2014年全国各地中考数学模拟试卷精选精练:数量和位置变化,平面直角坐标系(含答案)
- 格式:doc
- 大小:200.50 KB
- 文档页数:4
平面直角坐标系(2014北京市在平面直角坐标系xOy中,对于点( P x y,,我们把点(11P y x'-++,叫做点P的伴随点,已知点1A的伴随点为2A,点2A的伴随点为3A,点3A的伴随点为4A,…,这样依次得到点1A,2A,3A,…,nA,….若点1A的坐标为(3,1,则点3A的坐标为,点2014A的坐标为;若点1A的坐标为(a,b,对于任意的正整数n,点nA均在x轴上方,则a,b应满足的条件为.(2014•赤峰如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2,“炮”位于点(﹣1,2,写出“兵”所在位置的坐标(﹣2,3.考点:坐标确定位置分析:以“马”的位置向左2个单位,向下2个单位为坐标原点建立平面直角坐标系,然后写出兵的坐标即可.解答:解:建立平面直角坐标系如图,兵的坐标为(﹣2,3.故答案为:(﹣2,3.点评:本题考查了坐标确定位置,确定出原点的位置并建立平面直角坐标系是解题的关键. (2014•海南如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6,B(﹣6,2,E(2, 1,则点D的坐标为((2014•呼和浩特已知线段CD是由线段AB平移得到的,点A(﹣1,4的对应点为C移线段AB,使点A落在A1(0,﹣1,点B落在点B1,则点B1的坐标为(1,1.考点:坐标与图形变化-平移.分析:根据网格结构找出点A1、B1的位置,然后根据平面直角坐标系写出点B1的坐标即可.解答:解:如图,点B1的坐标为(1,1.故答案为:(1,1.点评:本题考查了坐标与图形变化﹣平移,熟练掌握网格结构准确找出点的位置是解题的关键.(2014金华在棋盘中建立如图所示的直角坐标系,三颗棋子A,O,B的位置如图,它们的坐标分别是(-1,1,(0,0和(1,0。
(1如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;(2在其它格点位置添加一颗棋子P,使A,O,B,P成为一个轴对称图形,请直接写出棋子P的位置的坐标(写出2个即可。
数量和位置变化,平面直角坐标系一、选择题1、(湖州市中考模拟试卷1)对任意实数x ,点P(x,x 2-2x)一定不在..( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:C2、(安徽芜湖一模)若点 P (a ,a -3)在第四象限,则a 的取值范围是 ( ). A .-3<a <0 B .0<a <3 C .a >3D .a <03、(江苏扬州弘扬中学模拟)小华同学利用假期时间乘坐一大巴去看望在外打工的妈妈,出发时,大巴的油箱装满了油,匀速行驶一段时间后,油箱内的汽油恰剩一半时又加满了油,接着按原速度行驶,到目的地时油箱中还剩有31箱汽油,设油箱中所剩汽油量为V 升,时间为t (分钟),则V 与t 的大致图象是( )答案:D4、(江苏扬州弘扬中学模拟)已知点P (a -1,a +2)在平面直角坐标系的第二象限内,则a 的取值范围在数轴上可表示为(阴影部分)( )答案:C5、(山东省德州一模)小明从家骑车上学,先上坡到达A 地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡的速度仍然保持不变,那么他从学校回到家需要的时间是( )A. 8.6分钟B. 9分钟C. 12分钟D.16分钟 答案:C6、(山东省德州一模)如图,在平面直角坐标系中,正方形OACB 的顶点O 、C 的坐标分别是(0, 0),(2, 0),则顶点B 的坐标是A B DCA 1 -2 -3 -1 0 2C 1 --B 1 -2-D 1-2 -3 -1 02第4题第5题( ). A.(1,1) B.(-1,-1)C.(1,-1)D.(-1,1)答案:C7、 (河北省一摸)|如果点P(m ,1-2m)在第四象限,那么m 的取值范围是A .102m <<B .102m -<<C .0m <D .12m > 答案:D8、(河北省一摸)|如图5,三个大小相同的正方形拼成六边形ABCDEF ,一动点P 从点A 出发沿着A →B →C →D →E 方向匀速运动,最后到达点E .运动过程中△PEF 的面积(S )随时间(t )变化的图象大致是答案:B 二、填空题1、(河北模拟)平面直角坐标系中,点A (2,3)关于x 轴的对称点坐标为. 答案:(2,-3)2、(温州一摸)在平面直角坐标系中,点(-3,2)到x 轴的距离是_____. 答案:23、(上海市)在平面直角坐标系中,如果点(1,3)A 与点(,3)B x 之间的距离是5,那么x 的值是 ▲ . 答案:4-或6;4、(山东省德州一模)在直角坐标系中,点P (-3,2)关于X 轴对称的点Q 的坐标是 . 答案:(-3,-2)5、(山东省德州一模)如图, 在已建立直角坐标系的4×4正方形方格纸中,△ABC 是格点三角形(三角形的三个顶点都是小正方形的顶点), 若以格点P 、A 、B 为顶点的三角形与△ABC 相似,则格点P 的坐标是 .A .. BDC图5 A BC DE.F.P.答案:(1,4),(3,4),(3,1)6、(温州市一模)在平面直角坐标系中,点P(-1,4)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限答案:B7、(吉林中考模拟)在函数y=错误!未找到引用源。
济南市2014年初三年级学业水平考试数学全真模拟试卷(时间:120分钟 满分:120分)第Ⅰ卷(选择题 共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题所给的四个选项中,只有一项是符合题目要求的.) 1.-2的绝对值是( )11A. B.2 C. D.222- -2.我国第一艘航母“辽宁舰”最大排水量为67 500吨,用科学记数法表示这个数字是( )A.6.75×103 吨B.67.5×103吨C.6.75×104 吨D.6.75×105吨 3.16的平方根是( )A.4B.±4C.8 D .±84.如图,直线l ∥m ,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为( )A.20°B.25°C.30°D.35° 5.下列等式成立的是( )A.a 2×a 5=a 10B.a b a b +=+C.(-a 3)6=a 18D.2a a =6.一个盒子里有完全相同的三个小球,球上分别标上数字-1、1、2.随机摸出一个小球(不放回)其数字记为p ,再随机摸出另一个小球其数字记为q ,则满足关于x 的方程x 2+px+q=0有实数根的概率是( )1125A. B. C. D.23367.分式方程12x 1x 1=-+的解是( ) A.1 B.-1 C.3 D.无解8.钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是( )111A. B. C. D.248π π π π9.如图,数轴上表示某不等式组的解集,则这个不等式组可能是( )x 10x 10A. B.2x 02x 0x 10x 10C. D.x 20x 20+≥+≤⎧⎧ ⎨⎨-≥-≥⎩⎩+≤+≥⎧⎧ ⎨⎨-≥-≥⎩⎩10.如图是一个正方体被截去一角后得到的几何体,它的俯视图是( )11.化简2(21)÷-的结果是( )A.221B.22C.12D. 22- - - +12.如图,在Rt △ABC 中,∠BAC=90°,D 、E 分别是AB 、BC 的中点,F 在CA 的延长线上,∠FDA=∠B ,AC=6,AB=8,则四边形AEDF 的周长为( )A.22B.20C.18D.1613.如图,过x 轴正半轴上的任意一点P ,作y 轴的平行线,分别与反比例函数64y y x x=-=和的图象交于A 、B 两点.若点C 是y 轴上任意一点,连接AC 、BC ,则△ABC的面积为( )A.3B.4C.5D.1014.如图,已知AB、CD是⊙O的两条直径,∠ABC=28°,那么∠BAD=( )A.28°B.42°C.56°D.84°15.如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿B→C→D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看做0),点P运动的路程为x,则y与x之间函数关系的图象大致为( )第Ⅱ卷(非选择题共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.分解因式:(a+2)(a-2)+3a=________.17.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则ab的值为_________.18.如图,两建筑物的水平距离BC为18 m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为________ m(结果不作近似计算).19.三棱柱的三视图如图所示,△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为______cm.20.如图,边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为_______.21.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是________.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.)22.(本小题满分7分)(1)化简222x1x2x1. x1x x--+÷+-(2)解方程:15x2(x1)8x. 24++=+23.(本小题满分7分)(1)如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.(2)如图所示,已知在平行四边形ABCD中,BE=DF.求证:AE=CF.24.(本小题满分8分)五一期间某校组织七、八年级的同学到某景点郊游,该景点的门票全票票价为15元/人,若为50~99人可以八折购票,100人以上则可六折购票.已知参加郊游的七年级同学少于50人、八年级同学少于100人.若七、八年级分别购票,两个年级共计应付门票费1 575元,若合在一起购买折扣票,总计应付门票费1 080元.(1)请你判断参加郊游的八年级同学是否也少于50人.(2)求参加郊游的七、八年级同学各为多少人?25.(本小题满分8分)某市某校对九年级学生进行“综合素质”评价,评价的结果为A(优)、B(良好)、C(合格)、D(不合格)四个等级,现从中抽取了若干名学生的“综合素质”等级作为样本进行数据处理,并作出如图所示的统计图,已知图中从左到右的四个长方形的高的比为:14∶9∶6∶1,评价结果为D等级的有2人,请你回答以下问题:(1)共抽取了多少人?(2)样本中B等级的频率是多少?C等级的频率是多少?(3)如果要绘制扇形统计图,A、D两个等级在扇形统计图中所占的圆心角分别是多少度?(4)该校九年级的毕业生共300人,假如“综合素质”等级为A或B的学生才能报考示范性高中,请你计算该校大约有多少名学生可以报考示范性高中?26.(本小题满分9分)如图,在△ABC中,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且AC=CF,∠CBF=∠CFB.(1)求证:直线BF是⊙O的切线;(2)若点D,点E分别是弧AB的三等分点,当AD=5时,求BF的长;(3)填空:在(2)的条件下,如果以点C为圆心,r为半径的圆上总存在不同的两点到点O 的距离为5,则r的取值范围为_________.27.(本小题满分9分)已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m).(1)求二次函数的解析式并写出D点坐标;(2)点E是BD的中点,点Q是线段AB上一动点,当△QBE和△ABD相似时,求点Q的坐标;(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M和点N的坐标.28.(本小题满分9分)如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于点F,∠1=∠2,连接CB与DG交于点N.(1)求证:CF 是⊙O 的切线; (2)求证:△ACM ∽△DCN ;(3)若点M 是CO 的中点,⊙O 的半径为4,cos ∠BOC=14,求BN 的长.参考答案1.D2.C3.B4.A5.C6.A7.C8.A9.A 10.A 11.D 12.D 13.C 14.A 15.C 16.(a-1)(a+4) 17.-10 18.123 19.6 20.n 13-()21.25522.(1)解:原式=()()()2x 1x 1x x 1x.x 1x 1+--=+- () (2)解:原方程可化为3x+2=8+x,合并同类项得:2x=6, 解得:x=3.23.(1)证明:∵∠1=∠2, ∴∠1+∠EAC=∠2+∠EAC, 即∠BAC=∠EAD.∵在△ABC 中和△AED 中,D C,BAC EAD,AB AE,∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△AED(AAS) (2)证明:∵BE=DF,∴BE-EF=DE-EF,∴DE=BF.∵四边形ABCD 是平行四边形, ∴AD=BC,AD ∥BC, ∴∠ADE=∠CBF,在△ADE 和△CBF 中,DE BF,ADE CBF,AD BC,=⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CBF(SAS), ∴AE=CF. 24.解:(1)全票为15元,则八折票价为12元,六折票价为9元. ∵100×15=1 500<1 575,∴参加郊游的七、八年级同学的总人数必定超过100人,∴由此可判断参加郊游的八年同学不少于50人.(2)设七、八年级参加郊游的同学分别有x 人、y 人. 由(1)及已知可得,x<50,50<y<100,x+y>100. 依题意可得:()15x 12y 1 575,9x y 1 080,+=⎧⎨+=⎩ 解得:x 45,y 75.=⎧⎨=⎩答:参加郊游的七、八年级同学分别为45人和75人. 25.解:(1)D 等级所占比例为:111496130=+++,则共抽取的人数为:1260().30÷=人 (2)样本中B 等级的频率为:9100%30%;14961⨯=+++C 等级的频率为:6100%20%.14961⨯=+++ (3)样本中A 等级在扇形统计图中所占圆心角度数为:1430×360=168(度); D 等级在扇形统计图中所占圆心角度数为:130×360=12(度). (4)可报考示范性高中的总人数: 300×149()3030+=230(名). 26.(1)证明:∵∠CBF=∠CFB , ∴BC=CF. ∵AC=CF , ∴AC=BC ,∴∠ABC=∠BAC.在△ABF 中,∠ABC+∠CBF+∠BAF+∠F=180°, 即2(∠ABC+∠CBF)=180°, ∴∠ABC+∠CBF=90°, ∴BF 是⊙O 的切线;(2)解:连接BD.∵点D ,点E 是弧AB 的三等分点,AB 为直径, ∴∠ABD=30°,∠ADB=90°,∠A=60°. ∵AD=5,∴AB=10,()BFtan603ABBF 103;3535r 53 5.∴︒==∴=-<<+,27.解:(1)设二次函数的解析式为:y=ax 2+bx+c.221a c 4216a 4b c 0b 1b c 4,12a 1y x x 4.21D(2m)m 224 4.2⎧⎧=-⎪⎪=⎪⎪++==⎨⎨⎪⎪=⎪⎪-=⎩⎩=-++=-⨯++= ,,由题意有:,解得:,,所以,二次函数的解析式为:点,在抛物线上,即∴点D 的坐标为(2,4);(2)作DG 垂直于x 轴,垂足为G ,因为D (2,4),B (4,0), 由勾股定理得:BD=25,∵E 是BD 的中点, ∴BE=5.BE BQ 1QBE ABD BD BA 2AB 2BQ Q 10BQ BE 5QBE DBA BD BA 6557BQ 25OQ 6337Q 0.3==∴=∴==∴=⨯==∴ 当≌时,,,点的坐标为(,);当≌时,,,则,点的坐标(,) (3)如图,由A(-2,0),D(2,4),可求得直线AD 的解析式为:y=x+2,则点F 的坐标为:F(0,2).过点F作关于x轴的对称点F′,即F′(0,-2),连接CD,再连接DF′交对称轴于M′,交x轴于N′.由条件可知,点C,D关于对称轴x=1对称,∴DF′=210,F′N′=FN′,DM′=CM′,∴CF+FN′+M′N′+M′C=CF+DF′=2210+,∴四边形CFNM的周长=CF+FN+NM+MC≥CF+FN′+M′N′+M′C=2210+,即四边形CFNM的最短周长为:2210+,此时直线DF′的解析式为:y=3x-2,所以存在点N的坐标为2(,0)3,点M的坐标为(1,1)使四边形CMNF周长取最小值.28.(1)证明:∵△BCO中,BO=CO,∴∠B=∠BCO,在Rt△BCE中,∠2+∠B=90°,又∵∠1=∠2,∴∠1+∠BCO=90°,即∠FCO=90°,∴CF是⊙O的切线;(2)证明:∵AB是⊙O直径,∴∠ACB=∠FCO=90°,∴∠ACB-∠BCO=∠FCO-∠BCO,即∠ACO=∠1,∴∠ACO=∠2,∵∠CAM=∠D,∴△ACM∽△DCN;(3)解:∵⊙O的半径为4,即AO=CO=BO=4,在Rt△COE中,cos∠BOC=1 4,∴OE=CO ·cos ∠BOC=4×14=1, 由此可得:BE=3,AE=5,由勾股定理可得:222222222222CE CO OE 4115AC CE AE (15)5210,BC CE BE (15)326,=-=-==+=+==+=+= ∵AB 是⊙O 直径,AB ⊥CD , ∴由垂径定理得:CD=2CE=215,∵△ACM ∽△DCN ,∴CM AC,CN CD= ∵点M 是CO 的中点,11CMOA 42,22==⨯= CM CD 2215CN 6,AC 210BN BC CN 266 6.⨯∴===∴=-=-=济南市2014年初三年级学业水平考试数学全真模拟试卷2第Ⅰ卷(选择题共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题所给的四个选项中,只有一项是符合题目要求的).1.如果+30 m表示向东走30 m,那么向西走40 m表示为( )A.+40 mB.-40 mC.+30 mD.-30 m2.若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是( )A.-2B.2C.-50D.503.图中几何体的主视图是( )4.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为( )A.0.34×10-9B.3.4×10-9C.3.4×10-10D.3.4×10-115.已知圆锥的底面半径为6 cm,高为8 cm,则这个圆锥的母线长为( )A.12 cmB.10 cmC.8 cmD.6 cm6.如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为( )1111A. B. C. D.34567.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案( )A.5种B.4种C.3种D.2种8.某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1 225元,设其中有x张成人票,y张儿童票.根据题意,下列方程组正确的是( )9.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是( )A.18°B.24°C.30°D.36°10.如图,已知等腰梯形ABCD的底角∠B=45°,高AE=1,上底AD=1,则其面积为( )A.4B. 22C.1D.211.如图,数轴上a,b两点表示的数分别为3和-1,点a关于点b的对称点为c,则点c所表示的数为( )A.23B.13C.23D.13-- -- -+ +12.如图,A、B、C是反比例函数kyx=(x<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3∶1∶1,则满足条件的直线l共有( )A.4条B.3条C.2条D.1条13.在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:这8名同学捐款的平均金额为( )A.3.5元B.6元C.6.5元D.7元14.已知关于x 的不等式组()4x 123x,6x ax 1,7⎧-+⎪⎨+-⎪⎩><有且只有三个整数解,则a 的取值范围是( )A.-2≤a-1B.-2≤a <-1C.-2<a ≤-1D.-2<a <-1 15.如图,直线l :y=-x-2与坐标轴交于A 、C 两点,过A 、O 、C 三点作⊙O 1,点E 为劣弧 AO上一点,连接EC 、EA 、EO ,当点E 在劣弧上运动时(不与A 、O 两点重合),EC EA EO-的值是( )A.2 B.3 C.2 D.变化的第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.分解因式:a 3-ab 2=________. 17.计算124183-⨯=_________. 18.如图,在Rt △ABC 中,∠C=90°,∠B=60°,点D 是BC 边上的点,CD=1,将△ABC 沿直线AD 翻折,使点C 落在AB 边上的点E 处,若点P 是直线AD 上的动点,则△PEB 的周长的最小值是______.19.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APD 的值是______.20.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为_____________.21.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是112-=-1,-1的差倒数为()11112=--,现已知121x x 3=-,是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依次类推,则x 2 013=____________.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.) 22.(本小题满分7分)(1)解方程组2x 3y 3x 2y 2.-=⎧⎨+=-⎩,(2)化简:1a a ().22a 2a 1-÷++23.(本小题满分7分)(1)如图,在四边形ABCD 中,AB=BC ,∠ABC=∠CDA=90°,BE ⊥AD ,垂足为E. 求证:BE=DE.(2)如图,AB 是⊙O 的直径,DF ⊥AB 于点D ,交弦AC 于点E ,FC=FE. 求证:FC 是⊙O 的切线.24.(本小题满分8分)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).25.(本小题满分8分)某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是____________;(3)已知该校有1 200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.26.(本小题满分9分)如图,O是菱形ABCD对角线AC与BD的交点,CD=5 cm,OD=3 cm;过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.(1)求OC的长;(2)求证:四边形OBEC为矩形;(3)求矩形OBEC的面积.27.(本小题满分9分)如图,直线1yx 4=与双曲线ky x =相交于A 、B 两点,BC ⊥x 轴于点C (-4,0).(1)求A 、B 两点的坐标及双曲线的解析式;(2)若经过点A 的直线与x 轴的正半轴交于点D ,与y 轴的正半轴交于点E ,且△AOE 的面积为10,求CD 的长.28.(本小题满分9分) 如图,抛物线21y x 1=-交x 轴的正半轴于点A ,交y 轴于点B ,将此抛物线向右平移4个单位得抛物线y 2,两条抛物线相交于点 C.(1)请直接写出抛物线y 2的解析式;(2)若点 P 是x 轴上一动点,且满足∠CPA=∠OBA ,求出所有满足条件的P 点坐标; (3)在第四象限内抛物线y 2上,是否存在点Q ,使得△QOC 中OC 边上的高h 有最大值,若存在,请求出点Q 的坐标及h 的最大值;若不存在,请说明理由.参考答案1.B2.A3.D4.C5.B6.B7.C8.B9.A10.D 11.A 12.A 13.C 14.C 15.A19.2 20.40% 21.416.a(a+b)(a-b) 17.618.1323.(1)证明:作CF⊥BE,垂足为F.∵BE⊥AD,∴∠AEB=90°,∴∠FED=∠D=∠CFE=90°,∠CBE+∠ABE=90°,∠BAE+∠ABE=90°,∴∠BAE=∠CBF,∵四边形EFCD为矩形,∴DE=CF.在△BAE和△CBF中,有∠CBE=∠BAE,∠BFC=∠BEA=90°,AB=BC,∴△BAE≌△CBF,∴BE=CF=DE,即BE=DE.(2)证明:连接OC.∵FC=FE,∴∠FCE=∠FEC.又∵∠AED=∠FEC,∴∠FCE=∠AED.∵OC=OA,∴∠OCA=∠OAC,∴∠FCO=∠FCE+∠OCA=∠AED+∠OAC=180°-∠ADE.∵DF⊥AB,∴∠ADE=90°,∴∠FCO=90°,即OC⊥FC.又∵点C在⊙O上,∴FC是⊙O的切线;24.解法一:解:设上月萝卜的单价是x 元/斤,排骨的单价是y 元/斤,根据题意得:()()3x 2y 363150%x 2120%y 45x 2:y 15.+=⎧⎨+++=⎩=⎧⎨=⎩,,,解得这天萝卜的单价是(1+50%)x=(1+50%)×2=3(元/斤), 这天排骨的单价是(1+20%)y=(1+20%)×15=18(元/斤). 答:这天萝卜的单价是3元/斤,排骨的单价是18/斤. 解法二:解:设这天萝卜的单价是x 元/斤,排骨的单价是y 元/斤,根据题意得:32x y 36150%120%3x 2y 45x 3:y 18.⎧+=⎪++⎨⎪+=⎩=⎧⎨=⎩,,,解得 答:这天萝卜的单价是3元/斤,排骨的单价18元/斤. 25.解:(1)∵根据扇形统计图可得出女生喜欢武术的占20%, 利用条形图中喜欢武术的女生有10人, ∴女生总人数为:10÷20%=50(人),∴女生中喜欢舞蹈的人数为:50-10-16=24(人). 补充条形统计图,如图所示:(2)100(3)∵样本中喜欢剪纸的人数为30人,样本容量为100, ∴估计全校学生中喜欢剪纸的人数:1 200×30100=360人. 答:全校学生中喜欢剪纸的有360人. 26.解:(1)∵四边形ABCD 是菱形, ∴AC ⊥BD ,∴直角△OCD 中,2222OC CD OD 53 4 cm =-=-=;(2)∵CE ∥DB ,BE ∥AC , ∴四边形OBEC 为平行四边形, 又∵AC ⊥BD ,即∠COB=90°, ∴平行四边形OBEC 为矩形; (3)∵OB=OD ,∴S 矩形OBEC =OB ·OC=4×3=12(cm 2). 27.解:(1)∵BC ⊥x 轴,C (-4,0),∴B 的横坐标是-4,代入y=14x 得:y=-1,∴B 的坐标是(-4,-1). ∵把B 的坐标代入ky k 4x==得:, ∴反比例函数的解析式是4y .x=∵解方程组12121y x x 4x 444y 1y 1y x⎧=⎪==-⎧⎧⎪⎨⎨⎨==-⎩⎩⎪=⎪⎩,,,得:,,,∴A 的坐标为(4,1),B 的坐标为(-4,-1);(2)设OE=a ,OD=b ,则△AOE 面积S △AOE =S △EOD -S △AO D,AOE 1110ab b 1,221S a 410,2=- == 即:①并且,②由①,②可解得:a=5,b=5,即OD=5. ∵OC=|-4|=4,∴CD 的长为:4+5=9.28.解:(1)y=x 2-8x+15;(2)当 y 1= y 2,即x 2-1 =x 2-8x+15, ∴x=2,y=3, ∴C (2,3).由题可知, A ( 1 , 0 ) , B ( 0 ,-1), ∴OA =OB= 1 ,∴∠OBA= 45°. 过点 C 作CD ⊥x 轴于点D, ∴D(2,0),∴CD=3.当∠CPA=∠OBA=45°时,∴PD=CD=3 ,∴满足条件的点P有2个,分别为P1 (5,0),P2(-1,0);(3)存在.过点C作CE⊥y轴于点E,过点Q作QF⊥y轴于点F,连接OC、QC、 OQ. 设Q (x0,y0) ,∵Q在y2上,∴y0=x02-8x0+15,∴CE=2,QF=x0,EF=3-y0,OE=3,OF=-y0.∵在△QOC中,OC边长为定值,∴当S△QOC取最大值时,OC边上的高h也取最大值.2014届中考数学模拟测试卷(本试卷满分150分,考试时间120分钟)一、选择题(本题有8小题,每小题3分,共24分) 1.12-的倒数为【 】 A .12B .2C .2-D .1-2.下列图形中,既是轴对称图形,又是中心对称图形的是【 】 A .平行四边形 B .等边三角形 C .等腰梯形 D .正方形3.已知地球距离月球表面约为383900千米,那么这个距离用科学记数法表示为(保留三个有效数字)【 】A .3.84×104千米B .3.84×105千米C .3.84×106千米D .38.4×104千米 4.已知⊙O 1与⊙O 2的半径分别为5cm 和3cm ,圆心距0102=7cm ,则两圆的位置关系为【 】 A .外离 B .外切 C .相交 D .内切5.如图是由七个相同的小正方体堆成的几何体,这个几何体的俯视图是【 】6.某校在开展“爱心捐助”的活动中,初三(一)班六名同学捐款的数额分别为:8,10,10,4,8,10(单位:元),这组数据的众数是【 】A .10B .9C .8D .4 7.如图7,AB 是⊙O 的直径,点D 在AB 的延长线上, DC 切⊙O 于点C ,若∠A=25°,则∠D 等于【 】 A .20°B .30°C .40° D.50°8.已知二次函数2(0)y ax bx c a =++≠的图象如右图8所示,下列结论①abc >0 ②b<a+c③2a-b=0 ④4a+2b+c >0 ⑤2c<3b⑥a+b >m(am+b)(m 为任意实数), 其中正确的结论有【 】 A . 1个 B .2个 C . 3个D .4个二、填空题(本大题共10小题,每小题3分,共30分)9.扬州市某天的最高气温是6℃,最低气温是-3℃,那么当天的日温差是 ▲ .10.函数12-+=x x y 中自变量x 的取值范围是 ▲ . 11.如图11,四边形ABCD 中,AB//CD ,要使四边形ABCD 为平行四边形,则可添加的条件为 ▲ .(填一个即可).12.因式分解:m 3n -9mn= ▲ .13.已知25-是一元二次方程240x x c -+=的一个根,则方程的另一个根是▲ .14.在平面直角坐标系中,如果抛物线y=3x 2不动,而把x 轴、y 轴分别向上、向右平移3个单位,那么在新坐标系中此抛物线的解析式是 ▲ . 15.已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 ▲ .16.已知一个圆锥的母线长为10cm ,将侧面展开后所得扇形的圆心角是144°,则这个圆锥的底面圆的半径是 ▲ cm .17.如图,线段AB 的长为2,C 为AB 上一个动点,分别以AC 、BC 为斜边在AB 的同侧作两个等腰直角三角形△ACD 和△BCE ,那么DE 长的最小值是 ▲ . 18.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x 的方程(n 为正整数)的根,你的答案是: ▲ .(用n 的代数式 )三、解答题(本大题共有10小题,共96分) 19.(本题8分)(1) (4分)解方程组 ⎩⎨⎧=-=-;1383,32y x y x(2) (4分)821)14.3(45sin 2)31(02+-+︒--π 20.(本题8分)先化简:22a 1a 11a a +2a---÷,再选取一个合适的 a 值代入计算.21.(本题8分)如图,在△ABC 中,∠ACB=90°,AC=BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D 。
2014中考数学模拟试题及答案1.本试卷共8页,共五道大题,25道小题,满分120分。
考试时间120分钟。
2.答题纸共8页,在规定位置准确填写学校名称、班级和姓名。
3.试题答案一律书写在答题纸上,在试卷上作答无效。
4.考试结束,请将答题纸交回,试卷和草稿纸可带走。
一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.的绝对值是A. B. C. D.2. 2014年2月14日从北京航天飞行控制中心获悉,嫦娥二号卫星再次刷新我国深空探测最远距离记录,达到7 000万公里,这是我国航天器迄今为止飞行距离最远的一次“太空长征” .将7 000万用科学记数法表示应为A. B. C. D.3.下列立体图形中,左视图是圆的是4. 小月的讲义夹里放了大小相同的试卷共12页,其中语文5页、数学4页、英语3页,她随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率是A. B. C. D.5. 如右图所示,AB∥CD,点E在CB的延长线上.若∠ABE=70°,则∠ECD的度数为A.20°B.70°C .100° D.110°6. 下列正多边形中,内角和等于外角和的是A.正三边形B.正四边形C.正五边形D.正六边形7. 小贝家买了一辆小轿车,小贝记录了连续七天中每天行驶的路程:第1天第2天第3天第4天第5天第6天第7天路程(千米) 43 29 27 52 43 72 33则小贝家轿车这七天行驶路程的众数和中位数分别是A.33, 52B.43,52C.43,43D.52,438.如图,点在线段上,=8,=2,为线段上一动点,点绕点旋转后与点绕点旋转后重合于点 .设= ,的面积为 . 则下列图象中,能表示与的函数关系的图象大致是A. B. C. D.二、填空题(本题共16分,每小题4分)9.若二次根式有意义,则的取值范围是.10. 分解因式:.11.为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一组标杆、皮尺,设计了如图所示的测量方案.已知测量同学眼睛、标杆顶端、树的顶端在同一直线上,此同学眼睛距地面1.6 ,标杆长为3.3 ,且,,则树高.12.如图,在平面直角坐标系中,已知点的坐标为(1,0),将线段绕点按顺时针方向旋转,再将其长度伸长为的2倍,得到线段;又将线段绕点按顺时针方向旋转,再将其长度伸长为的2倍,得到线段,…,这样依次得到线段,,…,.则点的坐标为;当( 为自然数)时,点的坐标为.三、解答题(本题共30分,每小题5分)13.计算:.14.如图,, ,直线经过点,于点,于点.求证: .15. 解分式方程:.16. 已知,求的值.17.在“母亲节”到来之际,某校九年级团支部组织全体团员到敬老院慰问.为筹集慰问金,团员们利用课余期间去卖鲜花.已知团员们从花店按每支1.5元的价格买进鲜花共支,并按每支5元的价格全部卖出,若从花店购买鲜花的同时,还用去50元购买包装材料.(1)求所筹集的慰问金(元)与(支)之间的函数表达式;(2)若要筹集不少于650元的慰问金,则至少要卖出鲜花多少支?18.如图,在平面直角坐标系中,点为坐标原点,直线分别交轴、轴于、两点,,且、的长分别是一元二次方程的两根.(1)求直线的函数表达式;(2)点是轴上的点,点是第一象限内的点.若以、、、为顶点的四边形是菱形,请直接写出点的坐标.四、解答题(本题共20分,每小题5分)19. 如图,在四边形中,,,,连接,的平分线交于点,且.(1)求的长;(2)若,求四边形的周长.20. 2014年春季,北京持续多天的雾霾天气让环保和健康问题成为人们关注的焦点.为了美丽的北京和师生的身心健康,某校开展以“倡导绿色出行,关爱师生健康”为主题的教育活动.为了了解本校师生的出行方式,在本校范围内随机抽查了部分师生,将收集的数据绘制成下列不完整的两种统计图.请根据统计图提供的信息,解答下列问题:(1)m = ;(2)已知随机抽查的教师人数为学生人数的一半,请根据上述信息补全条形统计图,并标明相应数据;(3)若全校师生共1800人,请你通过计算估计,全校师生乘私家车出行的有多少人?21. 如图,点是以为直径的圆上一点,直线与过点的切线相交于点,点是的中点,直线交直线于点 .(1)求证:是⊙O的切线;(2)若,,求⊙O的半径.22. 阅读下面材料:如果一个三角形和一个平行四边形满足条件:三角形的一边与平行四边形的一边重合,三角形这边所对的顶点在平行四边形这边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”.如图1 所示,平行四边形即为的“友好平行四边形”.请解决下列问题:(1)仿照以上叙述,说明什么是一个三角形的“友好矩形”;(2)若是钝角三角形,则显然只有一个“友好矩形”,若是直角三角形,其“友好矩形”有个;(3)若是锐角三角形,且,如图2,请画出的所有“友好矩形”;指出其中周长最小的“友好矩形”并说明理由.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. 已知关于的一元二次方程有两个不相等的实数根.(1)求的取值范围;(2)当取最小的整数时,求抛物线的顶点坐标以及它与轴的交点坐标;(3)将(2)中求得的抛物线在轴下方的部分沿轴翻折到轴上方,图象的其余部分不变,得到一个新图象.请你画出这个新图象,并求出新图象与直线有三个不同公共点时的值.24.如图1,已知是等腰直角三角形,,点是的中点.作正方形,使点、分别在和上,连接,.(1)试猜想线段和的数量关系是;(2)将正方形绕点逆时针方向旋转,①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;②若,当取最大值时,求的值.25. 定义:如果一个与的函数图象经过平移后能与某反比例函数的图象重合,那么称这个函数是与的“反比例平移函数”.例如: 的图象向左平移2个单位,再向下平移1个单位得到的图象,则是与的“反比例平移函数”.(1)若矩形的两边分别是2 、3 ,当这两边分别增加( )、( )后,得到的新矩形的面积为8 ,求与的函数表达式,并判断这个函数是否为“反比例平移函数”.(2)如图,在平面直角坐标系中,点为原点,矩形的顶点、的坐标分别为(9,0)、(0,3) .点是的中点,连接、交于点,“反比例平移函数” 的图象经过、两点.则这个“反比例平移函数”的表达式为;这个“反比例平移函数”的图象经过适当的变换与某一个反比例函数的图象重合,请写出这个反比例函数的表达式.(3)在(2)的条件下,已知过线段中点的一条直线交这个“反比例平移函数”图象于、两点( 在的右侧),若、、、为顶点组成的四边形面积为16,请求出点的坐标.数学试卷答案及评分参考2014年4月一、选择题(本题共32分,每小题4分)题号 1 2 3 4 5 6 7 8答案 A B D C D B C B二、填空题(本题共16分,每小题4分)题号 9 10 11 12答案 (0,-4),注:第12题第一空2分,第二空2分,写对一个给1分.(不写的取值范围不扣分)三、解答题(本题共30分,每小题5分)13.解:..……………………4分……………………5分14.证明:∵,∴,……………………1分∴,∵,∴,∴.……………………2分在和中,∴≌.…………………4分∴.…………………5分15. 解:…………………2分…………………3分…………………4分经检验,是原分式方程的根. …………………5分16.解:原式= …………………2分== . …………………3分∵,∴ .∴原式= ,…………………4分= . …………………5分17.解:(1) . …………………2分(2)当时,即,…………………3分解得 . …………………4分答:若要筹集不少于650元的慰问金,至少要售出鲜花200支. …………………5分18.解:(1)∵,∴,∴, .∴点的坐标为(3,0),点的坐标为(0,4) .……………2分∵设直线的函数表达式为∴∴∴直线的函数表达式为 . ……………3分(2)点的坐标是(3,5)或(3, ).……………5分四、解答题(本题共20分,每小题5分)19.解:(1)延长交于点 .∵平分,∴ .∵,∴,∴,………1分∴ .∵,∴ . ……………2分∵,∴四边形是平行四边形,∴.………3分(2)过作的垂线,垂足为 .∵,,在中,,∴ . ………………4分∴四边形的周长………………5分20.解:(1)20%;………………1分(2)补全条形统计图如下图:………………3分(3)(人)(人)=480(人)………………5分答: 全校师生乘私家车出行的有480人.21.(1)证明:连接、,∵是直径,∴ . ………………1分∴ . m∵是的中点,∴,∴ . ………………2分∵是⊙的半径,(2)解:∵是的中点,、是⊙O的切线,∴, .∴,………………4分∴ .设⊙O的半径为 .∵∽,∴,∴ . ………………5分∴⊙O的半径为 .22. 解:(1)三角形的一边与矩形的一边重合,三角形这边所对的顶点在矩形这边的对边上. ………………1分(2)2;………………2分(3)画图:周长最小的“友好矩形”是矩形 . ………………4分理由:易知这三个矩形的面积都等于的面积的一半,所以这三个矩形的面积相等,令其为,设矩形,矩形,矩形的周长分别为、、,的边长,,,( ),则,,,∴,而,,∴,即 .同理可证 . ……………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.解:(1)由题意,得,∴.∴的取值范围为.…………2分(2)∵,且取最小的整数,∴.∴,则抛物线的顶点坐标为…………………3分∵的图象与轴相交,∴,∴,∴或,∴抛物线与轴相交于,.…………4分(3)翻折后所得新图象如图所示. …………5分平移直线知: 直线位于和时,它与新图象有三个不同的公共点.①当直线位于时,此时过点,∴,即.………………6分②当直线位于时,此时与函数的图象有一个公共点,∴方程,即有两个相等实根,∴,即.………………7分当时,满足,由①②知或.(2)①成立.以下给出证明:如图,连接,∵在Rt 中,为斜边中点,∴,,∴.…………………3分∵四边形为正方形,∴,且,∴,∴.……4分在和中,∴≌,∴.……………………5分②由①可得,当取得最大值时,取得最大值.当旋转角为时,,最大值为 . ………6分如图,此时.……………………7分25.解:(1),∴………………1分向右平移2个单位,再向上平移3个单位得到.∴是“反比例平移函数”.……2分(2)“反比例平移函数”的表达式为 . ……………3分变换后的反比例函数表达式为 . ……………4分(3)如图,当点在点左侧时,设线段的中点为,由反比例函数中心对称性,四边形为平行四边形.∵四边形的面积为16,∴=4,……………5分∵(9,3),(6,2).是的“反比例平移函数”,∴= =4,(3,1)过作轴的垂线,与、轴分别交于、点..设,∴即………………6分∴∴(1,3) ,∴点的坐标为(7,5). ………………7分当点在点右侧时,同理可得点的坐标为(15,). ………8分(注:本卷中许多试题解法不唯一,请老师们根据评分标准酌情给分)。
2014年中考数学模拟试题(一)(本试卷分A卷(100分)、B卷(60分),满分160分,考试时间120分钟)A卷(共100分)一、选择题(本大题共12小题,每小题3分,共36分)1.下列四个实数中,绝对值最小的数是【】A.-5 B.2-C.1 D.42.一个几何体的三视图如图所示,那么这个几何体是【】A.B.C.D.3.某公司开发一个新的项目,总投入约11500000000元,11500000000元用科学记数法表示为【】A.1.15×1010B.0.115×1011C.1.15×1011D.1.15×1094.把不等式组x>1x23-⎧⎨+≤⎩的解集表示在数轴上,下列选项正确的是【】A.B.C.D.5.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是【】A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量6.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为【】A .125°B .120°C .140°D .130°7.成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米.设小汽车和客车的平均速度为x 千米/小时和y 千米/小时,则下列方程组正确的是【 】A .x y 2077x y 17066+=⎧⎪⎨+=⎪⎩B .x y 2077x y 17066-=⎧⎪⎨+=⎪⎩C .x y 2077x y 17066+=⎧⎪⎨-=⎪⎩ D .77x y 1706677x y 2066⎧+=⎪⎪⎨⎪-=⎪⎩ 8.如图,在 ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DEF ABF S S 425∆∆=::,则DE :EC=【 】A .2:5B .2:3C .3:5D .3:29.若抛物线2y x 2x c =-+与y 轴的交点为(0,﹣3),则下列说法不正确的是【 】 A .抛物线开口向上 B .抛物线的对称轴是x=1C .当x=1时,y 的最大值为﹣4D .抛物线与x 轴的交点为(-1,0),(3,0)10.同时抛掷A 、B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x 、y ,并以此确定点P (x ,y ),那么点P 落在抛物线2y x 3x =-+上的概率为【 】A .118 B .112 C .19 D .1611.如图,反比例函数ky x=(x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,则k 的值为【 】A.1 B.2 C.3 D.412.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为【】A.45cm B.35cm C.55cm D.4cm二、填空题(每小题5分,共20分)13、分解因式:ab3﹣4ab=_________。
2014年中考数学模拟试题(本试卷分A 卷(100分)、B 卷(60分),满分160分,考试时间120分钟)A 卷(共100分)一、选择题(每小题3分,36分) 1、﹣6的相反数为( ) A :6 B :61C :-61D :-62、下列计算正确的是( )A :a 2+a 4=a 6B : 2a+3b=5abC :(a 2)3=a6D :a 6÷a 3=a 23、已知反比例函数的图象经过点(1,﹣2),则k 的值为( )A :2B : -21 C :1D :-2 4、下列图形中,既是轴对称图形又是中心对称图形的有( )A :4个B :3个C :2个D :1个 5、如图,a ∥b ,∠1=65°,∠2=140°,则∠3=( )A :100°B :105°C :110°D :115°6、一组数据4,3,6,9,6,5的中位数和众数分别是( )A :5和5.5B :5.5和6C :5和6D :6和67、函数的图象在( )A :第一象限B :第一、三象限C :第二象限D :第二、四象限 8、如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB=30°,CD=,则阴影部分图形的面积为( )A :4πB :2πC :πD :32π 9、甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千 米,设甲车的速度为x 千米/小时,依据题意列方程正确的是( ) A :x 30=1540-x B :x 40=1530-x C :x30=1540+x D :x 40=1530+x 10、如图,在矩形ABCD 中,AB=10,BC=5,点E 、F 分别在AB 、CD 上,将矩形ABCD 沿EF 折叠,使点A 、D 分别落在矩形ABCD 外部的点A 1、D 1处,则阴影部分图形的周长为( )A :15B :20C :25D :3011、如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( ) A :21B :55C :1010D :55212、如图,正△ABC 的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A →B →C的方向运动,到达点C 时停止,设运动时间为x (秒),y=PC 2,则y 关于x 的函数的图象大致为( )A :B :C :D :二、填空题(本大题共4小题,每小题5分,共20分) 13.若m 2-n 2=6,且m -n=2,则m +n= ▲ . 14.函数2x 1y x 1+=-中自变量x 的取值范围是 ▲ . 15.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组x 305x>0-≥⎧⎨-⎩的整数,则这组数据的平均数是 ▲ .16.已知菱形ABCD 的两条对角线分别为6和8,M 、N 分别是边BC 、CD 的中点,P 是对角线BD 上一点,则PM+PN 的最小值= ▲ .三、解答题(本大题共5小题,共44分) 17.计算:()()1201302sin 60534015131π-⎛⎫+---+-+ ⎪-⎝⎭.18.已知,如图,△ABC 和△ECD 都是等腰直角三角形,∠ACD=∠DCE=90°,D 为AB 边上一点.求证:BD=AE .19.随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成):数据段 频数 频率 30~40 10 0.05 40~50 36 50~60 0.39 60~70 70~80 20 0.10 总计2001注:30~40为时速大于等于30千米而小于40千米,其他类同 (1)请你把表中的数据填写完整; (2)补全频数分布直方图;(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?20.如图,某校综合实践活动小组的同学欲测量公园内一棵树DE 的高度,他们在这棵树的正前方一座楼亭前的台阶上A 点处测得树顶端D 的仰角为30°,朝着这棵树的方向走到台阶下的点C 处,测得树顶端D 的仰角为60°.已知A 点的高度AB 为3米,台阶AC 的坡度为13:(即AB :BC=13:),且B 、C 、E 三点在同一条直线上.请根据以上条件求出树DE 的高度(侧倾器的高度忽略不计).21.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120,具有一次函数的关系,如下表所示.x 50 60 90 120y 40 38 32 26(1)求y关于x的函数解析式;(2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费.B卷(共60分)四、填空题(本大题共4小题,每小题6分,共24分)22.在△ABC中,已知∠C=90°,7sinA sinB5+=,则sinA sinB-=▲.23.如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置,若正六边形的边长为2cm,则正六边形的中心O运动的路程为▲cm.24.如图,已知直线l:y3x=,过点M(2,0)作x轴的垂线交直线l于点N,过点N 作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M10的坐标为▲.25.在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A (13,0),直线y kx 3k 4=-+与⊙O 交于B 、C 两点,则弦BC 的长的最小值为 ▲ . 五、解答题(本大题共3小题,每小题12分,共36分)26.如图,AB 是半圆O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点C ,BD ⊥PD ,垂足为D ,连接BC .(1)求证:BC 平分∠PDB ; (2)求证:BC 2=AB•BD ;(3)若PA=6,PC=62,求BD 的长.27.如图,在等边△ABC 中,AB=3,D 、E 分别是AB 、AC 上的点,且DE ∥BC ,将△ADE 沿DE 翻折,与梯形BCED 重叠的部分记作图形L . (1)求△ABC 的面积;(2)设AD=x ,图形L 的面积为y ,求y 关于x 的函数解析式;(3)已知图形L 的顶点均在⊙O 上,当图形L 的面积最大时,求⊙O 的面积.28.已知二次函数2y ax bx c =++(a >0)的图象与x 轴交于A (x 1,0)、B (x 2,0)(x 1<x 2)两点,与y 轴交于点C ,x 1,x 2是方程2x 4x 50+-=的两根.(1)若抛物线的顶点为D,求S△ABC:S△ACD的值;(2)若∠ADC=90°,求二次函数的解析式.2014年中考数学模拟试题答案一、A CDCBB ADCDBC13. 314.1x2≥-且x≠115. 516. 517. 解:原式=3317 5311222-+-⨯-+=。
2014年中考数学模拟卷一、选择题(本大题共6小题,每小题5分,共30分)1.下列各数:pi;2,0,9,0.23bull;,cos60deg;,227,0.030 030 003,1-2中,无理数有( )A.2 个B.3 个C.4 个D.5 个2.在平面直角坐标系中,下面的点在第四象限的是( )A.(1,3)B.(0,-3)C.(-2,-3)D.(pi;,-1)3.下列图案中,既是轴对称图形又是中心对称图形的是( )4.形状相同、大小相等的两个小木块放置于桌面,其俯视图如图J2shy;1,则其正视图是( )5.如图J2shy;2,△ABC与△Aprime;Bprime;Cprime;是位似图形,点O是位似中心,若OA=2AAprime;,S△ABC=8,则S△Aprime;Bprime;Cprime;=()A.9B.16C.18D.24图J2shy;2 图J2shy;36.已知二次函数y=ax2+bx+c(ane;0)的图象如图J2shy;3,给出以下结论:①因为agt;0,所以函数y有最大值;②该函数图象关于直线x=-1对称;③当x=-2时,函数y的值大于0;④当x=-3或x=1时,函数y的值都等于0.其中正确结论的个数是( )A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题5分,共20分)7.如图J2shy;4,直线l与直线a,b相交.若a∥b,ang;1=70deg;,则ang;2的度数是________.图J2shy;4 图J2shy;58.已知某种型号的纸100张厚度约为1 cm,那么这种型号的纸13亿张厚度约为____________km.9.菱形OACB在平面直角坐标系中的位置如图J2shy;5,点C的坐标是(6,0),点A的纵坐标是1,则点B 的坐标是________.10.函数y=1-kx的图象与直线y=x没有交点,那么k 的取值范围是____________.三、解答题(本大题共5小题,每小题10分,共50分)11.化简:x-1x÷x-2x-1x.12.如图J2shy;6,放置在水平桌面上的台灯的灯臂AB长为40 cm,灯罩BC长为30 cm,底座厚度为2 cm,灯臂与底座构成的ang;BAD=60deg;.使用发现,光线最佳时灯罩BC与水平线所成的角为30deg;,此时灯罩顶端C到桌面的高度CE是多少厘米?(结果精确到0.1 cm,参考数据:3asymp;1.732)13.已知:关于x的一元二次方程:x2-2mx+m2-4=0.(1)求证:这个方程有两个不相等的实数根;(2)当抛物线y=x2-2mx+m2-4与x轴的交点位于原点的两侧,且到原点的距离相等时,求此抛物线的解析式.14.某校为了解本校八年级学生的课外阅读喜好,随机抽取部分该校八年级学生进行问卷调查(每人只选一种书籍),图J2shy;7是整理数据后画的两幅不完整的统计图,请你根据图中的信息,解答下列问题:(1)这次活动一共调查了________名学生;(2)在扇形统计图中,“其他”所在的扇形圆心角为________;(3)补全条形统计图;(4)若该校八年级有600人,请你估计喜欢“科普常识”的学生有________人.15.如图J2shy;8,在⊙O中,弦BC垂直于半径OA,垂足为E,点D是优弧上的一点,连接BD,AD,OC,ang;ADB=30deg;.。
2 014年学业水平数学试题模拟测试(一)一、单项选择题(每个选项中只有一个正确答案,请将正确答案的序号填入表格中。
每小题3分,共30分) 1、计算:32⋅a a 5a B . 6a C. 8aD. 9a 2、某种商品进价为800元,标价1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打( )折。
A. 6折B. 7折C. 8折D. 9折3、 二次函数()213y x =--+图象的顶点坐标是A.()13-, B.()13,C.()13--,D.()13-,4、若不等式组⎩⎨⎧>-<+m x x x 148的解集是x >3,则m 的取值范围是A .m >3 B .m ≥3 C .m ≤3 D .m <35、正方形ABCD 中,E 、F 分别为AB 、BC 的中点,AF 与DE 相交于点O ,则AODO= A .13B .23 D .126、下列一组几何体的俯视图是7、下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明从 中抽出一张,则抽到偶数的概率是A .13B .12C .34D .238、某班派9名同学参加拔河比赛,他们的体重分别是(单位:千克):67,59,61,59,63,57,70,59,65,这组数据的众数和中位数分别是A. 59,63 B. 59,61 C. 59,59D. 57,619、在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且 0m ≠)的图象可能..是CBOA图810、如图,正方形ABCD 的边长为2, 将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动。
若点Q 从点A 出发,沿图中所示按A →B →C →D →A 滑动到A 止,同时点R 从点B 出发,沿图中所示按B →C →D →A →B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为A .2 B .4-π C .π D .1π- 二、填空题(每题4分,共20分)11、因式分解:2288x x -+ = .12、国家体育场“鸟巢”建筑面积25.8万平方米,将25.8万平方米用科学记数法(保留2个有效数字),可以表示为 平方米.13、 如图8,AB 是半圆O 的直径,∠BAC =30°,BC 为半圆的切线,且BC=O 到AC 的距离是.14、将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n = (用含n 的代数式表示). 15、如图是抛物线c bx ax y ++=2的一部分,其对称轴为直线x =1,若其与x 轴一交点为B (3,0),则由图象可知,不等式c bx ax ++2>0的解集是三、解答题(共70分)16、(本题满分5分)计算:)2(2)(2006)2245---π+17、(本题满分5分)先化简,再求值:21(111a a a a --÷++,其中12a =.方法一 方法二18、(本题满分6分) 如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在下图方格内...添涂黑二个小正方形,使它们成为轴对称图形.19、(本题满分10分)甲、乙两人用如图所示的两个分格均匀的转盘做游戏:分别转动两个转盘,若转盘停止后,指针指向一个数字(若指针恰好停在分格线上,则重转一次),用所指的两个数字作乘积,如果积大于10,那么甲获胜;如果积不大于10,那么乙获胜.请你解决下列问题: (1)利用树状图(或列表)的方法表示游戏所有可能出现的结果; (2)求甲、乙两人获胜的概率.20、(本题满分10分)亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M ,颖颖的头顶B 及亮亮的眼睛A 恰在一条直线上时,两人分别标定自己的位置C ,D .然后测出两人之间的距离 1.25m CD =,颖颖与楼之间的距离30m DN =(C ,D ,N 在一条直线上),颖颖的身高 1.6m BD =,亮亮蹲地观测时眼睛到地面的距离0.8m AC =.你能根据以上测量数据帮助他们求出住宅楼的高度吗?MNB A CD 第20题图21、(本题满分10分)已知:如图,ABC △内接于⊙O ,点D 在OC 的延长线上,1sin 2B =,30CAD ∠=. (1)求证:AD 是⊙O 的切线;(2)若OD AB ⊥,5BC =,求AD 的长.22、(本题满分12分)如图所示,正方形网格中,ABC △为格点三角形(即三角形的顶点都在格点上). (1)把ABC △沿BA 方向平移后,点A 移到点1A ,在网格中画出平移后得到的11A B C 1△; (2)把11A B C 1△绕点1A 按逆时针方向旋转90°,在网格中画出旋转后的22A B C 1△; (3)如果网格中小正方形的边长为1,求点B 经过(1)、(2)变换的路径总长.23、(本题满分12分) 阅读材料:如图26-①,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部的线段的长度叫△ABC 的“铅垂高”(h ).我们可得出一种计算三角形面积的新方法:ah S ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半. 解答下列问题:如图26-②,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2)求CAB ∆的铅垂高CD 及CAB S ∆;(3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P,使Cy BD 1(图26-①)98PAB CAB S S ∆∆=,若存在,求出P 点的坐标;若不存在,请说明理由2010年学业水平数学模拟测试(一)一、选择题1.A2.C3.B4.C5. D6.B7.C8. B9. D 10. B 二、填空题11. 22(2)x - 12. 5106.2⨯ 13.3 14.13+n ; 15.x <-1或x >3三、解答题16.解:原式41342=-+--21=-1= 17.原式=11a -, 122a =-将代入得 18(略).19.解:(1)树状图法或列表法:(注:学生只用一种方法即可)(2)()()1233P P ==甲乙,.20.解:过A 作CN 的平行线交BD 于E ,交MN 于F . 由已知可得0.8m FN ED AC ===,1.25m AE CD ==,30m EF DN ==,90AEB AFM ==∠∠.又BAE MAF =∠∠,ABE AMF ∴△∽△.BE AE MF AF ∴=. 即1.60.8 1.251.2530MF -=+. 解得()20m MF =.()200.820.8m M N M F F N ∴=+=+=.所以住宅楼高为20.8m .21.解:(1)证明:如图,连结OA . 因为1sin 2B =, 所以30B ∠=. 故60O ∠=. 又OA OC =,所以ACO △是等边三角形. 故60OAC ∠=.因为30CAD ∠=, 所以90OAD ∠=. 所以AD 是⊙O 的切线.(2)解:因为OD AB ⊥, 所以OC 垂直平分AB .则5AC BC ==.所以5OA =. 在OAD △中,90OAD ∠=,由正切定义,有tan ADAOD OA∠=. 所以AD =⨯1 2 3 4 4 8 12 551015AB MFE C DN开始 4 5141424284312⨯=⨯=⨯=,,,3 1515252105315⨯=⨯=⨯=,,, 322.解:(1)画图正确. (2)画图正确. (3)1BB ==弧12B B的长901802==. 点B所走的路径总长2=. 23.解:(1)设抛物线的解析式为:4)1(21+-=x a y 把A (3,0)代入解析式求得1-=a 所以324)1(221++-=+--=x x x y 设直线AB 的解析式为:b kx y +=2 由3221++-=x x y 求得B 点的坐标为(03),把(30)A ,,(03)B ,代入b kx y +=2中 解得:13k b =-=,所以32+-=x y(2)因为C 点坐标为(1,4)所以当x =1时,y 1=4,y 2=2 所以CD =4-2=2 13232CAB S =⨯⨯=△(平方单位) (3)假设存在符合条件的点P ,设P 点的横坐标为x ()30<<x ,△PAB 的铅垂高为h ,则x x x x x y y h 3)3()32(2221+-=+--++-=-=由S △PAB =89S △CAB 得:389)3(3212⨯=+-⨯⨯x x 化简得:091242=+-x x 解得,23=x 将23=x 代入3221++-=x x y 中,解得P 点坐标为315()24,。
2014年初三数学中考模拟试题(考试时间90分钟,满分120分)A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)1、计算2a 2÷a 的结果是( )A .2B .2aC .2a 3D .2a 22.下列图形既是轴对称图形, 又是中心对称图形的是:( )3、资料显示,2010年“十 一”黄金周全国实现旅游收入约463亿元,用科学记数法表示463亿这个数是:( )A. 463×108×108×1010×10114、如图,是由相同小正方体组成的立体图形,它的主视图为( )A .B .C .D 5、函数321-=x y 中,自变量x 的取值范围为( ) A .23>x B .23≠x C .23≠x 且0≠x D .23<x6、如图,已知OB OA ,均为⊙O 上一点,若︒=∠80AOB ,则=∠ACB ( ) A .80°B .70°C .60°D .40°7、如图,四边形ABCD 为正方形,若E AB ,4=是AD 边上一点(点E 与点A 、D 不重合),BE 的中垂线交AB 于M ,交DC 于N ,设x AE =,则图中阴影部分的面积S 与x 的大致图像是( )8、一个均匀的立方体六个面上分别标有数字1,2,3,4,5,6,如图是这个立方体表面的展开A BCo (第6题图)A B C D (第4题图)图,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面数字的21的概率是( ) A .61 B .31 C .21 D .328题图 9题图9、如图,在△ABC 中,∠C =90°,AC >BC ,若以AC为底面圆的半径,BC 为高的圆锥的侧面积为S 1,若以BC 为底面圆的半径,AC为高的圆锥的侧面积为S 2 , 则( ) A .S 1 =S 2 B .S 1 >S 2 C .S 1 <S 2 D .S 1 ,S 2的大小大小不能确定10、在直角坐标系中,⊙O 的圆心在原点,半径为3,⊙A 的圆心A 的坐标为(-3,1),半径为1,那么⊙O 与⊙A 的位置关系为( )A 、外离B 、外切C 、内切D 、相交第Ⅱ卷(非选择题,共70分)二、填空题:(本大题共5题,每小题4分,共20分)11、为了估计湖里有多少条鱼,我们从湖里捕上100条做上标记,然后放回湖里,经过一段时间待带标记的鱼完全混合于鱼群中后,第二次捕得200查方式,我们可以估计湖里有鱼 ________条.12、不等式组⎩⎨⎧2x +1>-1x +2<≤3的整数解为 .13、如图同心圆,大⊙O 的弦AB 切小⊙O 于P ,且AB=614、今年我省荔枝又喜获丰收. 目前市场价格稳定,荔枝种植户普遍获利枝总产量为50 000吨,销售收入为61 000万元. 已知“妃子笑”品种售价为万元/吨,其它品种平均售价为万元/吨,求“妃子笑”和其它品种的荔枝产量各多少吨. 如果设“妃子笑”荔枝产量为x 吨,其它品种荔枝产量为y15、如图,正比例函数y=kx 与反比例函数y =x1过B 作X 轴的垂线交X 轴于点C ,连接AC ,则△ABC三、解答题:(本大题共7个小题,共50分)16、(本题满分18分,每题6分)(1)计算: 131-⎪⎭⎫ ⎝⎛0232006⎪⎪⎭⎫ ⎝⎛--3-sin60°.(2)化简求值:12,122422-=++÷⎪⎪⎭⎫ ⎝⎛-+-x x x x x x 其中(3)解方程:3 x 2+x = 1x 2-x17、(本题满分7分)西部建设中,某工程队承包了一段72千米的铁轨的铺设任务,计划若干天完成,在铺设完一半后,增添工作设备,改进了工作方法,这样每天比原计划可多铺3千米,结果提前了2天完成任务。
DBCA 2014年中考调研测试(一)数 学 试 卷考生须知:1.本试卷满分为120分,考试时间为120分钟。
2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题纸上答题无效。
4.选择题使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔记清楚。
5.保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀。
第Ⅰ卷 选择题(共30分)(涂卡)一、选择题(每小题3分,共30分) 1.54的相反数是( ) A. 45 B. 45- C. 54 D. 54-2.下列计算正确的是( )A .34x x x +=B .325()x x =C .633x x x ÷=D .2532x x x =⋅3.下列图形中既是轴对称图形又是中心对称图形的个数是( )A. 1个B. 2个C. 3个D. 4个 4.图1所示的几何体主视图是( )图1 A. B .C .D .5.将抛物线2)2(3-=x y 向左平移3个单位得到的抛物线的解析式是( ) A.2)5(3-=x y B.3)2(32+-=x y C.2)1(3+=x y D.3)2(32--=x y6.一个不透明的袋子里有5个红球和3个黄球,这些球除颜色外完全相同,从袋子中随机摸出一个球,它是黄球的概率是( )A.15 B. 31 C. 38 D. 587.已知反比例数3k y x+=的图象在每一象限内y 随x 的增大而增大,则k 的取值范围是( )A. k>3B. k<-3C. k>-3D. k<38.如图,Rt △ABC 中,∠ACB=90º,CD ⊥AB ,BC=3,AC=4, tan ∠BCD 等于( )A.34 B. 43 C. 35 D. 459.如图,矩形ABCD 中,两条对角线相交于点O ,折叠矩形,第8题图 EOA DE DACBAFEACBDx y (时)(千米)4207CO A B ED 使顶点D 与对角线交点O 重合,折痕为CE ,已知△CDE 的 周长是10cm,则矩形ABCD 的周长为( )A. 15cmB. 18cmC. 19cmD. 20cm10.快车与慢车分别从相距420千米的甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1小时,然后按原路原速返回,快车比慢车晚1小时到达甲地.快慢两车距各自出发地的路程y (千米)与所用的时间x (时)的关系如图所示,下列说法正确的有 ( )①快车返回的速度为140千米/时 ②慢车的速度为70千米/时 ③出发314小时时,快慢两车距各自出发地的路程相等④快慢两车出发错误!未找到引用源。
数量和位置变化,平面直角坐标系
一、选择题
1、(湖州市中考模拟试卷1)对任意实数x ,点P(x,x 2-2x)一定不在..( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
答案:C
2、(安徽芜湖一模)若点 P (a ,a -3)在第四象限,则a 的取值范围是 ( ). A .-3<a <0 B .0<a <3 C .a >3
D . a <0
3、(江苏扬州弘扬中学模拟)小华同学利用假期时间乘坐一大巴去看望在外打工的妈妈,出发时,大巴的油箱装满了油,匀速行驶一段时间后,油箱内的汽油恰剩一半时又加满了油,接着按原速度行驶,到目的地时油箱中还剩有
3
1
箱汽油,设油箱中所剩汽油量为V 升,时间为t (分钟),则V 与t 的大致图象是( )
答案:D
4、(江苏扬州弘扬中学模拟)已知点P (a -1,a +2)在平面直角坐标系的第二象限内,则a 的取值范围在数轴上可表示为(阴影部分)( )
答案:C
5、(山东省德州一模)小明从家骑车上学,先上坡到达A 地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡的速度仍然保持不变,那么他从学校回到家需要的时间是( )
A. 8.6分钟
B. 9分钟
C. 12分钟
D.16分钟 答案:C
A B D
C A
1 -
2 -
3 -1 0 2
C 1 --B 1 -2
-
D 1
-2 -3 -1 0
2
第4题
第5题
6、(山东省德州一模)如图,在平面直角坐标系中,正方形OACB 的顶点O 、C 的坐标分别是(0, 0),(2, 0),则顶点B 的坐标是( ). A.(1,1) B.(-1,-1) C.(1,-1) D.(-1,1)
答案:C
7、 (河北省一摸)|如果点P(m ,1-2m)在第四象限,那么m 的取值范围是
A .102m <<
B .102m -<<
C .0m <
D .12
m > 答案:D
8、(河北省一摸)|如图5,三个大小相同的正方形拼成六边形ABCDEF ,一动点P 从点A 出
发沿着A→B→C→D→E 方向匀速运动,最后到达点E .运动过程中△PEF 的面积(S )随时间(t )变化的图象大致是
答案:B
二、填空题
1、(河北模拟)平面直角坐标系中,点A
(2,3)关于x 轴的对称点坐标为
.
答案:(2,-3)
2、(温州一摸)在平面直角坐标系中,点(-3,2)到x 轴的距离是_____. 答案:2
3、(上海市)在平面直角坐标系中,如果点(1,3)A 与点(,3)B x 之间的距离是5,那么x 的值是 ▲ . 答案:4-或6;
A .. B
D
C
图5 A B
C D
E
.
F
.
P
.
4、(山东省德州一模)在直角坐标系中,点P(-3,2)关于X轴对称的点Q的坐标
是.
答案:(-3,-2)
5、(山东省德州一模)如图,在已建立直角坐标系的4×4正方形方格纸中,△ABC是格点
三角形(三角形的三个顶点都是小正方形的顶点),若以格点P、A、B为顶点的三角形与△ABC相似,则格点P的坐标是.
答案:(1,4),(3,4),(3,1)
6、(温州市一模)在平面直角坐标系中,点P(-1,4)所在的象限是()
A.第一象限B.第二象限C.第三象限D.第四象限答案:B
7、(吉林中考模拟)在函数y=错误!未找到引用源。
中,自变量x的取值范围是.
答案:x≠5
8、(温州市中考模拟)在平面直角坐标系中,点(-3,2)到x轴的距离是_____.
答案:2
三、解答题
1、(吉林镇赉县一模)每个小方格是边长为1个单位长度的小正方形,菱形OABC在平面直角坐标系中的位置如图所示.
(1)以O点为位似中心,在第一象限内将菱形OABC放大为原来的2倍得到菱形OA1B1C1,请画出菱形OA1B1C1,并直接写出点B1的坐标;
(2)将菱形OABC绕原点O顺时针旋转90°,得到菱形OA2B2C2,请画出菱形OA2B2C2,并求出点B旋转到B2的路径长.
(第2题)
答案:
1题图。