第4讲:函数
- 格式:docx
- 大小:61.61 KB
- 文档页数:5
第四节 函数)sin(ϕω+=x A y 的 图像及三角函数模型的简单应用1.函数)sin(ϕω+=x A y 的有关概念2.用五点画)sin(ϕω+=x A y 一个周期内的简图用五点画)sin(ϕω+=x A y 一个周期内的简图时,要找五个关键点,如下表所示.3.函数x y sin =的图像经变换得到)sin(ϕω+=x A y 的图像的步骤如下4.三角函数模型的应用(1)根据图像建立解析式或根据解析式作出图像.(2)将实际问题抽象为与三角函数有关的简单函数模型.(3)利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型,课前热身1.函数)32(π-=x ms y 在区间],2[ππ-上的简图是图中的( )2.要得到函数x y 2sin 3=的图像,可将函数]42cos(3=-=πx y 的图像 ( )A .沿x 轴向左平移⋅8π个单位长度 B .沿x 轴向右平移8π个单位长度C .沿x 轴向左平移4π个单位长度D .沿x 轴向右平移4π个单位长度3.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图像如图则 ( )4,2.πϕπω==A 6,3.πϕπω==B 4,4.πϕπω==c 45,2.πϕπω==D4.若函数)0,0()sin(>>++=ωϕωA m x A y 的最大值为4,最小值为0,最小正周期为,2π直线3π=x 是其图像的一条对称轴,则它的解析式是 ( ))64sin(4π+=⋅x y A 2)32sin(2++=⋅πx y B2)34sin(2++=⋅πx y C 2)64sin(2++=⋅πx y D5.弹簧振子的振动是简谐运动,在振动过程中,位移s 与时间t 之间的关系式为),421sin(10π-=t s),,0[+∞∈t 则弹簧振动的周期为 ,频率为 ,振幅为____,相位是____,初相是 .课堂设计题型一 函数)sin(ϕω+=x A y 的图像【例1】已知函数⋅+=)32sin(2πx y(1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图像; (3)说明)32sin(2π+=x y 的图像可由x y sin =的图像经过怎样的变换而得到.题型二 由图像求三角函数的解析式及对称元素【例2】已知函数++=)sin()(ϕωx A x f )2||,0,0(πϕω<>>A b 的图像的一部分如图所示.(1)求)(x f 的表达式;(2)试写出)(x f 图像的对称轴方程; (3)求)(x f 图像的对称中心,题型三 函数)sin(ϕω+=x A y 的图像与性质的综合问题【例3】 已知函数)sin()(ϕω+=x A x f )2||,0,0(πϕω<>>A 的部分图像如图所示.(1)求函数)(x f 的解析式; (2)令),67()(π+=x f x g 判断函数)(x g 的奇偶性,并说明理由,技法巧点1.图像变换的一般规律(1)平稳变换:①沿x 轴平移时,由)(x f y =变为)(ϕ+=x f y 时,“左加右减”即,0>ϕ左移;,0<ϕ右移, ②沿y 轴平移:由)(x f y =变为k x f y +=)(时,“上加下减”即,0>k 上移;,0<k 下移. (2)伸缩变换:①由x 轴伸缩:由)(x f y =变为)(x f y ω=时,点的纵坐标不变,横坐标变为原来的||1ω倍②沿y 轴伸缩:由)(x f y =变为)(x Af y =时,点的横坐标不变,横坐标变为原来的|A |倍. 2.确定b x A y ++=)sin(ϕω的解析式的步骤 (1)求A ,b .确定函数的最大值M 和最小值m , 则⋅+=-=2,2mM b m M A(2)求w 确定函数的周期T ,则,2Tπω= 由图像可观察出4432T T T T 、、、等. (3)求鼽常用方法有:①代入法:把图像上的一个已知点代入1.)sin(++=ϕωx A y (此时,A ,w ,b 已知)或代入图像与直线b y =的交点求解.此法适用于ϕ的范围已知的情况. ②五点法:确定ϕ值时,往往以寻找“五点”中的第一零点)0,(ωϕ-作为突破口.具体如下:失误防范1.由函数)(sin R x x y ∈=的图像经过变换得到函数=y )sin(ϕω+x A 的图像,在具体问题中,可先平移变换后伸缩变换,也可以先伸缩变换后平移变换,但要注意:先伸缩,后平移时要把z 前面的系数提取出来.2.函数)sin(ϕω+=x A y 的图像和性质是本节考查的重点,也是高考热点,复习时尽可能使用数形结合的思想方法,如求解对称轴、对称中心和单调区间等.3.注意复合形式的三角函数的单调区间的求法,函数=y )0,0)(sin(>>+ωϕωA x A 的单调区间的确定,基本思想是把φω+x 看做一个整体,在单调性应用方面,比较大小是一类常见的题目,依据是同一区间内函数的单调性,随堂反馈1.已知a 是实数,则函数ax a x f sin 1)(+=的图像不可能是 ( )2.使奇函数)2(3)2sin().(θθ+∞++=x s x x f 在]0,4[π-上为减函数的护的值为 ( )3.π-A 6.π-B 65.πc 32.πD 3.若函数,,sin )2cos 1()(2R x x x x f ∈+=则)(x f 是 ( )A .最小正周期为π的奇函数 B.最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D.最小正周期为2π的偶函数4.电流I(A)随时间)(s t 变化的函数)sin(ϕω+=t A I )20,0,0(πϕω<<>>A 的图像如图所示,则当s t 1001=时,电流是( )A A 5.- AB 5. AC 35. AD 10.5.若),0(1)sin()(πϕωϕω<>++=x A x f 对任意实数t ,都有),3()3(ππ+-=+t f t f 记,1)cos()(-+=ϕωx A x g 则=)3(πg课后作业一、选择题1.已知函数)2||,0)(sin(πϕωϕω<>+=x y 的部分图像如图所示,则( )6,1.πϕω==A 6,1.πϕω-==B 6,2.πϕω==c 6,2.πϕω-==D2.已知)0)(3sin()(>+=ωπωx x f 的图像与1-=y 的图像的相邻两交点间的距离为π ,要得到)(x f y =的图像,只需把x y 2cos =的图像 ( )A .向右平移⋅12π个单位 B .向右平移⋅125π个单位 C .向左平移12π个单位 D .向左平移125π个单位3.将函数x y 2sin =的图像向右平移4π个单位,再向上平移1个单位,所得图像的函数解析式是( ) x y A 2cos 2=⋅ x y B 2sin 2=⋅ )42sin(1π++=⋅x y C x y D 2cos =⋅4.关于函数),42sin()(π-=x x f 有下列命题:①其表达式可写成)42cos()(π+=x x f ;②直线8π-=x是)(x f 图像的一条对称轴;③)(x f 的图像可由x x g 2sin )(=的图像向右平移4π个单位得到;④存在∈α),,0(π使)3()(α+=+x f a x f 恒成立,其中真命题为( )A .②③ B.①② C .②④ D.③④ 5.已知函数)20,0()sin()(πϕωϕω<<>++=h x A x f 的图像如图所示,则=)(x f ( )2)42sin(4.++πx A 2)42sin(4.+--πx B 4)42(2.++πx ms C 4)42sin(2.++-πx D6.函数)2||,0)(sin()(πϕωϕω<>+=x x f 的最小正周期为π,且其图像向左平移6π个单位后得到的函数为奇函数,则函数)(x f 的图像 ( ) A .关于点)0,12(π对称 B .关于点125π=x 对称C .关于点)0,125(π对称 D .关于点12π=x 对称 二、填空题7.函数ϕωϕω,,)(sin()(A x A x f +=为常数,)0,0>>ωA 的部分图像如图所示,则)0(f 的值是8.已知函数),0)(sin()(πϕπωϕω<≤->+=x x f 的图像如图所示,则=)(x f 9.若将函数)3sin(2ϕ+=x y 的图像向右平移4π个单位后得到的图像关于点)0,3(π对称,则|ϕ|的最小值是三、解答题 10.已知函数+=ϕsin 2sin 21)(x x f )2sin(21cos 2ϕπϕ+-∞x s ),0(πϕ<<⋅其图像过点⋅)21,6(π (1)求ϕ的值;(2)将函数)(x f y =的图像上各点的横坐标缩短到原来的,21纵坐标不变,得到函数)(x g y =的图像,求函数)(x g 在]4,0[π上的最大值和最小值.11.已知函数R x x A x f ∈+=),sin()(ϕω(其中,0,0>>ωA )20πϕ<<的图像与x 轴的交点中,相邻两个交点之间的距离为,2π且图像上一个最低点为⋅-)2,32(πM (1)求)(x f 的解析式; (2)当]2,12[ππ∈x 时,求)(x f 的值域.12.已知函数)0(1)cos (sin cos 2)(>+-=ωωωωx x x x f的最小正周期为π. (1)求函数)(x f 图像的对称轴方程和单调递减区间; (2)若函数,)4()()(x f x f x g --=π求函数)(x g 在区间]43,8[ππ上的最小值和最大值.。
函数的表示方法__________________________________________________________________________________ __________________________________________________________________________________1、 能根据不同需要选择恰当的方法(如图像法、列表法、解析法)表示函数;2、 了解简单的分段函数,并能简单应用;一、函数的常用表示方法简介: 1、解析法如果函数()()y f x x A =∈中,()f x 是用代数式(或解析式)来表达的,则这种表达函数的方法叫做解析法(公式法)。
例如,s =602t ,A =π2r ,2S rl π=,2(2)y x x =-≥等等都是用解析式表示函数关系的。
特别提醒:解析法的优点:(1)简明、全面地概括了变量间的关系;(2)可以通过解析式求出任意一个自变量的值所对应的函数值;(3)便于利用解析式研究函数的性质。
中学阶段研究的函数主要是用解析法表示的函数。
解析法的缺点:(1)并不是所有的函数都能用解析法表示;(2)不能直观地观察到函数的变化规律。
2、列表法:通过列出自变量与对应函数值的表格来表示函数关系的方法叫做列表法。
例如:初中学习过的平方表、平方根表、三角函数表。
我们生活中也经常遇到列表法,如银行里的利息表,列车时刻表,公共汽车上的票价表等等都是用列表法来表示函数关系的.特别提醒:列表法的优点:不需要计算就可以直接看出与自变量的值相对应的函数值。
这种表格常常应用到实际生产和生活中。
列表法的缺点:对于自变量的有些取值,从表格中得不到相应的函数值。
3、图象法:用函数图象表示两个变量之间的函数关系的方法,叫做图像法。
例如:气象台应用自动记录器描绘温度随时间变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的。
第4讲 求函数极值求函数极值的一般步骤:①求导数()f x ';②求方程()0f x '=的根;③检验()f x '在方程()0f x '=的根的左右的符号,如果是左正右负(左负右正),则()f x 在这个根处取得极大(小)值.例1.求下列函数的极值:(1)f (x )=x 3-3x 2-9x +5;(2)f (x )=3x+3ln x . 解:(1)函数f (x )=x 3-3x 2-9x +5的定义域为R ,且f ′(x )=3x 2-6x -9.解方程3x 2-6x -9=0,得x 1=-1,x 2=3.当∴x =3是函数的极小值点,极小值为f (3)=-22.(2)函数f (x )=3x +3ln x 的定义域为(0,+∞), f ′(x )=-3x 2+3x =3 x -1 x2, 令f ′(x )=∴当x =1例2.设函数f (x )=2x +ln x ,则( ) A .1=2x 为f (x )的极大值点 B .1=2x 为f (x )的极小值点 C .x =2为f (x )的极大值点 D .x =2为f (x )的极小值点解析:由f ′(x )=22112=1x x x x ⎛⎫-+- ⎪⎝⎭=0可得x =2. 当0<x <2时,f ′(x )<0,f (x )单调递减;当x >2时,f ′(x )>0,f (x )单调递增.故x =2为f (x )的极小值点.例3.若函数f (x )=2x 3+3ax 2+36x -1在x =2处有极值,则a 的值为( )A .-5B .5C .8D .-8解析:f ′(x )=6x 2+6ax +36,依题意f ′(2)=0,∴24+12a +36=0,解得a =-5.例4.函数f (x )=ln x -x 在区间(0,e)上的极大值为( )A .-eB .-1C .1-eD .0解析:定义域为(0,+∞),()11f x x'=-,令f ′(x )=0得x =1, ∵当0<x <1时,f ′(x )>0,x ∈(1,e)时f ′(x )<0,∴f (x )在x =1处取得极大值f (1)=ln 1-1=0-1=-1.例5.设函数f (x )=x e x ,则( )A .x =1为f (x )的极大值点B .x =1为f (x )的极小值点C .x =-1为f (x )的极大值点D .x =-1为f (x )的极小值点解析:由f ′(x )=x ′·e x +(e x )′·x =e x +e x ·x =e x (x +1)=0,得x =-1.当x <-1时,f ′(x )<0,f (x )在(-∞,-1)上单调递减;当x >-1时,f ′(x )>0,f (x )在(-1,+∞)上单调递增.所以x =-1为f (x )的极小值点.例6.求下列函数的极值:(1)y =2x 3+6x 2-18x +3;(2)82y x x =+. 解:(1)函数的定义域为R . y ′=6x 2+12x -18=6(x +3)(x -1),令y ′=0,得x =-3,或x =1.当x 单调递增单调递减 单调递增=-时,函数有极大值,且极大值当x =1时,函数有极小值,且y 极小值=-7.(2)函数的定义域为(-∞,0)∪(0,+∞). 228422'221211y x x x x ⎛⎫⎛⎫⎛⎫=-=-=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. 令y ′=0,得x =-2,或x =2.当x <-2时,y ′>0;当-2<x <0时,y ′<0,即x =-2时,y 取得极大值-8.当0<x <2时,y ′<0;当x >2时,y ′>0,即x =2时,y 取得极小值,且极小值为8.例7.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于点(1,0),求函数f (x )的极值.解:∵f (x )与x 轴切于(1,0)点, f ′(x )=3x 2-2px -q ,∴f ′(1)=3-2p -q =0.又 f (1)=1-p -q =0,∴p =2,q =-1.∴f ′(x )=3x 2-4x +1.由f ′(x )=0得x 1=13,x 2=1. 当x∴f (x )极大值=f (3)=27, f (x )极小值=f (1)=0.例4.已知函数xx x f ln )(=.求函数)(x f 的单调减区间和极值; 解析. 函数x x x f ln )(=的定义域为),1()1,0(+∞ , x x x f 2/ln 1ln )(-=,令0)(/=x f ,解得e x =, 列表x )1,0( ),1(e e ),(+∞e)(/x f- - 0 + )(x f 单调递减 单调递减 极小值)(e f 单调递增由表得函数)(x f 的单调减区间为)1,0(,),1(e ;极小值为)(e f =e ,无极大值.练习01.函数y =1+3x -x 3有( )A .极小值-1,极大值1B .极小值-2,极大值3C .极小值-2,极大值2D .极小值-1,极大值302.若函数f (x )=13x 3+ax 2+3x -1,已知f (x )在x =-3时取得极值,则 a 等于 ( ) A .2 B .3 C .4 D .5 03.函数32()1f x x ax bx =++-,当1x =时有极值1,则函数32()g x x ax bx =++的单调减区间为04.若函数f (x )=x 2+a x +1在x =1处取极值,则a =________. 05.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于06.设函数f (x )=x e x ,则( )A .x =1为f (x )的极大值点B .x =1为f (x )的极小值点C .x =-1为f (x )的极大值点D .x =-1为f (x )的极小值点07.设函数f (x )=2x+ln x ,则( ) A .x =12为f (x )的极大值点 B .x =12为f (x )的极小值点 C .x =2为f (x )的极大值点 D .x =2为f (x )的极小值点08.函数f (x )=x 3-3x 2+1在x =________处取得极小值.09.若x =-2与x =4是函数f (x )=x 3+ax 2+bx 的两个极值点,则有( )A .a =-2,b =4B .a =-3,b =-24C .a =1,b =3D .a =2,b =-410.(2012重庆)设f (x )=a ln x +12x +32x +1(a ∈R),曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴. (1)求a 的值; (2)求函数f (x )的极值.11.(2013)设()()256ln f x a x x =-+,其中a R ∈,曲线()y f x =在点()()1,1f 处的切线与y 轴相交于点()0,6.(1)确定a 的值; (2)求函数()f x 的单调区间与极值.。
2021高考一轮复习 第四讲 函数及其表示一、单选题(共11题;共55分)1.(5分)若定义在R 的奇函数f(x)在 (−∞,0) 单调递减,且f(2)=0,则满足 xf(x −1)≥0 的x 的取值范围是( ) A .[−1,1]∪[3,+∞) B .[−3,−1]∪[0,1] C .[−1,0]∪[1,+∞)D .[−1,0]∪[1,3]2.(5分)已知函数 f(x)={x 3,x ⩾0,−x,x <0.若函数 g(x)=f(x)−|kx 2−2x| (k ∈R) 恰有4个零点,则k 的取值范围是( ) A .(−∞,−12)∪(2√2,+∞)B .(−∞,−12)∪(0,2√2)C .(−∞,0)∪(0,2√2)D .(−∞,0)∪(2√2,+∞)3.(5分)已知函数 f(x)={lgx,x ≥1−lg(2−x),x <1, g(x)=x 3 ,则方程 f(x)=g(x −1) 所有根的和等于( ) A .1B .2C .3D .44.(5分)设函数 y =f(x) 在R 上有意义,对给定实数N ,定义函数 f N (x)={f(x),f(x)≤NN,f(x)>N,则称函数 f N (x) 为 f(x) 的“孪生函数”,若给定函数 f(x)=2−x 2 , N =−1 ,则 y =f N (x) 的值域为( ) A .[1,2]B .[−1,2]C .(−∞,1]D .(−∞,−1]5.(5分)已知函数 f(x)=1−x 2 , g(x)=msin(π6x)+2−m(m >0) ,若存在 x 1,x 2∈[0,1] ,使得 f(x 1)≥g(x 2) 成立,则m 的取值范围是( ) A .(0,1]B .[1,4)C .[1,+∞)D .(0,4)6.(5分)已知函数 f(x)={log 2x,x >03x ,x ≤0,则 f[f(14)] 的值是( ) A .14B .4C .19D .√37.(5分)下列各组函数中,表示同一个函数的是( )A .y =x 2−1x−1 与 y =x +1B .y =1 与 y =x 0C .y =√x 2−1 与 y =x −1D .y =x 与 y =log a a x (a >0且a ≠1)8.(5分)已知函数f (x+2)=x 2,则f (x )等于( )A .x 2+2B .x 2-4x+4C .x 2-2D .x 2+4x+49.(5分)函数 f(x) 的图象如图所示,则它的解析式可能是( )A .f(x)=x 2−12xB .f(x)=2x (|x|−1)C .f(x)=|ln|x||D .f(x)=xe x −110.(5分)设函数 f(x)={x 2−2(x ≥2)log 2x(x <2),若 f(m)=7 ,则实数m 的值为( )A .0B .1C .-3D .311.(5分)下列与函数 y =1√x定义域和单调性都相同的函数是( ) A .y =2log 2xB .y =log 2(12)xC .y =log 21xD .y =x 14二、填空题(共7题;共7分)12.(1分)函数 f(x)=1x+1+lnx 的定义域是 . 13.(1分)函数f (x )= √e x −1 的定义域为 。
第四讲函数常考知识复习讲义I本章知识思维导图 2 II典型例题 3题型一:求具体函数与抽象函数的定义域 3题型二:求函数的解析式 4题型三:求函数的值域 5题型四:函数的单调性 6题型五:函数的奇偶性 8题型六:函数性质的综合应用 10题型七:幂函数 12题型八:函数的实际应用 14 III数学思想方法 19①分类讨论思想 19②转化与化归思想 19③数形结合思想 20I本章知识思维导图II典型例题题型一:求具体函数与抽象函数的定义域【例1】(2024·广东深圳·高一校考期中)函数y=9-x2x的定义域是.【例2】(2024·上海松江·高一校考期末)函数y=xx2-1的定义域为(用区间表示).【例3】(2024·河南新乡·高一校联考期末)函数f x =8x2-x2-1的定义域为.【例4】(2024·新疆乌鲁木齐·高一校考期中)若函数f x 的定义域为-1,2,则函数f3+2x的定义域是.【例5】(2024·高一课时练习)已知函数f(x+1)的定义域是[-2,2],则函数f(x)的定义域是.【例6】(2024·吉林长春·高一长春市解放大路学校校考阶段练习)已知函数f x 的定义域为0,+∞,则函数F x =f x+2+3-x的定义域为.【例7】(2024·全国·高一专题练习)已知函数f x+1的定义域为1,2,则f2x的定义域为.【例8】(2024·全国·高一专题练习)已知函数f x 的定义域为-1,1则y=f x+1x2-2x-3的定义域为【例9】(2024·全国·高一专题练习)已知函数f2x的定义域为12,2,则函数f x2的定义域为.【例10】(2024·全国·高一专题练习)函数f3x+1的定义域为1,7,则函数f x 的定义域是.【例11】(2024·河南郑州·高一校考阶段练习)已知函数f(x)是一次函数且f(f(x))+2f(x)=-x-2,则函数f(x)的解析式为.【例12】(2024·全国·高一专题练习)已知f x 是二次函数.且f x+1+f x-1=2x2-4x.则f x =.【例13】(2024·四川眉山·高一校考阶段练习)已知f x+1=2x2+3,则f x =.【例14】(2024·高一课时练习)已知函数f x+1=x,则函数f x 的解析式是.【例15】(2024·全国·高一专题练习)已知f1x=x1-x2,则f x =.【例16】(2024·江苏盐城·高一统考期中)已知函数f(x)满足f3-2x=x2-x,则f(x)=.【例17】(2024·全国·高一专题练习)已知f1+1 x=1x-1,则f x =.【例18】(2024·上海·高一专题练习)已知函数f x 满足2fx-1x+f x+1x=1+x,其中x∈R且x≠0,则函数f x 的解析式为【例19】(2024·高一课时练习)已知函数y=f(x)满足f(x)=2f1x+x,则f(x)的解析式为.【例20】(2024·全国·高一专题练习)求下列函数的值域.(1)f x =2x+41-x;(2)f x =5x+4x-2;(3)f x =x2-2x-3,x∈-1,4(4)y=x2+x+1x【例21】(2024·高一课时练习)求下列函数的值域.(1)y=5x+4x-1;(2)y=x-1-2x;(3)y=2--x2+4x.【例22】(2024·高一课时练习)求下列函数的值域.(1)y=16-x2;(2)y=x2-4x+61≤x≤5;(3)y=xx+1;(4)y=2x+41-x.【例23】(2024·全国·高一课堂例题)求下列函数的值域:(1)y=x+1,x∈1,2,3,4,5;(2)y=x2-2x+3,x∈0,3;(3)y=2x+1x-3x>4;(4)y=2x-x-1;(5)y=x2-2x+4x-2x>2;(6)y=2xx2+3x+4x<0;(7)y=2x2+2x+5x2+x+1.【例24】(2024·高一校考课时练习)求下列函数的值域:(1)y =2x +1x -3,(2)y =x +4xx >0 ,(3)y =-2x 2+x +3,(4)y =x +41-x题型四:函数的单调性【例25】(2024·高一课时练习)定义域为(-2,0)∪(0,2)的函数f (x )在区间(-2,0)上是增函数,在区间(0,2)上是减函数,则:(1)函数y =-f (x )的单调递增区间是;单调递减区间是;(2)函数y =-f (x +1)的单调递增区间是;单调递减区间是.【例26】(2024·山东·高一山东省实验中学校考阶段练习)函数y =7+6x -x 2的单调递增区间为.【例27】(2024·全国·高一专题练习)已知函数f x =x +1x -52x >0 ,则f x 的递减区间是.【例28】(2024·黑龙江齐齐哈尔·高一校联考期中)函数f x =xx -1,x ≤0-x 2-a +1 x +2a ,x >0在R 上单调递减,则实数a 的取值范围是.【例29】(2024·全国·高一课堂例题)已知函数f x 在0,+∞ 上单调递减,对任意x ∈0,+∞ ,均有f x ⋅f f x +2x =13,记g x =f x +4x 2,x ∈0,+∞ ,则函数g x 的最小值为.【例30】(2024·安徽安庆·高一安庆市第七中学校考期中)若f x =x 2-ax +2a 在区间1,+∞ 上是增函数,则实数a 的取值范围是.【例31】(2024·全国·高一专题练习)设函数f x =x +1,x <a a x -2 2,x ≥a,若f x 存在最大值,则实数a 的取值范围为.【例32】(2024·全国·高一专题练习)函数f (x )=x +1x-a +a 在区间[1,2]上的最大值为5,则a =.【例33】(2024·湖北武汉·高一校联考期中)函数f x 是定义在0,+∞ 上的增函数,若对于任意正实数x ,y ,恒有f xy =f x +f y ,且f 3 =1,则不等式f x +f x -8 <2的解集是.【例34】(2024·全国·高一专题练习)已知函数y =f x 的定义域为R ,对任意的x 1、x 2,且x 1≠x 2都有f x 1 -f x 2 x 1-x 2 >0成立,若f x 2+1 >f t 2-t -1 对任意x ∈R 恒成立,则实数t 的取值范围是.【例35】(2024·全国·高一假期作业)定义在R 上的函数f (x )的图象关于直线x =2对称,且f (x )在(-∞,2)上是增函数,则f (-1)与f (3)的大小关系是.【例36】(2024·全国·高一课堂例题)证明函数f x =x +1xx >0 在区间0,1 上递减,在区间1,+∞ 上递增,并指出函数在区间0,+∞ 上的最值点和最值.【例37】(2024·全国·高一专题练习)已知函数f (x )对任意的实数x 、y 都有f (x +y )=f (x )+f (y )-1,且当x>0时,f (x )>1.求证:函数f (x )在R 上是增函数.【例38】(2024·河北邯郸·高一校考期末)已知定义在(0,+∞)上的函数f (x )满足:①对任意的x ,y ∈(0,+∞),都有f (xy )=f (x )+f (y );②当且仅当x >1时,f (x )<0成立.(1)求f (1);(2)用定义证明f (x )的单调性;【例39】(2024·天津·高一统考期中)已知函数f(x)=x2+a2ax+b是奇函数,且f1 =2.(1)求f x 的解析式;(2)判断f x 在区间0,1上的单调性并说明理由.题型五:函数的奇偶性【例40】(2024·新疆巴音郭楞·高一八一中学校考期中)已知f x =11+x(x∈R,且x≠-1),g x =x2+2x∈R.(1)求f g2的值;(2)判断函数g x =x2+2x∈R的奇偶性;(3)证明函数g x =x2+2在0,+∞上是增函数.【例41】(2024·湖南株洲·高一株洲二中校考阶段练习)已知定义在-1,1上的奇函数f x =ax-bx2+1,且f-12=-25.(1)求函数f x 的解析式;(2)判断f x 的单调性(并用单调性定义证明);(3)解不等式f(3t)+f(2t-1)<0.【例42】(2024·全国·高一随堂练习)判断下列函数是否具有奇偶性:(1)f(x)=5x+3;(2)f(x)=5x;(3)f(x)=2x2+1;(4)f(x)=x2+6x+9;(5)f(x)=1x2+2x4;(6)f(x)=x+1x3.【例43】(2024·全国·高一期中)已知函数f(x)=2x-ax,且f(2)=92.(1)求实数a的值;(2)判断该函数的奇偶性;(3)判断函数f(x)在(1,+∞)上的单调性,并证明.【例44】(2024·甘肃白银·高一校考期中)已知函数f x =x2-ax+4,g x =x+b ax2+2.(1)若f x+1在b-1,b+1上为偶函数,求a,b的值;(2)设g x 的定义域为-1,1,在(1)的条件下:①判断函数g x 在定义域上的单调性并证明;②若g t-1+g2t<0,求实数t的取值范围.【例45】(2024·全国·高一期中)已知定义在(-∞,0)∪(0,+∞)上的函数f(x)满足:①∀x,y∈(-∞,0)∪(0, +∞),f(x⋅y)=f(x)+f(y);②当x>1时,f(x)>0,且f2 =1.(1)试判断函数f x 的奇偶性;(2)判断函数f x 在0,+∞上的单调性;(3)求函数f x 在区间[-4,0)∪(0,4]上的最大值;(4)求不等式f(3x-2)+f(x)≥4的解集.【例46】(2024·江西南昌·高一南昌市八一中学校考阶段练习)已知函数y=f x 是定义在R上的奇函数,当x>0时,f x =x2-ax,其中a∈R(1)求函数y=f x 的解析式;(2)若函数y=f x 在区间0,+∞不单调,求出实数a的取值范围.【例47】(2024·黑龙江牡丹江·高一牡丹江市第二高级中学校考期末)设函数f x 是增函数,对于任意x,y∈R都有f x+y=f x +f y .(1)写一个满足条件的f x 并证明;(2)证明f x 是奇函数;(3)解不等式12f x2-f x >12f3x.题型六:函数性质的综合应用【例48】(多选题)(2024·黑龙江齐齐哈尔·高一校联考期中)函数f(x)=x+1,g(x)=(x+1)2,用M(x)表示f(x),g(x)中的较大者,记为M(x)=max{f(x),g(x)},则下列说法正确的是()A.M(2)=3B.∀x≥1,M(x)≥4C.M(x)有最大值D.M(x)最小值为0【例49】(多选题)(2024·江苏南通·高一统考期末)奇函数f x 与偶函数g x 的定义域均为R,在区间a,ba<b上都是增函数,则()A.0∉a,bB.f x 在区间-b,-a上是增函数,g x 在区间-b,-a上是减函数C.f x g x 是奇函数,且在区间a,b上是增函数D.f x -g x 不具有奇偶性,且在区间a,b上的单调性不确定【例50】(多选题)(2024·福建福州·高一校联考期中)已知连续函数f x 对任意实数x恒有f(x+y)=f(x)+ f(y)-1,当x>0时,f x >1,f1 =2,则()A.f0 =1B.f x 在-4,4上的最大值是4C.f x 图像关于-1,0中心对称D.不等式f3x2-2f x <f3x-2的解集为0,5 3【例51】(多选题)(2024·江西赣州·高一统考期中)世界公认的三大著名数学家为阿基米德、牛顿、高斯,其中享有“数学王子”美誉的高斯提出了取整函数y=x ,x 表示不超过x的最大整数,例如1,1=1,-1,1=-2.已知函数f x =x-x ,则()A.f x 在R上是增函数B.f-3 2=12C.f x 为奇函数D.f x 的值域为0,1【例52】(多选题)(2024·全国·高一专题练习)已知定义域为R的函数f x 满足:∀x,y∈R,f x+y+f x-y=f x f y ,且f1 =1,则下列结论成立的是()A.f0 =2B.f x 为偶函数C.f x 为奇函数D.f2 =-1【例53】(多选题)(2024·全国·高一专题练习)设函数f x 是定义在0,+∞上的函数,并且满足下面三个条件:①对正数x,y都有f xy=f x +f y ;②当x>1时,f x >0;③f8 =3.则下列说法不正确的是()A.f1 =1B.f14=-2C.不等式f x +f x-3<2的解集为x|-1<x<4D.若关于x的不等式f kx+f3-x≤2恒成立,则k的取值范围是0,16 9【例54】(多选题)(2024·重庆长寿·高一统考期末)若函数f x 在定义域内D内的某区间M是增函数,且f xx在M上是减函数,则称f x 在M上是“弱增函数”,则下列说法正确的是()A.若f x =x4则不存在区间M使f x 为“弱增函数”B.若f x =x+x-1则存在区间M使f x 为“弱增函数”C.若f x =x5+x3+x则f x 为R上的“弱增函数”D.若f x =x2+4-ax+a在区间0,2上是“弱增函数”,则a=4【例55】(2024·福建漳州·高一校考期中)已知定义在区间0,+∞上的函数f x =t x+4 x-5(t>0).(1)若函数f x 分别在区间0,2,2,+∞上单调,试求t的取值范围;(直接写出答案)(2)当t=1时,在区间1,4上是否存在实数a,b,使得函数f x 在区间a,b上单调,且f x 的取值范围为ma,mb,若存在,求出m的取值范围;若不存在,说明理由.【例56】(2024·全国·高一期中)已知函数f x =ax2-x+2a-1a>0(1)设f x 在区间1,2的最小值为g a ,求g a 的表达式;(2)设h x =f xx,若函数h x 在区间1,2上是增函数,求实数a的取值范围.【例57】(2024·高一单元测试)已知偶函数f(x)的定义域是{x|x≠0}的一切实数,对定义域内的任意x1,x2都有f(x1⋅x2)=f(x1)+f(x2),且当x>1时,f(x)>0,f(2)=1.(1)证明:f(x)在(0,+∞)上是单调递增函数;(2)解不等式f(2x-1)<2.题型七:幂函数【例58】(2024·全国·高一专题练习)已知幂函数f x =x-m2-2m+3-2<m<2,m∈Z满足:①f x 在0,+∞上为增函数,②对∀x∈R,都有f-x-f x =0,求同时满足①②的幂函数f x 的解析式,并求出x∈1,4时,f x 的值域.【例59】(2024·浙江金华·高一校考期中)已知点2,2在幂函数f(x)的图像上.(1)求f(x)的解析式;(2)若函数g(x)=f(x)+ax+3,x∈1,+∞是否存在实数a,使得g(x)最小值为5?若存在,求出a的值;若不存在,说明理由【例60】(2024·全国·高一假期作业)已知幂函数f x =m2-6m+10x-n2+4n n>1,n∈Z,m∈R的图象关于y轴对称,且在0,+∞上单调递增.(1)求m和n的值;(2)求满足不等式2a+3-m3<a-1-n2的a的取值范围.【例61】(2024·江苏南通·高一海安高级中学校考期中)已知幂函数f x =m 2-5m +7 x m -1为奇函数.(1)求实数m 的值;(2)求函数g x =14f x +1+12-f x -14<x <2 的最小值.【例62】(2024·黑龙江七台河·高一勃利县高级中学校考期中)已知幂函数y =x m 2-2m -3(m ∈N ∗)关于y 轴对称,且在0,+∞ 上单调减函数.(1)求m 的值;(2)解关于a 的不等式a +1 2m3<3-2a 2m3.【例63】(2024·广西柳州·高一柳铁一中校联考阶段练习)已知幂函数f x =k 2+k -1 x 2-k 1+k ,且f 2 <f 3 .(1)求函数f x 的解析式;(2)试判断是否存在正数m ,使得函数g x =1-f x +2mx 在区间0,1 上的最大值为5,若存在,求出m 的值,若不存在,请说明理由.【例64】(2024·广东佛山·高一佛山市顺德区乐从中学校考期中)已知幂函数f x =m 2-2m -2 x m 在0,+∞ 上单调递增.(1)求f x 的解析式;(2)若f x >3x 2+k -1 x 在1,3 上恒成立,求实数k 的取值范围.【例65】(2024·浙江杭州·高一校联考期中)已知幂函数f (x )=x -3n 2+9(n ∈N )为偶函数,且在区间(0,+∞)上单调递增(1)求函数y =f (x )的解析式;(2)设函数g (x )=3f (x )+2tx +3,求函数y =g (x )在区间[2,6]上的最小值G (t ).【例66】(2024·福建漳州·高一福建省华安县第一中学校考阶段练习)已知幂函数f x =2m2-5m+3x m是定义在R上的偶函数.(1)求f x 的解析式;(2)在区间-1,1上,f x 的图象总在函数y=kx-2图象的上方,求实数k的取值范围.【例67】(2024·重庆沙坪坝·高一重庆八中校考期中)已知幂函数f x =m2-5m+7x m-1,且f x =f-x.(1)求函数f x 的解析式;(2)若g x =f xf x +1,a,b均为正数且g a +g b =1,求f a +f b 的最小值.题型八:函数的实际应用【例68】(2024·全国·高一专题练习)党的十九大报告明确要求继续深化国有企业改革,培育具有全球竞争力的世界一流企业.某企业抓住机遇推进生产改革,从单一产品转为生产A、B两种产品,根据市场调查与市场预测,A产品的利润与投资成正比,其关系如图①;B产品的利润与投资的算术平方根成正比,其关系如图②(注:所示图中的横坐标表示投资金额,单位为万元).(1)分别求出A、B两种产品的利润表示为投资的函数关系式;(2)该企业已筹集到10万元资金,并全部投入A、B两种产品的生产,问:怎样分配这10万元资金,才能使企业获得最大利润,最大利润是多少?【例69】(2024·全国·高一专题练习)某企业为进一步增加市场竞争力,计划在2024年利用新技术生产某款新手机,通过市场调研发现,生产该产品全年需要投入研发成本250万元,每生产x(千部)手机,需另外投入成本R x 万元,其中R x =10x2+100x+800,0<x<50504x+10000x-2-6450,x≥50,已知每部手机的售价为5000元,且生产的手机当年全部销售完.(1)求2024年该款手机的利润y关于年产量x的函数关系式;(2)当年产量x为多少时,企业所获得的利润最大?最大利润是多少?【例70】(2024·全国·高一专题练习)党的二十大报告提出“积极稳妥推进碳达峰碳中和”,降低能源消耗,建设资源节约型社会.日常生活中我们使用的LED灯具就具有节能环保的作用,它环保不含汞,可回收再利用,功率小,高光效,长寿命,有效降低资源消耗.经过市场调查,可知生产某种LED灯需投入的年固定成本为3万元,每生产x万件该产品,需另投入变动成本W(x)万元,在年产量不足6万件时,W x =12x2+x,在年产量不小于6万件时,W x =7x+81x-37.每件产品售价为6元.假设该产品每年的销量等于当年的产量.(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式.(注:年利润=年销售收入-固定成本-变动成本)(2)年产量为多少万件时,年利润最大?最大年利润是多少?【例71】(2024·全国·高一专题练习)某学校为了支持生物课程基地研究植物的生长规律,计划利用学校空地建造一间室内面积为900m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m ,三块矩形区域的前、后与内墙各保留1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3m 宽的通道,如图.设矩形温室的室内长为x (单位:m ),三块种植植物的矩形区域的总面积为S (单位:m 2).(1)求S 关于x 的函数关系式;(2)求S 的最大值,并求出此时x 的值.【例72】(2024·江苏镇江·高一扬中市第二高级中学校考开学考试)党中央、国务院对节能减排高度重视,各地区、各部门认真贯彻党中央、国务院关于“十三五”节能减排的决策部署,把节能减排作为转换发展方式,经济提质增效,建设生态文明的重要抓手,取得重要进展.新能源汽车环保、节能、以电代油,减少排放,既符合我国国情,也代表了汽车产业发展的方向.为了响应国家节能减排的号召,2020年常州某企业计划引进新能源汽车生产设备,通过市场分析:全年需投入固定成本2500万元.每生产x (百辆)新能源汽车,需另投入成本C x 万元,且C x =10x 2+500x ,0<x <40901x +10000x-4300,x ≥40.由市场调研知,每辆车售价9万元,且生产的车辆当年能全部销售完.(1)请写出2020年的利润L x (万元)关于年产量x (百辆)的函数关系式;(利润=销售-成本)(2)当2020年产量为多少百辆时,企业所获利润最大?并求出最大利润.【例73】(2024·浙江衢州·高一校考阶段练习)2020年初,新冠肺炎疫情袭击全国,对人民生命安全和生产生活造成严重影响.为降低疫情影响,某厂家拟尽快加大力度促进生产.已知该厂家生产某种产品的年固定成本为200万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)=12x2+20x(万元).当年产量不小于80千件时,C(x)=51x+10000x-600(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?最大利润是多少?【例74】(2024·高一课时练习)新冠肺炎疫情造成医用防护服短缺,某地政府决定为防护服生产企业A公司扩大生产提供x0≤x≤10(万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服.A公司在收到政府x(万元)补贴后,防护服产量将增加到t=k⋅6-12 x+4(万件),其中k为工厂工人的复工率(0.5≤k≤1).A公司生产t万件防护服还需投入成本20+9x+50t(万元).(1)将A公司生产防护服的利润y(万元)表示为补贴x(万元)的函数(政府补贴x万元计入公司收入);(2)对任意的x∈0,10(万元),当复工率k达到多少时,A公司才能不产生亏损?(精确到0.01).【例75】(2024·山西晋城·高一晋城市第一中学校校考阶段练习)新冠肺炎疫情造成医用防护服短缺,某地政府决定为防护服生产企业A公司扩大生产提供x(x∈[0,10])(万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服.A公司在收到政府x(万元)补贴后,防护服产量将增加到t=k⋅ (万件),其中k为工厂工人的复工率(k∈[0.5,1]).A公司生产t万件防护服还需投入成本6-12x+4(20+9x+50t)(万元).(1)将A公司生产防护服的利润y(万元)表示为补贴x(万元)的函数(政府补贴x万元计入公司收入);(2)在复工率为k时,政府补贴多少万元才能使A公司的防护服利润达到最大?III 数学思想方法①分类讨论思想【例76】设函数f (x )=x +2,g (x )=x 2-x -1.用M (x )表示f (x ),g (x )中的较大者,记为M (x )=max{f (x ),g (x )},则M (x )的最小值是()A.1B.3C.0D.-54【例77】已知幂函数f (x )=(m 2-2m -2)x 2-m 满足f (2)<f (3),则函数g (x )=2x +m -x -m 的值域为()A.-258,+∞ B.[-3,+∞)C.[-1,+∞)D.[1,+∞)【例78】若定义在R 的奇函数f (x )在0,+∞ 单调递增,且f (-3)=0,则满足xf (x +1)≤0的x 的取值范围是()A.[-2,0]∪[1,4]B.[-4,-1)∪[0,2]C.[-4,-1]∪[0,2]D.[-4,-1]∪[3,+∞)【例79】已知函数f x =x 2-2ax +2,x ≤1x +9x-3a ,x >1的最小值为f 1 ,则a 的取值范围是()A.[1,3]B.3,+∞C.0,3D.-∞,1 ∪3,+∞【例80】已知函数f (x )=|x 2+bx |(b ∈R ),当x ∈[0,1]时,f (x )的最大值为M b ,则M b 的取值范围是()A.[1,+∞)B.[3-22,+∞)C.[4-23,+∞)D.[5-25,+∞)②转化与化归思想【例81】定义在R 上的奇函数f (x )在[0,+∞)上单调递减,且f (-2)=1,则满足-1≤f (x -1)≤1的x 的取值范围是()A.[-2,2]B.[-2,1]C.[-1,3]D.[0,2]【例82】已知函数f x =3x+1,x≤1x2-1,x>1,若n>m,且f(n)=f(m),设t=n-m,则t的最大值为()A. 1B.5-1C.1712 D.43【例83】若定义在R的奇函数f(x)在-∞,0单调递减,且f2 =0,则满足xf(x-1)≥0的x的取值范围是()A.[-1,1]∪[3,+∞)B.[-3,-1]∪[0,1]C.[-1,0]∪[1,+∞)D.[-1,0]∪[1,3]【例84】设a=0.40.6,b=0.60.8,c=0.80.4,则()A.a>b>cB.c>b>aC.c>a>bD.b>a>c【例85】已知函数f(x)=4x2-kx-8在区间(5,20)上既没有最大值也没有最小值,则实数k的取值范围是()A.[160,+∞)B.(-∞,40]C.(-∞,40]∪[160,+∞)D.(-∞,20]∪[80,+∞)【例86】函数f(x)=3+2x-x2的单调递增区间是()A.(-∞,1]B.[1,+∞)C.[1,3]D.[-1,1]③数形结合思想【例87】已知函数f(x)为奇函数,x>0时为增函数且f2 =0,则{x|f(x-2)>0}=.()A.{x|0<x<2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<-2或x>2}【例88】已知定义在R上的偶函数f(x)满足:①对任意的x 1,x2∈0,+∞,且x1≠x2,都有f(x1)-f(x2)x1-x2>0成立;②f(-2)=0.则不等式f(x)x>0的解集为()A.(-2,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-2,0)∪(0,2)D.(-∞,-2)∪(2,+∞)21数学是打开科学大门的钥匙//邦达数学高一讲义宝剑锋从磨砺出【例89】已知函数f (x )=-x 2+4x ,x ∈[m ,5]的值域是[-5,4],则实数m 的取值范围是()A.(-∞,-1)B.(-1,2]C.[-1,2]D.[2,5]【例90】奇函数f (x )在-∞,0 上单调递减,且f 2 =0,则不等式f (x )>0的解集是.()A.(-∞,-2)∪(0,2)B.(-∞,0)∪(2,+∞)C.(-2,0)∪(0,2)D.(-2,0)∪(2,+∞)【例91】如图,直线l 和圆C ,当l 从l 0开始在平面上绕点O 按逆时针方向匀速转到(转到角不超过90{^°})时,它扫过的圆内阴影部分的面积S 是时间t 的函数,这个函数的图像大致是()A.B.C.D.【例92】已知函数y =f (x )是定义在(-∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的图像如图所示,则不等式xf (x )>0的解集为()22越努力越幸运//邦达数学高一讲义梅花香自苦寒来A.(-2,-1)∪(1,2)B.(-2,-1)∪(0,1)∪(2,+∞)C.(-∞,-2)∪(-1,0)∪(1,2)D.(-∞,-2)∪(-1,0)∪(0,1)∪(2,+∞)。
第4讲 三角函数的图象与性质[学生用书P77]1.用五点法作正弦函数和余弦函数的简图在正弦函数y =sin x ,x ∈[0,2π]的图象上,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).在余弦函数y =cos x ,x ∈[0,2π]的图象上,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).五点法作图有三步:列表、描点、连线(注意光滑). 2.正弦、余弦、正切函数的图象与性质 函数 y =sin x y =cos x y =tan x图象定义域 R R {x |x ∈R ,且x ≠kπ+π2,k ∈Z }值域 [-1,1] [-1,1] R 奇偶 性奇函数偶函数奇函数单调性在[-π2+2kπ,π2+2kπ](k∈Z)上是递增函数,在[π2+2kπ,3π2+2kπ](k∈Z)上是递减函数在[2kπ-π,2kπ](k∈Z)上是递增函数,在[2kπ,2kπ+π](k∈Z)上是递减函数在(-π2+kπ,π2+kπ)(k∈Z)上是递增函数周期性周期是2kπ(k∈Z且k≠0),最小正周期是2π周期是2kπ(k∈Z且k≠0),最小正周期是2π周期是kπ(k∈Z且k≠0),最小正周期是π对称性对称轴是x=π2+kπ(k∈Z),对称中心是(kπ,0)(k∈Z)对称轴是x=kπ(k∈Z),对称中心是(kπ+π2,0)(k∈Z)对称中心是(kπ2,0)(k∈Z)常用结论(1)函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期T=2π|ω|,函数y=tan(ωx+φ)的最小正周期T=π|ω|.(2)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半周期,相邻的对称中心与对称轴之间的距离是14周期.正切曲线相邻两对称中心之间的距离是半周期.(3)三角函数中奇函数一般可化为y=A sin ωx或y=A tan ωx的形式,偶函数一般可化为y=A cos ωx+b的形式.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)y=cos x在第一、二象限内是减函数.()(2)若y=k sin x+1,x∈R,则y的最大值是k+1.()(3)若非零实数T 是函数f (x )的周期,则kT (k 是非零整数)也是函数f (x )的周期.( )(4)函数y =sin x 图象的对称轴方程为x =2k π+π2(k ∈Z ). ( ) (5)函数y =tan x 在整个定义域上是增函数.( ) 答案:(1)× (2)× (3)√ (4)× (5)× 二、易错纠偏常见误区|K(1)忽视y =A sin x (或y =A cos x )中A 对函数单调性的影响; (2)忽视正、余弦函数的有界性; (3)不注意正切函数的定义域.1.函数y =1-2cos x 的单调递减区间是________. 答案:[2k π-π,2k π],k ∈Z2.函数y =-cos 2x +3cos x -1的最大值为________. 答案:13.函数y =cos x tan x 的值域是________. 答案:(-1,1)第1课时 三角函数的单调性与最值[学生用书P78]三角函数的定义域(自主练透) 1.函数f (x )=-2tan ⎝⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π6B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-π12C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π6(k ∈Z )D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π6(k ∈Z )解析:选D.由2x +π6≠k π+π2,得x ≠k π2+π6(k ∈Z ). 2.函数y =lg sin x +cos x -12的定义域为________.解析:要使函数有意义,则有⎩⎨⎧sin x >0,cos x -12≥0, 即⎩⎨⎧sin x >0,cos x ≥12, 解得⎩⎨⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ),所以2k π<x ≤π3+2k π,k ∈Z .所以函数y 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z .答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z3.(一题多解)函数y =sin x -cos x 的定义域为________. 解析:方法一:要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为{x |2k π+π4≤x ≤2k π+5π4,k ∈Z }.方法二:利用三角函数线,画出满足条件的终边范围(如图阴影部分所示).所以定义域为{x |2k π+π4≤x ≤2k π+5π4,k ∈Z }. 方法三:sin x -cos x =2sin(x -π4)≥0,将x -π4视为一个整体,由正弦函数y =sin x 的图象和性质可知2k π≤x -π4≤π+2k π(k ∈Z ),解得2k π+π4≤x ≤2k π+5π4(k ∈Z ).所以函数y 的定义域为{x |2k π+π4≤x ≤2k π+5π4,k ∈Z }. 答案:{x |2k π+π4≤x ≤2k π+5π4,k ∈Z }求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.函数的单调性(多维探究) 角度一 求三角函数的单调区间(1)函数f (x )=sin ⎝⎛⎭⎪⎫-2x +π3的单调递减区间为________.(2)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x +π3的单调递增区间是________.(3)函数y =12sin x +32cos x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的单调递增区间是________.【解析】 (1)f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3=sin ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫2x -π3=-sin ⎝⎛⎭⎪⎫2x -π3,由2k π-π2≤2x -π3≤2k π+π2,k ∈Z , 得k π-π12≤x ≤k π+5π12,k ∈Z . 故所求函数的单调递减区间为 ⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .(2)由k π-π2<2x +π3<k π+π2(k ∈Z ), 得k π2-5π12<x <k π2+π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x +π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-5π12,k π2+π12(k ∈Z ).(3)因为y =12sin x +32cos x =sin ⎝ ⎛⎭⎪⎫x +π3,由2k π-π2≤x +π3≤2k π+π2(k ∈Z ), 解得2k π-5π6≤x ≤2k π+π6(k ∈Z ).所以函数y =sin ⎝ ⎛⎭⎪⎫x +π3在R 上的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-5π6,2k π+π6(k ∈Z ),又x ∈⎣⎢⎡⎦⎥⎤0,π2,所以函数的单调递增区间为⎣⎢⎡⎦⎥⎤0,π6.【答案】 (1)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z(2)⎝ ⎛⎭⎪⎫k π2-5π12,k π2+π12(k ∈Z ) (3)⎣⎢⎡⎦⎥⎤0,π6 【迁移探究】 本例(3)中,将x ∈⎣⎢⎡⎦⎥⎤0,π2改为x ∈[-π,π],则函数的单调递减区间是________.解析:因为y =sin ⎝⎛⎭⎪⎫x +π3,由2k π+π2≤x +π3≤2k π+3π2(k ∈Z ), 得2k π+π6≤x ≤2k π+7π6(k ∈Z ),所以函数y =sin ⎝ ⎛⎭⎪⎫x +π3在R 上的单调递减区间为⎣⎢⎡⎦⎥⎤2k π+π6,2k π+7π6(k ∈Z ).又x ∈[-π,π],所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤-π,-5π6,⎣⎢⎡⎦⎥⎤π6,π.答案:⎣⎢⎡⎦⎥⎤-π,-5π6,⎣⎢⎡⎦⎥⎤π6,π求较为复杂的三角函数的单调区间时,首先化简成y =A sin(ωx +φ)形式,再求y =A sin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.角度二 根据单调性求参数(1)(一题多解)若f (x )=cos x -sin x 在[0,a ]是减函数,则a 的最大值是( )A.π4 B .π2 C.3π4D .π(2)(一题多解)若f (x )=2sin ωx (ω>0)在区间[-π2,2π3]上是增函数,则ω的取值范围是________.【解析】 (1)方法一:f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4.当x ∈[0,a ]时,x+π4∈⎣⎢⎡⎦⎥⎤π4,a +π4,所以结合题意可知,a +π4≤π,即a ≤3π4,故所求a 的最大值是3π4.故选C.方法二:f ′(x )=-sin x -cos x =-2sin ⎝ ⎛⎭⎪⎫x +π4.于是,由题设得f ′(x )≤0,即sin ⎝ ⎛⎭⎪⎫x +π4≥0在区间[0,a ]上恒成立.当x ∈[0,a ]时,x +π4∈⎣⎢⎡⎦⎥⎤π4,a +π4,所以a +π4≤π,即a ≤3π4,故所求a 的最大值是3π4.故选C.(2)方法一:因为x ∈[-π2,2π3](ω>0), 所以ωx ∈[-ωπ2,2πω3],因为f (x )=2sin ωx 在[-π2,2π3]上是增函数, 所以⎩⎨⎧-πω2≥-π2,2πω3≤π2,ω>0,故0<ω≤34. 方法二:画出函数f (x )=2sin ωx (ω>0)的图象如图所示.要使f (x )在[-π2,2π3]上是增函数,需⎩⎪⎨⎪⎧-π2ω≤-π2,2π3≤π2ω(ω>0),即0<ω≤34.方法三:由-π2+2k π≤ωx ≤π2+2k π(k ∈Z )得 -π2ω+2k πω≤x ≤π2ω+2k πω(k ∈Z ),故f (x )的单调递增区间是[-π2ω+2k πω,π2ω+2k πω](k ∈Z ),由题意知[-π2,2π3]⊆[-π2ω+2k πω,π2ω+2k πω](k ∈Z ,ω>0),从而有⎩⎪⎨⎪⎧-π2ω≤-π2,π2ω≥2π3,即0<ω≤34.【答案】 (1)C (2)(0,34]已知三角函数的单调区间求参数的取值范围的3种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解;(2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解;(3)周期法:由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解.1.(2019·高考全国卷Ⅱ)下列函数中,以π2为周期且在区间⎝ ⎛⎭⎪⎫π4,π2单调递增的是( )A .f (x )=|cos 2x |B .f (x )=|sin 2x |C .f (x )=cos|x |D .f (x )=sin|x |解析:选A.A 中,函数f (x )=|cos 2x |的周期为π2,当x ∈⎝ ⎛⎭⎪⎫π4,π2时,2x ∈⎝ ⎛⎭⎪⎫π2,π,函数f (x )单调递增,故A 正确;B 中,函数f (x )=|sin 2x |的周期为π2,当x ∈⎝ ⎛⎭⎪⎫π4,π2时,2x ∈⎝ ⎛⎭⎪⎫π2,π,函数f (x )单调递减,故B 不正确;C 中,函数f (x )=cos|x |=cosx 的周期为2π,故C 不正确;D 中,f (x )=sin|x |=⎩⎪⎨⎪⎧sin x ,x ≥0,-sin x ,x <0,由正弦函数图象知,在x ≥0和x <0时,f (x )均以2π为周期,但在整个定义域上f (x )不是周期函数,故D 不正确.故选A.2.(2020·广东省七校联考)函数f (x )=tan ⎝ ⎛⎭⎪⎫x 2-π6的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤2k π-2π3,2k π+4π3,k ∈Z B.⎝⎛⎭⎪⎫2k π-2π3,2k π+4π3,k ∈Z C.⎣⎢⎡⎦⎥⎤4k π-2π3,4k π+4π3,k ∈Z D.⎝⎛⎭⎪⎫4k π-2π3,4k π+4π3,k ∈Z 解析:选B.由-π2+k π<x 2-π6<π2+k π,k ∈Z ,得2k π-2π3<x <2k π+4π3,k ∈Z ,所以函数f (x )=tan ⎝ ⎛⎭⎪⎫x 2-π6的单调递增区间是⎝ ⎛⎭⎪⎫2k π-2π3,2k π+4π3,k ∈Z ,故选B.3.若函数g (x )=sin ⎝ ⎛⎭⎪⎫2x +π6在区间⎣⎢⎡⎦⎥⎤0,a 3和⎣⎢⎡⎦⎥⎤4a ,7π6上均单调递增,则实数a 的取值范围是________.解析:由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),可得k π-π3≤x ≤k π+π6(k ∈Z ), 所以g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).又因为函数g (x )在区间⎣⎢⎡⎦⎥⎤0,a 3和⎣⎢⎡⎦⎥⎤4a ,7π6上均单调递增,所以⎩⎪⎪⎨⎪⎪⎧a 3≤π6,4a ≥2π3,0<a 3,4a <7π6,解得π6≤a <7π24.答案:⎣⎢⎡⎭⎪⎫π6,7π24三角函数的值域(师生共研)(1)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为________.(2)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.(3)函数y =sin x -cos x +sin x cos x 的值域为________.【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,所以sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,所以函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为⎣⎢⎡⎦⎥⎤-32,3. (2)依题意,f (x )=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝⎛⎭⎪⎫cos x -322+1,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ∈[0,1],因此当cos x =32时,f (x )max =1.(3)设t =sin x -cos x ,则-2≤t ≤2,t 2=sin 2x +cos 2x -2sin x cos x ,则sin x cos x =1-t 22,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1.【答案】 (1)⎣⎢⎡⎦⎥⎤-32,3 (2)1 (3)⎣⎢⎡⎦⎥⎤-12-2,1求三角函数的值域(最值)的4种类型及解法思路(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值).(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值).(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).(4)形如y =t +at (a >0,t >0)的可考虑基本不等式.1.若函数f (x )=(1+3tan x )cos x ,-π3≤x ≤π6,则f (x )的最大值为( ) A .1 B .2 C. 3D.3+1解析:选C.f (x )=(1+3tan x )cos x =cos x +3sin x =2sin ⎝ ⎛⎭⎪⎫x +π6.因为-π3≤x≤π6,所以-π6≤x +π6≤π3,故当x =π6时,f (x )取最大值为 3.故选C.2.设x ∈⎝⎛⎭⎪⎫0,π2,则函数y =sin 2x 2sin 2x +1的最大值为________.解析:因为x ∈⎝ ⎛⎭⎪⎫0,π2,所以tan x >0,y =sin 2x 2sin 2x +1=2sin x cos x 3sin 2x +cos 2x =2tan x 3tan 2x +1=23tan x +1tan x≤223=33,当且仅当3tan x =1tan x 时等号成立,故最大值为33. 答案:33[学生用书P80]思想方法系列8 换元法求三角函数的最值(值域)已知函数f (x )=-10sin 2x -10sin x -12,x ∈⎣⎢⎡⎦⎥⎤-π2,m 的值域为⎣⎢⎡⎦⎥⎤-12,2,则实数m 的取值范围是________. 【解析】 记t =sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,m ,则函数f (x )可转化为g (t )=-10t 2-10t-12=-10⎝ ⎛⎭⎪⎫t +122+2. 因为函数的最大值为2,显然此时t =-12. 令g (t )=-12,得t =-1或t =0,由题意知x ∈⎣⎢⎡⎦⎥⎤-π2,m ,当x =-π2时,t =-1,g (-1)=-12,结合g (t )的图象及函数的值域为⎣⎢⎡⎦⎥⎤-12,2,可得-12≤sin m ≤0,解得-π6≤m ≤0.【答案】 ⎣⎢⎡⎦⎥⎤-π6,0对于函数y =a sin 2(ωx +φ)+b sin(ωx +φ)+c 的最值或值域问题,可通过换元(令t =sin(ωx +φ))转化为y =at 2+bt +c 的最值或值域问题.用换元法求解此类问题时,需注意换元后“元”的取值范围的变化.函数y =(4-3sin x )(4-3cos x )的最小值为________.解析:y =16-12(sin x +cos x )+9sin x cos x , 令t =sin x +cos x , 则t ∈[-2,2], 且sin x cos x =t 2-12,所以y =16-12t +9×t 2-12=12(9t 2-24t +23). 故当t =43时,y min =72. 答案:72[学生用书P377(单独成册)][A 级 基础练]1.函数y =tan ⎝ ⎛⎭⎪⎫π4-x 的定义域是( )A .{x |x ≠π4}B .{x |x ≠-π4}C .{x |x ≠k π+π4(k ∈Z )}D .{x |x ≠k π+3π4(k ∈Z )}解析:选D.y =tan ⎝ ⎛⎭⎪⎫π4-x =-tan ⎝ ⎛⎭⎪⎫x -π4,由x -π4≠π2+k π(k ∈Z ),得x ≠k π+3π4(k ∈Z ).故选D.2.函数y =|cos x |的一个单调增区间是( ) A .[-π2,π2] B .[0,π] C .[π,3π2]D .[3π2,2π]解析:选D.将y =cos x 的图象位于x 轴下方的图象关于x 轴对称翻折到x 轴上方,x 轴上方(或x 轴上)的图象不变,即得y =|cos x |的图象(如图).故选D.3.函数y =tan x +sin x -|tan x -sin x |在区间⎝ ⎛⎭⎪⎫π2,3π2内的图象是( )解析:选 D.y =tan x +sin x -|tan x -sin x |=⎩⎨⎧2tan x ,x ∈⎝ ⎛⎦⎥⎤π2,π,2sin x ,x ∈⎝⎛⎭⎪⎫π,3π2.结合选项中图形知,D 正确.4.(2020·贵阳市第一学期监测考试)已知函数f (x )=cos 2x +3sin 2x ,则f (x )的单调递增区间是( )A .[k π-π3,k π+π6](k ∈Z ) B .[k π,k π+π2](k ∈Z ) C .[k π+π6,k π+2π3](k ∈Z )D .[k π-π2,k π](k ∈Z )解析:选A.f (x )=cos 2x +3sin 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6,则由-π2+2k π≤2x +π6≤π2+2k π(k ∈Z ),得-π3+k π≤x ≤π6+k π(k ∈Z ),即函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ),故选A.5.(2020·昆明市三诊一模)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π4(ω>0),x ∈⎣⎢⎡⎦⎥⎤0,π2的值域是⎣⎢⎡⎦⎥⎤-22,1,则ω的取值范围是( )A.⎝ ⎛⎦⎥⎤0,32 B .⎣⎢⎡⎦⎥⎤32,3 C.⎣⎢⎡⎦⎥⎤3,72 D.⎣⎢⎡⎦⎥⎤52,72 解析:选B.方法一:因为x ∈⎣⎢⎡⎦⎥⎤0,π2,ω>0,所以ωx -π4∈⎣⎢⎡⎦⎥⎤-π4,ωπ2-π4.又当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )∈⎣⎢⎡⎦⎥⎤-22,1,所以π2≤ωπ2-π4≤5π4,解得32≤ω≤3,故选B.方法二:当ω=2时,f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4.因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4, 所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,满足题意,故排除A ,C ,D ,故选B.6.比较大小:sin ⎝ ⎛⎭⎪⎫-π18________sin ⎝ ⎛⎭⎪⎫-π10.解析:因为y =sin x 在⎣⎢⎡⎦⎥⎤-π2,0上为增函数且-π18>-π10>-π2,故sin ⎝ ⎛⎭⎪⎫-π18>sin ⎝ ⎛⎭⎪⎫-π10.答案:>7.设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.解析:由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),所以ω=8k +23(k ∈Z ),又ω>0,所以ωmin=23.答案:238.若函数f (x )=3sin ⎝ ⎛⎭⎪⎫x +π10-2在区间⎣⎢⎡⎦⎥⎤π2,a 上单调,则实数a 的最大值是________.解析:方法一:令2k π+π2≤x +π10≤2k π+3π2,k ∈Z ,即2k π+2π5≤x ≤2k π+7π5,k ∈Z ,所以函数f (x )在区间⎣⎢⎡⎦⎥⎤2π5,7π5上单调递减,所以a 的最大值为7π5.方法二:因为π2≤x ≤a ,所以π2+π10≤x +π10≤a +π10, 而f (x )在⎣⎢⎡⎦⎥⎤π2,a 上单调,所以a +π10≤3π2,即a ≤7π5,所以a 的最大值为7π5. 答案:7π59.已知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.(1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,求函数f (x )的最大值和最小值.解:(1)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 则k π-3π8≤x ≤k π+π8,k ∈Z .故f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z .(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,3π4≤2x +π4≤7π4,所以-1≤sin ⎝ ⎛⎭⎪⎫2x +π4≤22,所以-2≤f (x )≤1,所以当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2.10.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6.讨论函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的单调性并求出其值域.解:令-π2≤2x -π6≤π2,则-π6≤x ≤π3. 令π2≤2x -π6≤3π2,则π3≤x ≤5π6.因为-π12≤x ≤π2,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤-π12,π3上单调递增,在区间⎝ ⎛⎦⎥⎤π3,π2上单调递减. 当x =π3时,f (x )取得最大值为1.因为f ⎝ ⎛⎭⎪⎫-π12=-32<f ⎝ ⎛⎭⎪⎫π2=12,所以当x =-π12时,f (x )min =-32. 所以f (x )的值域为⎣⎢⎡⎦⎥⎤-32,1.[B 级 综合练]11.(2020·贵阳市第一学期监测考试)已知函数f (x )=sin(2x +φ),其中φ∈(0,2π),若f (x )≤f ⎝ ⎛⎭⎪⎫π6对于一切x ∈R 恒成立,则f (x )的单调递增区间是( )A .[k π,k π+π2](k ∈Z )B .[k π-π3,k π+π6](k ∈Z )C .[k π+π6,k π+2π3](k ∈Z )D .[k π-π2,k π](k ∈Z )解析:选B.因为f (x )≤f ⎝ ⎛⎭⎪⎫π6对于x ∈R 恒成立,则f ⎝ ⎛⎭⎪⎫π6为函数f (x )的最大值,即2×π6+φ=2k π+π2(k ∈Z ),则φ=2k π+π6(k ∈Z ),又φ∈(0,2π),所以φ=π6,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x + π6.令2x +π6∈⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).故选B.12.(2020·沈阳市教学质量监测(一))已知函数f (x )=3sin 2x -2cos 2x +1,则下列选项正确的是( )A .当x =π6时,f (x )取得最大值B .f (x )在区间⎣⎢⎡⎦⎥⎤-π3,0上单调递增C .f (x )在区间⎣⎢⎡⎦⎥⎤π3,5π6上单调递减D .f (x )的图象的一条对称轴为直线x =π12解析:选C.由题意可知f (x )=3sin 2x -cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π6.对于选项A ,当x =π6时,f ⎝ ⎛⎭⎪⎫π6=1,不是最大值,选项A 错误;对于选项B ,当2k π-π2≤2x-π6≤2k π+π2,k ∈Z ,即k π-π6≤x ≤k π+π3,k ∈Z 时,f (x )单调递增,可知⎣⎢⎡⎦⎥⎤-π3,0不是f (x )的单调递增区间,选项B 错误;对于选项C ,当2k π+π2≤2x -π6≤2k π+3π2,k ∈Z ,即k π+π3≤x ≤k π+5π6,k ∈Z 时,f (x )单调递减,可知⎣⎢⎡⎦⎥⎤π3,5π6是f (x )的单调递减区间,选项C 正确;对于选项D ,由2x -π6=k π+π2,k ∈Z ,得x =k π2+π3,k ∈Z ,所以直线x =π12不是f (x )的图象的一条对称轴,选项D 错误.故选C.13.(2021·沈阳市教学质量监测(一))设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π5(ω>0),已知f (x )在[0,2π]有且仅有5个零点,则ω的取值范围是________.解析:当x ∈[0,2π]时,ωx +π5∈⎣⎢⎡⎦⎥⎤π5,2πω+π5,因为f (x )=[0,2π]有且仅有5个零点,所以5π≤2πω+π5<6π,所以125≤ω<2910.答案:⎣⎢⎡⎭⎪⎫125,291014.已知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1.(1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )的最大值为4,求a 的值;(3)在(2)的条件下,求满足f (x )=1且x ∈[-π,π]的x 的取值集合. 解:(1)f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1,由2k π-π2≤2x +π6≤2k π+π2,k ∈Z , 可得k π-π3≤x ≤k π+π6,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6,k ∈Z .(2)当x =π6时,f (x )取得最大值4, 即f ⎝ ⎛⎭⎪⎫π6=2sin π2+a +1=a +3=4,所以a =1.(3)由f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+2=1,可得sin ⎝⎛⎭⎪⎫2x +π6=-12,则2x +π6=7π6+2k π,k ∈Z 或2x +π6=116π+2k π,k ∈Z , 即x =π2+k π,k ∈Z 或x =5π6+k π,k ∈Z , 又x ∈[-π,π],解得x =-π2,-π6,π2,5π6,所以x 的取值集合为⎩⎨⎧⎭⎬⎫-π2,-π6,π2,5π6.[C 级 提升练]15.(2021·湖北八校第一次联考)若函数f (x )=sin x +3cos x 在区间[a ,b ]上是减函数,且f (a )=2,f (b )=-2,则函数g (x )=cos x -3sin x 在区间[a ,b ]上( )A .是增函数B .是减函数C .可以取得最大值2D .可以取得最小值-2解析:选 D.f (x )=sin x +3cos x =2sin ⎝⎛⎭⎪⎫x +π3,g (x )=cos x -3sin x =2cos ⎝ ⎛⎭⎪⎫x +π3=2sin ⎝⎛⎭⎪⎫x +π2+π3.f (x )在区间[a ,b ]上是减函数,且f (a )=2,f (b )=-2,不妨令a +π3=π2,b +π3=3π2,则a +π2+π3=π,b +π2+π3=2π,故g (x )在[a ,b ]上既不是增函数,也不是减函数,g (x )在[a ,b ]上可以取得最小值-2,故选D.16.已知函数f (x )=(x -a )k ,角A ,B ,C 为锐角三角形ABC 的三个内角,则下列判断正确的是( )A .当k =1,a =2时,f (sin A )<f (cosB )B .当k =1,a =2时,f (cos A )>f (sin B )C .当k =2,a =1时,f (sin A )>f (cos B )D .当k =2,a =1时,f (cos A )>f (sin B )解析:选D.A ,B ,C 为锐角三角形ABC 的三个内角,因为A +B >π2,所以π2>A >π2-B >0,所以sin A >sin ⎝ ⎛⎭⎪⎫π2-B =cos B ,cos A <cos ⎝ ⎛⎭⎪⎫π2-B =sin B ,且sin A ,sin B ,cos A ,cos B ∈(0,1).当k =1,a =2时,函数f (x )=x -2单调递增,所以f (sin A )>f (cos B ),f (cos A )<f (sin B ),故A ,B 错误;当k =2,a =1时,函数f (x )=(x -1)2在(0,1)上单调递减,所以f (sin A )<f (cosB ),f (cos A )>f (sin B ),故C 错误,D 正确.。
普通高中课程标准实验教科书—数学 [人教版]高三新数学第一轮复习教案(讲座4)—基本初等函数一.课标要求1.指数函数(1)通过具体实例(如细胞的分裂,考古中所用的14C 的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景;(2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
(3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点;(4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。
2.对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用;(2)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3.知道指数函数x a y =与对数函数x y a log =互为反函数(a >0,a ≠1)。
二.命题走向指数函数、对数函数、幂函数是三类常见的重要函数,在历年的高考题中都占据着重要的地位。
从近几年的高考形势来看,对指数函数、对数函数、幂函数的考查,大多以基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题。
为此,我们要熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理。
预测2007年对本节的考察是:1.题型有两个选择题和一个解答题;2.题目形式多以指数函数、对数函数、幂函数为载体的复合函数来考察函数的性质。
同时它们与其它知识点交汇命题,则难度会加大。
三.要点精讲1.指数与对数运算(1)根式的概念:①定义:若一个数的n 次方等于),1(*∈>N n n a 且,则这个数称a 的n 次方根。
即若a x n =,则x 称a 的n 次方根)1*∈>N n n 且,1)当n 为奇数时,n a 的次方根记作n a ;2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作)0(>±a a n 。
函数(增强代码的复用性)
①定义:为完成某一功能的程序指令(语句)的集合,称为函数。
②函数分为自定义函数和系统函数
案例
Func.php
<?php
//fuction 是一个关键词
//jisuan 函数名(由程序员取名)
//$num1 $num2 $oper 是函数的参数列表(形参)Function jisuan($num1,$num2,$oper){
$res=0;
Switch($oper){
Case “+”:
$res=$num1+$num2;
Break;
Case “-”:
$res=$num1-$num2;
Break;
Case “*”:
$res=$num1*$num2;
Break;
Case “/”:
$res=$num1/$num2;
Break;
Default:
Echo ‘运算符有误’
}
Return $res;
}
?>
Func01.php
<html>
<head>
<meta http-equiv=”content-type” content=”text/html;charset=utf-8”/> </head>
<?php
Require ‘func.php’;
$num1=54;
$num2=90;
$oper=”*”;
$res=jisuan($num1,$num2,$oper);
Echo “计算结果是=”.$res;
?>
</html>
2.自定义函数
//参数列表是接受输入的
Function 函数名(参数列表){
//函数体;(完成某一功能的指令集合)
//return 语句;(返回一个结果;可有可无,根据需要而定)
}
3.php页面相互调用
①require
②require_once
③include
④include_once
3.1require的用法
①require ‘要引入的文件名’
②$filepath=”文件路径”
Require $filepath
③require (‘要引入的文件名’)
✉require与require_once的区别
前者遇到便包含文件,后者会判断是否已经被包含了,如果被包含了,则不再包含文件。
这样一来,①可以节省资源②可以避免重复定义的错误
在同一个php文件中,函数名是不能相同的。
3.3 include 和include_once
一般放在php页面的最前面,php在执行时,就先读入require所引入的文件,一旦出现错误,则退出程序。
他们的作用和功能都可以把一个页面,包含到另外一个页面。
Include基本用法
①include ‘要引入的文件名’
②$filepath=”文件路径”
include $filepath
③include (‘要引入的文件名’)
✉Include 与include_once的区别和require与require_once的区别相同
4. include 与require的区别(及是include_once 与require_once 的区别)
相同
引入别的页面
不同
Include如果出现了错误,会继续往下执行;
Require出现错误,则会终止程序(退出)。
总结
我们做项目的时候,基本上使用require_once,注意把它放在php最前边。
5. 案例1(函数自己调用自己)(又叫递归调用)
<?php
Function abc($n){
If($n>2){
Abc(--$n); /*当- -位于变量后面时;程序将变成死循环*/ }
Echo ‘$n=’.$n.”<br/>”
}
Abc(4);
?>
结果
案例2
<?php
Function abc($n){
If($n>2){
Abc(--$n);
}else{
Echo ‘$n=’.$n.”<br/>”
}
?>
//输出结果为$n=2
6.函数的深入使用
①函数的参数列表可以是多个。
②参数列表可以是多个;而且数据类型可以是多个类型。
(array、integer、float、boolean、string、object、null、资源类型)
③函数的命名跟自定义变量一样,首字母只能使用_、A-Z、a-z(不能使用数字和特殊字符)
④函数是不区分大小写的。
(变量是区分的)
⑤一个自定义函数中的变量是局部的,函数外不生效。
⑥使用global全局变量的时候,可使用在函数外的变量。
(案例7)
⑦如果在函数中我们不希望使用某个变量(或是希望彻底删掉某个变量);则可以使用Unset(变量)
<?php
$a=12;
Fuction abc($a){
Unsat($a) //表示在abc函数范围内,不再使用$a,后面需要重新
$a+=45; 定义
}
Abc($a);
Echo $a;
?>
⑧在php函数中,我们可以给某些参数,赋一个默认的值。
function abc($b,$a=2){
$res=$a+$b;
return $res;
}
$e=70;
Echo abc($e).”<br/>”;
Echo abc($e,90);
//结果
72
160
⑨php传递变量时,默认是值传递,如果需要应用(地址[共用地址])传递,可以使用&变量名
<?php
$a=12;
Fuction abc($b){ //$b前面加&符号;$b占用的地址$a将相同,$b的$b=45; } 值自然会赋值给$a;及使函数abc 对外界产生影响
Abc($a);
?>
//结果为
$a=12
⑩函数中,方法可以没有返回值。
7.案例
<?php
$a=12;
Fuction abc(){
Global $a; //在abc函数中使用外层的$a.建立与外界的联系;对外
$a+=45;界产生影响
}
Abc();
Echo $a;
?>
对照案例
<?php
$a=12;
Fuction abc($a){
$a+=45;
}
Abc($a);
Echo $a;
?>
//结果还是$a=12.
8.系统函数。