GIS技术在煤矿地质勘察中的应用
- 格式:doc
- 大小:25.00 KB
- 文档页数:3
GIS技术在煤矿地质勘察中的应用【摘要】随着地质和矿业的不断发展,GIS技术在矿山地质勘察中发挥的重要性日益突出。
准确定位地下地质体,精准确定矿体边界充分体现出三维GIS 技术的优越性。
本文以吉林省长岭煤矿为研究区,应用GIS空间分析技术探究煤矿开采过程中存在的问题,提高煤矿勘察的精度,降低了工作难度及工作量,GIS技术是一种在矿产开发工程地质勘察中值得广泛应用的方法。
【关键词】GIS;地质勘察;煤矿1.引言煤炭是我国的主要能源之一,煤炭资源构成仍占主导地位,但吉林省属于煤炭资源缺乏省份,煤炭自给率不足50%,需要从其他省份调入大量煤炭资源来补充能源的不足。
按照吉林省经济发展规划预测,预计到2015年全省煤炭供给量达到4500万吨,而实际需求量为1.0亿吨,缺口为5500万吨,供需矛盾突出。
随着吉林省经济社会发展步伐的加快,煤炭需求紧张问题将会继续加剧。
因此准确定位煤矿地下地质体,精准确定矿体边界成为吉林省煤矿开采中的工作重点。
GIS技术既可以处理属性数据又可以处理空间数据[1],它对空间数据和属性数据的处理和分析能力,使其成为解决工程地质勘察问题的一种全新的技术手段[2]。
本文吉林省长岭煤矿为研究区,应用GIS空间分析技术解决煤矿开采过程中存在的问题。
2.研究区概况研究区属温带季风气候区,多年平均降水量为712.1mm,年平均气温为5.5℃,年平均蒸发量为1269.7mm,无霜期138天,≥10℃积温2880℃,最大冻土深度为1.60m。
长岭煤矿属于小型矿井,矿区面积1.16km?,资源储量为1874kt,可采储量1423.5kt,采用地下开采的方式。
矿井服务年限10.5a。
成煤盆地为一向斜构造,矿区位于向斜的南东翼,为一倾向北西的单斜构造,走向50o,倾向320o,倾角10o~20o。
矿区构造复杂程度为简单类型。
2.1 水文地质第四系冲积砂砾石孔隙水含水层主要分布于河床两侧,由砂砾石组成。
基岩风化裂隙水含水层分布于全矿区砂砾岩和风化火山碎屑岩为主风化带中。
GIS技术在矿产资源勘查评价中的有效应用随着现代科技的不断发展,GIS技术在矿产资源勘查评价中扮演越来越重要的角色。
GIS,即地理信息系统,是一种将地理空间信息与各种数据结合起来进行空间分析和数据处理的技术。
下面将详细介绍GIS技术在矿产资源勘查评价中的有效应用。
一、地质信息的整合和管理GIS技术能够对各种类型的数据进行整合和管理,可以将地质、地球物理、化学、剖面和测量数据等数据整合到一个数据库中。
GIS技术具有存储、管理、查询、分析和可视化等功能,使矿产资源勘探、开发和监测的地质信息进行统一管理,从而大大提高信息的利用率和保密性。
二、矿产资源评价的空间分析GIS技术的空间分析功能可以对矿产资源的空间分布进行分析,通过地质模型、数字高程模型、遥感影像等方法,生成矿产资源地表和地下空间的三维模型,从而实现矿产资源勘查评价的空间分析。
空间分析输出的数据可以直观地反映出矿产资源的分布、含量、品位等特征,为项目决策和资源评价提供参考。
三、矿产资源勘探和采矿路线规划GIS技术可以模拟和分析不同采矿方案的效益,根据矿产资源的空间分布、开采条件、可采储量等数据进行决策分析,为矿业企业提供合理的采矿路线规划建议。
在开采过程中,GIS技术也可以进行规划和监测,包括挖矿面积、开采深度、矿体剖面、矿体体积等多个方面的数据监测。
四、矿山环境管理GIS技术可用于建立矿山环境信息系统,实现矿山环境的污染监测、治理和生态修复。
通过图层叠加、空间查询等方式对矿山周边环境和水体等敏感区域进行监测和分析,以便及时进行排污和生态修复。
同时,利用GIS技术可以对矿山水资源、矿山排水等数据进行空间分析,得出污染源、扩散等情况,为环保管理提供有力支持。
总之,GIS技术在矿产资源勘查评价中的应用,提高了矿业企业的决策制定能力,提高了资源利用率,也有助于矿山环境的保护和治理。
随着各种技术的不断发展和GIS技术在矿业领域的不断创新,这一技术的价值和应用前景将会进一步扩大。
地理信息系统在地质矿产勘查方面的应用
地理信息系统(GIS)在地质矿产勘查方面的应用非常广泛。
以下是一些主要的应用:
1. 地质图制作:GIS可以用来制作地质图,包括地质图的数字化、符号化以及注记等。
这些地质图可以帮助矿产勘查人员了解矿区的地质情况,包括岩石类型、构造特征、地层分布等。
2. 空间分析:GIS具有空间分析的功能,可以帮助矿产勘查人员进行空间分析,包括地理分布、空间关系、空间模型等。
这些分析可以帮助矿产勘查人员了解矿区的地质结构、构造特征等。
3. 地球物理数据处理:GIS可以用来处理地球物理数据,包括磁、电、重力等数据。
这些数据可以帮助矿产勘查人员确定矿区的地质结构、岩石性质等。
4. 地质模型构建:GIS可以用来构建地质模型,包括三维地质模型、地质异常模型等。
这些模型可以帮助矿产勘查人员了解矿区的地质情况,包括岩石类型、构造特征、地层分布等。
5. 空间数据分析:GIS可以用来分析空间数据,包括数据的统计、可视化、分类等。
这些分析可以帮助矿产勘查人员了解矿区的地质结构、构造特征等。
总之,GIS在地质矿产勘查方面的应用非常广泛,可以帮助矿产勘查人员更好地了解矿区的地质情况,提高勘查效率。
GIS技术在矿产资源勘查评价中的有效应用一、GIS技术在空间数据处理中的应用GIS技术在矿产资源勘查评价中首先发挥的作用是处理空间数据。
矿产资源的地理位置分布和空间属性是其最重要的评价指标之一。
GIS可以对遥感影像、数字地图、GPS定位数据等空间数据进行整合、分析和处理,快速获取矿产资源的地理位置信息和空间特征,并将其呈现在地图或图表上。
通过GIS技术,可以实现对矿产资源的数字化、空间化、智能化管理,大大提高了矿产资源勘查评价的效率和准确度。
二、GIS技术在资源信息管理中的应用GIS技术可以对矿产资源的空间信息、属性信息、实验数据等进行管理和整合。
它可以建立矿产资源数据库,对矿产资源的类型、产量、质量、分布等信息进行录入和管理,并通过地理空间分析模型对其进行综合分析。
GIS技术还可以将矿产资源信息与其他社会经济数据进行关联分析,为勘查评价提供更为全面的信息支持。
通过GIS技术,矿产资源的信息管理得到了标准化、规范化,提高了资源信息的可靠性和可用性。
三、GIS技术在勘查评价分析中的应用GIS技术在矿产资源勘查评价中的应用最为广泛的是在勘查评价分析方面。
GIS可以通过空间叠加、空间分析、多元统计等方法对矿产资源进行评价分析。
可以通过GIS技术对地质构造、地貌地貌、水文地质等进行空间叠加分析,找出矿产资源的潜在隐蔽性;通过GIS技术对地貌地貌、土壤地球化学特征、遥感地物光谱数据进行综合分析,找出矿产资源的物化特征;通过GIS技术对矿产资源与交通、环境、水资源等进行关联分析,找出矿产资源的市场化特征。
通过GIS技术,可以对矿产资源进行全方位、多角度、深层次的勘查评价分析,为矿产资源的合理利用提供决策支持。
四、GIS技术在矿产资源管理中的应用GIS技术可以将矿产资源的勘查评价结果与实际开采、生产、利用情况进行关联,实现对矿产资源的全生命周期管理。
在矿产资源的整合利用过程中,可以利用GIS技术对矿产资源的开采、生产、加工、运输等环节进行管理和监测,实现矿产资源的精准开采和高效利用。
GIS技术在矿产资源勘查评价中的有效应用
随着矿产资源的逐渐枯竭,矿产资源的勘查评价变得尤为重要。
而传统的矿产资源勘查评价方法存在着工作效率低、信息收集不全面等问题。
而地理信息系统(GIS)技术的出现为矿产资源勘查评价提供了新的手段,有效地弥补了传统方法的不足之处。
本文将重点探讨GIS技术在矿产资源勘查评价中的有效应用。
1. 空间数据管理:GIS技术能够对地质、地形、地貌等空间数据进行管理和分析,将矿产资源的空间位置信息进行整合,使得资源分布情况一目了然。
通过GIS技术的空间数据管理,可以为矿产资源的勘查提供准确的位置信息。
2. 矿产资源勘查:GIS技术能够对矿产资源进行勘查和评估,得出矿产资源的分布规律和潜在分布区域。
通过GIS技术的矿产资源勘查,可以提高勘查的准确性和效率。
3. 提高评价准确性:GIS技术能够对矿产资源的勘查和评价进行可视化呈现,从而提高了评价的准确性。
通过GIS技术的应用,可以直观地了解资源的分布情况,提高了评价的准确性。
1. 数据整合与共享:未来GIS技术将更加注重矿产资源数据的整合和共享,实现资源数据的共享和互联互通。
2. 空间数据技术的发展:未来GIS技术将更加注重空间数据技术的发展,实现资源数据的三维化和实时化。
GIS技术在矿产资源勘查评价中的有效应用,不仅提高了勘查的效率和准确性,也降低了勘查的成本。
未来,GIS技术在矿产资源勘查评价中的发展趋势将更加注重数据整合与共享、空间数据技术的发展和算法技术的突破。
相信随着GIS技术的不断发展和完善,其在矿产资源勘查评价中的作用将愈发重要,为矿产资源的合理开发和利用提供强有力的支持。
地理信息系统(GIS)及其在地质矿产勘查中的应用地理信息系统(GIS)是一种以地理空间数据为基础,通过计算机技术进行地理信息处理、管理和分析的系统。
地质矿产勘查是利用地质学理论和方法,通过对地质矿产资源的调查、勘探和评价,确定其储量、品位以及开采可行性的过程。
GIS在地质矿产勘查中发挥着重要作用。
GIS在地质矿产资源调查中扮演着重要角色。
传统的地质调查通常需要采集大量的地质样本,并通过人工分析和整理进行数据统计。
而GIS可以通过对地表、地下地理信息的采集和整理,自动化地生成空间数据库,实现对地质样本数量、分布、属性等信息的统计与分析。
地质调查者可以通过GIS快速查找和获取所需数据,并在地图上可视化显示,从而更加高效地进行地质调查。
GIS在矿产资源勘探中发挥重要作用。
矿产勘探是寻找矿藏或目标矿床的过程,需要对勘探区域的地质、地貌、磁力、地电等信息进行综合分析。
GIS可以整合各类空间数据,并进行数据叠加分析、裂缝解译、异常分析等,辅助确定目标矿床的位置和类型。
GIS还可以支持勘探区域的3D可视化,通过地貌模拟和地下地质模型建立,帮助勘探人员更好地理解勘探区域的地质情况,指导勘探工作的选址和规划。
GIS在矿产资源评价中具有重要作用。
矿产资源评价是对矿床的储量、品位、开采可行性等进行综合评估的过程,需要对矿床周边的地质、地貌、地球化学等因素进行综合分析。
通过GIS可以将各项数据整合到一个平台上,并进行专题分析、空间插值等处理,对成矿规律进行定量评估。
GIS还能够通过地理信息的可视化展示,对矿产资源的储量和品位进行空间分布和连续性分析,为决策者提供更直观、更全面的评价结果。
GIS在矿产资源开发中提供了决策支持。
矿产资源开发需要考虑到经济、环境、社会和法律等因素。
GIS可以将空间数据与其他数据进行关联,分析各项影响因素的空间关系与交互作用,为决策者提供决策所需的多项指标。
GIS还可以通过场景模拟和风险评估等功能,对矿产资源开发方案进行预测和评估,为决策者提供决策支持。
GIS技术在矿山地质测量中的应用探讨1. 勘探区域信息管理GIS技术可以用于对矿山勘探区域的信息进行管理。
可以将该地区的地质、地形、水文、气象、植被和土壤等信息进行数字化,形成一套完整的地图信息系统。
通过这些信息,可以更好地了解勘探区域的地质特征,并为后续的矿山开发提供重要的数据支持。
2. 地质构造分析利用GIS技术,可以将地质构造地貌信息进行数字化和三维可视化处理,从而对地质构造进行分析和研究。
通过地质构造分析,可以进一步认识地下的地质构造情况,为矿山地质勘探提供有力的支持。
3. 矿产资源评价GIS技术还可以用于矿产资源的评价。
通过对矿产资源进行数字化管理和空间分析,可以更科学地评价矿产资源的质量和数量,并为资源开发提供可靠的依据。
还可以利用GIS技术进行矿产资源的预测和勘探,提高矿产资源开发的效率和准确性。
4. 矿山环境监测除了对矿产资源的管理和评价,GIS技术还可以用于矿山环境的监测和评价。
通过对空气质量、水质、土壤污染等环境信息进行数字化和空间分析,可以实时监测矿山环境的变化,及时发现环境问题并采取相应的措施,保护矿山周边的生态环境。
某矿山利用GIS技术进行地质勘探,对矿山勘探区域的地质构造、岩性、矿化程度等关键信息进行了数字化管理和分析。
通过GIS技术,勘探人员可以通过电脑软件随时随地查看勘探区域的地质特征,快速准确地找到矿脉和矿体的分布情况,提高了勘探的效率和准确性。
2. GIS技术在矿山资源管理中的应用三、GIS技术在矿山地质测量中的优势和挑战1. 优势(1)整合性强:GIS技术可以整合不同来源的地理空间数据,形成一个完整的地理信息系统,为矿山地质测量提供了统一的数据平台。
(2)空间分析功能强大:GIS技术具有强大的空间分析功能,可以通过地图叠加、空间关系分析等手段对地质信息进行深入分析,发现隐藏在地质数据中的规律和规律。
(3)数据可视化:GIS技术可以将地理信息进行可视化处理,以图表、曲线等形式直观地展现出来,便于用户对地质数据进行理解和应用。
GIS技术在矿山地质测量中的应用探讨一、GIS技术在矿山地质测量中的应用现状GIS技术是一种将地理空间信息与属性数据进行整合、存储、查询、分析和显示的技术体系,它在矿山地质测量中的应用主要包括以下几个方面:1. 地质信息的管理和查询GIS技术可以对矿山地质勘探、地质构造、矿产资源分布等地质信息进行有效地管理和查询。
通过GIS系统,可以将地质信息进行数字化处理,便于随时查阅和更新,为矿山地质测量提供了便利。
2. 空间分析和数据挖掘GIS技术可以对矿山地质数据进行空间分析和数据挖掘,通过地理信息系统的功能模块,可以对地质信息进行模拟、分析和预测,为矿山的规划和设计提供了可靠的依据。
3. 空间数据可视化GIS技术可以将矿山地质数据以空间数据的形式进行可视化,通过地图、图表等形式清晰展现地质信息的空间分布特征,使人们可以直观地了解矿山地质环境,为决策提供科学依据。
1. 数据集成和共享GIS技术能够将不同来源的地质数据进行集成与共享,实现了不同地质信息数据之间的整合和互操作,避免了信息孤岛和数据冗余,提高了地质数据的利用效率。
2. 知识发现和信息提取GIS技术可以通过空间关联性的分析和数据挖掘,实现对矿山地质信息的知识发现和信息提取,为矿山地质勘探提供了新的思路和方法。
3. 决策支持和风险评估GIS技术可以通过空间分析和模拟研究,为矿山规划设计和资源评价提供决策支持,同时可以对矿山地质环境进行风险评估,为安全生产提供科学依据。
4. 实时监测和预警GIS技术可以实现对矿山地质环境的实时监测和预警,通过传感器和网络技术,可以对地质灾害进行及时监测和预警,为矿山的安全生产保驾护航。
1. 云计算和大数据随着云计算和大数据技术的不断发展,GIS技术将更多地依托云平台和大数据技术,实现对庞大地质数据的存储、计算与分析,为矿山地质测量提供更强大的支持。
2. 人工智能和深度学习人工智能和深度学习技术在GIS领域的应用也将不断深化,通过地质数据的自动提取、特征识别和模式预测等功能,为矿山地质勘探提供了更多的智能化支持。
GIS技术在矿产资源勘查评价中的有效应用GIS技术是一种以地理信息为基础的信息处理和空间分析技术,它具有空间分析能力、数据整合能力、地图制图能力等优势,被广泛应用于地理信息系统、地图制图、遥感、测量等领域。
在矿产资源勘查评价中,GIS技术的应用可以提高勘查效率、准确性和可靠性,为资源管理提供重要数据支持。
1.地质勘探与地质分析GIS技术是地质勘探和地质分析的核心技术之一,可以为勘探人员提供更加准确的三维空间模型,并绘制深度、厚度和形态等地质属性的分布图。
其中,通过建立地质模型,勘探人员可以更好地评估矿石的分布、储量、采矿难度和经济价值等因素。
此外,GIS技术可以结合数据库和数据挖掘技术对地质数据进行关联分析和统计分析,从而对矿床类型、矿物组成、地震变化等地质信息进行精准掌握。
2.资源量评价和资源储量计算GIS技术可以将野外勘测数据和遥感数据进行整合,构建全球定位系统(GPS)地理信息数据库,为资源量评价提供数据支持。
在此基础上,可以应用GIS技术对矿床赋存条件、地质地形、气候环境、水文地质条件等相关因素进行综合评价和分析,预测矿床储量和产状,为开发方案的制定提供科学依据和技术支持。
3.勘探方案设计和设备布置GIS技术可以通过模拟和分析模型,对矿床的形态、地质条件、储量分布等因素进行评估,以确定最佳开采方案和设备布局。
例如,在矿山建设方案设计中,GIS技术可以通过数字地形图对矿山地形、地貌及其他地理信息进行集中管理,为矿山规划、设计、建设和管理提供全面支持。
4.矿山环境保护GIS技术可以为矿山环境管理提供技术支持,勘探人员可以通过GIS技术对矿区生态环境、水资源、土地资源、大气环境等因素进行全面信息化管理,为矿山环境管理提供有效的数据支持。
例如,通过GIS技术可以实现矿区不同部位的排污情况管理与控制,对矿区环境进行预判性分析,提高矿区环境监测的效率和准确性。
总之,GIS技术在矿产资源勘查评价中具有广泛的应用前景,其应用能够大大提高勘查工作的效率和准确性,对明确资源状况、优化环境管理、提高开采效益等方面具有重要的作用。
地理信息系统(GIS)及其在地质矿产勘查中的应用地理信息系统(GIS)是一种将地理空间信息与属性信息相结合的信息处理工具,广泛应用于地理学、地质学、地质矿产勘查等领域。
它通过对地理数据进行收集、存储、管理、分析和展示,为决策制定者提供了重要的空间分析工具和决策支持系统。
在地质矿产勘查中,GIS的应用十分广泛。
GIS可以用来收集和存储地质数据。
地质矿产勘查需要大量的地质数据,包括地质构造、地质岩石类型、矿产资源分布等。
通过使用GIS技术,可以将这些地质数据进行统一管理和存储,提高数据的利用率和管理效率。
GIS可以进行地质数据的分析和处理。
通过对地质数据进行空间分析和属性分析,可以得到地质矿产资源的分布规律和特征。
通过空间分析,可以确定有利于矿产资源形成的地质条件和地质结构,为找矿勘探提供指导;通过属性分析,可以对矿产资源的品位、储量和可采度等进行评估,为矿产资源的开发利用提供依据。
GIS还可以进行地质信息的可视化展示。
通过将地质数据制作成地图、图表、三维模型等形式,可以直观地展示地质矿产资源的分布情况和矿产资源的特征。
这样不仅可以方便对地质数据进行观察和比较,还可以向决策制定者和公众传达地质信息,提高信息的传播效果。
GIS在地质矿产勘查中还有一些其他的应用。
GIS可以用于勘探目标的选取。
通过对地质数据进行分析比较,可以确定有利于矿产勘查的区域和目标。
GIS还可以进行勘探过程中的数据管理和追踪,对勘探过程进行监测和评估。
GIS在地质矿产勘查中的应用可以提高勘查效率和精度,为矿产资源的寻找、开发和利用提供重要的技术支持。
GIS还可以为决策制定者提供科学的决策依据,促进地质矿产资源的合理开发和利用,实现可持续发展。
GIS技术在煤矿地质勘察中的应用
【摘要】随着地质和矿业的不断发展,GIS技术在矿山地质勘察中发挥的重要性日益突出。
准确定位地下地质体,精准确定矿体边界充分体现出三维GIS 技术的优越性。
本文以吉林省长岭煤矿为研究区,应用GIS空间分析技术探究煤矿开采过程中存在的问题,提高煤矿勘察的精度,降低了工作难度及工作量,GIS技术是一种在矿产开发工程地质勘察中值得广泛应用的方法。
【关键词】GIS;地质勘察;煤矿
1.引言
煤炭是我国的主要能源之一,煤炭资源构成仍占主导地位,但吉林省属于煤炭资源缺乏省份,煤炭自给率不足50%,需要从其他省份调入大量煤炭资源来补充能源的不足。
按照吉林省经济发展规划预测,预计到2015年全省煤炭供给量达到4500万吨,而实际需求量为1.0亿吨,缺口为5500万吨,供需矛盾突出。
随着吉林省经济社会发展步伐的加快,煤炭需求紧张问题将会继续加剧。
因此准确定位煤矿地下地质体,精准确定矿体边界成为吉林省煤矿开采中的工作重点。
GIS技术既可以处理属性数据又可以处理空间数据[1],它对空间数据和属性数据的处理和分析能力,使其成为解决工程地质勘察问题的一种全新的技术手段[2]。
本文吉林省长岭煤矿为研究区,应用GIS空间分析技术解决煤矿开采过程中存在的问题。
2.研究区概况
研究区属温带季风气候区,多年平均降水量为712.1mm,年平均气温为5.5℃,年平均蒸发量为1269.7mm,无霜期138天,≥10℃积温2880℃,最大冻土深度为1.60m。
长岭煤矿属于小型矿井,矿区面积1.16km?,资源储量为1874kt,可采储量1423.5kt,采用地下开采的方式。
矿井服务年限10.5a。
成煤盆地为一向斜构造,矿区位于向斜的南东翼,为一倾向北西的单斜构造,走向50o,倾向320o,倾角10o~20o。
矿区构造复杂程度为简单类型。
2.1 水文地质
第四系冲积砂砾石孔隙水含水层主要分布于河床两侧,由砂砾石组成。
基岩风化裂隙水含水层分布于全矿区砂砾岩和风化火山碎屑岩为主风化带中。
砾岩、砂岩孔隙裂隙水含水层分布于矿区西部,本矿井开采的7个煤层赋存于该组,经开采证明该含水层属于弱富水。
2.2 地层岩性
矿区内揭露的主要含煤岩系有侏罗系西山坪组和白垩系长财组;侏罗系西山
坪组与白垩系长财组呈平行不整合接触。
侏罗系上统西山坪组底部岩性为灰绿色、黄绿色角岩砾岩,地层平均厚度30.15m。
中部为灰色、灰黑色泥岩,沙质泥岩,凝灰岩,含可采煤层2层;地层平均厚度100.06m。
上部为灰白色粗砂岩、细砂岩夹炭质泥岩,含煤2层;地层平均厚度180m。
该组在矿区内地表没有出露,地层倾向东,倾角7o~26o。
白垩系下统长财组下部岩性为灰褐色砂砾岩、砂岩夹炭质泥岩,平均厚度70m。
中部为灰白色粗砂岩夹砂砾岩、炭质泥岩,地层平均厚度205m。
上部为灰白色粗砂岩,细砂岩,含煤1层,为局部可采煤层,局部厚度1.04m。
地层厚度110m。
地层厚度123.40m。
地层倾向东,倾角10o~30o。
该组为矿区含煤地层,平均厚度约385m,该组与下伏地层呈平行不整合接触。
3.GIS技术的应用
3.1 三维地质勘察模型建立
工程地质勘察指的是利用物理勘探、试验及检测等方法对待测地区的环境特点、地形地貌、岩土性质等进行调查、分析,从中获取定量或定性的指标,同时利用文字报告,表格或图形进行反应[3-4]。
本次研究勘察的对象包括矿区、钻孔、地层三类。
勘察的矿区地下空间是由很多地层组成,把地质成因、岩土性能、地质年代等特征利用GIS空间分析模块抽象的表达出来,以便更好确定矿床地体质边界。
具体建立过程如图1所示。
3.2 空间分析
通过GIS技术对各种格式的数据录入、批量导入对地层统计结果进行报表输出,能够生成包括工程勘察报告中所需的柱状图、统计图、剖面图等一系列专业图件[5-7]。
针对研究的地质体层状特性,提供基于钻孔数据、剖面数据及等值线图等多源数据利用GIS空间分析模块生成三维空间模型,分析确定岩体及其矿床体边界。
如图2所示。
3.3 结果分析
通过GIS技术对目前矿区现状的分析可以确定开拓方式为片盘斜井,开采长财组煤层、西山坪组煤层,两组含煤地层垂距254~300m。
准采标高+546~+80m。
根据GIS模型确定开拓布置准采范围作为矿区范围,开采标高确定为+510~+80m。
4.结论
随着工程地质勘察工作的不断发展深入,工程建设规模越来越大,工程地质勘查深度及广度的不断拓展,GIS技术成为一种方便快捷的勘查信息交流手段,它可以更为有效和直观的反映勘察地质状况,增强对地质勘查过程中对对地质环
境的感性认识。
提高矿产储量估算的精准性智,提高了工作效率。
因此,应用GIS技术对地质体进行勘察与探讨具有重大的深远意义。
参考文献
[1]刘霖,庞娜.基于GIS的岩土工程勘察信息系统设计与实现[J].重庆科技学院学报(自然科学版),2010(6):116-119.
[2]LI Zhi-cheng. Design and realization of the data analysis system in subsidence monitoring[J].Engineering of Surveying and Mapping,2005,14(4):65-68.
[3]王纯祥,白世伟.三维地层信息系统在岩土工程中应用研究[J].岩土力学,2003(04):41-44.
[4]周翠英,陈恒,刘祚秋,黄显艺,何兴.重大工程地下环境信息系统的设计与实现[J].岩土力学,2004(09):14-16.
[5]朱大明.三维地学信息系统功能设计及发展趋势[J].昆明理工大学学报,2001(3):70-77.
[6]秦俊茹,梁绍敏,赵红敏三维GIS技术在油田勘探开发中的研究与应用[J].内江科技,2012(8).
[7]吴东胜,刘少华,朱小龙,陈华军,王庆.基于GIS的油气地质综合研究平台与初步应用[J].地理空间信息,2007(4).。