Transkription---Das duale System in Deutschland
- 格式:pdf
- 大小:139.25 KB
- 文档页数:1
a r X i v :n l i n /0612038v 1 [n l i n .S I ] 16 D e c 2006Controlling pulse propagation in optical fibers through nonlinearity and dispersionmanagementRajneesh Atre 1,2,∗and Prasanta K.Panigrahi 1,†1Physical Research Laboratory,Navrangpura,Ahmedabad 380009,India 2School of Physics,University of Hyderabad,Hyderabad-500046,India(Dated:February 8,2008)In case of the nonlinear Schr¨o dinger equation with designed group velocity dispersion,variable nonlinearity and gain/loss;we analytically demonstrate the phenomenon of chirp reversal crucial for pulse reproduction.Two different scenarios are exhibited,where the pulses experience identical dis-persion profiles,but show entirely different propagation behavior.Exact expressions for dynamical quasi-solitons and soliton bound-states relevant for fiber communication are also exhibited.PACS numbers:42.81.Dp,05.45.Yv,42.65.TgNonlinear Schr¨o dinger equation (NLSE)is known to govern the pulse dynamics in nonlinear optical fibers [1].In recent years,the study of nonlinear fiber optics,deal-ing with optical solitons,has attracted considerable at-tention since it has an important role in the development of several technologies of the 21st century [2].NLSE with distributed coefficients such as,group velocity dispersion (GVD),distributed nonlinearity and gain/loss,is being studied extensively in order to determine the effect of various distributed parameters on the pulse profile.In the realistic situation in a fiber,there arises non-uniformity due to variation in the lattice parameters of the fiber medium,as a result of which the distance be-tween two neighboring atoms is not constant through-out the fiber.It may also arise due to the variation of the fiber geometry e.g.,diameter fluctuation.These non-uniformities influence effects such as,loss (or gain),phase modulation,etc,which can be modeled by making corre-sponding parameters space dependent.From a practical point of view,tailoring of various fiber parameters may lead to effective control of the pulse.This has been one of the prime motivation of a number of authors to analyze NLSE in a distributed scenario.Dispersion management (DM)has emerged as an im-portant technology to control and manipulate the light pulses in optical fibers [2,3].Pulse compression has been demonstrated with appropriately designed GVD and nonlinearity in the presence of chirping [4,5,6],as also through soliton effects [7].Adiabatic soliton com-pression,through the decrease of dispersion along the length of the fiber has been shown to provide good pulse quality [8].The possibility of amplification of soliton pulses using a rapidly increasing distributed amplifica-tion with scale lengths comparable to the characteristic dispersion length has been reported [9].It has been nu-merically shown that,in the case where the gain due to2 Schr¨o dinger eigenvalue problem.This allows one to ana-lytically treat a variety of distributed scenarios,a few ofwhich we explicate in the text.In the context of Bose-Einstein condensates the procedure to deal with variablecoefficient NLSE in the absence of GVD has been carriedout recently by the present authors[16].GVD leads to afundamentally new control parameter in the present casedealing with opticalfibers.For example,a subtle inter-play of GVD and nonlinearity leads to a soliton bound-state as will be seen below.The effect of GVD,alternat-ing between normal and anomalous dispersion,on pulseprofile is also discussed.For the purpose of analytic demonstration of chirp re-versal we start with a NLSE model with variable GVD,nonlinearity and loss/gain[14]:i∂z q(z,t)+d e(z)2∂tt u(z′,t)+˜γ(z′)|u|2u(z′,t)=0,(2)where z′= z0dz′′a2(z′′).Keeping in mind,pre-chirping and self-similar natureof the pulse we make use of the following ansatz,u(z′,t)=∂z′+K0τ∂ν2∂2ν(z′,τ)2ν+iK0νp,and K1=C z′+C2d e∂z′+d e p2∂τ2+˜γ(z′)p|ν|2ν(z′,τ)=K1τ2∂z′′+1∂τ2+˜γ(z′′)|ν|2ν(z′,τ)=K1τ2A(z′′)F[A(z′′){τ−Λ(z′′)}]e iΦ(z′′,τ),(8)whereΦ(z′′,τ)=a1(z′′)+b(z′′)τ−12 z′′0A2(z)dz,Λ(z′′)=z′′0v(z)dz,which satisfies the following equation:dΛA0.(14)The twelve Jacobian elliptic functions satisfy aboveequation.These functions interpolate between thetrigonometric and hyperbolic functions in the limitingcases[17].Bright soliton solutions of the typeν(z′′,τ)=312345z1.51 0.500.51C h i r pFIG.1:The figure depicting variation of chirp parameters with z .The red curve shows the launching chirp and the blue curve shows the same in combination with the dynamical chirp.pulse profile.However,the pulse retains its fundamental NLSE soliton character in the scaled variable z ′′.Below,we examine the formation of bright quasi-soliton like excitations,exhibiting chirp reversal phe-nomenon.This is accomplished by appropriate tailoring of GVD and pre-chirping of the launching -bining Eq.(5)and constraint d e p =1,yield the following expressions for the tailored dispersion and the chirping parameter,C =d ′ed z ′2−d d eδsinh(δz ′),with δ= K 1+C 2(0) 1/2.(16)From above dispersion profile we compute launched chirp parameter C (z ′)and plot it together with the dy-namical chirp in Fig. 1.From Eqs.(5)and (16)it is clear that launched chirp profile changes sign at z (z ′c )=(1/δ)tanh −1[−C (0)/δ].The expression for traveling quasi-soliton,propagating with velocity v (z ′′)=A 0cos (K 0z ′′),readsq (z,t )=a (z )p (z ′)sech(K 1z ′′)sech [sech(K 1z ′′){τ−Λ(z ′′)}]×exp i C (z ′)t 2+Φ(z ′′,τ).(18)It is interesting to observe that,compared with theprevious case pulse broadening is significantly reduced for the same parameter values.Soliton bound-states.–Starting from Eq.(1)without tai-loring the dispersion profile,we proceed to obtain self-similar solutions assuming the ansatz solution of the type:q (z,t )=4−10−5510−10−55100.10.20.30.40.50.60.70.80.91FIG.4:Soliton bound-state in a medium with two dispersion regimes.FIG.5:Multiple soliton bound-state with oscillatory gain/loss.The parameters appearing in the Eq.(19)can be straightforwardly evaluated from the Eqns.(11),(12),(13)and soliton profile can be obtained from Eq.(14).Below,we explicate some examples of spatial bound-states of solitons,arising from interplay of GVD,non-linearity and gain/loss.Below,Fig.4depicts a two-soliton bound-state.This arises in a medium,where both anomalous and normal dispersion regimes are smoothly connected.In the presence of periodic gain/loss one ob-serves modulation in the bound-state profile as is shown in Fig.5.In conclusion,we have obtained exact soliton solutions exhibiting chirp-reversal,while retaining their original profile,crucial for pulse recovery in fiber optics.Two different soliton sectors differing in propagation behavior,but with identical dispersion profiles,are analytically ex-hibited.We have outlined a general formalism for obtain-ing self-similar solutions of nonlinear Schr¨o dinger equa-tion,in the presence of distributed coefficients,from which earlier scenarios follow as special cases [19].It is shown that,this nonlinear system,involving pulse prop-agation with group velocity dispersion (GVD),variable nonlinearity,variable gain,exactly decouples into ellip-tic function equation and a Schr¨o dinger eigenvalue prob-lem.This opens up a number of possibilities to take into account a wide class of distributed scenarios,in close conformity with the experimentally achievable situations.This incorporates a number of special cases dealt ear-lier,in the context of pulse compression.We find that,apart from compression,one can achieve control over the pulse velocity,pulse profile,through interplay of group velocity dispersion,nonlinearity,gain/loss.Formation of soliton bound-states in a medium with GVD alternating between normal and anomalous dispersion,is discussed.In the presence of oscillatory gain/loss profile,we find multiple bound state structure.We acknowledge many useful discussions with Prof.G.S.Agarwal.[1]G.P.Agrawal,Nonlinear Fiber Optics (Academic Press,Inc.,San Diego,CA,2001).[2]A.Hasegawa and Y.Kodama,Solitons in Optical Com-munications (Oxford University Press,Oxford,1995).[3]M.J.Ablowitz and Z.H.Musslimani,Phys.Rev.E 67,025601(R)(2003).[4]J.D.Moores,Opt.Lett.21,555(1996).[5]V.I .Kruglov,A.C.Peacock and J.D.Harvey,Phys.Rev.Lett.90,113902(2003).[6]T.S.Raju,P.K.Panigrahi and K.Porsezian,Phys.Rev.E 71,026608(2005).[7]L.F.Mollenauer,R.H.Stolen,J.P.Gordon,and W.J.Tomlinson,Opt.Lett.8,289(1983).[8]E.M.Dianov,P.V.Mamyshev,A.M.Prokhorov,andS.V.Chernikov,Opt.Lett.14,1008(1989).[9]M.L.Quiroga-Teixeiro,D.Anderson,P.A.Andrekson,A.Bernson and M.Lisak,J.Opt.Soc.Am.B 13,687(1996).[10]R.Driben and B.A.Malomed,Phys.Lett.A 301,19(2002).[11]V.N.Serkin and A.Hasegawa,IEEE J.Sel.Top.Quan-tum Electron.8,1(2002).[12]S.P.Brustev, A.V.Mikhailov,and V.E.Zakharov,Theor.Math.Phys.70,227(1987).[13]V.N.Serkin,A.Hasegawa,and T.L.Belyaeva,Phys.Rev.Lett.92,199401(2004).[14]S.Kumar and A.Hasegawa,Opt.Lett.22,372(1997).[15]I.Gabitov and S.K.Turitsyn,JETP.Lett.63,863(1996);I.R.Gabitov and S.K.Turitsyn,Opt.Lett.21,327(1996).[16]R.Atre,P.K.Panigrahi and G.S.Agarwal,Phys.Rev.E 73,056611(2006).[17]H.Hancock,Theory of Elliptic Functions (Dover,NewYork,1958);M.Abramowitz and I.Stegun,Handbook of Mathematical Functions (NBS,US Government Printing Office,1964).[18]P.A.Belanger and N.Belanger,mun.117,56(1996).[19]V.I.Kruglov,A.C.Peacock and J.D.Harvey,Phys.Rev.E 71,056619(2005);T.S.Raju,P.K.Panigrahi and K.Porsezian,Phys.Rev.E 72,046612(2005);V.I.Kruglov and J.D.Harvey,J.Opt.Soc.Am.B 23,2541(2006).。
Table of Contents(目录)How to Use This Guide (如何使用本指南)Chapter 1 Introduction to System Troubleshooting(系统故障检修介绍)1.1 Get the Facts(获取真相)1.2 Check Simple Things First(从简单的方面检查开始)1.3 Compare System Performance to Established Benchmarks(从比较系统性能到建立基准)1.4 Identify Possible Causes(确定可能原因)1.5 Use a Systematic Troubleshooting Approach(使用一种系统内部的故障检修方法)1.6 Getting Help(获取帮助)1.7 Troubleshooting References(故障检修参考书目)Chapter 2 Troubleshooting an LC System (检修一个液相色谱系统)2.1 Initial Survey of System Problems(系统问题的最初调查)2.2 Isolating System Problems(分离系统问题)2.2.1 System Pressure(系统压力)2.2.2 Baseline Noise(基线噪音)2.2.3 Changes in Chromatographic Resolution or Results(色谱分离度或结果的改变)Chapter 3 Troubleshooting System Components(检修系统构件)3.1 Pump Troubleshooting(色谱泵检修)3.1.1 Pump Troubleshooting T able(色谱泵检修表格)3.1.2 Isolating a Defective Pump Head (Modified Ramp Test)(分离一个受损泵头)3.2 Manual Injector Troubleshooting (进样器检修手册)3.3 Autoinjector Troubleshooting (自动进样器检修)3.4 Column Troubleshooting (色谱柱检修)3.5 Detector Troubleshooting(检测器检修)3.6 Data-Handling Device Troubleshooting(数据处理装置检修)Chapter 4 Good Chromatography/ Operating Practices(良好的色谱操作规范)4.1 Mobile Phase Preparation and Use(流动相制备和使用)4.1.1 Mobile Phase Preparation (流动相制备)4.1.2 Solvent Degassing(溶剂脱气)4.1.3 Solvent Use(溶剂使用)4.1.4 Solvent Changeover Practices(溶剂转换规范)4.2 System Plumbing (泵输送系统)4.2.1 Tubing Connection Practices (管道连接规范)4.2.2 Cutting Tubing(切割管路)4.3 Chromatographic Performance Tests(色谱性能测试)4.3.1 Measuring Resolution(测量分离度)4.3.2 Measuring Capacity Factor (k') (测量容量因子k')4.3.3 Measuring Selectivity(测量选择性)4.3.4 Measuring Column Efficiency (N) (测量柱效(N))4.4 Measuring System Bandspreading(测量系统拖尾因子)Appendix A (附录A)Reference Information(参考信息)A.1 Solvent Properties(溶剂属性)A.1.1 Solvent Properties Table (溶剂属性表)A.1.2 Using Miscibility Numbers (M-Numbers) (使用可混和性编号(M-编号))A.2 Refractive Index of Common Solvents(常见溶剂的折射指标).A.3 Solvent UV Cutoffs (溶剂紫外离群值截断点)A.4 Wavelength Selection for Chromophore Detection(色谱检测器的波长选择)A.5 Column Backpressure (柱后压)Waters公司液相色谱资料系列-ⅡHPLC Troubleshooting Guide (HPLC故障检修指南)本资料为英文版本,文件大小为836KB,PDF格式,全书共68页,编排为目录、主题内容和附录三部分,带书签和搜索功能,由美国Waters公司专家Uwe D. Neue编写,内容包括52个主题。
形容多个传感器之间可以相互独立的英文单词Title: Describing Sensors that Can Operate IndependentlyIntroductionIn the world of technology and IoT (Internet of Things), sensors play a crucial role in collecting and transmitting data for various applications. These sensors can operate independently, performing their designated functions without the need for constant human intervention. In this article, we will explore and describe various terms used to depict sensors that can function autonomously.1. AutonomousAutonomous sensors refer to devices that can operate or function independently without the need for external control. These sensors are self-sufficient in terms of power supply, data collection, processing, and transmission. The autonomy of these sensors allows them to perform their tasks efficiently without relying on a central system or operator.2. StandaloneStandalone sensors are those that are self-contained and do not rely on other devices for operation. These sensors aredesigned to function independently, collecting and processing data on their own. Standalone sensors are commonly used in applications where mobility, flexibility, or remote operation is required.3. DecentralizedDecentralized sensors operate independently and can communicate with each other without the need for a centralized control system. This decentralized approach allows sensors to collaborate and exchange information to achieve a common goal. Decentralized sensors are often used in distributed sensor networks for monitoring and control applications.4. Self-organizingSelf-organizing sensors have the ability to form networks and coordinate their activities without human intervention. These sensors can establish connections, assign roles, and adapt to changing environments autonomously. Self-organizing sensors are commonly used in dynamic and unpredictable settings where traditional communication methods may not be feasible.5. Ad-hocAd-hoc sensors are capable of forming temporary networks on the fly, without the need for pre-established infrastructure. These sensors can spontaneously connect with each other to share data and collaborate on tasks. Ad-hoc sensors are often used in scenarios where quick deployment and flexibility are essential.ConclusionIn conclusion, sensors that can operate independently play a vital role in various applications, from smart homes and industries to healthcare and environmental monitoring. Understanding and describing the characteristics of these sensors, such as autonomy, standalone capability, decentralization, self-organization, and ad-hoc networking, are essential for designing and implementing efficient sensor systems. By harnessing the power of independent sensors, we can create smarter, more responsive, and interconnected systems for a wide range of practical applications.。
425 BibliographyH.A KAIKE(1974).Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average processes.Annals Institute Statistical Mathematics,vol.26,pp.363-387. B.D.O.A NDERSON and J.B.M OORE(1979).Optimal rmation and System Sciences Series, Prentice Hall,Englewood Cliffs,NJ.T.W.A NDERSON(1971).The Statistical Analysis of Time Series.Series in Probability and Mathematical Statistics,Wiley,New York.R.A NDRE-O BRECHT(1988).A new statistical approach for the automatic segmentation of continuous speech signals.IEEE Trans.Acoustics,Speech,Signal Processing,vol.ASSP-36,no1,pp.29-40.R.A NDRE-O BRECHT(1990).Reconnaissance automatique de parole`a partir de segments acoustiques et de mod`e les de Markov cach´e s.Proc.Journ´e es Etude de la Parole,Montr´e al,May1990(in French).R.A NDRE-O BRECHT and H.Y.S U(1988).Three acoustic labellings for phoneme based continuous speech recognition.Proc.Speech’88,Edinburgh,UK,pp.943-950.U.A PPEL and A.VON B RANDT(1983).Adaptive sequential segmentation of piecewise stationary time rmation Sciences,vol.29,no1,pp.27-56.L.A.A ROIAN and H.L EVENE(1950).The effectiveness of quality control procedures.Jal American Statis-tical Association,vol.45,pp.520-529.K.J.A STR¨OM and B.W ITTENMARK(1984).Computer Controlled Systems:Theory and rma-tion and System Sciences Series,Prentice Hall,Englewood Cliffs,NJ.M.B AGSHAW and R.A.J OHNSON(1975a).The effect of serial correlation on the performance of CUSUM tests-Part II.Technometrics,vol.17,no1,pp.73-80.M.B AGSHAW and R.A.J OHNSON(1975b).The influence of reference values and estimated variance on the ARL of CUSUM tests.Jal Royal Statistical Society,vol.37(B),no3,pp.413-420.M.B AGSHAW and R.A.J OHNSON(1977).Sequential procedures for detecting parameter changes in a time-series model.Jal American Statistical Association,vol.72,no359,pp.593-597.R.K.B ANSAL and P.P APANTONI-K AZAKOS(1986).An algorithm for detecting a change in a stochastic process.IEEE rmation Theory,vol.IT-32,no2,pp.227-235.G.A.B ARNARD(1959).Control charts and stochastic processes.Jal Royal Statistical Society,vol.B.21, pp.239-271.A.E.B ASHARINOV andB.S.F LEISHMAN(1962).Methods of the statistical sequential analysis and their radiotechnical applications.Sovetskoe Radio,Moscow(in Russian).M.B ASSEVILLE(1978).D´e viations par rapport au maximum:formules d’arrˆe t et martingales associ´e es. Compte-rendus du S´e minaire de Probabilit´e s,Universit´e de Rennes I.M.B ASSEVILLE(1981).Edge detection using sequential methods for change in level-Part II:Sequential detection of change in mean.IEEE Trans.Acoustics,Speech,Signal Processing,vol.ASSP-29,no1,pp.32-50.426B IBLIOGRAPHY M.B ASSEVILLE(1982).A survey of statistical failure detection techniques.In Contribution`a la D´e tectionS´e quentielle de Ruptures de Mod`e les Statistiques,Th`e se d’Etat,Universit´e de Rennes I,France(in English). M.B ASSEVILLE(1986).The two-models approach for the on-line detection of changes in AR processes. In Detection of Abrupt Changes in Signals and Dynamical Systems(M.Basseville,A.Benveniste,eds.). Lecture Notes in Control and Information Sciences,LNCIS77,Springer,New York,pp.169-215.M.B ASSEVILLE(1988).Detecting changes in signals and systems-A survey.Automatica,vol.24,pp.309-326.M.B ASSEVILLE(1989).Distance measures for signal processing and pattern recognition.Signal Process-ing,vol.18,pp.349-369.M.B ASSEVILLE and A.B ENVENISTE(1983a).Design and comparative study of some sequential jump detection algorithms for digital signals.IEEE Trans.Acoustics,Speech,Signal Processing,vol.ASSP-31, no3,pp.521-535.M.B ASSEVILLE and A.B ENVENISTE(1983b).Sequential detection of abrupt changes in spectral charac-teristics of digital signals.IEEE rmation Theory,vol.IT-29,no5,pp.709-724.M.B ASSEVILLE and A.B ENVENISTE,eds.(1986).Detection of Abrupt Changes in Signals and Dynamical Systems.Lecture Notes in Control and Information Sciences,LNCIS77,Springer,New York.M.B ASSEVILLE and I.N IKIFOROV(1991).A unified framework for statistical change detection.Proc.30th IEEE Conference on Decision and Control,Brighton,UK.M.B ASSEVILLE,B.E SPIAU and J.G ASNIER(1981).Edge detection using sequential methods for change in level-Part I:A sequential edge detection algorithm.IEEE Trans.Acoustics,Speech,Signal Processing, vol.ASSP-29,no1,pp.24-31.M.B ASSEVILLE, A.B ENVENISTE and G.M OUSTAKIDES(1986).Detection and diagnosis of abrupt changes in modal characteristics of nonstationary digital signals.IEEE rmation Theory,vol.IT-32,no3,pp.412-417.M.B ASSEVILLE,A.B ENVENISTE,G.M OUSTAKIDES and A.R OUG´E E(1987a).Detection and diagnosis of changes in the eigenstructure of nonstationary multivariable systems.Automatica,vol.23,no3,pp.479-489. M.B ASSEVILLE,A.B ENVENISTE,G.M OUSTAKIDES and A.R OUG´E E(1987b).Optimal sensor location for detecting changes in dynamical behavior.IEEE Trans.Automatic Control,vol.AC-32,no12,pp.1067-1075.M.B ASSEVILLE,A.B ENVENISTE,B.G ACH-D EVAUCHELLE,M.G OURSAT,D.B ONNECASE,P.D OREY, M.P REVOSTO and M.O LAGNON(1993).Damage monitoring in vibration mechanics:issues in diagnos-tics and predictive maintenance.Mechanical Systems and Signal Processing,vol.7,no5,pp.401-423.R.V.B EARD(1971).Failure Accommodation in Linear Systems through Self-reorganization.Ph.D.Thesis, Dept.Aeronautics and Astronautics,MIT,Cambridge,MA.A.B ENVENISTE and J.J.F UCHS(1985).Single sample modal identification of a nonstationary stochastic process.IEEE Trans.Automatic Control,vol.AC-30,no1,pp.66-74.A.B ENVENISTE,M.B ASSEVILLE and G.M OUSTAKIDES(1987).The asymptotic local approach to change detection and model validation.IEEE Trans.Automatic Control,vol.AC-32,no7,pp.583-592.A.B ENVENISTE,M.M ETIVIER and P.P RIOURET(1990).Adaptive Algorithms and Stochastic Approxima-tions.Series on Applications of Mathematics,(A.V.Balakrishnan,I.Karatzas,M.Yor,eds.).Springer,New York.A.B ENVENISTE,M.B ASSEVILLE,L.E L G HAOUI,R.N IKOUKHAH and A.S.W ILLSKY(1992).An optimum robust approach to statistical failure detection and identification.IFAC World Conference,Sydney, July1993.B IBLIOGRAPHY427 R.H.B ERK(1973).Some asymptotic aspects of sequential analysis.Annals Statistics,vol.1,no6,pp.1126-1138.R.H.B ERK(1975).Locally most powerful sequential test.Annals Statistics,vol.3,no2,pp.373-381.P.B ILLINGSLEY(1968).Convergence of Probability Measures.Wiley,New York.A.F.B ISSELL(1969).Cusum techniques for quality control.Applied Statistics,vol.18,pp.1-30.M.E.B IVAIKOV(1991).Control of the sample size for recursive estimation of parameters subject to abrupt changes.Automation and Remote Control,no9,pp.96-103.R.E.B LAHUT(1987).Principles and Practice of Information Theory.Addison-Wesley,Reading,MA.I.F.B LAKE and W.C.L INDSEY(1973).Level-crossing problems for random processes.IEEE r-mation Theory,vol.IT-19,no3,pp.295-315.G.B ODENSTEIN and H.M.P RAETORIUS(1977).Feature extraction from the encephalogram by adaptive segmentation.Proc.IEEE,vol.65,pp.642-652.T.B OHLIN(1977).Analysis of EEG signals with changing spectra using a short word Kalman estimator. Mathematical Biosciences,vol.35,pp.221-259.W.B¨OHM and P.H ACKL(1990).Improved bounds for the average run length of control charts based on finite weighted sums.Annals Statistics,vol.18,no4,pp.1895-1899.T.B OJDECKI and J.H OSZA(1984).On a generalized disorder problem.Stochastic Processes and their Applications,vol.18,pp.349-359.L.I.B ORODKIN and V.V.M OTTL’(1976).Algorithm forfinding the jump times of random process equation parameters.Automation and Remote Control,vol.37,no6,Part1,pp.23-32.A.A.B OROVKOV(1984).Theory of Mathematical Statistics-Estimation and Hypotheses Testing,Naouka, Moscow(in Russian).Translated in French under the title Statistique Math´e matique-Estimation et Tests d’Hypoth`e ses,Mir,Paris,1987.G.E.P.B OX and G.M.J ENKINS(1970).Time Series Analysis,Forecasting and Control.Series in Time Series Analysis,Holden-Day,San Francisco.A.VON B RANDT(1983).Detecting and estimating parameters jumps using ladder algorithms and likelihood ratio test.Proc.ICASSP,Boston,MA,pp.1017-1020.A.VON B RANDT(1984).Modellierung von Signalen mit Sprunghaft Ver¨a nderlichem Leistungsspektrum durch Adaptive Segmentierung.Doctor-Engineer Dissertation,M¨u nchen,RFA(in German).S.B RAUN,ed.(1986).Mechanical Signature Analysis-Theory and Applications.Academic Press,London. L.B REIMAN(1968).Probability.Series in Statistics,Addison-Wesley,Reading,MA.G.S.B RITOV and L.A.M IRONOVSKI(1972).Diagnostics of linear systems of automatic regulation.Tekh. Kibernetics,vol.1,pp.76-83.B.E.B RODSKIY and B.S.D ARKHOVSKIY(1992).Nonparametric Methods in Change-point Problems. Kluwer Academic,Boston.L.D.B ROEMELING(1982).Jal Econometrics,vol.19,Special issue on structural change in Econometrics. L.D.B ROEMELING and H.T SURUMI(1987).Econometrics and Structural Change.Dekker,New York. D.B ROOK and D.A.E VANS(1972).An approach to the probability distribution of Cusum run length. Biometrika,vol.59,pp.539-550.J.B RUNET,D.J AUME,M.L ABARR`E RE,A.R AULT and M.V ERG´E(1990).D´e tection et Diagnostic de Pannes.Trait´e des Nouvelles Technologies,S´e rie Diagnostic et Maintenance,Herm`e s,Paris(in French).428B IBLIOGRAPHY S.P.B RUZZONE and M.K AVEH(1984).Information tradeoffs in using the sample autocorrelation function in ARMA parameter estimation.IEEE Trans.Acoustics,Speech,Signal Processing,vol.ASSP-32,no4, pp.701-715.A.K.C AGLAYAN(1980).Necessary and sufficient conditions for detectability of jumps in linear systems. IEEE Trans.Automatic Control,vol.AC-25,no4,pp.833-834.A.K.C AGLAYAN and R.E.L ANCRAFT(1983).Reinitialization issues in fault tolerant systems.Proc.Amer-ican Control Conf.,pp.952-955.A.K.C AGLAYAN,S.M.A LLEN and K.W EHMULLER(1988).Evaluation of a second generation reconfigu-ration strategy for aircraftflight control systems subjected to actuator failure/surface damage.Proc.National Aerospace and Electronic Conference,Dayton,OH.P.E.C AINES(1988).Linear Stochastic Systems.Series in Probability and Mathematical Statistics,Wiley, New York.M.J.C HEN and J.P.N ORTON(1987).Estimation techniques for tracking rapid parameter changes.Intern. Jal Control,vol.45,no4,pp.1387-1398.W.K.C HIU(1974).The economic design of cusum charts for controlling normal mean.Applied Statistics, vol.23,no3,pp.420-433.E.Y.C HOW(1980).A Failure Detection System Design Methodology.Ph.D.Thesis,M.I.T.,L.I.D.S.,Cam-bridge,MA.E.Y.C HOW and A.S.W ILLSKY(1984).Analytical redundancy and the design of robust failure detection systems.IEEE Trans.Automatic Control,vol.AC-29,no3,pp.689-691.Y.S.C HOW,H.R OBBINS and D.S IEGMUND(1971).Great Expectations:The Theory of Optimal Stop-ping.Houghton-Mifflin,Boston.R.N.C LARK,D.C.F OSTH and V.M.W ALTON(1975).Detection of instrument malfunctions in control systems.IEEE Trans.Aerospace Electronic Systems,vol.AES-11,pp.465-473.A.C OHEN(1987).Biomedical Signal Processing-vol.1:Time and Frequency Domain Analysis;vol.2: Compression and Automatic Recognition.CRC Press,Boca Raton,FL.J.C ORGE and F.P UECH(1986).Analyse du rythme cardiaque foetal par des m´e thodes de d´e tection de ruptures.Proc.7th INRIA Int.Conf.Analysis and optimization of Systems.Antibes,FR(in French).D.R.C OX and D.V.H INKLEY(1986).Theoretical Statistics.Chapman and Hall,New York.D.R.C OX and H.D.M ILLER(1965).The Theory of Stochastic Processes.Wiley,New York.S.V.C ROWDER(1987).A simple method for studying run-length distributions of exponentially weighted moving average charts.Technometrics,vol.29,no4,pp.401-407.H.C S¨ORG¨O and L.H ORV´ATH(1988).Nonparametric methods for change point problems.In Handbook of Statistics(P.R.Krishnaiah,C.R.Rao,eds.),vol.7,Elsevier,New York,pp.403-425.R.B.D AVIES(1973).Asymptotic inference in stationary gaussian time series.Advances Applied Probability, vol.5,no3,pp.469-497.J.C.D ECKERT,M.N.D ESAI,J.J.D EYST and A.S.W ILLSKY(1977).F-8DFBW sensor failure identification using analytical redundancy.IEEE Trans.Automatic Control,vol.AC-22,no5,pp.795-803.M.H.D E G ROOT(1970).Optimal Statistical Decisions.Series in Probability and Statistics,McGraw-Hill, New York.J.D ESHAYES and D.P ICARD(1979).Tests de ruptures dans un mod`e pte-Rendus de l’Acad´e mie des Sciences,vol.288,Ser.A,pp.563-566(in French).B IBLIOGRAPHY429 J.D ESHAYES and D.P ICARD(1983).Ruptures de Mod`e les en Statistique.Th`e ses d’Etat,Universit´e deParis-Sud,Orsay,France(in French).J.D ESHAYES and D.P ICARD(1986).Off-line statistical analysis of change-point models using non para-metric and likelihood methods.In Detection of Abrupt Changes in Signals and Dynamical Systems(M. Basseville,A.Benveniste,eds.).Lecture Notes in Control and Information Sciences,LNCIS77,Springer, New York,pp.103-168.B.D EVAUCHELLE-G ACH(1991).Diagnostic M´e canique des Fatigues sur les Structures Soumises`a des Vibrations en Ambiance de Travail.Th`e se de l’Universit´e Paris IX Dauphine(in French).B.D EVAUCHELLE-G ACH,M.B ASSEVILLE and A.B ENVENISTE(1991).Diagnosing mechanical changes in vibrating systems.Proc.SAFEPROCESS’91,Baden-Baden,FRG,pp.85-89.R.D I F RANCESCO(1990).Real-time speech segmentation using pitch and convexity jump models:applica-tion to variable rate speech coding.IEEE Trans.Acoustics,Speech,Signal Processing,vol.ASSP-38,no5, pp.741-748.X.D ING and P.M.F RANK(1990).Fault detection via factorization approach.Systems and Control Letters, vol.14,pp.431-436.J.L.D OOB(1953).Stochastic Processes.Wiley,New York.V.D RAGALIN(1988).Asymptotic solutions in detecting a change in distribution under an unknown param-eter.Statistical Problems of Control,Issue83,Vilnius,pp.45-52.B.D UBUISSON(1990).Diagnostic et Reconnaissance des Formes.Trait´e des Nouvelles Technologies,S´e rie Diagnostic et Maintenance,Herm`e s,Paris(in French).A.J.D UNCAN(1986).Quality Control and Industrial Statistics,5th edition.Richard D.Irwin,Inc.,Home-wood,IL.J.D URBIN(1971).Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov-Smirnov test.Jal Applied Probability,vol.8,pp.431-453.J.D URBIN(1985).Thefirst passage density of the crossing of a continuous Gaussian process to a general boundary.Jal Applied Probability,vol.22,no1,pp.99-122.A.E MAMI-N AEINI,M.M.A KHTER and S.M.R OCK(1988).Effect of model uncertainty on failure detec-tion:the threshold selector.IEEE Trans.Automatic Control,vol.AC-33,no12,pp.1106-1115.J.D.E SARY,F.P ROSCHAN and D.W.W ALKUP(1967).Association of random variables with applications. Annals Mathematical Statistics,vol.38,pp.1466-1474.W.D.E WAN and K.W.K EMP(1960).Sampling inspection of continuous processes with no autocorrelation between successive results.Biometrika,vol.47,pp.263-280.G.F AVIER and A.S MOLDERS(1984).Adaptive smoother-predictors for tracking maneuvering targets.Proc. 23rd Conf.Decision and Control,Las Vegas,NV,pp.831-836.W.F ELLER(1966).An Introduction to Probability Theory and Its Applications,vol.2.Series in Probability and Mathematical Statistics,Wiley,New York.R.A.F ISHER(1925).Theory of statistical estimation.Proc.Cambridge Philosophical Society,vol.22, pp.700-725.M.F ISHMAN(1988).Optimization of the algorithm for the detection of a disorder,based on the statistic of exponential smoothing.In Statistical Problems of Control,Issue83,Vilnius,pp.146-151.R.F LETCHER(1980).Practical Methods of Optimization,2volumes.Wiley,New York.P.M.F RANK(1990).Fault diagnosis in dynamic systems using analytical and knowledge based redundancy -A survey and new results.Automatica,vol.26,pp.459-474.430B IBLIOGRAPHY P.M.F RANK(1991).Enhancement of robustness in observer-based fault detection.Proc.SAFEPRO-CESS’91,Baden-Baden,FRG,pp.275-287.P.M.F RANK and J.W¨UNNENBERG(1989).Robust fault diagnosis using unknown input observer schemes. In Fault Diagnosis in Dynamic Systems-Theory and Application(R.Patton,P.Frank,R.Clark,eds.). International Series in Systems and Control Engineering,Prentice Hall International,London,UK,pp.47-98.K.F UKUNAGA(1990).Introduction to Statistical Pattern Recognition,2d ed.Academic Press,New York. S.I.G ASS(1958).Linear Programming:Methods and Applications.McGraw Hill,New York.W.G E and C.Z.F ANG(1989).Extended robust observation approach for failure isolation.Int.Jal Control, vol.49,no5,pp.1537-1553.W.G ERSCH(1986).Two applications of parametric time series modeling methods.In Mechanical Signature Analysis-Theory and Applications(S.Braun,ed.),chap.10.Academic Press,London.J.J.G ERTLER(1988).Survey of model-based failure detection and isolation in complex plants.IEEE Control Systems Magazine,vol.8,no6,pp.3-11.J.J.G ERTLER(1991).Analytical redundancy methods in fault detection and isolation.Proc.SAFEPRO-CESS’91,Baden-Baden,FRG,pp.9-22.B.K.G HOSH(1970).Sequential Tests of Statistical Hypotheses.Addison-Wesley,Cambridge,MA.I.N.G IBRA(1975).Recent developments in control charts techniques.Jal Quality Technology,vol.7, pp.183-192.J.P.G ILMORE and R.A.M C K ERN(1972).A redundant strapdown inertial reference unit(SIRU).Jal Space-craft,vol.9,pp.39-47.M.A.G IRSHICK and H.R UBIN(1952).A Bayes approach to a quality control model.Annals Mathematical Statistics,vol.23,pp.114-125.A.L.G OEL and S.M.W U(1971).Determination of the ARL and a contour nomogram for CUSUM charts to control normal mean.Technometrics,vol.13,no2,pp.221-230.P.L.G OLDSMITH and H.W HITFIELD(1961).Average run lengths in cumulative chart quality control schemes.Technometrics,vol.3,pp.11-20.G.C.G OODWIN and K.S.S IN(1984).Adaptive Filtering,Prediction and rmation and System Sciences Series,Prentice Hall,Englewood Cliffs,NJ.R.M.G RAY and L.D.D AVISSON(1986).Random Processes:a Mathematical Approach for Engineers. Information and System Sciences Series,Prentice Hall,Englewood Cliffs,NJ.C.G UEGUEN and L.L.S CHARF(1980).Exact maximum likelihood identification for ARMA models:a signal processing perspective.Proc.1st EUSIPCO,Lausanne.D.E.G USTAFSON, A.S.W ILLSKY,J.Y.W ANG,M.C.L ANCASTER and J.H.T RIEBWASSER(1978). ECG/VCG rhythm diagnosis using statistical signal analysis.Part I:Identification of persistent rhythms. Part II:Identification of transient rhythms.IEEE Trans.Biomedical Engineering,vol.BME-25,pp.344-353 and353-361.F.G USTAFSSON(1991).Optimal segmentation of linear regression parameters.Proc.IFAC/IFORS Symp. Identification and System Parameter Estimation,Budapest,pp.225-229.T.H¨AGGLUND(1983).New Estimation Techniques for Adaptive Control.Ph.D.Thesis,Lund Institute of Technology,Lund,Sweden.T.H¨AGGLUND(1984).Adaptive control of systems subject to large parameter changes.Proc.IFAC9th World Congress,Budapest.B IBLIOGRAPHY431 P.H ALL and C.C.H EYDE(1980).Martingale Limit Theory and its Application.Probability and Mathemat-ical Statistics,a Series of Monographs and Textbooks,Academic Press,New York.W.J.H ALL,R.A.W IJSMAN and J.K.G HOSH(1965).The relationship between sufficiency and invariance with applications in sequential analysis.Ann.Math.Statist.,vol.36,pp.576-614.E.J.H ANNAN and M.D EISTLER(1988).The Statistical Theory of Linear Systems.Series in Probability and Mathematical Statistics,Wiley,New York.J.D.H EALY(1987).A note on multivariate CuSum procedures.Technometrics,vol.29,pp.402-412.D.M.H IMMELBLAU(1970).Process Analysis by Statistical Methods.Wiley,New York.D.M.H IMMELBLAU(1978).Fault Detection and Diagnosis in Chemical and Petrochemical Processes. Chemical Engineering Monographs,vol.8,Elsevier,Amsterdam.W.G.S.H INES(1976a).A simple monitor of a system with sudden parameter changes.IEEE r-mation Theory,vol.IT-22,no2,pp.210-216.W.G.S.H INES(1976b).Improving a simple monitor of a system with sudden parameter changes.IEEE rmation Theory,vol.IT-22,no4,pp.496-499.D.V.H INKLEY(1969).Inference about the intersection in two-phase regression.Biometrika,vol.56,no3, pp.495-504.D.V.H INKLEY(1970).Inference about the change point in a sequence of random variables.Biometrika, vol.57,no1,pp.1-17.D.V.H INKLEY(1971).Inference about the change point from cumulative sum-tests.Biometrika,vol.58, no3,pp.509-523.D.V.H INKLEY(1971).Inference in two-phase regression.Jal American Statistical Association,vol.66, no336,pp.736-743.J.R.H UDDLE(1983).Inertial navigation system error-model considerations in Kalmanfiltering applica-tions.In Control and Dynamic Systems(C.T.Leondes,ed.),Academic Press,New York,pp.293-339.J.S.H UNTER(1986).The exponentially weighted moving average.Jal Quality Technology,vol.18,pp.203-210.I.A.I BRAGIMOV and R.Z.K HASMINSKII(1981).Statistical Estimation-Asymptotic Theory.Applications of Mathematics Series,vol.16.Springer,New York.R.I SERMANN(1984).Process fault detection based on modeling and estimation methods-A survey.Auto-matica,vol.20,pp.387-404.N.I SHII,A.I WATA and N.S UZUMURA(1979).Segmentation of nonstationary time series.Int.Jal Systems Sciences,vol.10,pp.883-894.J.E.J ACKSON and R.A.B RADLEY(1961).Sequential and tests.Annals Mathematical Statistics, vol.32,pp.1063-1077.B.J AMES,K.L.J AMES and D.S IEGMUND(1988).Conditional boundary crossing probabilities with appli-cations to change-point problems.Annals Probability,vol.16,pp.825-839.M.K.J EERAGE(1990).Reliability analysis of fault-tolerant IMU architectures with redundant inertial sen-sors.IEEE Trans.Aerospace and Electronic Systems,vol.AES-5,no.7,pp.23-27.N.L.J OHNSON(1961).A simple theoretical approach to cumulative sum control charts.Jal American Sta-tistical Association,vol.56,pp.835-840.N.L.J OHNSON and F.C.L EONE(1962).Cumulative sum control charts:mathematical principles applied to their construction and use.Parts I,II,III.Industrial Quality Control,vol.18,pp.15-21;vol.19,pp.29-36; vol.20,pp.22-28.432B IBLIOGRAPHY R.A.J OHNSON and M.B AGSHAW(1974).The effect of serial correlation on the performance of CUSUM tests-Part I.Technometrics,vol.16,no.1,pp.103-112.H.L.J ONES(1973).Failure Detection in Linear Systems.Ph.D.Thesis,Dept.Aeronautics and Astronautics, MIT,Cambridge,MA.R.H.J ONES,D.H.C ROWELL and L.E.K APUNIAI(1970).Change detection model for serially correlated multivariate data.Biometrics,vol.26,no2,pp.269-280.M.J URGUTIS(1984).Comparison of the statistical properties of the estimates of the change times in an autoregressive process.In Statistical Problems of Control,Issue65,Vilnius,pp.234-243(in Russian).T.K AILATH(1980).Linear rmation and System Sciences Series,Prentice Hall,Englewood Cliffs,NJ.L.V.K ANTOROVICH and V.I.K RILOV(1958).Approximate Methods of Higher Analysis.Interscience,New York.S.K ARLIN and H.M.T AYLOR(1975).A First Course in Stochastic Processes,2d ed.Academic Press,New York.S.K ARLIN and H.M.T AYLOR(1981).A Second Course in Stochastic Processes.Academic Press,New York.D.K AZAKOS and P.P APANTONI-K AZAKOS(1980).Spectral distance measures between gaussian pro-cesses.IEEE Trans.Automatic Control,vol.AC-25,no5,pp.950-959.K.W.K EMP(1958).Formula for calculating the operating characteristic and average sample number of some sequential tests.Jal Royal Statistical Society,vol.B-20,no2,pp.379-386.K.W.K EMP(1961).The average run length of the cumulative sum chart when a V-mask is used.Jal Royal Statistical Society,vol.B-23,pp.149-153.K.W.K EMP(1967a).Formal expressions which can be used for the determination of operating character-istics and average sample number of a simple sequential test.Jal Royal Statistical Society,vol.B-29,no2, pp.248-262.K.W.K EMP(1967b).A simple procedure for determining upper and lower limits for the average sample run length of a cumulative sum scheme.Jal Royal Statistical Society,vol.B-29,no2,pp.263-265.D.P.K ENNEDY(1976).Some martingales related to cumulative sum tests and single server queues.Stochas-tic Processes and Appl.,vol.4,pp.261-269.T.H.K ERR(1980).Statistical analysis of two-ellipsoid overlap test for real time failure detection.IEEE Trans.Automatic Control,vol.AC-25,no4,pp.762-772.T.H.K ERR(1982).False alarm and correct detection probabilities over a time interval for restricted classes of failure detection algorithms.IEEE rmation Theory,vol.IT-24,pp.619-631.T.H.K ERR(1987).Decentralizedfiltering and redundancy management for multisensor navigation.IEEE Trans.Aerospace and Electronic systems,vol.AES-23,pp.83-119.Minor corrections on p.412and p.599 (May and July issues,respectively).R.A.K HAN(1978).Wald’s approximations to the average run length in cusum procedures.Jal Statistical Planning and Inference,vol.2,no1,pp.63-77.R.A.K HAN(1979).Somefirst passage problems related to cusum procedures.Stochastic Processes and Applications,vol.9,no2,pp.207-215.R.A.K HAN(1981).A note on Page’s two-sided cumulative sum procedures.Biometrika,vol.68,no3, pp.717-719.B IBLIOGRAPHY433 V.K IREICHIKOV,V.M ANGUSHEV and I.N IKIFOROV(1990).Investigation and application of CUSUM algorithms to monitoring of sensors.In Statistical Problems of Control,Issue89,Vilnius,pp.124-130(in Russian).G.K ITAGAWA and W.G ERSCH(1985).A smoothness prior time-varying AR coefficient modeling of non-stationary covariance time series.IEEE Trans.Automatic Control,vol.AC-30,no1,pp.48-56.N.K LIGIENE(1980).Probabilities of deviations of the change point estimate in statistical models.In Sta-tistical Problems of Control,Issue83,Vilnius,pp.80-86(in Russian).N.K LIGIENE and L.T ELKSNYS(1983).Methods of detecting instants of change of random process prop-erties.Automation and Remote Control,vol.44,no10,Part II,pp.1241-1283.J.K ORN,S.W.G ULLY and A.S.W ILLSKY(1982).Application of the generalized likelihood ratio algorithm to maneuver detection and estimation.Proc.American Control Conf.,Arlington,V A,pp.792-798.P.R.K RISHNAIAH and B.Q.M IAO(1988).Review about estimation of change points.In Handbook of Statistics(P.R.Krishnaiah,C.R.Rao,eds.),vol.7,Elsevier,New York,pp.375-402.P.K UDVA,N.V ISWANADHAM and A.R AMAKRISHNAN(1980).Observers for linear systems with unknown inputs.IEEE Trans.Automatic Control,vol.AC-25,no1,pp.113-115.S.K ULLBACK(1959).Information Theory and Statistics.Wiley,New York(also Dover,New York,1968). K.K UMAMARU,S.S AGARA and T.S¨ODERSTR¨OM(1989).Some statistical methods for fault diagnosis for dynamical systems.In Fault Diagnosis in Dynamic Systems-Theory and Application(R.Patton,P.Frank,R. Clark,eds.).International Series in Systems and Control Engineering,Prentice Hall International,London, UK,pp.439-476.A.K USHNIR,I.N IKIFOROV and I.S AVIN(1983).Statistical adaptive algorithms for automatic detection of seismic signals-Part I:One-dimensional case.In Earthquake Prediction and the Study of the Earth Structure,Naouka,Moscow(Computational Seismology,vol.15),pp.154-159(in Russian).L.L ADELLI(1990).Diffusion approximation for a pseudo-likelihood test process with application to de-tection of change in stochastic system.Stochastics and Stochastics Reports,vol.32,pp.1-25.T.L.L A¨I(1974).Control charts based on weighted sums.Annals Statistics,vol.2,no1,pp.134-147.T.L.L A¨I(1981).Asymptotic optimality of invariant sequential probability ratio tests.Annals Statistics, vol.9,no2,pp.318-333.D.G.L AINIOTIS(1971).Joint detection,estimation,and system identifirmation and Control, vol.19,pp.75-92.M.R.L EADBETTER,G.L INDGREN and H.R OOTZEN(1983).Extremes and Related Properties of Random Sequences and Processes.Series in Statistics,Springer,New York.L.L E C AM(1960).Locally asymptotically normal families of distributions.Univ.California Publications in Statistics,vol.3,pp.37-98.L.L E C AM(1986).Asymptotic Methods in Statistical Decision Theory.Series in Statistics,Springer,New York.E.L.L EHMANN(1986).Testing Statistical Hypotheses,2d ed.Wiley,New York.J.P.L EHOCZKY(1977).Formulas for stopped diffusion processes with stopping times based on the maxi-mum.Annals Probability,vol.5,no4,pp.601-607.H.R.L ERCHE(1980).Boundary Crossing of Brownian Motion.Lecture Notes in Statistics,vol.40,Springer, New York.L.L JUNG(1987).System Identification-Theory for the rmation and System Sciences Series, Prentice Hall,Englewood Cliffs,NJ.。
第28卷(2010)第3期内燃机学报Transactions of CSICEVol.28(2010)No.3文章编号:1000-0909(2010)03-0265-0428-041柴油机双回路冷却系统的设计和试验*傅寿宇1,郭新民1,张坤1,牛化武2,陈卫正1(1.山东农业大学机械与电子工程学院,山东泰安271018;2.泰山职业技术学院机电系,山东泰安271000)摘要:针对当前汽车运输中发动机普遍存在的冬季预热缓慢和夏季过热现象,设计了双回路智能冷却系统。
该系统由单片机根据冷却液温度控制冷却风扇和电动水泵的运转,结合两个节温器的开闭,可分别对缸体和缸盖的温度进行自动控制。
将该双回路冷却系统在CA498柴油机上进行了试验。
结果证明,该冷却系统可以将发动机暖机阶段的预热时间减少,油耗降低;可避免过热现象的发生;各工况下HC的排放率也得到了降低。
关键词:柴油机;冷却系统;双回路;控制装置中图分类号:TK424.2文献标志码:ADesign and Study of the Dual Circulation Cooling System in Diesel EngineFU Shou-yu1,GUO Xin-min1,ZHANG Kun1,NIU Hua-wu2,CHEN Wei-zheng1(1.Mechanical and Electrical Engineering College,Shandong Agricultural University,Tai’an271018,China;2.Mechanical and Electrical Engineering Department,Taishan College of Vocational and Technical,Tai’an271000,China)Abstract:To solve the problem of over-heating in summer and slow warm-up in winter in automobiles,adual-loop cooling system is designed,in which a microcontroller controls the rotating speeds of both cool-ing fan and water pump according to water temperature.The temperatures of cylinder head and block wereregulated through double thermostats.Testing on CA498diesel engine showed that the cooling systemcould effectively shorten the warming time,reduce fuel consumption in warm-up period,avoid over-heat-ing problem,and reduce HC emission under different operating conditions.Keywords:Diesel engine;Cooling system;Dual loop;Control device引言汽车发动机在工作中,由于受到环境温度变化,使用维护状况、运行、负荷等因素的综合影响,以及冷却水泵只能随发动机的运转一起运行的局限性,易导致发动机出现预热缓慢、排出大量的蓝烟、过热等现象。