ππππ+---= ; 解析:(1)由sin cos 0αα<得sin 0cos 0αα>⎧⎨>⎩或sin 0cos 0αα<⎧⎨<⎩,得α为第二象限角或第四象限角⇒α的取值范围是3,,222ππππ⎛⎫⎛⎫⋃⎪ ⎪⎝⎭⎝⎭. (2)01(1)(1)12+-----=.变式1 sin 0α>是α为第一、二象限的( )A.充分而不必要条件B. 必要而不充分条件C.充分必要条件D.既不充分也不必要条件 变式2 ,43sin,cos 2525αα==-,2α是第 象限角,α是第 象限角. 变式3若sin cos 1=-,则α的取值范围是 .变式4 已知tan cos 0αα<,则α是第( )象限角.A.一或三B. 二或三C.三或四D.一或四 变式5 若α为第二象限角,则tan2α的符号为变式6 若点(tan ,cos )P αα在第三象限,则角α的终边在第 象限角变式7 函数cos sin tan sin tan x x xy x cox x=++的值域为 . 题型7 同角求值-----条件中出现的角和结论中出现的角是相同的思路提示(1) 若已知角的象限条件,先确定所求三角函数的符号,再利用三角形三角函数定义求未知三角函数值.(2) 若无象限条件,一般“弦化切”. 例4.13 (1)已知3,22παπ⎛⎫∈ ⎪⎝⎭,1sin 3α=-,cos α= , tan α=(2)已知tan α=2, 1. 3,2παπ⎛⎫∈ ⎪⎝⎭,sin α= , cos α= 2.2sin cos 3sin 4cos αααα-+= ,3. 22sin 2sin cos 3cos αααα--= , (3)已知2sin cos αα-= 1. sin cos tan ααα+= ; 2. sin cos αα-= . 解析 (1)因为3,22παπ⎛⎫∈⎪⎝⎭,cos 0,tan 0αα><,故cos α==.sin tan cos ααα==(2)1.因为3,2παπ⎛⎫∈ ⎪⎝⎭,所以sin 0,cos 0αα<<,22sin tan cos sin cos 1ααααα⎧=⎪⎨⎪+=⎩, 得22sin 2cos sin cos 1αααα=⎧⎨+=⎩,得21cos 5α=.cos 5α=-,sin 5α=-2.无象限条件,弦化切.2sin cos 3sin 4cos αααα-+=2tan 122133tan 432410αα-⨯-==+⨯+3. 22sin 2sin cos 3cos αααα--=2222sin 2sin cos 3cos sin cos αααααα--=+22tan 2tan 3tan 1ααα--=+35- (3)无象限条件,弦化切.,两边平方,得()()2222sin cos 5sin cos αααα-=+222sin 4sin cos 4cos (sin 2cos )0αααααα⇒++⇒+=sin 2cos 0αα⇒+=,tan 20α+=⇒tan 2α=-.1. sin cos tan ααα+=22sin cos tan sin cos ααααα+=+2tan 12tan tan 15ααα+=-+2. 2sin cos αα-=()αϕ+=可知当x α=时,2sin cos x x -取最小值.()2sin cos sin 2cos 0x x x ααα='-=+=.2sin cos sin 2cos 0αααα⎧-=⎪⎨+=⎪⎩⇒cos 5sin αα⎧=⎪⎪⎨⎪=⎪⎩,sin cos αα-=5-. 评注 本题给出同角求值的几种基本题型..(1)及(2)中的1体现了有象限条件的任意角三角函数与锐角三角函数的本质联系(只多了一个象限符号);(2)中的2体现了无象限条件弦化切的解题策略.(3)中无象限条件,2sin cos αα-=()αϕ+=表示函数2sin cos y x x =-在处取得极小值,导数0x y α='=,故有更简便做法:()2sin cos sin 2cos 0x x x ααα='-=+=.如已知sin cos αα-=()0,απ∈,则tan α= .答案为-1,与本题(3)同理可解.变式1 若tan α=2,则2212sin cos cos sin αααα+=-=( ) A. 13 B.3 C. 13- D.-3变式2 当x θ=时,函数sin 2cos y αα=-取得最大值,则cos θ= ; 例4.14 已知1sin cos 5αα+=-时,,22ππα⎛⎫∈-⎪⎝⎭,则tan α=( )A. 34-B. 43-C. 34D.- 43解析 解法一:已知角的象限条件,将方程两边平方得112sin cos 25αα+=12sin cos 025αα⇒=-<,,22ππα⎛⎫∈- ⎪⎝⎭,tan 0α<,排除C 和D., sin 0,cos 01sin cos 05αααα<>⎧⎪⎨+=-<⎪⎩⇒sin cos ,αα>tan 1α>,故排除A ,故选B. 解法二:将方程两边平方得,()22221sin 2sin cos cos sin cos 25αααααα++=+ 2212sin 25sin cos 12cos 0αααα⇒++=212tan 25tan 120αα⇒++=43tan 34α⇒=--或由解法一知tan 1α>,得4tan 3α=-,故选B. 变式1 已知R α∈,sin 2cos αα+=,则tan 2α=( ) A.43 B. 34 C. 34- D. 43- 变式2 已知3sin cos 8αα=,42ππα<<,则cos sin αα-=( )A. 12B. 12-C. 14D. 14-题型8 诱导求值与变形 思路提示(1)诱导公式用于角的变换,凡遇到与2π整数倍角的和差问题可用诱导公式,用诱导公式可以把任意角的三角函数化成锐角三角函数. (2)通过2,,2πππ±±±等诱导变形把所给三角函数化成所需三角函数.(3)2,,2παβππ±=±±±等可利用诱导公式把,αβ的三角函数化例4.15 求下列各式的值.(1)0sin(3000)-; (2)41cos 3π⎛⎫-⎪⎝⎭; (3)51tan 4π⎛⎫-⎪⎝⎭解析 (1)0sin(3000)-=0sin(8360120)sin120-⨯+=-000sin(18060)sin 602=--=-=-;(2)41cos 3π⎛⎫-⎪⎝⎭=411cos cos 14cos 3332ππππ⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)5151tan tan tan(13)tan 14444πππππ⎛⎫-=-=--== ⎪⎝⎭. 评注 利用诱导公式化简或求值,可以参照口决“负角化正角,大角化小角,化为锐角,再计算比较”.变式1 若()cos 2-3πα=,且,02πα⎛⎫∈- ⎪⎝⎭,则()sin -πα= ; 变式2 若3,22ππα⎛⎫∈⎪⎝⎭,()3tan 74απ-=,则cos sin αα+=( ) A. 15± B. 15- C.15 D. 75- 变式3 若cos-80°= k ,则tan 100°的值为( )A.B. D.变式4 已知1sin 64x π⎛⎫+= ⎪⎝⎭,则25sin sin ()63x x ππ⎛⎫-+- ⎪⎝⎭= ; 最有效训练题A. 15± B. 15- C. 15 D. 75-2.已知点33(sin ,cos )44P ππ落在角θ的终边上,且[]0,2θπ∈,则θ的值为( )A. 4πB. 34πC. 54πD. 74π3.若角α的终边落在直线0x y +==( )A. 2B. 2-C. 1D. 0 4.若角A 是第二象限角,那么2A 和2A π-都不是( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 5.已知sin -=cos ,cos -=sin 22ππαααα⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,对于任意角α均成立.若(sin )cos 2f x x =,则(cos )f x =( )A. cos2x -B. cos2xC. sin 2x -D. sin 2x6.已知02x π-<<,1cos sin 5αα+=-,则sin cos 1αα-+=( ) A. 25- B. 25 C. 15 D. 15-7.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若(4,)P y 是角θ终边上一点,且25sin 5θ=-,则y = .8.函数2lgsin 29y x x =+-的定义域为 .9.如图4-23所示,已知正方形ABCD 的边长为1,以A 为圆心,AD 长为半径画弧,交BA 的延长线于1P ,然后以B 为圆心,1BP 长为半径画弧,交CB 的延长线于2P ,再以C 为圆心,2CP 长为半径画弧,交DC 的延长线于3P ,再以D 为圆心,3DP 长为半径画弧,交AD 的延长线于4P ,再以A 为圆心,4AP 长为半径画弧,…,如此继续下去,画出的第8道弧的半径是 ,画出第n 道弧时,这n 道弧的弧度之和为 .10.在平面直角坐标系xOy 中,将点3,1)A 绕点O 逆时针旋转090到点B ,那么点B 的坐标为 ;若直线OB 的倾斜角为α,则sin 2α的值为 . 11.一条弦的长度等于半径r ,求: (1)这条弦所对的劣弧长;(2)这条弦和劣弧所围成的弓形的面积.12.已知001tan(720)3221tan(360)θθ++=+--. 求2221cos ()sin()cos()2sin ()cos (2)πθπθπθπθθπ⎡⎤-++-++⎣⎦--的值.。
高考数学第一轮复习:《同角三角函数的基本关系与诱导公式》最新考纲1.理解同角三角函数的基本关系式:sin 2x +cos 2x =1,sin xcos x =tan x .2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.【教材导读】1.同角三角函数的基本关系中,对任意角均成立吗?提示:在tan α=sin αcos α的关系中,须保证tan α有意义,所以须使α≠π2+k π,k ∈Z . 2.诱导公式的功能是什么?提示:负角化正角,大角化小角,再求值.1.同角三角函数的基本关系式 (1)平方关系 sin 2 α+cos 2 α=1; (2)商数关系 tan α=sin αcos α. 2.诱导公式 组序 一 二 三 四 五 六 角 2k π+α(k ∈Z )π+α -α π-α π2-α π2+α 正弦 sin α -sin α -sin α sin α cos α cos_α 余弦 cos α -cos α cos α -cos_α sin α -sin α 正切tan αtan α-tan α-tan_α诱导公式可简记为:奇变偶不变,符号看象限.“奇”与“偶”指的是诱导公式k ·π2+α中的整数k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 是奇数,则正、余弦互变;若k 为偶数,则函数名称不变.“符号看象限”指的是在k ·π2+α中,将α看成锐角时k ·π2+α所在的象限.1.已知α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于( ) (A)-32 (B)32 (C)-12(D)12D 解析:因为α和β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z ).又β=-π3,所以α=2k π+5π6(k ∈Z ),即得sin α=12.故选D.2.已知f (α)=sin (π-α)·cos (2π-α)cos (-π-α)·tan (π-α),则f ⎝ ⎛⎭⎪⎫-25π3的值为( )(A)12 (B)-12 (C)32(D)-32A 解析:∵f (α)=sin αcos α(-cos α)·(-tan α)=sin αtan α=cos α,∴f (-25π3)=cos(-25π3)=cos ⎝ ⎛⎭⎪⎫-π3=12.故选A.3.若α=11π3,则tan α·cos α等于( ) (A)12 (B)-12 (C)-32(D)32C 解析:若α=113π,tan α·cos α=sin αcos α·cos α=sin α=sin 113π=sin ⎝ ⎛⎭⎪⎫4π-π3=-sin π3=-32.故选C.4.已知a ∈⎝ ⎛⎭⎪⎫π2,π,sin α=45,则tan α=________.解析:因为a ∈⎝ ⎛⎭⎪⎫π2,π,所以cos α=-1-sin 2α=-35,所以tan α=sin αcos α=-43. 答案:-435.已知sin x cos x =38,且x ∈π4,π2,则cos x -sin x =________. 解析:因为x ∈π4,π2, 所以sin x >cos x , 即cos x -sin x <0,所以(cos x -sin x )2=1-2sin x cos x =14,所以cos x -sin x =-12. 答案:-12考点一 同角三角函数的基本关系(1)已知α∈⎝ ⎛⎭⎪⎫π,3π2,tan α=2,则cos α=________.(2)已知sin α+3cos α3cos α-sin α=5,则sin 2 α-sin αcos α的值是( )(A)25 (B)-25 (C)-2(D)2解析:(1)依题意得⎩⎨⎧tan α=sin αcosα=2,sin 2 α+cos 2 α=1,由此解得cos 2 α=15;又α∈⎝ ⎛⎭⎪⎫π,3π2,因此cos α=-55.(2)由sin α+3cos α3cos α-sin α=5得tan α+33-tan α=5,即tan α=2.所以sin2α-sin αcos α=sin2α-sin αcos αsin2α+cos2α=tan2α-tan αtan α+1=25.答案:(1)-55(2)A【反思归纳】同角三角函数关系式的应用技巧(1)利用sin2α+cos2α=1可实现α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)关系式的逆用及变形用:1=sin2α+cos2α,sin2α=1-cos2α,cos2α=1-sin2α.(3)sin α,cos α的齐次式的应用:分式中分子与分母是关于sin α,cos α的齐次式,或含有sin2α,cos2α及sin αcos α的式子求值时,可将所求式子的分母看作“1”,利用“sin2α+cos2α=1”代换后转化为“切”后求解.【即时训练】已知角α的始终与x轴的非负半轴重合,顶点与坐标原点重合,终边过点P(3,4),则sin α+2cos αsin α-cos α=________.答案:10考点二三角函数的诱导公式(1)化简sin(kπ-α)·cos[(k-1)π-α]sin[(k+1)π+α]·cos(kπ+α),k∈Z;(2)已知sin α=255,求tan(α+π)+sin⎝⎛⎭⎪⎫5π2+αcos⎝⎛⎭⎪⎫5π2-α;(3)化简tan(π-α)cos(2π-α)sin⎝⎛⎭⎪⎫-α+3π2 cos(-α-π)sin(-π-α).解:(1)当k=2n+1(n∈Z)时,原式=sin(2nπ+π-α)·cos(2nπ-α)sin(2nπ+2π+α)·cos(2nπ+π+α)=sin(π-α)·cos αsin α·cos(π+α)=sin α·cos αsin α·(-cos α)=-1;当k =2n (n ∈Z )时,原式=sin (2n π-α)·cos (2n π-π-α)sin (2n π+π+α)·cos (2n π+α)=-sin α·(-cos α)-sin α·cos α=-1.所以原式=sin (k π-α)·cos[(k -1)π-α]sin[(k +1)π+α]·cos (k π+α)=-1.(2)∵sin α=255>0,∴α为第一或第二象限角.当α是第一象限角时,cos α=1-sin 2 α=55,tan(α+π)+sin ⎝ ⎛⎭⎪⎫5π2+αcos ⎝ ⎛⎭⎪⎫5π2-α=tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α=52.当α是第二象限角时,cos α=-1-sin 2 α=-55,原式=1sin αcos α=-52.(3)方法一:原式=(-tan α)·cos[π+(π-α)]·sin ⎝ ⎛⎭⎪⎫π+π2-αcos (π+α)·[-sin (π+α)]=(-tan α)·[-cos (π-α)]·⎣⎢⎡⎦⎥⎤-sin ⎝ ⎛⎭⎪⎫π2-α(-cos α)·sin α=-tan α·cos α·(-cos α)-cos α·sin α=-tan α·cos αsin α=-sin αcos α·cos αsin α=-1.方法二:原式=-tan α·cos (-α)·sin ⎝ ⎛⎭⎪⎫-α-π2cos (π-α)·sin (π-α)=tan α·cos α·sin ⎝ ⎛⎭⎪⎫α+π2-cos α·sin α=sin αcos α·cos α-sin α=-1.【反思归纳】 利用诱导公式化简三角函数的思路和要求(1)思路方法:①分析结构特点,选择恰当公式;②利用公式化成单角三角函数;③整理得最简形式.(2)化简要求:①化简过程是恒等变形;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.【即时训练】 已知sin(3π+θ)=13, 求cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ⎝ ⎛⎭⎪⎫θ-3π2cos (θ-π)-sin ⎝ ⎛⎭⎪⎫3π2+θ的值.答案:18考点三 诱导公式与同角关系的综合应用 (高频考点)已知sin θ、cos θ是关于x 的方程x 2-ax +a =0(a ∈R )的两个根.求: (1)cos 3⎝ ⎛⎭⎪⎫π2-θ+sin 3⎝ ⎛⎭⎪⎫π2+θ的值;(2)tan(π-θ)-1tan θ的值. 解:由已知原方程判别式Δ≥0,即(-a )2-4a ≥0,∴a ≥4或a ≤0.又⎩⎪⎨⎪⎧sin θ+cos θ=a ,sin θcos θ=a ,∴(sin θ+cos θ)2=1+2sin θcos θ,即a 2-2a -1=0, ∴a =1-2或a =1+2(舍去), ∴sin θ+cos θ=sin θcos θ=1- 2. (1)cos 3⎝ ⎛⎭⎪⎫π2-θ+sin 3⎝ ⎛⎭⎪⎫π2+θ=sin 3 θ+cos 3 θ=(sin θ+cos θ)(sin 2 θ-sin θcos θ+cos 2 θ) =(1-2)[1-(1-2)]=2-2.(2)tan(π-θ)-1tan θ=-tan θ-1tan θ=-⎝ ⎛⎭⎪⎫tan θ+1tan θ=-⎝ ⎛⎭⎪⎫sin θcos θ+cos θsin θ=-1sin θcos θ=-11-2=2+1.答案:(1)2-2 (2)2+1【反思归纳】 熟练运用诱导公式和同角三角函数基本关系,并确定相应三角函数值的符号是解题的关键.另外,切化弦是常用的规律技巧.【即时训练】 (1)若α为三角形的一个内角,且sin α+cos α=23,则这个三角形是( ) (A)正三角形 (B)直角三角形 (C)锐角三角形(D)钝角三角形(2)若sin α+π6=-513,且α∈π2,π,则sin α+2π3=________. 解析:(1)因为(sin α+cos α)2=1+2sin αcos α=49, 所以sin αcos α=-518<0,所以α为钝角.故选D. (2)因为π2<α<π,所以2π3<α+π6<7π6, cos α+π6=-1--5132=-1213,而sin α+2π3=sin π2+α+π6=cos α+π6=-1213. 答案:(1)D (2)-1213同角关系与诱导公式结合解题教材源题:化简: (1)cos α-π2sin 52π+α·sin(α-2π)·cos(2π-α);(2)cos 2(-α)-tan (360°+α)sin (-α).解:(1)原式=cos π2-αsin π2+α·sin α·cos α=sin αcos α·sin α·cos α=sin 2α.(2)原式=cos 2α-tan α-sin α=cos 3α+1cos α.【规律总结】 三角函数式化简目标方向 (1)用同角关系中切弦互化,统一函数名. (2)用诱导公式统一角.(3)用因式分解将式子变形,化为最简.【源题变式】已知f (x )=sin (2π-x )·cos 32π+xcos (3π-x )·sin 112π-x ,则f -21π4=________.解析:因为f (x )=sin (-x )·sin xcos (π-x )·sin6π-π2+x=sin 2xcos x -sin π2+x =sin 2x -cos 2x =-tan 2x . 所以f -214π=-tan 2-214π=-tan 2-5π-π4=-tan 2-π4=-1.答案:-1课时作业基础对点练(时间:30分钟)1.已知α∈⎝ ⎛⎭⎪⎫π,32π,tan(α+π)=43,则cos ⎝ ⎛⎭⎪⎫α+π4=( )(A)210 (B)-210 (C)7210(D)-7210A 解析:由α∈⎝ ⎛⎭⎪⎫π,32π,tan(α+π)=43,即tan α=43,得sin α=-45,cos α=-35∴cos ⎝ ⎛⎭⎪⎫α+π4=22(cos α-sin α)=22⎝ ⎛⎭⎪⎫-35+45=210.故选A.2.已知sin ⎝ ⎛⎭⎪⎫5π2+α=15,那么cos α=( ) (A)-25(B)-15(C)15 (D)25答案:C3.已知sin ⎝ ⎛⎭⎪⎫x -π4=35,则cos ⎝ ⎛⎭⎪⎫x +π4=( )(A)45 (B)35 (C)-45(D)-35 D 解析:cos ⎝ ⎛⎭⎪⎫x +π4=cos ⎝ ⎛⎭⎪⎫x -π4+π2=-sin ⎝ ⎛⎭⎪⎫x -π4=-35,故选D.4.已知sin α是方程5x 2-7x -6=0的根,且α是第三象限角,则sin ⎝ ⎛⎭⎪⎫-α-3π2cos ⎝ ⎛⎭⎪⎫3π2-αtan 2(π-α)cos ⎝ ⎛⎭⎪⎫π2-αsin ⎝ ⎛⎭⎪⎫π2+α=( )(A)916 (B)-916 (C)-34 (D)34答案:B5.已知α是第二象限角,则cos α1+tan 2α+sin α·1+1tan 2α的值为( ) (A)-2 (B)2 (C)0(D)3C 解析:原式=cos αsin 2α+cos 2αcos 2α+sin αsin 2α+cos 2αsin 2α=cos α|cos α|+sin α|sin α|,∵α为第二象限角,∴sin α>0,cos α<0,∴cos α|cos α|+sin α|sin α|=-1+1=0.故选C.6.在△ABC 中,3sin π2-A =3sin(π-A ),且cos A =-3cos(π-B ),则C 等于( ) (A)π3 (B)π4 (C)π2(D)2π3C 解析:因为3sin π2-A =3sin(π-A ), 所以3cos A =3sin A ,所以tan A =33, 又0<A <π,所以A =π6.又因为cos A =-3cos(π-B ), 即cos A =3cos B , 所以cos B =13cos π6=12,又0<B <π, 所以B =π3.所以C =π-(A +B )=π2.故选C. 7.设f (sin x )=3-cos2x ,则f (cos x )=________. 解析:方法一:f (cos x )=f ⎝ ⎛⎭⎪⎫sin ⎝ ⎛⎭⎪⎫π2-x=3-cos 2⎝ ⎛⎭⎪⎫π2-x =3-cos(π-2x )=3+cos 2x .方法二:f (sin x )=3-(1-2sin 2 x )=2+2sin 2 x , ∴f (x )=2+2x 2,∴f (cos x )=2+2cos 2x =3+2cos 2x -1=3+cos 2x . 答案:3+cos 2x8.化简sin ⎝ ⎛⎭⎪⎫4n -14π-α+cos ⎝ ⎛⎭⎪⎫4n +14π-α(n ∈Z )的结果为________. 解析:n 为偶数时,原式=sin ⎝ ⎛⎭⎪⎫-π4-α+cos ⎝ ⎛⎭⎪⎫π4-α =-cos ⎝ ⎛⎭⎪⎫π4-α+cos ⎝ ⎛⎭⎪⎫π4-α=0. n 为奇数时,原式=sin ⎝ ⎛⎭⎪⎫3π4-α+cos ⎝ ⎛⎭⎪⎫5π4-α =cos ⎝ ⎛⎭⎪⎫π4-α-cos ⎝ ⎛⎭⎪⎫π4-α=0. 答案:09.已知cos π6-α=23,则sin α-2π3=________.解析:sin α-2π3=sin -π2-π6-α=-sin π2+π6-α=-cos π6-α=-23.答案:-2310.已知f (α)=sin ⎝ ⎛⎭⎪⎫-α+π2·cos ⎝ ⎛⎭⎪⎫3π2-α·tan (α+5π)tan (-α-π)·sin (α-3π)(1)化简f (α);(2)若α是第三象限角,且cos ⎝ ⎛⎭⎪⎫α-3π2=15,求f (α)的值; (3)若α=-31π3,求f (α)的值.解:(1)f (α)=cos α·(-sin α)·tan α(-tan α)·(-sin α)=-cos α;(2)∵cos ⎝ ⎛⎭⎪⎫α-3π2=-sin α, ∴sin α=-15,cos α=-52-15=-25 6.∴f (α)=25 6.(3)∵-31π3=-6×2π+5π3,∴f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-6×2π+5π3 =-cos 5π3=-cos π3=-12.11.已知2sin 2α+sin αcos α-3cos 2α=75,求tan α的值.解:由题意得2sin 2α+sin αcos α-3cos 2αsin 2α+cos 2α=75, 所以2tan 2α+tan α-3tan 2α+1=75, 所以10tan 2α+5tan α-15=7tan 2α+7,所以3tan 2α+5tan α-22=0,所以(3tan α+11)(tan α-2)=0,所以tan α=-113或tan α=2.能力提升练(时间:15分钟)12.设f (x )=⎩⎨⎧ s in πx , (x <0),f (x -1)+1, (x ≥0)和g (x )=⎩⎪⎨⎪⎧ cosπx ,(x <12),g (x -1)+1,(x ≥12),则g ⎝ ⎛⎭⎪⎫14+f ⎝ ⎛⎭⎪⎫13+g ⎝ ⎛⎭⎪⎫56+f ⎝ ⎛⎭⎪⎫34的值为( ) (A)2(B)3 (C)4 (D)5 B 解析:∵g (14)=22,g (56)=cos(-16π)+1=32+1,f (13)=sin(-23π)+1=-32+1,f (34)=sin(-π4)+1=-22+1,∴原式=3.故选B.13.已知sin θ=13,θ∈(-π2,π2),则sin(π-θ)·sin(32π-θ)的值为( )(A)229(B)-229 (C)19(D)-19B 解析:∵θ∈(-π2,π2),∴cos θ=1-sin 2θ=223, ∴sin(π-θ)sin(3π2-θ)=-sin θcos θ=-13×223 =-229.故选B.14.在△ABC 中,已知2cos 2A -3cos(B +C )=2,则A =________. 解析:由2cos 2A -3cos(B +C )=2,得2cos 2A -3cos(π-A )=2,即2cos 2A +3cos A -2=0, 得cos A =12或cos A =-2(舍去),则在△ABC 中,A =π3.答案:π315.在三角形ABC 中,求cos 2A +B 2+cos 2C 2的值. 解:在△ABC 中,A +B =π-C ,所以A +B 2=π2-C 2, 所以cos A +B 2=cos π2-C 2=sin C 2,所以cos 2A +B 2+cos 2C 2=sin 2C 2+cos 2C 2=1. 16.已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,θ∈(0,2π),求:(1)sin θ1-1tan θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值. 解:(1)由根与系数的关系可知⎩⎪⎨⎪⎧ sin θ+cos θ=3+12 ①sin θcos θ=m 2 ②而sin θ1-1tan θ+cos θ1-tan θ=sin 2 θsin θ-cos θ+cos 2 θcos θ-sin θ =sin 2 θ-cos 2 θsin θ-cos θ=sin θ+cos θ=3+12. (2)由①式平方得1+2sin θcos θ=2+32.∴sin θcos θ=34.由②得m 2=34,∴m =32. (3)当m =32时,原方程变为2x 2-(3+1)x +32=0,解得x 1=32,x 2=12,∴⎩⎪⎨⎪⎧ sin θ=32cos θ=12或⎩⎪⎨⎪⎧ cos θ=32sin θ=12. 又∵θ∈(0,2π),∴θ=π3或θ=π6.。
编写人:邵凤颖时间:2012-9-23 一轮复习17知识体系
第十七讲任意角的三角函数
一、复习目标:
1. 了解任意角与弧度制的概念,能进行弧度与角度的互化.
2. 理解任意角三角函数(正弦、余弦、正切)的定义.
班级 ___________ 组 __________________ ____ 层学生 _____________
二、激活记忆:
1. 下列说法正确的是( )
A. 若α的终边在第一象限,则α可以是正角、负角或零角
B. 6×360°+α(α为角度)与-6π+α(α为弧度)终边相同,但大小不相等
C.一条弦的长度等于半径,则这条弦所对的圆心角的弧度数为
D.若β为第二象限角, 则 Z n n n ∈+
<<
+
,2
22
42π
πβ
π
π
2. 若角α的终边经过点P (3a ,-4a )(a <0),则sin α的值为( )
A. 3
4- B.
74 C. 5
4- D. 54 4. =-+0
750
sin )450cos(300tan ____________________________ 三、知识要点: 1. 角的概念的推广
(1)任意角、正角、负零和零角. (2)象限角、轴线角.
(3)终边相同的角:可以用 ① .表示. 2、弧度制:(圆心角:
α 圆的半径:r )
对于半径为r 的圆中一个圆心角,若它对的弧长r l =则称:____________
所以一个角的弧度数
=α___________ ∴扇形弧长公式:_____________
周角的弧长:________ 平角的弧长:________ 90度角对的弧长:_______ 圆的面积=s
______ 半圆的面积=s ______ 41
圆的面积=s
_______
扇形面积公式:
=s ___________________ = ___________________
3. 用弧度制表示下列角(其中都要标明Z
k∈)
比如x正半轴表示成:π
αk2
=, x轴可以表示成:π
αk
=
y正半轴表示成:______________
,
y轴可以表示成:_______________一象限角平分线:______________:一、三象限角分线:______________一象限内的角以表示成:______________________________________
一、三象限内的角以表示成:__________________________________
4. 任意角的三角函数
P(x,y)为角α终边上一点,|OP|=r,则
sinα=②,
cosα=③,
tanα=④(x≠0).
cotα=○5(y≠0)
三角函数在各个象限的符号
sin x cos x tan x(cotx)
填表
四、例题
题型:角的相关概念及角的度量互化 (1)集合M ={x |x =4
k ×180°+45°,k ∈Z },
N ={x |x =4
k
×180°+45°,k ∈Z },则集合M 与N 的关系为 ;
(2)把-1305°化为2k π+α(0≤α<2π,k ∈Z )的形式是( ) A. -7π- 4
π B. -6π-45π C. -8π+ 43π D. -9π+47π。