2014--xxbg-n3非线性方程的解法在安全工程中的应用-陈建.崔啸.夏欣茹.孔令华
- 格式:ppt
- 大小:706.50 KB
- 文档页数:21
非线性有限元方法及实例分析梁军河海大学水利水电工程学院,南京(210098)摘 要:对在地下工程稳定性分析中常用的非线性方程组的求解方法进行研究,讨论了非线性计算的迭代收敛准则,并利用非线性有限元方法分析了一个钢棒单轴拉伸的实例。
关键词:非线性有限元,方程组求解,实例分析1引 言有限单元法已成为一种强有力的数值解法来解决工程中遇到的大量问题,其应用范围从固体到流体,从静力到动力,从力学问题到非力学问题。
有限元的线性分析已经设计工具被广泛采用。
但对于绝大多数水利工程中遇到的实际问题如地下洞室等,将其作为非线性问题加以考虑更符合实际情况。
根据产生非线性的原因,非线性问题主要有3种类型[1]:1.材料非线性问题(简称材料非线性或物理非线性) 2.几何非线性问题3.接触非线性问题(简称接触非线性或边界非线性)2 非线性方程组的求解在非线性力学中,无论是哪一类非线性问题,经过有限元离散后,它们都归结为求解一个非线性代数方程组[2]:()()()00021212211=……==n n n n δδδψδδδψδδδψΛΛΛ (1.1)其中n δδδ,,,21Λ是未知量,n ψψψ,,,21Λ是n δδδ,,,21Λ的非线性函数,引用矢量记号[]T n δδδδΛ21= (1.2) []T n ψψψψΛ21= (1.3)上述方程组(1.1)可表示为()0=δψ (1.4)可以将它改写为()()()0=−≡−≡R K R F δδδδψ (1.5)其中()δK 是一个的矩阵,其元素是矢量的函数,n n ×ijk R 为已知矢量。
在位移有限元中,δ代表未知的结点位移,()δF 是等效结点力,R 为等效结点荷载,方程()0=δψ表示结点平衡方程。
在线弹性有限元中,线性方程组0=-R K δ (1.6)可以毫无困难地求解,但对线性方程组()0=δψ则不行。
一般来说,难以求得其精确解,通常采用数值解法,把非线性问题转化为一系列线性问题。
非线性方程组数值解法随着科学技术的进步和发展,人们发现非线性方程组在科学研究中起着越来越重要的作用,成为解决复杂科学问题的有力工具。
解决非线性方程组的核心是采用有效的数值解法,它们可以帮助我们快速解决复杂的非线性问题。
一般来说,解决非线性方程组的数值解法可以分为三类:一类是积分方法,一类是有限元方法,另一类是迭代方法。
积分方法包括欧拉法和梯形法等;有限元方法则包括Galerkin方法、Ritz方法、Kirchhoff方法等;而迭代方法有Newton-Raphson方法、拟牛顿投影方法、拟牛顿变量步长方法、McKenna迭代法等。
积分方法按照方程组的方向将时间分解为若干步,并利用各步的积分求解出方程组的解。
它的优点是收敛性强,适用范围广,但缺点是计算量大,实际计算起来比较复杂。
有限元方法将非线性方程组转换成一组有限元方程,然后利用有限元解法求解出解析解。
它的优点是快速计算和分空间,可以解决含有空间变量的非线性问题,但缺点是收敛性一般,容易发散。
迭代方法首先采用初始值作为方程组的解,然后不断迭代求解,该方法的优点是可以用来求解非线性方程组的定点解,但也有缺点,如求解精度较低,耗时较长。
在实际应用中,解决非线性方程组数值解法需要考虑多方面因素,如准确性、可行性、处理效率和使用复杂度等,以选择合适的解法。
此外,还需要考虑非线性方程组的特殊性质,如线性方程组不可约或不可约变系数等,以决定是否可以采用一般的解法。
因此,解决非线性方程组的数值解法是一项复杂的工作,要求工程师必须运用知识和技术,有系统地考虑不同的解法,并在不同情况下进行取舍,才能获得最佳的结果。
总之,解决非线性方程组的数值解法具有复杂的理论和实际应用,为解决复杂科学问题提供了有力的工具,受到了越来越多的关注。
只有深入地研究各类数值解法,推动它们的发展,才能满足现实需求,建立科学有效的解决方案,最终实现理想的结果。
求解非线性方程的三种新的迭代法非线性方程是指未知数的高次幂或三角函数、指数函数等构成的方程。
非线性方程的求解是数值计算中的一个重要问题,常用的方法有迭代法、试位法、牛顿法等。
下面介绍三种新的迭代法。
1. 牛顿法的改进牛顿法是一种求解非线性方程的常用方法,通过选择合适的初始值,可以得到方程的一个根。
在某些情况下,牛顿法的收敛速度较慢,甚至可能发散。
为了克服这个问题,有人提出了牛顿法的改进方法。
改进的思想是在每一步的迭代中引入一个修正因子,使得每一步的迭代都能够加速收敛。
这个修正因子可以选择为方程导数的逆矩阵,或者通过数值计算方法来估计。
通过引入修正因子,可以使得牛顿法的收敛速度更快,提高求解非线性方程的效率。
2. 弦截法弦截法是一种求解非线性方程的迭代法,它可以看作是牛顿法的一种变形。
在牛顿法中,通过选择切线与x轴的交点作为新的逼近解,而在弦截法中,通过选择切线与两个初始逼近解的连线的交点作为新的逼近解。
弦截法的迭代公式为:Xn+1 = Xn - f(Xn) * (Xn - Xn-1) / (f(Xn) - f(Xn-1))在每一步迭代中,选择两个初始逼近解Xn和Xn-1,代入上述迭代公式即可求得新的逼近解Xn+1。
通过不断迭代,可以逐渐接近方程的根。
3. 牛顿-拉夫逊法牛顿-拉夫逊法是一种变步长的牛顿法,它的主要思想是通过动态调整迭代步长的大小来提高求解非线性方程的效率。
在牛顿-拉夫逊法中,首先根据初始解得到牛顿法的逼近解,然后根据逼近解和方程的误差,动态调整迭代步长。
如果逼近解接近方程的根,将步长增加,以加快收敛速度;如果逼近解偏离方程的根,将步长减小,以避免迭代发散。
λ为步长调整因子,可以根据迭代过程中的收敛情况进行动态调整。
牛顿法的改进、弦截法和牛顿-拉夫逊法是三种求解非线性方程的新的迭代法。
这些方法通过引入修正因子、变化逼近解和动态调整步长等方法,可以提高求解非线性方程的效率和收敛速度。
数学中的非线性方程求解算法研究一、引言非线性方程是数学中的重要问题,具有广泛的应用背景。
在现实生活中,很多问题都是由非线性方程建模的,需要通过求解非线性方程来得到问题的解。
因此,对于非线性方程求解算法的研究具有重要的理论和实际意义。
本文旨在对目前常用的非线性方程求解算法进行详细介绍,并对其优缺点进行评价和比较。
二、二分法二分法也称为割线法或区间收缩法,它是一种比较基础的求解非线性方程的方法。
具体来讲,二分法的思想是:首先给定一个初始区间,然后取区间中点作为近似值,通过与零点的比较来缩小区间,直到区间长度小于给定的精度要求为止。
二分法的基本流程可以简述如下:1. 给定初始区间[a,b],满足f(a)f(b)<0。
2. 求出中点c=(a+b)/2。
3. 计算f(c)并判断其与零点的位置关系。
4. 根据f(a)f(c)<0或者f(c)f(b)<0将区间缩小。
5. 重复步骤2~4,直到满足收敛条件。
二分法的优点在于其思路简单,易于实现和理解。
但是,其收敛速度比较慢,并且对函数的单调性和连续性要求比较高。
三、牛顿迭代法牛顿迭代法是一种基于导数信息的非线性方程求解方法。
其基本思想是:选取一个初始点作为近似解,并通过不断迭代,逐渐逼近方程的零点。
牛顿迭代法的基本流程如下:1. 选取一个初始点x0。
2. 计算函数f(x)的一阶导数f'(x0)。
3. 计算当前点x0的函数值f(x0)。
4. 根据泰勒公式得到近似解x1=x0-f(x0)/f'(x0)。
5. 重复步骤2~4直到满足收敛条件。
牛顿迭代法具有收敛速度快的优点,尤其适用于连续可微的函数。
但是其缺点在于需要求取函数的一阶导数,如果函数难以求导或者计算导数比较费时,则会影响其求解效率和准确性。
四、弦截法弦截法是一种基于线性插值的非线性方程求解方法。
其基本思路是:从两点出发构造一条直线,通过直线与x轴的交点来逼近方程的零点。
根据插值定理,可以通过两个初始点上的函数值来构造一条直线,并根据截距与零点的位置关系来选择新的近似解。
各类非线性方程的解法非线性方程是一类数学方程,其中包含了一个或多个非线性项。
求解非线性方程是数学研究中的重要问题之一,它在科学、工程和经济等领域具有广泛的应用。
本文将介绍几种常见的非线性方程的解法。
1. 试-and-错误法试-and-错误法是求解非线性方程的最简单方法之一。
它基于逐步尝试的思路,通过不断试验不同的数值来逼近方程的解。
这种方法的缺点在于需要反复试验,效率较低,但对于简单的方程或近似解的求解是有效的。
2. 迭代法迭代法是一种常用的数值计算方法,可以用来求解非线性方程的近似解。
它的基本思想是通过迭代计算逐步逼近方程的解。
不同的迭代方法包括牛顿迭代法、弦截法和割线法等。
这些方法都是基于线性近似的原理,通过不断迭代计算来逼近解。
迭代法的优点是可以得到较为精确的解,适用于多种类型的非线性方程。
3. 数值优化方法数值优化方法是一种求解非线性方程的高级方法,它将问题转化为优化问题,并通过优化算法来寻找方程的最优解。
常用的数值优化方法包括梯度下降法、牛顿法和拟牛顿法等。
这些方法通过不断迭代调整变量的取值,以最小化目标函数,从而求解非线性方程。
数值优化方法的优点是可以处理复杂的非线性方程,并且具有较高的求解精度。
4. 特殊非线性方程的解法对于特殊的非线性方程,还可以使用特定的解法进行求解。
例如,对于二次方程可以使用公式法直接求解,对于三次方程可以使用卡尔达诺法等。
这些特殊解法适用于特定类型的非线性方程,并且具有快速和精确的求解能力。
综上所述,非线性方程的解法有试-and-错误法、迭代法、数值优化方法和特殊非线性方程的解法等。
根据具体的方程类型和求解要求,选择合适的方法进行求解,可以得到满意的结果。
非线性方程在工程设计中的应用在工程设计的广袤领域中,非线性方程犹如一位神秘而重要的“幕后英雄”,虽然不常被直接提及,但其作用却贯穿于从微观的材料特性研究到宏观的大型结构设计的各个环节。
理解和应用非线性方程,对于工程师们来说,是解决复杂问题、实现创新设计的关键。
首先,让我们来谈谈什么是非线性方程。
简单来说,非线性方程是指方程中未知数的次数不是一次的方程。
与线性方程相比,非线性方程的行为和性质要复杂得多。
在线性系统中,输入和输出之间存在着简单的比例关系,而在非线性系统中,这种关系变得错综复杂,可能会出现诸如突变、分岔、混沌等难以预测的现象。
在工程材料的研究中,非线性方程有着广泛的应用。
以金属材料的塑性变形为例,材料的应力应变关系往往不是线性的。
通过建立非线性方程来描述这种关系,可以更准确地预测材料在受力情况下的行为,从而为结构设计提供可靠的依据。
例如,在航空航天领域,飞机零部件所使用的高强度合金材料,其在极端条件下的力学性能就需要通过非线性方程进行精确模拟,以确保飞行安全。
在结构力学中,非线性方程的应用更是至关重要。
当结构受到大变形、大位移或者材料非线性等因素的影响时,线性理论就不再适用,必须采用非线性方程进行分析。
比如,桥梁在车辆荷载作用下的变形、高层建筑在地震作用下的响应等,都需要考虑非线性因素。
通过求解非线性方程,可以得到结构的真实受力状态和变形情况,为设计出更安全、更经济的结构提供有力支持。
在流体力学领域,非线性方程同样扮演着重要角色。
流体的流动通常是非线性的,特别是在高速、复杂的流动情况下,如飞机机翼周围的气流、管道内的湍流等。
通过建立非线性的流体力学方程,如纳维斯托克斯方程,并采用数值方法求解,可以预测流体的流动特性,为飞行器和管道系统的设计提供优化方案。
在电子工程中,非线性方程也有其用武之地。
例如,在半导体器件的设计中,电流电压关系往往是非线性的。
通过建立相应的非线性方程模型,可以优化器件的性能,提高电子设备的工作效率和稳定性。
非线性方程数值解法及其应用摘要:数值计算方法主要研究如何运用计算机去获得数学问题的数值解的理论和算法。
本文主要介绍非线性方程的数值解法以及它在各个领域的应用。
是直接从方程出发,逐步缩小根的存在区间,或逐步将根的近似值精确化,直到满足问题对精度的要求。
我将从二分法、Steffensen 加速收敛法、Newton 迭代法、弦截法来分析非线性方程的解法及应用。
关键字:非线性方程;二分法;Steffensen 加速收敛法;代数Newton 法;弦截法一、前言随着科技技术的飞速发展,科学计算越来越显示出其重要性。
科学计算的应用之广已遍及各行各业,例如气象资料的分析图像,飞机、汽车及轮船的外形设计,高科技研究等都离不开科学计算。
因此经常需要求非线性方程 f(x) = O 的根。
方程f(x) = O 的根叫做函数f(x)的零点。
由连续函数的特性知:若f(x)在闭区间[a ,b]上连续,且f(a)·f(b)<O ,则f(x) = O 在开区间(a,b)内至少有一个实根。
这时称[a,b]为方程f(x) = O 的根的存在区间。
本文主要是对522)(23-+=x x x f 在区间[1.2]的根的数值解法进行分析,介绍了非线性方程数值解法的四种方法,从而得到在实际问题中遇到非线性方程根的求解问题的解决方法。
二、非线性方程的数值解法1、二分法二分法的基本思想是将方程根的区间平分为两个小区间,把有根的小区间再平分为两个更小的区间,进一步考察根在哪个更小的区间内。
如此继续下去,直到求出满足精度要求的近似值。
设函数f(x)在区间[a,b]上连续,且f(a)·f(b)<O ,则[a,b]是方程f(x)=O 的根的存在区间,设其内有一实根,记为*x 。
取区间[a,b]的中点)(21b a x k +=,并计算)(1x f ,则必有下列三种情况之一成立: (1))(1x f = O,1x 就是方程的根*x ;(2)f(a)·f(1x )<O ,方程的根*x 位于区间[a,1x ]之中,此时令a a =1,11x b =; (3)f(1x )·f(b)<O ,方程的根*x 位于区间[1x ,b]之中,此时令0111,b b x a ==。