2017版考前三个月高考数学全国甲卷通用理科知识 方法篇 专题5 数列、推理与证明 第22练 含答案 精品
- 格式:docx
- 大小:216.51 KB
- 文档页数:10
第5练 如何让“线性规划”不失分[题型分析·高考展望] “线性规划”是高考每年必考的内容,主要以选择题、填空题的形式考查,题目难度大多数为低、中档,在填空题中出现时难度稍高.二轮复习中,要注重常考题型的反复训练,注意研究新题型的变化点,争取在该题目上做到不误时,不丢分.体验高考1.(2015·天津)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目标函数z =x +6y 的最大值为( )A.3B.4C.18D.40 答案 C解析 画出约束条件的可行域如图中阴影部分,作直线l :x +6y =0,平移直线l 可知,直线l 过点A 时,目标函数z =x +6y 取得最大值,易得A (0,3), 所以z max =0+6×3=18,选C.2.(2015·陕西)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元B.16万元C.17万元D.18万元 答案 D解析 设甲,乙的产量分别为x 吨,y 吨, 由已知可得⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图中阴影部分所示:可得目标函数在点A 处取到最大值.由⎩⎪⎨⎪⎧x +2y =8,3x +2y =12,得A (2,3). 则z max =3×2+4×3=18(万元).3.(2016·山东)若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A.4B.9C.10D.12 答案 C解析 满足条件⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0的可行域如图中阴影部分(包括边界),x 2+y 2是可行域上动点(x ,y )到原点(0,0)距离的平方,显然,当x =3,y =-1时,x 2+y 2取最大值,最大值为10.故选C.4.(2016·浙江)若平面区域⎩⎪⎨⎪⎧x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( ) A.355 B. 2 C.322 D. 5答案 B解析 已知不等式组所表示的平面区域如图所示的阴影部分,由⎩⎪⎨⎪⎧ x -2y +3=0,x +y -3=0, 解得A (1,2),由⎩⎪⎨⎪⎧x +y -3=0,2x -y -3=0, 解得B (2,1).由题意可知,当斜率为1的两条直线分别过点A 和点B 时,两直线的距离最小, 即|AB |=(1-2)2+(2-1)2= 2.5.(2015·课标全国Ⅱ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为____________. 答案 32解析 画出约束条件表示的可行域如图中阴影部分(△ABC )所示:作直线l 0:x +y =0,平移l 0到过点A 的直线l 时,可使直线y =-x +z 在y 轴上的截距最大,即z 最大,解⎩⎪⎨⎪⎧x -2y =0,x +2y -2=0得⎩⎪⎨⎪⎧x =1,y =12,即A ⎝⎛⎭⎫1,12,故z 最大=1+12=32. 高考必会题型题型一 已知约束条件,求目标函数的最值例1 (2016·北京)若x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为( )A.0B.3C.4D.5 答案 C解析 不等式组表示的可行域如图中阴影部分所示.令z =2x +y ,则y =-2x +z ,作直线2x +y =0并平移,当直线过点A 时,截距最大,即z取得最大值,由⎩⎪⎨⎪⎧ 2x -y =0,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2,所以A 点坐标为(1,2),可得2x +y 的最大值为2×1+2=4.点评 (1)确定平面区域的方法:“直线定界,特殊点定域”.(2)线性目标函数在线性可行域中的最值,一般在可行域的顶点处取得,故可先求出可行域的顶点,然后代入比较目标函数的取值即可确定最值. 变式训练1 已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =|4x -4y +3|的取值范围是( )A.[53,15)B.[53,15]C.[53,5) D.(5,15) 答案 A解析 根据题意画出不等式所表示的可行域,如图所示,z =|4x -4y +3|=|4x -4y +3|42×42表示的几何意义是可行域内的点(x ,y )到直线4x -4y +3=0的距离的42倍,结合图象易知点A (2,-1),B (13,23)到直线4x -4y +3=0的距离分别为最大和最小,此时z 分别取得最大值15与最小值53,故z ∈[53,15),故选A.题型二 解决参数问题例2 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1,x -y ≤1,x ≥a ,若x +2y ≥-5恒成立,则实数a 的取值范围为( ) A.(-∞,-1] B.[-1,+∞) C.[-1,1] D.[-1,1)答案 C解析 由题意作出不等式组所表示的平面区域,如图中阴影部分所示,则x +2y ≥-5恒成立可转化为图中的阴影部分在直线x +2y =-5的上方,由⎩⎪⎨⎪⎧x -y =1,x +2y =-5,得⎩⎪⎨⎪⎧x =-1,y =-2, 由⎩⎪⎨⎪⎧x -y =1,x +y =1,得⎩⎪⎨⎪⎧x =1,y =0,则实数a 的取值范围为[-1,1].点评 所求参数一般为对应直线的系数,最优解的取得可能在某点,也可能是可行域边界上的所有点,要根据情况利用数形结合进行确定,有时还需分类讨论. 变式训练2 (2015·山东)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0,若z =ax +y 的最大值为4,则a 等于( )A.3B.2C.-2D.-3 答案 B解析 不等式组表示的平面区域如图中阴影部分所示,易知A (2,0),由⎩⎪⎨⎪⎧x -y =0,x +y =2,得B (1,1).由z =ax +y ,得y =-ax +z .∴当a =-2或a =-3时,z =ax +y 在O (0,0)处取得最大值,最大值为z max =0,不满足题意,排除C ,D 选项;当a =2或3时,z =ax +y 在A (2,0)处取得最大值, ∴2a =4,∴a =2,排除A ,故选B. 题型三 简单线性规划的综合应用例3 (1)(2016·浙江)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0 中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |等于( )A.2 2B.4C.3 2D.6(2)(2016·课标全国乙)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元. 答案 (1)C (2)216 000解析 (1)已知不等式组表示的平面区域如图中△PMQ 所示.因为l 与直线x +y =0平行.所以区域内的点在直线x +y -2上的投影构成线段AB ,则|AB |=|PQ |.由⎩⎪⎨⎪⎧x -3y +4=0,x +y =0,解得P (-1,1), 由⎩⎪⎨⎪⎧x =2,x +y =0.解得Q (2,-2). 所以|AB |=|PQ |=(-1-2)2+(1+2)2=3 2.(2)设生产A 产品x 件,B 产品y 件,根据所耗费的材料要求、工时要求等其他限制条件,得线性约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,y ≥0,x ∈N *,y ∈N*目标函数z =2 100x +900y .作出可行域为图中的四边形,包括边界,顶点为(60,100),(0,200),(0,0),(90,0),在(60,100)处取得最大值,z max =2 100×60+900×100=216 000(元).点评 若变量的约束条件形成一个区域,如圆、三角形、带状图形等,都可考虑用线性规划的方法解决,解决问题的途径是:集中变量的约束条件得到不等式组,画出可行域,确定变量的取值范围,解决具体问题.变式训练3 设点P (x ,y )是不等式组⎩⎪⎨⎪⎧y ≥0,x -2y +1≥0,x +y ≤3所表示的平面区域内的任意一点,向量m =(1,1),n =(2,1),点O 是坐标原点,若向量OP →=λm +μn (λ,μ∈R ),则λ-μ的取值范围是( ) A.[-32,23]B.[-6,2]C.[-1,72]D.[-4,23]答案 B解析 画出不等式组所表示的可行域,如图中阴影部分所示.由题意,可得(x ,y )=λ(1,1)+μ(2,1)=(λ+2μ,λ+μ),故⎩⎪⎨⎪⎧x =λ+2μ,y =λ+μ.令z =λ-μ=-2(λ+2μ)+3(λ+μ)=-2x +3y ,变形得y =23x +z3.当直线y =23x +z 3过点A (-1,0)时,z 取得最大值,且z max =2;当直线y =23x +z3过点B (3,0)时,z 取得最小值,且z min =-6.故选B.高考题型精练1.(2015·安徽)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y -4≤0,y ≥1,则z =-2x +y 的最大值是( )A.-1B.-2C.-5D.1 答案 A解析 约束条件下的可行域如图所示,由z =-2x +y 可知y =2x +z ,当直线y =2x +z 过点A (1,1)时,截距最大,此时z 最大为-1,故选A.2.(2016·四川)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p是q 的( ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件答案 A 解析 如图,(x -1)2+(y -1)2≤2①表示圆心为(1,1),半径为2的圆内区域所有点(包括边界);⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1②表示△ABC 内部区域所有点(包括边界).实数x ,y 满足②则必然满足①,反之不成立.则p 是q 的必要不充分条件.故选A. 3.在平面直角坐标系中,点P 是由不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1所确定的平面区域内的动点,Q 是直线2x +y =0上任意一点,O 为坐标原点,则|OP →+OQ →|的最小值为( ) A.55 B.23 C.22D.1 答案 A解析 在直线2x +y =0上取一点Q ′,使得Q ′O →=OQ →,则|OP →+OQ →|=|OP →+Q ′O →|=|Q ′P →|≥|P ′P →|≥|BA →|,其中P ′,B 分别为点P ,A 在直线2x +y =0上的投影,如图.因为|AB →|=|0+1|12+22=55,因此|OP →+OQ →|min =55,故选A.4.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( ) A.5 B.29 C.37 D.49 答案 C解析 由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1.显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6. ∴a 2+b 2的最大值为62+12=37.故选C. 5.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为4,则ab 的取值范围是( ) A.(0,4) B.(0,4] C.[4,+∞) D.(4,+∞)答案 B解析 作出不等式组表示的区域如图中阴影部分所示,由图可知,z =ax +by (a >0,b >0)过点A (1,1)时取最大值,∴a +b =4,ab ≤⎝⎛⎭⎫a +b 22=4,∵a >0,b >0, ∴ab ∈(0,4],故选B.6.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥1,x -y ≤1,y -1≤0,若z =x -2y 的最大值与最小值分别为a ,b ,且方程x 2-kx +1=0在区间(b ,a )上有两个不同实数解,则实数k 的取值范围是( ) A.(-6,-2) B.(-3,2) C.(-103,-2)D.(-103,-3)答案 C解析 作出可行域,如图所示,则目标函数z =x -2y 在点(1,0)处取得最大值1,在点(-1,1)处取得最小值-3, ∴a =1,b =-3,从而可知方程x 2-kx +1=0在区间(-3,1)上有两个不同实数解. 令f (x )=x 2-kx +1,则⎩⎪⎨⎪⎧f (-3)>0,f (1)>0,-3<k2<1,Δ=k 2-4>0,⇒-103<k <-2,故选C.7.已知实数x ,y 满足⎩⎪⎨⎪⎧x +1-y ≥0,x +y -4≤0,y ≥m ,若目标函数z =2x +y 的最大值与最小值的差为2,则实数m 的值为( ) A.4 B.3 C.2 D.-12答案 C解析 ⎩⎪⎨⎪⎧x +1-y ≥0,x +y -4≤0,y ≥m表示的可行域如图中阴影部分所示.将直线l 0:2x +y =0向上平移至过点A ,B 时,z =2x +y 分别取得最小值与最大值.由⎩⎪⎨⎪⎧x +1-y =0,y =m 得A (m -1,m ), 由⎩⎪⎨⎪⎧x +y -4=0,y =m 得B (4-m ,m ), 所以z min =2(m -1)+m =3m -2, z max =2(4-m )+m =8-m ,所以z max -z min =8-m -(3m -2)=2, 解得m =2.8.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是( ) A.⎝⎛⎭⎫-∞,43 B.⎝⎛⎭⎫-∞,13 C.⎝⎛⎭⎫-∞,-23 D.⎝⎛⎭⎫-∞,-53 答案 C解析 当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0. 如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-23.9.(2016·江苏)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,则x 2+y 2的取值范围是________.答案 ⎣⎡⎦⎤45,13解析 已知不等式组所表示的平面区域如下图:x 2+y 2表示原点到可行域内的点的距离的平方.解方程组⎩⎪⎨⎪⎧3x -y -3=0,x -2y +4=0,得A (2,3).由图可知(x 2+y 2)min =⎝⎛⎭⎪⎫|-2|22+122=45,(x 2+y 2)max =|OA |2=22+32=13.10.4件A 商品与5件B 商品的价格之和不小于20元,而6件A 商品与3件B 商品的价格之和不大于24,则买3件A 商品与9件B 商品至少需要________元. 答案 22解析 设1件A 商品的价格为x 元,1件B 商品的价格为y 元,买3件A 商品与9件B 商品需要z 元,则z =3x +9y ,其中x ,y 满足不等式组⎩⎪⎨⎪⎧4x +5y ≥20,6x +3y ≤24,x ≥0,y ≥0,作出不等式组表示的平面区域,如图所示,其中A (0,4),B (0,8),C (103,43).当y =-13x +19z 经过点C 时,目标函数z 取得最小值.所以z min =3×103+9×43=22.因此当1件A 商品的价格为103元,1件B 商品的价格为43元时,可使买3件A 商品与9件B 商品的费用最少,最少费用为22元. 11.给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0,令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D上取得最大值或最小值的点},则T 中的点共确定________条不同的直线. 答案 6解析 线性区域为图中阴影部分,取得最小值时点为(0,1),最大值时点为(0,4),(1,3),(2,2),(3,1),(4,0),故共可确定6条不同的直线.12.(2015·浙江)若实数x ,y 满足x 2+y 2≤1,则|2x +y -2|+|6-x -3y |的最小值是________. 答案3解析 满足x 2+y 2≤1的实数x ,y 表示的点(x ,y )构成的区域是单位圆及其内部. f (x ,y )=|2x +y -2|+|6-x -3y | =|2x +y -2|+6-x -3y=⎩⎪⎨⎪⎧4+x -2y ,y ≥-2x +2,8-3x -4y ,y <-2x +2. 直线y =-2x +2与圆x 2+y 2=1交于A ,B 两点,如图所示,易得B ⎝⎛⎭⎫35,45.设z 1=4+x -2y ,z 2=8-3x -4y ,分别作直线y =12x 和y =-34x 并平移,则z 1=4+x -2y 在点B ⎝⎛⎭⎫35,45取得最小值为3,z 2=8-3x -4y 在点B ⎝⎛⎭⎫35,45取得最小值为3,所以|2x +y -2|+|6-x -3y |的最小值是3.。
第12练 导数几何意义的必会题型[题型分析·高考展望] 本部分题目考查导数的几何意义:函数f (x )在x =x 0处的导数即为函数图象在该点处的切线的斜率,考查形式主要为选择题和填空题或者在解答题的某一步中出现(难度为低中档),内容就是求导,注意审题是过点(x 0,y 0)的切线还是在点(x 0,y 0)处的切线.体验高考1.(2016·四川)设直线l 1,l 2分别是函数f (x )=⎩⎪⎨⎪⎧-ln x ,0<x <1,ln x ,x >1图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( )A.(0,1)B.(0,2)C.(0,+∞)D.(1,+∞) 答案 A解析 ∵f (x )=⎩⎪⎨⎪⎧-ln x ,0<x <1,ln x ,x >1,∴f ′(x )=⎩⎨⎧-1x,0<x <1,1x ,x >1.若k 1·k 2=-1,则两个切点一个在x ∈(0,1)的图象上为P 1,一个在x ∈(1,+∞)的图象上为P 2.设P 1(x 1,y 1),P 2(x 2,y 2), 则k 1=-1x 1,k 2=1x 2.∵k 1k 2=-1,∴x 1x 2=1. 令x 1=x 0(0<x 0<1),则x 2=1x 0.∴P 1(x 0,-ln x 0),P 2⎝⎛⎭⎫1x 0,-ln x 0.∴l 1:y +ln x 0=-1x 0(x -x 0)⇒y =-1x 0x +1-ln x 0,∴A (0,1-ln x 0).l 2:y +ln x 0=x 0(x -1x 0)⇒y =x 0x -1-ln x 0,∴B (0,-1-ln x 0),∴|AB |=1-ln x 0-(-1-ln x 0)=2.联立⎩⎪⎨⎪⎧y =-1x 0x +1-ln x 0,y =x 0x -1-ln x 0,得P ⎝ ⎛⎭⎪⎫2x 0x 20+1,x 20-1x 20+1-ln x 0.∴S △P AB =12·2|x 0|x 20+1·|AB |=12·2x 0x 20+1·2=2x 0x 20+1=2x 0+1x 0.∵x 0∈(0,1),∴0<2x 0+1x 0<1,故S △P AB ∈(0,1).2.(2016·课标全国丙)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________. 答案 y =2x解析 设x >0,则-x <0,f (-x )=e x -1+x ,因为f (x )为偶函数,所以f (-x )=f (x ), 所以f (x )=e x -1+x .因为当x >0时,f ′(x )=e x -1+1,所以f ′(1)=2,所以曲线y =f (x )在点(1,2)处的切线方程为 y -2=2(x -1),即y =2x .3.(2016·课标全国甲)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________. 答案 1-ln 2解析 y =ln x +2的切线为:y =1x 1·x +ln x 1+1(设切点横坐标为x 1),y =ln(x +1)的切线为:y =1x 2+1x +ln(x 2+1)-x 2x 2+1(设切点横坐标为x 2),∴⎩⎨⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x2x 2+1,解得⎩⎨⎧x 1=12,x 2=-12,,∴b =ln x 1+1=1-ln 2.4.(2015·天津)已知函数f (x )=4x -x 4,x ∈R . (1)求f (x )的单调区间;(2)设曲线y =f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y =g (x ),求证:对于任意的实数x ,都有f (x )≤g (x );(3)若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-a3+431.(1)解 由f (x )=4x -x 4,可得f ′(x )=4-4x 3. 当f ′(x )>0,即x <1时,函数f (x )单调递增; 当f ′(x )<0,即x >1时,函数f (x )单调递减. 所以f (x )的单调递增区间为(-∞,1), 单调递减区间为(1,+∞). (2)证明 设点P 的坐标为(x 0,0), 则x 0=431,f ′(x 0)=-12.曲线y =f (x )在点P 处的切线方程为y =f ′(x 0)·(x -x 0), 即g (x )=f ′(x 0)(x -x 0). 令函数F (x )=f (x )-g (x ), 即F (x )=f (x )-f ′(x 0)(x -x 0), 则F ′(x )=f ′(x )-f ′(x 0).由于f ′(x )=-4x 3+4在(-∞,+∞)上单调递减, 故F ′(x )在(-∞,+∞)上单调递减. 又因为F ′(x 0)=0,所以当x ∈(-∞,x 0)时,F ′(x )>0; 当x ∈(x 0,+∞)时,F ′(x )<0, 所以F (x )在(-∞,x 0)上单调递增, 在(x 0,+∞)上单调递减,所以对于任意的实数x ,F (x )≤F (x 0)=0, 即对于任意的实数x ,都有f (x )≤g (x ). (3)证明 由(2)知g (x )=-12⎝⎛⎭⎫x -431.设方程g (x )=a 的根为x 2′,可得x 2′=-a12+431.因为g (x )在(-∞,+∞)上单调递减, 又由(2)知g (x 2)≥f (x 2)=a =g (x 2′), 因此x 2≤x 2′.类似地,设曲线y =f (x )在原点处的切线方程为y =h (x ), 可得h (x )=4x .对于任意的x ∈(-∞,+∞),有f (x )-h (x )=-x 4≤0,即f (x )≤h (x ). 设方程h (x )=a 的根为x 1′,可得x 1′=a4.因为h (x )=4x 在(-∞,+∞)上单调递增, 且h (x 1′)=a =f (x 1)≤h (x 1),因此x 1′≤x 1, 由此可得x 2-x 1≤x 2′-x 1′=-a3+431.5.(2016·课标全国甲)已知函数f (x )=(x +1)ln x -a (x -1). (1)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)若当x ∈(1,+∞)时,f (x )>0,求a 的取值范围. 解 (1)f (x )的定义域为(0,+∞). 当a =4时,f (x )=(x +1)ln x -4(x -1), f ′(x )=ln x +1x -3,f ′(1)=-2,f (1)=0,曲线y =f (x )在(1,f (1))处的切线方程为2x +y -2=0.(2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a (x -1)x +1>0,设g (x )=ln x -a (x -1)x +1,则g ′(x )=1x -2a(x +1)2=x 2+2(1-a )x +1x (x +1)2,g (1)=0.①当a ≤2,x ∈(1,+∞)时, x 2+2(1-a )x +1≥x 2-2x +1>0,故g ′(x )>0,g (x )在(1,+∞)上单调递增, 因此g (x )>0;②当a >2时,令g ′(x )=0得,x 1=a -1-(a -1)2-1,x 2=a -1+(a -1)2-1. 由x 2>1和x 1x 2=1得x 1<1, 故当x ∈(1,x 2)时,g ′(x )<0,g (x )在(1,x 2)上单调递减, 因此g (x )<0.综上,a 的取值范围是(-∞,2].高考必会题型题型一 直接求切线或切线斜率问题例1 (1)(2015·课标全国Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =______. (2)曲线y =x e x-1在点(1,1)处切线的斜率等于( )A.2eB.eC.2D.1 答案 (1)1 (2)C解析 (1)f ′(x )=3ax 2+1,f ′(1)=1+3a ,f (1)=a +2. 在点(1,f (1))处的切线方程为y -(a +2)=(1+3a )(x -1). 将(2,7)代入切线方程,得7-(a +2)=(1+3a ),解得a =1. (2)∵y =x ex -1=x e x e, ∴y ′=1e (e x +x ·e x )=1e·e x·(x +1),故曲线在点(1,1)处的切线斜率为y ′|x =1=2. 点评 导数几何意义的应用,需注意以下两点:(1)当曲线y =f (x )在点(x 0,f (x 0))处的切线垂直于x 轴时,函数在该点处的导数不存在,切线方程是x =x 0.(2)注意区分曲线在某点处的切线和曲线过某点的切线.曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.变式训练1 (2016·课标全国丙)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________. 答案 2x +y +1=0解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x ,f ′(x )=1x -3,f ′(1)=-2,切线方程为y =-2x -1. 题型二 导数几何意义的综合应用例2 (2015·山东)设函数f (x )=(x +a )ln x ,g (x )=x 2e x . 已知曲线y =f (x ) 在点(1,f (1))处的切线与直线2x -y =0平行. (1)求a 的值;(2)是否存在自然数k ,使得方程f (x )=g (x )在(k ,k +1)内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(3)设函数m (x )=min{f (x ),g (x )}(min{p ,q }表示p ,q 中的较小值),求m (x )的最大值. 解 (1)由题意知,曲线y =f (x )在点(1,f (1))处的切线斜率为2,所以f ′(1)=2, 又f ′(x )=ln x +ax +1,即f ′(1)=a +1=2,所以a =1.(2)当k =1时,方程f (x )=g (x )在(1,2)内存在唯一的根.设h (x )=f (x )-g (x )=(x +1)ln x -x 2e x ,当x ∈(0,1]时,h (x )<0.又h (2)=3ln 2-4e 2=ln 8-4e 2>1-1=0,所以存在x 0∈(1,2),使得h (x 0)=0. 因为h ′(x )=ln x +1x +1+x (x -2)e x ,所以当x ∈(1,2)时,h ′(x )>1-1e >0,当x ∈(2,+∞)时,h ′(x )>0, 所以当x ∈(1,+∞)时,h (x )单调递增,所以k =1时,方程f (x )=g (x )在(k ,k +1)内存在唯一的根. (3)由(2)知方程f (x )=g (x )在(1,2)内存在唯一的根x 0. 且x ∈(0,x 0)时,f (x )<g (x ), x ∈(x 0,+∞)时,f (x )>g (x ),所以m (x )=⎩⎪⎨⎪⎧(x +1)ln x ,x ∈(0,x 0],x 2e x ,x ∈(x 0,+∞).当x ∈(0,x 0)时,若x ∈(0,1],m (x )≤0; 若x ∈(1,x 0),由m ′(x )=ln x +1x +1>0,可知0<m (x )≤m (x 0); 故m (x )≤m (x 0).当x ∈(x 0,+∞)时,由m ′(x )=x (2-x )e x ,可得x ∈(x 0,2)时,m ′(x )>0,m (x )单调递增; x ∈(2,+∞)时,m ′(x )<0,m (x )单调递减; 可知m (x )≤m (2)=4e 2,且m (x 0)<m (2).综上可得,函数m (x )的最大值为4e2.点评 已知切线求参数问题,主要利用导数几何意义,通过切点坐标、切线斜率之间的关系来构造方程组求解.变式训练2 (2015·广东)设a >1,函数f (x )=(1+x 2)e x -a . (1)求f (x )的单调区间;(2)证明:f (x )在(-∞,+∞)上仅有一个零点;(3)若曲线y =f (x )在点P 处的切线与x 轴平行,且在点M (m ,n )处的切线与直线OP 平行(O是坐标原点),证明:m ≤3a -2e-1.(1)解 f ′(x )=2x e x +(1+x 2)e x =(x 2+2x +1)e x =(x +1)2e x ,∀x ∈R ,f ′(x )≥0恒成立.∴f (x )的单调增区间为(-∞,+∞),无单调减区间. (2)证明 ∵f (0)=1-a ,f (a )=(1+a 2)e a -a , ∵a >1,∴f (0)<0,f (a )>2a e a -a >2a -a =a >0, ∴f (0)·f (a )<0,∴f (x )在(0,a )上有一零点, 又∵f (x )在(-∞,+∞)上单调递增, ∴f (x )在(0,a )上仅有一个零点, ∴f (x )在(-∞,+∞)上仅有一个零点. (3)证明 f ′(x )=(x +1)2e x ,设P (x 0,y 0), 则f ′(x 0)=ex (x 0+1)2=0,∴x 0=-1,把x 0=-1代入y =f (x )得y 0=2e -a ,∴k OP =a -2e .f ′(m )=e m (m +1)2=a -2e,令g (m )=e m -(m +1),g ′(m )=e m -1.令g ′(x )>0,则m >0,∴g (m )在(0,+∞)上单调递增, 令g ′(x )<0,则m <0,∴g (m )在(-∞,0)上单调递减, ∴g (m )min =g (0)=0.∴e m -(m +1)≥0,即e m ≥m +1. ∴e m (m +1)2≥(m +1)3,即a -2e ≥(m +1)3.∴m +1≤3a -2e ,即m ≤ 3a -2e-1.高考题型精练1.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0B.x -y -1=0C.x +y +1=0D.x -y +1=0答案 B解析 ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0, 解得x 0=1,y 0=0. ∴切点为(1,0), ∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.故选B.2.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 等于( ) A.-1 B.-3 C.-4 D.-2 答案 D解析 ∵f ′(x )=1x,∴直线l 的斜率为k =f ′(1)=1. 又f (1)=0,∴切线l 的方程为y =x -1. g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0), 则有x 0+m =1,y 0=x 0-1, y 0=12x 20+mx 0+72(m <0), 于是解得m =-2.故选D.3.已知直线l 与曲线f (x )=x 2-3x +2+2ln x 相切,则直线l 倾斜角的最小值为( ) A.π6 B.π4 C.π3 D.π2 答案 B解析 函数的定义域为(0,+∞).由导数的几何意义可知,曲线上任意一点P (x ,y )处的切线的斜率为f ′(x )=2x -3+2x ,因为x >0,故2x +2x≥22x ×2x =4(当且仅当2x =2x,即x =1时取等号),所以f ′(x )=2x -3+2x ≥4-3=1,即直线l 的斜率的最小值为1,此时直线的倾斜角取得最小值π4.故选B.4.设a ∈R ,函数f (x )=x 3+ax 2+(a -3)x 的导函数是f ′(x ),若f ′(x )是偶函数,则曲线y =f (x )在原点处的切线方程为( ) A.y =3x B.y =-2x C.y =-3x D.y =2x答案 C解析 ∵f ′(x )=3x 2+2ax +(a -3),又f ′(x )是偶函数,∴a =0,即f ′(x )=3x 2-3. ∴k =f ′(0)=-3,∴曲线y =f (x )在原点处的切线方程为y =-3x , 故选C. 5.曲线y =e-2x+1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( )A.13B.12C.23 D.1 答案 A解析 因为y ′=-2e-2x,∴曲线在点(0,2)处的切线斜率k =-2,∴切线方程为y =-2x+2,该直线与直线y =0和y =x 围成的三角形如图所示,其中直线y =-2x +2与y =x 的交点为A ⎝⎛⎭⎫23,23,所以三角形的面积S =12×1×23=13.6.若曲线f (x )=13ax 3+12bx 2+cx +d (a ,b ,c >0)上不存在斜率为0的切线,则f ′(1)b -1的取值范围是( ) A.(1,+∞) B.[1,+∞) C.(2,+∞) D.[2,+∞)答案 A解析 因为函数f ′(x )=ax 2+bx +c , 所以f ′(1)b -1=a +b +c b -1=a +cb .函数f (x )图象上不存在斜率为0的切线,也就是f ′(x )=0无解,故Δ=b 2-4ac <0,即ac >b 24,所以a +c b ≥2ac b >2b 24b=1,即f ′(1)b -1=a +c b的取值范围是(1,+∞).7.(2015·陕西)设曲线y =e x 在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P的坐标为________. 答案 (1,1)解析 y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x (x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2 (m >0),因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).8.已知f (x )=x 3+f ′(23)x 2-x ,则f (x )的图象在点(23,f (23))处的切线斜率是________.答案 -1解析 f ′(x )=3x 2+2f ′(23)x -1,令x =23,可得f ′(23)=3×(23)2+2f ′(23)×23-1,解得f ′(23)=-1,所以f (x )的图象在点(23,f (23))处的切线斜率是-1.9.已知曲线C :f (x )=x 3-ax +a ,若过曲线C 外一点A (1,0)引曲线C 的两条切线,它们的倾斜角互补,则a 的值为________. 答案278解析 设切点坐标为(t ,t 3-at +a ). 由题意知,f ′(x )=3x 2-a , 切线的斜率为k =y ′|x =t =3t 2-a ,① 所以切线方程为y -(t 3-at +a )=(3t 2-a )(x -t ).②将点(1,0)代入②式得,-(t 3-at +a )=(3t 2-a )(1-t ),解得t =0或t =32.分别将t =0和t =32代入①式,得k =-a 和k =274-a ,由题意它们互为相反数,得a =278.10.已知函数y =f (x )及其导函数y =f ′(x )的图象如图所示,则曲线y =f (x )在点P 处的切线方程是________.答案 x -y -2=0解析 根据导数的几何意义及图象可知,曲线y =f (x )在点P 处的切线的斜率k =f ′(2)=1,又过点P (2,0),所以切线方程为x -y -2=0.11.(2015·课标全国Ⅰ)已知函数f (x )=x 3+ax +14,g (x )=-ln x . (1)当a 为何值时,x 轴为曲线y =f (x )的切线;(2)用min{m ,n }表示m ,n 中的最小值,设函数h (x )=min {}f (x ),g (x )(x >0),讨论h (x )零点的个数.解 (1)设曲线y =f (x )与x 轴相切于点(x 0,0),则f (x 0)=0,f ′(x 0)=0.即⎩⎪⎨⎪⎧x 30+ax 0+14=0,3x 20+a =0, 解得⎩⎨⎧ x 0=12,a =-34.因此,当a =-34时,x 轴为曲线y =f (x )的切线. (2)当x ∈(1,+∞)时,g (x )=-ln x <0,从而h (x )=min{f (x ),g (x )}≤g (x )<0,故h (x )在(1,+∞)内无零点.当x =1时,若a ≥-54,则f (1)=a +54≥0, h (1)=min{f (1),g (1)}=g (1)=0,故x =1是h (x )的零点;若a <-54, 则f (1)<0,h (1)=min{f (1),g (1)}=f (1)<0,故x =1不是h (x )的零点.当x ∈(0,1)时,g (x )=-ln x >0.所以只需考虑f (x )在(0,1)上的零点个数.(ⅰ)若a ≤-3或a ≥0,则f ′(x )=3x 2+a 在(0,1)内无零点,故f (x )在(0,1)上单调.而f (0)=14,f (1)=a +54,所以当a ≤-3时,f (x )在(0,1)有一个零点;当a ≥0时,f (x )在(0,1)内没有零点.(ⅱ)若-3<a <0,则f (x )在⎝⎛⎭⎫0, -a 3上单调递减,在⎝⎛⎭⎫ -a 3,1上单调递增,故在(0,1)中,当x =-a 3时,f (x )取得最小值,最小值为f ⎝⎛⎭⎫ -a 3=2a 3 -a 3+14.①若f ⎝⎛⎭⎫ -a 3>0,即-34<a <0,f (x )在(0,1)内无零点; ②若f ⎝⎛⎭⎫ -a 3=0,即a =-34,则f (x )在(0,1)内有唯一零点; ③若f ⎝⎛⎭⎫-a 3<0,即-3<a <-34,由于f (0)=14,f (1)=a +54,所以当-54<a <-34时,f (x )在(0,1)内有两个零点;当-3<a ≤-54时,f (x )在(0,1)内有一个零点. 综上,当a >-34或a <-54时,h (x )有一个零点;当a =-34或a =-54时,h (x )有两个零点;当-54<a <-34时,h (x )有三个零点. 12.(2016·北京)设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4.(1)求a ,b 的值;(2)求f (x )的单调区间.解 (1)f (x )的定义域为R .∵f ′(x )=e a -x -x e a -x +b =(1-x )e a -x +b . 依题设,⎩⎪⎨⎪⎧ f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1. 解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x , 由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知, f ′(x )与1-x +e x -1同号. 令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增.故g (1)=1是g (x )在区间(-∞,+∞)上的最小值,从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞),故f (x )的单调递增区间为(-∞,+∞).。
回扣8计数原理1.分类加法计数原理完成一件事,可以有n类办法,在第一类办法中有m1种方法,在第二类办法中有m2种方法,……,在第n类办法中有m n种方法,那么完成这件事共有N=m1+m2+…+m n种方法(也称加法原理).2.分步乘法计数原理完成一件事需要经过n个步骤,缺一不可,做第一步有m1种方法,做第二步有m2种方法,……,做第n步有m n种方法,那么完成这件事共有N=m1×m2×…×m n种方法(也称乘法原理).3.排列(1)排列的定义:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m个元素的一个排列.(2)排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用A m n表示.(3)排列数公式:A m n=n(n-1)(n-2)…(n-m+1).(4)全排列:n个不同元素全部取出的一个排列,叫做n个元素的一个全排列,A n n=n·(n-1)·(n-2)·…·2·1=n!.排列数公式写成阶乘的形式为A m n=n!(n-m)!,这里规定0!=1.4.组合(1)组合的定义:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m个元素的组合数,用C m n表示.(3)组合数的计算公式:C m n=A m nA m m=n!m!(n-m)!=n(n-1)(n-2)…(n-m+1)m!,由于0!=1,所以C0n=1.(4)组合数的性质:①C m n=C n-mn ;②C m n+1=C m n+C m-1n.5.二项式定理(a+b)n=C0n a n+C1n a n-1b1+…+C k n a n-k b k+…+C n n b n(n∈N*).这个公式叫做二项式定理,右边的多项式叫做(a+b)n的二项展开式,其中的系数C k n(k=0,1,2,…,n)叫做二项式系数.式中的C k n a n-k b k叫做二项展开式的通项,用T k+1表示,即展开式的第k +1项:T k +1=C k n an -k b k. 6.二项展开式形式上的特点 (1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C n n .7.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,即C m n =C n -m n. (2)增减性与最大值:二项式系数C k n,当k <n +12时,二项式系数是递增的;当k >n +12时,二项式系数是递减的.当n 是偶数时,那么其展开式中间一项12+n T 的二项式系数最大.当n 是奇数时,那么其展开式中间两项112-+n T 和112++n T 的二项式系数相等且最大.(3)各二项式系数的和(a +b )n 的展开式的各个二项式系数的和等于2n ,即C 0n +C 1n +C 2n +…+C k n +…+C n n =2n. 二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n +…=2n -1.1.关于两个计数原理应用的注意事项(1)分类加法和分步乘法计数原理,都是关于做一件事的不同方法的种数的问题,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.(2)混合问题一般是先分类再分步. (3)分类时标准要明确,做到不重复不遗漏.(4)要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律. 2.对于有附加条件的排列、组合应用题,通常从三个途径考虑: (1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素; (2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数. 3.排列、组合问题的求解方法与技巧(1)特殊元素优先安排;(2)合理分类与准确分步;(3)排列、组合混合问题先选后排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题排除法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)正难则反,等价条件. 4.对于二项式定理应用时要注意:(1)区别“项的系数”与“二项式系数”,审题时要仔细.项的系数与a ,b 有关,可正可负,二项式系数只与n 有关,恒为正.(2)运用通项求展开的一些特殊项,通常都是由题意列方程求出k ,再求所需的某项;有时需先求n ,计算时要注意n 和k 的取值范围及它们之间的大小关系. (3)赋值法求展开式中的系数和或部分系数和,常赋的值为0,±1. (4)在化简求值时,注意二项式定理的逆用,要用整体思想看待a 、b .1.用1,2,3三个数字组成一个四位数,规定这三个数必须全部使用,且同一数字不能相邻出现,这样的四位数有( ) A.36个 B.18个 C.9个 D.6个 答案 B解析 利用树状图考察四个数位上填充数字的情况,如:1⎩⎪⎪⎨⎪⎪⎧2⎩⎪⎨⎪⎧ 1⎩⎨⎧ 233⎩⎨⎧123⎩⎪⎨⎪⎧1⎩⎨⎧ 232⎩⎨⎧ 13,共可确定8个四位数,但其中不符合要求的有2个,所以所确定的四位数应有18个,故选B.2.某学习小组男女生共8人,现从男生中选2人,女生中选1人,分别去做3种不同的工作,共有90种不同的选法,则男,女生人数为( ) A.2,6 B.3,5 C.5,3 D.6,2 答案 B解析 设男生人数为n ,则女生人数为8-n ,由题意可知C 2n C 18-n A 33=90,即C 2n C 18-n =15,解得n =3,所以男,女生人数为3,5,故选B.3.将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学三所大学就读,则每所大学至少保送一人的不同保送方法有( ) A.150种 B.180种 C.240种 D.540种答案 A解析 先将5个人分成三组,(3,1,1)或(1,2,2),分组方法有C 35+C 15C 24C 222=25(种),再将三组全排列有A 33=6(种),故总的方法数有25×6=150(种).4.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( ) A.210种 B.420种 C.630种 D.840种 答案 B解析 因为要求3位班主任中男、女教师都要有,所以共有两种情况,1男2女或2男1女.若选出的3位教师是1男2女则共有C 15C 24A 33=180(种)不同的选派方法,若选出的3位教师是2男1女则共有C 25C 14A 33=240(种)不同的选派方法,所以共有180+240=420(种)不同的方案,故选B.5.若二项式(2x +a x )7的展开式中1x 3的系数是84,则实数a 等于( )A.2B.54 C.1 D.24答案 C解析 二项式(2x +a x )7的通项公式为T k +1=C k 7(2x )7-k (a x )k =C k 727-k a k x 7-2k,令7-2k =-3,得k =5.故展开式中1x 3的系数是C 5722a 5=84,解得a =1. 6.(x -1)4-4x (x -1)3+6x 2(x -1)2-4x 3(x -1)+x 4等于( ) A.-1 B.1 C.(2x -1)4 D.(1-2x )5 答案 B解析 (x -1)4-4x (x -1)3+6x 2(x -1)2-4x 3(x -1)+x 4=((x -1)-x )4=1.7.某班准备从甲、乙等七人中选派四人发言,要求甲乙中两人至少有一人参加,那么不同的发言顺序有( )A.30种B.600种C.720种D.840种 答案 C解析 A 47-A 45=720(种).8.如图,花坛内有5个花池,有5种不同颜色的花卉可供栽种,每个花池内只能种一种颜色的花卉,相邻两池的花色不同,则栽种方案的种数为( )A.180B.240C.360D.420 答案 D解析 若5个花池栽了5种颜色的花卉,方法有A 55种,若5个花池栽了4种颜色的花卉,则2,4两个花池栽同一种颜色的花,或3,5两个花池栽同一种颜色的花,方法有2A 45种;若5个花池栽了3种颜色的花卉,方法有A 35种,所以最多有A 55+2A 45+A 35=420(种).9.(x +1ax )5的各项系数和是1 024,则由曲线y =x 2和y =x a 围成的封闭图形的面积为______.答案512解析 设x =1,则各项系数和为(1+1a )5=1 024=45,所以a =13,联立⎩⎪⎨⎪⎧y =x 2y =x 31可得交点坐标分别为(0,0),(1,1),所以曲线y =x 2和y =x 31围成的封闭图形的面积为⎠⎛01(x 31-x 2)d x =⎝ ⎛⎭⎪⎫34x 34-13x 3⎪⎪⎪10=34-13=512.10.圆上有10个点,过每三个点画一个圆内接三角形,则一共可以画的三角形个数为______. 答案 120解析 圆上任意三点都不共线, 因此有三角形C 310=120(个).11.一排共有9个座位,现有3人就坐,若他们每两人都不能相邻,每人左右都有空座,而且至多有两个空座,则不同坐法共有________种. 答案 36解析 可先考虑3人已经就座,共有A 33=6(种),再考虑剩余的6个空位怎么排放,根据要求可产生把6个空位分为1,1,2,2,放置在由已经坐定的3人产生的4个空中,共有C 24=6,所以不同的坐法共有6×6=36(种).12.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架舰载机(甲、乙、丙、丁、戊)准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁不能相邻着舰,那么不同的着舰方法有________种. 答案 24解析 先把甲、乙捆绑在一起有A 22种情况,然后对甲、乙整体和戊进行排列,有A 22种情况,这样产生了三个空位,插入丙、丁,有A 23种情况,所以着舰方法共有A 22A 22A 23=2×2×6=24(种).13.实验员进行一项实验,先后要实施5个程序(A ,B ,C ,D ,E ),其中程序A 只能出现在第一步或最后一步,程序C 或D 在实施时必须相邻,则实验顺序的编排方法共有______种. 答案 24解析依题意,当A在第一步时,共有A22A33=12(种);当A在最后一步时,共有A22A33=12(种).所以实验的编排方法共有24种.14.用1,2,3,4,5,6组成数字不重复的六位数,满足1不在左右两端,2,4,6三个偶数中有且只有两个偶数相邻,则这样的六位数的个数为________.答案288解析从2,4,6三个偶数中任意选出2个看作一个“整体”,方法有A23=6(种),先排3个奇数,有A33=6(种),形成了4个空,将“整体”和另一个偶数插在3个奇数形成的4个空中,方法有A24=12(种).根据分步乘法计数原理求得此时满足条件的六位数共有6×6×12=432(种).若1排在两端,1的排法有A12A22=4(种),形成了3个空,将“整体”和另一个偶数插在3个奇数形成的3个空中,方法有A23=6(种),根据分步乘法计数原理求得此时满足条件的六位数共有6×4×6=144(种),故满足1不在左右两端,2,4,6三个偶数中有且只有两个偶数相邻,则这样的六位数的个数为432-144=288(种).。
第50练 关于计算过程的再优化[题型分析·高考展望] 中学数学的运算包括数的计算,式的恒等变形,方程和不等式同解变形,初等函数的运算和求值,各种几何量的测量与计算,求数列和函数、定积分、概率、统计的初步计算等.《高中数学新课程标准》所要求的数学能力中运算求解能力更为基本,运算求解能力指的是要求学生会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.数学运算,都是依据相应的概念、法则、性质、公式等基础知识进行的,尤其是概念,它是思维的形式,只有概念明确、理解透彻,才能作出正确的判断及合乎逻辑的推理.计算法则是计算方法的程序化和规则化,对法则的理解是计算技能形成的前提.高考命题对运算求解能力的考查主要是针对算法、推理及以代数运算为主的考查.因此在高中数学中,对于运算求解能力的培养至关重要.提高数学解题能力,首先是提高数学的运算求解能力,可以从以下几个方面入手: 1.培养良好的审题习惯. 2.培养认真计算的习惯.3.培养一些常用结论的记忆的能力,记住一些常用的结论,比如数列求和的公式12+22+32+…+n 2=16n (n +1)(2n +1),三角函数中的辅助角公式a sin x +b cos x =a 2+b 2sin(x +θ)等等.4.加强运算练习是提高基本运算技能的有效途径,任何能力都是有计划、有目的地训练出来的,提高基本运算技能也必须加强练习、严格训练.5.提高运算基本技能,必须要提高学生在运算中的推理能力,这就首先要清楚运算的定理及相关理论.6.增强自信是解题的关键,自信才能自强,在数学解题中,自信心是相当重要的.高考必会题型题型一 化繁为简,优化计算过程例1 过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( )A.33 B.-33 C.±33D.- 3 答案 B解析 由y =1-x 2得,x 2+y 2=1(y ≥0), 设直线方程为x =my +2,m <0(m ≥0不合题意), 代入x 2+y 2=1(y ≥0),整理得, (1+m 2)y 2+22my +1=0, 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-22m 1+m 2,y 1y 2=11+m 2, 则△AOB 的面积为12×2|y 1-y 2|=22|y 1-y 2|,因为|y 1-y 2|=(y 1+y 2)2-4y 1y 2=(-22m 1+m 2)2-41+m 2=2m 2-11+m 2=2m 2-12+m 2-1=22m 2-1+m 2-1≤222m 2-1×m 2-1=22, 当且仅当2m 2-1=m 2-1, 即m 2-1=2,m =-3时取等号. 此时直线方程为x =-3y +2, 即y =-33x +63, 所以直线的斜率为-33. 点评 本题考查直线与圆的位置关系以及三角形的面积公式,先设出直线方程x =my +2,表示出△AOB 的面积,然后探讨面积最大时m 的取值,得到直线的斜率. 题型二 运用概念、性质等优化计算过程例2 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|AF |=6,cos ∠ABF =45,则C 的离心率e =________.答案 57解析 如图,设|BF |=m ,由题意知,m 2+100-2×10m cos ∠ABF =36, 解得m =8,所以△ABF 为直角三角形, 所以|OF |=5,即c =5,由椭圆的对称性知|AF ′|=|BF |=8(F ′为右焦点), 所以a =7,所以离心率e =57.点评 熟练掌握有关的概念和性质是快速准确解决此类题目的关键. 题型三 代数运算中加强“形”的应用,优化计算过程 例3 设b >0,数列{a n }满足a 1=b ,a n =nba n -1a n -1+2n -2(n ≥2).(1)求数列{a n }的通项公式;(2)证明:对于一切正整数n ,a n ≤b n +12n +1+1.(1)解 由a 1=b >0,知a n =nba n -1a n -1+2n -2>0,n a n =1b +2b ·n -1a n -1. 令A n =n a n ,A 1=1b ,当n ≥2时,A n =1b +2bA n -1=1b +2b 2+…+2n -2b n -1+2n -1bn -1A 1 =1b +2b 2+…+2n -2bn -1+2n -1b n . ①当b ≠2时,A n =1b [1-(2b )n ]1-2b =b n -2n b n (b -2);②当b =2时,A n =n2.综上,a n =⎩⎪⎨⎪⎧nb n(b -2)b n -2n ,b ≠2,2, b =2.(2)证明 当b ≠2时,(2n +1+bn +1)b n -2nb -2=(2n +1+b n +1)(b n -1+2b n -2+…+2n -1)=2n +1b n -1+2n +2b n -2+…+22n +b 2n +2b 2n -1+…+2n -1b n +1=2n b n(2b +22b 2+…+2n b n +b n 2n +b n -12n -1+…+b 2)>2n b n (2+2+…+2), =2n ·2n b n =n ·2n +1b n ,∴a n =nb n (b -2)b n -2n <b n +12n +1+1.当b =2时,a n =2=b n +12n +1+1.综上所述,对于一切正整数n ,a n ≤b n +12n +1+1.点评 结合题目中a n 的表达式可知,需要构造a n 新的形式n a n =1b +2b ·n -1a n -1,得到新的数列,根据新数列的形式求和;不等式的证明借用放缩完成.高考题型精练1.已知函数f (x )=mx 2+mx +1的定义域是一切实数,则m 的取值范围是( ) A.0<m ≤4 B.0≤m ≤1 C.m ≥4 D.0≤m ≤4 答案 D解析 根据题意mx 2+mx +1≥0(x ∈R )恒成立, 当m =0时,满足不等式;当m ≠0时,需满足⎩⎪⎨⎪⎧m >0,Δ=m 2-4m ≤0, 解得0<m ≤4,综上0≤m ≤4.2.已知函数f (x -1x )=x 2+1x 2,则f (3)的值为( )A.8B.9C.11D.10 答案 C解析 ∵f (x -1x )=(x -1x)2+2,∴f (3)=9+2=11.3.已知一元二次不等式f (x )<0的解集为{x |x <-1或x >12},则f (10x )>0的解集为( )A.{x |x <-1或x >lg 2}B.{x |-1<x <lg 2}C.{x |x >-lg 2}D.{x |x <-lg 2}答案 D解析 由题意知,一元二次不等式f (x )>0的解集为(-1,12),即-1<10x <12⇒x <-lg 2.4.设函数f (x )=⎩⎪⎨⎪⎧(x -1x )6,x <0,-x ,x ≥0.则当x >0时,f (f (x ))表达式的展开式中常数项为( )A.-20B.20C.-15D.15 答案 A解析 当x >0时,f [f (x )]=(-x +1x )6=(1x -x )6的展开式中,常数项为C 36(1x)3(-x )3=-20.5.在△ABC 中,若AC AB =cos Bcos C ,则( )A.A =CB.A =BC.B =CD.以上都不正确 答案 C解析 ∵AC AB =sin B sin C =cos Bcos C ,∴sin B cos C -cos B sin C =0. ∴sin(B -C )=0. 又∵-π<B -C <π, ∴B -C =0,即B =C .6.已知直线l 与抛物线y 2=4x 交于A 、B 两点,若P (2,2)为AB 的中点,则直线AB 的方程为________. 答案 x -y =0解析 ∵点A (x 1,y 1),B (x 2,y 2)在抛物线y 2=4x 上,∴⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,∴y 22-y 21=4x 2-4x 1, 即y 2-y 1x 2-x 1=4y 2+y 1.∵P (2,2)为AB 的中点,所以y 2+y 1=4, ∴直线AB 的斜率k =y 2-y 1x 2-x 1=44=1,∴直线AB 的方程为x -y =0.7.抛物线y =x 2在x =1处的切线与两坐标轴围成三角形区域为D (包含三角形内部与边界).若点P (x ,y )是区域D 内的任意一点,则x +2y 的取值范围是________. 答案 [-2,12]解析 易知切线方程为:y =2x -1,所以与两坐标轴围成的三角形区域三个点为A (0,0),B (12,0),C (0,-1).易知过C 点时有最小值-2,过B 点时有最大值12. 8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin(π4+C )-c sin(π4+B )=a .(1)求证:B -C =π2;(2)若a =2,求△ABC 的面积.(1)证明 由b sin(π4+C )-c sin(π4+B )=a ,应用正弦定理,得sin B sin(π4+C )-sin C sin(π4+B )=sin A ,sin B (22sin C +22cos C )-sin C (22sin B +22cos B )=22, 整理得sin B cos C -cos B sin C =1, 即sin(B -C )=1. 由于0<B ,C <34π,从而B -C =π2.(2)解 由(1)知,B -C =π2,又B +C =π-A =3π4,因此B =5π8,C =π8.由a =2,A =π4,得b =a sin B sin A =2sin 5π8,c =a sin C sin A =2sin π8,所以△ABC 的面积S =12bc sin A =2sin 5π8sin π8=2cos π8sin π8=12.9.在如图所示的多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,且AC =AD =CD =DE =2,AB =1.(1)请在线段CE 上找到点F 的位置,使得恰有直线BF ∥平面ACD ,并证明; (2)求平面BCE 与平面ACD 所成锐二面角θ的大小.解 以D 为原点建立如图所示的空间直角坐标系,使得x 轴和z 轴的正半轴分别经过点A 和点E ,则各点的坐标为D (0,0,0),A (2,0,0),E (0,0,2),B (2,0,1),C (1,3,0). (1)点F 应是线段CE 的中点,证明如下:设F 是线段CE 的中点,则点F 的坐标为(12,32,1),DE →=(0,0,2),BF →=⎝⎛⎭⎫-32,32,0,∴BF →·DE →=0,∴BF →⊥DE →. 而DE →是平面ACD 的一个法向量. 此即证得BF ∥平面ACD .(2)设平面BCE 的法向量为n =(x ,y ,z ), 则n ⊥CB →,且n ⊥CE →,由CB →=(1,-3,1),CE →=(-1,-3,2),得⎩⎨⎧x -3y +z =0,-x -3y +2z =0,不妨设y =3,则⎩⎪⎨⎪⎧x =1,z =2,即n =(1,3,2), ∴所求角θ满足cos θ=n ·DE →|n |·|DE →|=422×2=22,∴θ=π4.10.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0),O 为坐标原点,离心率e =2,点M (5,3)在双曲线上.(1)求双曲线方程;(2)若直线l 与双曲线交于P 、Q 两点,且OP →·OQ →=0,求1|OP |2+1|OQ |2的值.解 (1)∵e =2,∴c =2a ,b 2=c 2-a 2=3a 2, ∴双曲线方程为x 2a 2-y 23a 2=1,即3x 2-y 2=3a 2,∵点M (5,3)在双曲线上, ∴15-3=3a 2,∴a 2=4, ∴所求双曲线方程为x 24-y 212=1.(2)设直线OP 的方程为y =kx (k ≠0),联立x 24-y212=1得⎩⎨⎧x 2=123-k 2,y 2=12k23-k 2,∴|OP |2=x 2+y 2=12(k 2+1)3-k 2.∵OP →·OQ →=0,∴直线OQ 的方程为y =-1k x ,同理可得|OQ |2=12(k 2+1)3k 2-1,∴1|OP |2+1|OQ |2=3-k 2+(3k 2-1)12(k 2+1)=2+2k 212(k 2+1)=16. 11.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又a =-7,∴a n =1+12n -9(n ∈N *). 结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4, a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0. (2)a n =1+1a +2(n -1)=1+12n -2-a2,已知对任意的n ∈N *,都有a n ≤a 6成立, 结合函数f (x )=1+12x -2-a 2的单调性,可知5<2-a2<6,即-10<a <-8.12.若正数x ,y 满足x +2y +4=4xy ,且不等式(x +2y )a 2+2a +2xy -34≥0恒成立,求实数a 的取值范围.解 ∵正实数x ,y 满足x +2y +4=4xy , 即x +2y =4xy -4.不等式(x +2y )a 2+2a +2xy -34≥0恒成立, 即(4xy -4)a 2+2a +2xy -34≥0恒成立, 变形得2xy (2a 2+1)≥4a 2-2a +34恒成立, 即xy ≥2a 2-a +172a 2+1恒成立.又∵x >0,y >0,∴x +2y ≥22xy , ∴4xy =x +2y +4≥4+22xy , 即2(xy )2-2xy -2≥0, ∴xy ≥2或xy ≤-22(舍去),可得xy ≥2. 要使xy ≥2a 2-a +172a 2+1恒成立,只需2≥2a 2-a +172a 2+1恒成立,化简得2a 2+a -15≥0, 解得a ≤-3或a ≥52.故a 的取值范围是(-∞,-3]∪[52,+∞).。
中档大题规范练中档大题规范练1 三角函数1.(2016·浙江)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B .(1)证明:A =2B ;(2)若△ABC 的面积S =a 24,求角A 的大小.(1)证明 由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B ,于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π,所以B =π-(A -B )或B =A -B ,因此A =π(舍去)或A =2B ,所以A =2B .(2)解 由S =a 24得12ab sin C =a 24,故有sin B sin C =12sin A =12sin 2B =sin B cos B ,由sin B ≠0,得sin C =cos B .又B ,C ∈(0,π),所以C =π2±B .当B +C =π2时,A =π2;当C -B =π2时,A =π4.综上,A =π2或A =π4.2.(2016·北京)已知函数f (x )=2sin ωx cos ωx +cos 2ωx (ω>0)的最小正周期为π.(1)求ω的值;(2)求f (x )的单调递增区间.解 (1)f (x )=2sin ωx cos ωx +cos 2ωx =sin 2ωx +cos 2ωx =2⎝⎛⎭⎫22sin 2ωx +22cos 2ωx =2sin ⎝⎛⎭⎫2ωx +π4,由ω>0,f (x )的最小正周期为π,得2π2ω=π,解得ω=1.(2)由(1)得f (x )=2sin ⎝⎛⎭⎫2x +π4,令-π2+2k π≤2x +π4≤π2+2k π,k ∈Z , 解得-3π8+k π≤x ≤π8+k π,k ∈Z , 即f (x )的单调递增区间为⎣⎡⎦⎤-3π8+k π,π8+k π(k ∈Z ). 3.已知函数f (x )=2cos x (sin x -cos x )+1,x ∈R .(1)求函数f (x )的单调递增区间;(2)将函数y =f (x )的图象向左平移π4个单位后,再将图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的最大值及取得最大值时x 的集合.解 (1)f (x )=2cos x (sin x -cos x )+1=sin 2x -cos 2x =2sin(2x -π4), 令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ), 解得k π-π8≤x ≤k π+3π8(k ∈Z ), 故函数f (x )的单调递增区间为[k π-π8,k π+3π8](k ∈Z ). (2)由已知,得g (x )=2sin(x +π4), ∴当sin(x +π4)=1,即x +π4=2k π+π2(k ∈Z ), 也即x =2k π+π4(k ∈Z )时,g (x )max = 2. ∴当{x |x =2k π+π4(k ∈Z )}时,g (x )的最大值为 2. 4.(2016·四川)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin C c. (1)证明:sin A sin B =sin C ;(2)若b 2+c 2-a 2=65bc ,求tan B . (1)证明 根据正弦定理,可设a sin A =b sin B =c sin C=k (k >0), 则a =k sin A ,b =k sin B ,c =k sin C .代入cos A a +cos B b =sin C c中,有 cos A k sin A +cos B k sin B =sin C k sin C,变形可得sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C .所以sin A sin B =sin C .(2)解 由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有 cos A =b 2+c 2-a 22bc =35. 所以sin A =1-cos 2A =45. 由(1),sin A sin B =sin A cos B +cos A sin B ,所以45sin B =45cos B +35sin B . 故tan B =sin B cos B=4. 5.已知向量m =(3sin x ,cos x ),n =(cos x ,cos x ),x ∈R ,设f (x )=m·n .(1)求函数f (x )的解析式及单调递增区间;(2)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且a =1,b +c =2,f (A )=1,求△ABC 的面积.解 (1)f (x )=m·n =3sin x cos x +cos 2x =32sin 2x +12cos 2x +12=sin(2x +π6)+12, 由-π2+2k π≤2x +π6≤π2+2k π,k ∈Z , 可得,-π3+k π≤x ≤π6+k π,k ∈Z , ∴函数f (x )的单调递增区间为[-π3+k π,π6+k π],k ∈Z . (2)∵f (A )=1,∴sin(2A +π6)=12, ∵0<A <π,∴π6<2A +π6<13π6, ∴2A +π6=5π6,∴A =π3. 由a 2=b 2+c 2-2bc cos A ,得1=b 2+c 2-2bc cos π3=4-3bc , ∴bc =1,∴S △ABC =12bc sin A =34.。
透视全国高考揭秘命题规律(三)-—数列(全国卷第17题)数列问题是高频考点中的高频,历年来是命题专家命题的热点,每年的考题都是在以基础知识为起点上的推陈出新,似有岁岁年年花相似、年年岁岁题不同之感,然而归纳起来有下列三种常考题型.数列的基本运算(2016·高考全国卷甲改编)等差数列{a n}中,a3+a4=4,a5+a7=6.(1)求{a n}的通项公式;(2)设b n=[a n],求数列{b n}的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2。
6]=2.(3)(名师加编)求使1a1a2+错误!+…+错误!>2的n的最小值.【解】(1)设数列{a n}的公差为d,由题意有2a1+5d=4,a1+5d=3。
解得a1=1,d=错误!.所以{a n}的通项公式为a n=错误!。
(2)由(1)知,b n=错误!。
当n=1,2,3时,1≤错误!<2,b n=1;当n=4,5时,2<错误!〈3,b n=2;当n=6,7,8时,3≤错误!〈4,b n=3;当n=9,10时,4〈错误!<5,b n=4.所以数列{b n}的前10项和为1×3+2×2+3×3+4×2=24。
(3)1a1a2+1a2a3+…+1a n a n+1=错误!+错误!+…+错误!=25×错误!错误!=错误!错误!=错误!,所以错误!+错误!+…+错误!=错误!〉2,解之得n>10,所以n的最小值为11。
第一步:①根据数列类型,结合两个已知条件,列出方程组.(若是等差数列,列出关于首项a1与公差d的方程组;若是等比数列,列出关于首项a1,与公比q的方程组).②根据条件,求解方程组.③根据结论需求代入相关公式求通项或前n项和.第二步:根据结论形式,选择相应的数学方法,一般情况下.第1类,求S n的最值.结合二次函数或利用通项的正负性解决.第2类,裂项求和.若a n>0,d≠0,求错误!+错误!+…+错误!.其求和方法为错误!+错误!+…+错误!=错误!错误!+错误!·错误!+…+错误!错误!=错误!错误!=错误!·错误!=错误!。
回扣5 不等式与线性规划1.一元二次不等式的解法解一元二次不等式的步骤:一化(将二次项系数化为正数);二判(判断Δ的符号);三解(解对应的一元二次方程);四写(大于取两边,小于取中间).解含有参数的一元二次不等式一般要分类讨论,往往从以下几个方面来考虑:①二次项系数,它决定二次函数的开口方向;②判别式Δ,它决定根的情形,一般分Δ>0、Δ=0、Δ<0三种情况;③在有根的条件下,要比较两根的大小. 2.一元二次不等式的恒成立问题(1)ax 2+bx +c >0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧ a >0,Δ<0.(2)ax 2+bx +c <0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.3.分式不等式f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0); f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )g (x )≥0(≤0),g (x )≠0. 4.基本不等式(1)①a 2+b 2≥2ab (a ,b ∈R )当且仅当a =b 时取等号. ②a +b2≥ab (a ,b ∈(0,+∞)),当且仅当a =b 时取等号. (2)几个重要的不等式:①ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R );②a 2+b 22≥a +b 2≥ab ≥2aba +b(a >0,b >0,当a =b 时等号成立). ③a +1a≥2(a >0,当a =1时等号成立);④2(a 2+b 2)≥(a +b )2(a ,b ∈R ,当a =b 时等号成立). 5.可行域的确定“线定界,点定域”,即先画出与不等式对应的方程所表示的直线,然后代入特殊点的坐标,根据其符号确定不等式所表示的平面区域. 6.线性规划(1)线性目标函数的最大值、最小值一般在可行域的顶点处取得;(2)线性目标函数的最值也可在可行域的边界上取得,这时满足条件的最优解有无数多个.1.不等式两端同时乘以一个数或同时除以一个数,不讨论这个数的正负,从而出错.2.解形如一元二次不等式ax 2+bx +c >0时,易忽视系数a 的讨论导致漏解或错解,要注意分a >0,a <0进行讨论.3.应注意求解分式不等式时正确进行同解变形,不能把f (x )g (x )≤0直接转化为f (x )·g (x )≤0,而忽视g (x )≠0.4.容易忽视使用基本不等式求最值的条件,即“一正、 二定、三相等”导致错解,如求函数f (x )=x 2+2+1x 2+2的最值,就不能利用基本不等式求解最值;求解函数y =x +3x (x <0)时应先转化为正数再求解.5.解线性规划问题,要注意边界的虚实;注意目标函数中y 的系数的正负;注意最优整数解.6.求解线性规划问题时,不能准确把握目标函数的几何意义导致错解,如y -2x +2是指已知区域内的点(x ,y )与点(-2,2)连线的斜率,而(x -1)2+(y -1)2是指已知区域内的点(x ,y )到点(1,1)的距离的平方等.1.下列命题中正确的个数是( )①a >b ,c >d ⇔a +c >b +d ;②a >b ,c >d ⇒a d >b c ;③a 2>b 2⇔|a |>|b |;④a >b ⇔1a <1b .A.4B.3C.2D.1 答案 C解析 ①a >b ,c >d ⇔a +c >b +d 正确,不等式的同向可加性;②a >b ,c >d ⇒a d >bc 错误,反例:若a =3,b =2,c =1,d =-1,则a d >b c 不成立;③a 2>b 2⇔|a |>|b |正确;④a >b ⇔1a <1b 错误,反例:若a =2,b =-2,则1a <1b不成立.故选C.2.设M =2a (a -2)+4,N =(a -1)(a -3),则M ,N 的大小关系为( ) A.M >N B.M <N C.M =N D.不能确定 答案 A解析 M -N =2a (a -2)+4-(a -1)(a -3)=a 2+1>0.故选A.3.若不等式2kx 2+kx -38≥0的解集为空集,则实数k 的取值范围是( )A.(-3,0)B.(-∞,-3)C.(-3,0]D.(-∞,-3)∪(0,+∞)答案 C解析 由题意可知2kx 2+kx -38<0恒成立,当k =0时成立,当k ≠0时需满足⎩⎪⎨⎪⎧k <0,Δ<0,代入求得-3<k <0,所以实数k 的取值范围是(-3,0].4.(2016·四川)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p是q 的( ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件答案 A解析 如图,(x -1)2+(y -1)2≤2,①表示圆心为(1,1),半径为2的圆内区域的所有点(包括边界);⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,②表示△ABC 内部区域的所有点(包括边界).实数x ,y 满足②则必然满足①,反之不成立.则p 是q 的必要不充分条件.故选A.5.不等式1x -1≥-1的解集为( )A.(-∞,0]∪[1,+∞)B.[0,+∞)C.(-∞,0]∪(1,+∞)D.[0,1)∪(1,+∞)答案 C解析 由题意得,1x -1≥-1⇒1x -1+1=xx -1≥0,解得x ≤0或x >1,所以不等式的解集为(-∞,0]∪(1,+∞),故选C.6.设第一象限内的点(x ,y )满足约束条件⎩⎪⎨⎪⎧2x -y -6≤0,x -y +2≥0,目标函数z =ax +by (a >0,b >0)的最大值为40,则5a +1b 的最小值为( )A.256B.94 C.1 D.4 答案 B解析 不等式表示的平面区域如图中阴影部分,直线z =ax +by 过点(8,10)时取最大值,即8a +10b =40,4a +5b =20,从而5a +1b =(5a +1b )4a +5b 20=120(25+4a b +25b a )≥120(25+24a b ×25b a )=94,当且仅当2a =5b 时取等号,因此5a +1b 的最小值为94,故选B.7.已知实数x 、y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m 等于( )A.6B.5C.4D.3 答案 B解析 作出不等式组对应的平面区域,如图所示,由目标函数z =x -y 的最小值为-1,得y =x -z ,及当z =-1时,函数y =x +1,此时对应的平面区域在直线y =x +1的下方,由⎩⎪⎨⎪⎧ y =x +1y =2x -1⇒⎩⎪⎨⎪⎧x =2,y =3,即A (2,3),同时A 也在直线x +y =m 上,所以m =5.8.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k (x -1)-1表示一个三角形区域,则实数k 的取值范围是( ) A.(-∞,-1) B.(1,+∞)C.(-1,1)D.(-∞,-1)∪(1,+∞)答案 A解析 易知直线y =k (x -1)-1过定点(1,-1),画出不等式组表示的可行域示意图,如图所示.当直线y =k (x -1)-1位于y =-x 和x =1两条虚线之间时,表示的是一个三角形区域,所以直线y =k (x -1)-1的斜率的范围为(-∞,-1),即实数k 的取值范围是(-∞,-1). 9.已知实数x ∈[-1,1],y ∈[0,2],则点P (x ,y )落在区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0内的概率为( )A.34B.14C.18D.38 答案 D解析 不等式组表示的区域如图所示,阴影部分的面积为12×(2-12)×(1+1)=32,则所求的概率为38,故选D.10.函数y =log a (x +3)-1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中m ,n 均大于0,则1m +2n 的最小值为________.答案 8解析 由已知可得定点A (-2,-1),代入直线方程可得2m +n =1,从而1m +2n =(1m +2n )(2m +n )=n m +4mn+4≥2n m ·4mn+4=8. 当且仅当n =2m 时取等号.11.已知ab =14,a ,b ∈(0,1),则11-a +21-b 的最小值为________.答案 4+423解析 因为ab =14,所以b =14a ,则11-a +21-b =11-a+21-14a=11-a +8a 4a -1 =11-a +2(4a -1)+24a -1 =11-a +24a -1+2 =2(14a -1+24-4a)+2=23(14a -1+24-4a )[(4a -1)+(4-4a )]+2 =23[3+4-4a 4a -1+2(4a -1)4-4a]+2 ≥23(3+22)+2=4+423(当且仅当4-4a 4a -1=2(4a -1)4-4a ,即a =32-24时,取等号). 12.变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥0,x -2y +2≥0,mx -y ≤0,若z =2x -y 的最大值为2,则实数m =______.答案 1解析 由可行域知,直线2x -y =2必过直线x -2y +2=0与mx -y =0的交点,即直线mx -y =0必过直线x -2y +2=0与2x -y =2的交点(2,2),所以m =1. 13.(2016·上海)若x ,y 满足⎩⎪⎨⎪⎧x ≥0,y ≥0,y ≥x +1,则x -2y 的最大值为________.答案 -2解析 令z =x -2y ,则y =12x -z2.当在y 轴上截距最小时,z 最大.即过点(0,1)时,z 取最大值,z =0-2×1=-2.14.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤3,x +y ≥0,则y -6x -5的取值范围是________. 答案 [-1,92]解析 作出可行域,如图△ABC 内部(含边界),y -6x -5表示可行域内点(x ,y )与P (5,6)连线斜率,k P A =8-63-5=-1,k PC =-3-63-5=92,所以-1≤y -6x -5≤92.。
第10练 重应用——函数的实际应用[题型分析·高考展望] 函数的实际应用也是高考常考题型,特别是基本函数模型的应用,在选择题、填空题、解答题中都会出现,多以实际生活、常见的自然现象为背景,较新颖、灵活,解决此类问题时,应从实际问题中分析涉及的数学知识,从而抽象出基本函数模型,然后利用基本函数的性质或相应的数学方法,使问题得以解决.体验高考1.(2015·课标全国Ⅱ)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )答案 B解析 由已知得,当点P 沿着边BC 运动, 即0≤x ≤π4时,P A +PB =4+tan 2x +tan x ;当点P 在CD 边上运动时, 即π4≤x ≤3π4时, P A +PB =(1-1tan x)2+1+ (1+1tan x)2+1,当x =π2时,P A +PB =22;当点P 在AD 边上运动时,即3π4≤x ≤π时,P A +PB =tan 2x +4-tan x .从点P 的运动过程可以看出,轨迹关于直线x =π2对称,且f (π4)>f (π2),且轨迹非线型,故选B.2.(2015·四川)某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx+b(e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时. 答案 24解析 由题意得⎩⎪⎨⎪⎧e b=192,e 22k +b =48,∴e 22k =48192=14,∴e 11k =12,∴x =33时,y =e 33k +b =(e 11k )3·e b=⎝⎛⎭⎫123·e b =18×192=24. 3.(2015·上海)如图,A ,B ,C 三地有直道相通,AB =5千米,AC =3千米,BC =4千米.现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为f (t )(单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是ACB ,速度为8千米/小时.乙到达B 地后原地等待.设t =t 1时乙到达C 地.(1)求t 1与f (t 1)的值;(2)已知警员的对讲机的有效通话距离是3千米,当t 1≤t ≤1时,求f (t )的表达式,并判断f (t )在[t 1,1]上的最大值是否超过3?说明理由. 解 (1)t 1=38.记乙到C 时甲所在地为D ,则AD =158千米.在△ACD 中,CD 2=AC 2+AD 2-2AC ·AD cos A ,所以f (t 1)=CD =3841(千米).(2)甲到达B 用时1小时;乙到达C 用时38小时,从A 到B 总用时78小时.当t 1=38≤t ≤78时,f (t )=(7-8t )2+(5-5t )2-2(7-8t )(5-5t )·45=25t 2-42t +18;当78≤t ≤1时,f (t )=5-5t ,所以f (t )=⎩⎨⎧25t 2-42t +18,38≤t ≤78,5-5t ,78<t ≤1.因为f (t )在⎣⎡⎦⎤38,78上的最大值是f ⎝⎛⎭⎫38=3418, f (t )在⎣⎡⎦⎤78,1上的最大值是f ⎝⎛⎭⎫78=58, 所以f (t )在⎣⎡⎦⎤38,1上的最大值是3418,不超过3. 4.(2015·江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l 1,l 2,山区边界曲线为C ,计划修建的公路为l .如图所示,M ,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5千米和40千米,点N 到l 1,l 2的距离分别为20千米和2.5千米.以l 2,l 1所在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数y =ax 2+b (其中a ,b 为常数)模型.(1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式f (t ),并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度. 解 (1)由题意知,点M ,N 的坐标分别为(5,40),(20,2.5). 将其分别代入y =ax 2+b,得⎩⎨⎧a25+b =40,a400+b =2.5,解得⎩⎪⎨⎪⎧a =1 000,b =0.(2)①由(1)知,y =1 000x 2(5≤x ≤20),则点P 的坐标为⎝⎛⎭⎫t ,1 000t 2,设在点P 处的切线l 分别交x ,y 轴于A ,B 点,y ′=-2 000x 3,则l 的方程为y -1 000t 2=-2 000t 3(x -t ),由此得A ⎝⎛⎭⎫3t 2,0,B ⎝⎛⎭⎫0,3 000t 2. 故f (t )=⎝⎛⎭⎫3t 22+⎝⎛⎭⎫3 000t 22=32t 2+4×106t4,t ∈[5,20].②设g (t )=t 2+4×106t 4,则g ′(t )=2t -16×106t 5.令g ′(t )=0,解得t =10 2.当t ∈(5,102)时,g ′(t )<0,g (t )是减函数; 当t ∈(102,20)时,g ′(t )>0,g (t )是增函数. 从而当t =102时,函数g (t )有极小值,也是最小值, 所以g (t )min =300,此时f (t )min =15 3.答 当t =102时,公路l 的长度最短,最短长度为153千米.高考必会题型题型一 基本函数模型的应用例1 某地上年度电价为0.8元,年用电量为1亿千瓦时.本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至x 元,则本年度新增用电量y (亿千瓦时)与(x -0.4)(元)成反比.又当x =0.65时,y =0.8. (1)求y 与x 之间的函数关系式;(2)若每千瓦时电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量×(实际电价-成本价)] 解 (1)∵y 与(x -0.4)成反比, ∴设y =k x -0.4(k ≠0).把x =0.65,y =0.8代入上式,得0.8=k0.65-0.4,k =0.2.∴y =0.2x -0.4=15x -2,即y 与x 之间的函数关系式为y =15x -2.(2)根据题意,得(1+15x -2)·(x -0.3)=1×(0.8-0.3)×(1+20%).整理,得x 2-1.1x +0.3=0,解得x 1=0.5,x 2=0.6. 经检验x 1=0.5,x 2=0.6都是所列方程的根. ∵x 的取值范围是0.55~0.75, 故x =0.5不符合题意,应舍去.∴x =0.6.∴当电价调至0.6元时,本年度电力部门的收益将比上年度增加20%.点评 解决实际应用问题的关键在于读题,读题必须细心、耐心,从中分析出数学“元素”,确定该问题涉及的数学模型,一般程序如下: 读题文字语言⇒建模数学语言⇒求解数学应用⇒反馈检验作答.变式训练1 (1)(2015·北京)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程”指汽车从出厂开始累计行驶的路程. 在这段时间内,该车每100千米平均耗油量为( ) A.6升 B.8升 C.10升 D.12升(2)2015年“五一”期间某商人购进一批家电,每台进价已按原价a 扣去20%,他希望对货物定一新价,以便每台按新价让利25%销售后,仍可获得售价20%的纯利,则此商人经营这种家电的件数x 与按新价让利总额y 之间的函数关系式是______________. 答案 (1)B (2)y =a3x (x ∈N *)解析 (1)由表知,汽车行驶路程为35 600-35 000=600千米,耗油量为48升,∴每100千米耗油量8升.(2)设每台新价为b ,则售价b (1-25%),让利b ×25%,由于原价为a ,则进价为a (1-20%),根据题意,得每件家电利润为b ×(1-25%)×20%=b ×(1-25%)-a (1-20%),化简得b =43a .∴y =b ×25%·x =43a ×25%×x =a3x (x ∈N *),即y =a3x (x ∈N *).题型二 分段函数模型的应用例2 已知美国某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设公司一年内共生产该款手机x 万部并全部销售完,每万部的销售收入为R (x )万美元,且R (x )=⎩⎪⎨⎪⎧400-6x ,0<x ≤40,7 400x-40 000x 2,x >40.(1)写出年利润W (万美元)关于年产量x (万部)的函数解析式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润. 解 (1)当0<x ≤40时,W =xR (x )-(16x +40)=-6x 2+384x -40, 当x >40时,W =xR (x )-(16x +40)=-40 000x -16x +7 360.所以W =⎩⎪⎨⎪⎧-6x 2+384x -40,0<x ≤40,-40 000x -16x +7 360,x >40.(2)①当0<x ≤40时,W =-6(x -32)2+6 104, 所以W max =W (32)=6 104;②当x >40时,W =-40 000x -16x +7 360,由于40 000x+16x ≥240 000x×16x =1 600, 当且仅当40 000x =16x ,即x =50∈(40,+∞)时,取等号,所以此时W 有最大值5 760.因为6 104>5 760, 所以当x =32时,W 取得最大值6 104万元. 点评 函数有关应用题的常见类型及解题关键(1)常见类型:与函数有关的应用题,经常涉及物价、 路程、产值、环保等实际问题,也可涉及角度、面积、体积、造价的最优化问题.(2)解题关键:解答这类问题的关键是确切地建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.变式训练2 某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km. 答案 9解析 设出租车行驶x km 时,付费y 元, 则y =⎩⎪⎨⎪⎧9,0<x ≤3,8+2.15(x -3)+1,3<x ≤8,8+2.15×5+2.85(x -8)+1,x >8,由y =22.6,解得x =9.高考题型精练1.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( ) A.略有盈利B.略有亏损C.没有盈利也没有亏损D.无法判断盈亏情况答案 B解析 设该股民购进这支股票的价格为a 元,则经历n 次涨停后的价格为a (1+10%)n =a ×1.1n 元,经历n 次跌停后的价格为a ×1.1n ×(1-10%)n =a ×1.1n ×0.9n =a ×(1.1×0.9)n =0.99n ·a <a ,故该股民这支股票略有亏损.2.如果在今后若干年内,我国国民经济生产总值都控制在平均每年增长9%的水平,那么达到国民经济生产总值比1995年翻两番的年份大约是(lg 2=0.301 0,lg 3=0.477 1,lg 109=2.037 4,lg 0.09=-2.954 3)( )A.2015年B.2011年C.2016年D.2008年 答案 B解析 设1995年生产总值为a ,经过x 年翻两番,则a ·(1+9%)x =4a .∴x =2lg 2lg 1.09≈16.3.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系图象正确的是( )答案 A解析 前3年年产量的增长速度越来越快,说明呈高速增长,只有A ,C 图象符合要求,而后3年年产量保持不变,故选A.4.某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( ) A.10.5万元 B.11万元 C.43万元 D.43.025万元答案 C解析 设公司在A 地销售该品牌的汽车x 辆, 则在B 地销售该品牌的汽车(16-x )辆,所以可得利润y =4.1x -0.1x 2+2(16-x )=-0.1x 2+2.1x +32 =-0.1(x -212)2+0.1×2124+32.因为x ∈[0,16]且x ∈N ,所以当x =10或11时,总利润取得最大值43万元.5.一个人以6米/秒的速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始变速直线行驶(汽车与人前进方向相同),汽车在时间t 内的路程为s =12t 2米,那么此人( )A.可在7秒内追上汽车B.可在9秒内追上汽车C.不能追上汽车,但期间最近距离为14米D.不能追上汽车,但期间最近距离为7米 答案 D解析 s =12t 2,车与人的间距d =(s +25)-6t =12t 2-6t +25=12(t -6)2+7.当t =6时,d 取得最小值7.6.一块形状为直角三角形的铁皮,两直角边长分别为40 cm 、60 cm ,现要将它剪成一个矩形,并以此三角形的直角为矩形的一个角,则矩形的最大面积是________cm 2. 答案 600解析 设直角边为40 cm 和60 cm 上的矩形边长分别为x cm 、y cm ,则40-x 40=y60,解得y=60-32x .矩形的面积S =xy =x ⎝⎛⎭⎫60-32x =-32(x -20)2+600,当x =20时矩形的面积最大,此时S =600.7.某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则当每台机器运转________年时,年平均利润最大,最大值是________万元. 答案 5 8解析 由题意知每台机器运转x 年的年平均利润为y x =18-⎝⎛⎭⎫x +25x ,而x >0,故y x ≤18-225=8,当且仅当x =5时,年平均利润最大,最大值为8万元.8.一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3 mg /mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少.为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL.那么一个喝了少量酒后的驾驶员,至少经过________小时才能开车.(精确到1小时) 答案 5解析 设至少经过x 小时才能开车, 由题意得0.3(1-25%)x ≤0.09, ∴0.75x ≤0.3,x ≥log 0.750.3=lg 0.3lg 0.75≈4.2, ∴至少经过5个小时才能开车.9.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ).这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项.据此可得,最佳乐观系数x 的值等于________. 答案5-12解析 依题意得x =c -ab -a ,(c -a )2=(b -c )(b -a ),∵b -c =(b -a )-(c -a ), ∴(c -a )2=(b -a )2-(b -a )(c -a ), 两边同除以(b -a )2,得x 2+x -1=0,解得x =-1±52.∵0<x <1,∴x =5-12. 10.某公司生产的商品A 每件售价为5元时,年销售10万件.(1)据市场调查,若价格每提高1元,销量相应减少1万件,要使销售收入不低于原销售收入,该商品的销售价格最多提高多少元?(2)为了扩大该商品的影响力,公司决定对该商品的生产进行技术革新,将技术革新后生产的商品售价提高到每件x 元,公司拟投入12(x 2+x )万元作为技改费用,投入x4万元作为宣传费用.试问:技术革新后生产的该商品销售量m 至少应达到多少万件时,才可能使技术革新后的该商品销售收入等于原销售收入与总投入之和? 解 (1)设商品的销售价格提高a 元, 则(10-a )(5+a )≥50,即0≤a ≤5, 所以商品的价格最多可以提高5元.(2)由题意知改革后的销售收入为mx 万元,若改革后的销售收入等于原销售收入与总投入总和,只需要满足mx =12(x 2+x )+x4+50(x >5),即m =12x +34+50x≥212x ·50x +34=434, 当且仅当x =10时等号成立.故销售量至少应达到434万件时,才能使改革后的销售收入等于原销售收入与总投入之和.11.某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O 为圆心的两个同心圆弧和延长后通过点O 的两条直线段围成,按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x 米,圆心角为θ(弧度). (1)求θ关于x 的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y ,求y 关于x 的函数关系式,并求出x 为何值时,y 取得最大值?解 (1)设扇环的圆心角为θ, 则30=θ(10+x )+2(10-x ), 所以θ=10+2x10+x(0<x <10).(2)花坛的面积为12θ(102-x 2)=(5+x )(10-x )=-x 2+5x +50(0<x <10),装饰总费用为9θ(10+x )+8(10-x )=170+10x ,所以花坛的面积与装饰总费用的比y =-x 2+5x +50170+10x =-x 2-5x -5010(17+x ),令t =17+x ,则y =3910-110⎝⎛⎭⎫t +324t ≤310,当且仅当t =18时取等号,此时x =1,θ=1211. 综上,当x =1时,花坛的面积与装饰总费用的比最大.12.在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q (百件)与销售价格P (元)的关系如图所示;③每月需各种开支2 000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?解 设该店月利润余额为L ,则由题设得L =Q (P -14)×100-3 600-2 000,① 由销量图易得Q =⎩⎪⎨⎪⎧ -2P +50 (14≤P ≤20),-32P +40 (20<P ≤26), 代入①式得L =⎩⎪⎨⎪⎧ (-2P +50)(P -14)×100-5 600 (14≤P ≤20),⎝⎛⎭⎫-32P +40(P -14)×100-5 600 (20<P ≤26) =⎩⎪⎨⎪⎧-200P 2+7 800P -75 600(14≤P ≤20),-150P 2+61 00P -61 600(20<P ≤26). (1)当14≤P ≤20时,L max =450元,此时P =19.5元;当20<P ≤26时,L max =1 2503元,此时P =613元. 故当P =19.5元时,月利润余额最大,为450元.(2)设可在n 年后脱贫,依题意有12n ×450-50 000-58 000≥0,解得n ≥20,即最早可望在20年后脱贫.。
第22练 基本量法——破解等差、等比数列的法宝[题型分析·高考展望] 等差数列、等比数列是高考的必考点,经常以一个选择题或一个填空题,再加一个解答题的形式考查,题目难度可大可小,有时为中档题,有时解答题难度较大.解决这类问题的关键是熟练掌握基本量,即通项公式、前n 项和公式及等差、等比数列的常用性质.体验高考1.(2016·课标全国乙)已知等差数列{a n }前9项的和为27,a 10=8,则a 100等于( ) A.100 B.99C.98 D.97 答案 C解析 由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98,故选C.2.(2015·福建)若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( ) A.6 B.7 C.8 D.9 答案 D解析 由题意知:a +b =p ,ab =q ,∵p >0,q >0,∴a >0,b >0.在a ,b ,-2这三个数的6种排序中,成等差数列的情况有a ,b ,-2;b ,a ,-2;-2,a ,b ;-2,b ,a ;成等比数列的情况有a ,-2,b ;b ,-2,a .∴⎩⎪⎨⎪⎧ ab =4,2b =a -2或⎩⎪⎨⎪⎧ab =4,2a =b -2, 解得⎩⎪⎨⎪⎧a =4,b =1或⎩⎪⎨⎪⎧a =1,b =4.∴p =5,q =4,∴p +q =9,故选D.3.(2016·北京)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=______. 答案 6解析 ∵a 3+a 5=2a 4=0,∴a 4=0. 又a 1=6,∴a 4=a 1+3d =0,∴d =-2. ∴S 6=6×6+6×(6-1)2×(-2)=6.4.(2015·安徽)已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________. 答案 2n -1解析 由等比数列的性质知a 2a 3=a 1a 4, 又a 2a 3=8,a 1+a 4=9,∴联立方程⎩⎪⎨⎪⎧a 1a 4=8,a 1+a 4=9,解得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1,又数列{a n }为递增数列,∴a 1=1,a 4=8,从而a 1q 3=8,∴q =2. ∴数列{a n }的前n 项和为S n =1-2n 1-2=2n-1.5.(2016·课标全国乙)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为__________. 答案 64解析 设等比数列{a n }的公比为q ,∴⎩⎪⎨⎪⎧ a 1+a 3=10,a 2+a 4=5,即⎩⎪⎨⎪⎧a 1+a 1q 2=10,a 1q +a 1q 3=5, 解得⎩⎪⎨⎪⎧a 1=8,q =12.∴a 1a 2…a n =⎝⎛⎭⎫12(-3)+(-2)+…+(n -4)211749(7)()22241122⎡⎤---⎢⎥⎣⎦⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,n n n 当n =3或4时,12⎣⎡⎦⎤⎝⎛⎭⎫n -722-494取到最小值-6,此时21749()22412⎡⎤--⎢⎥⎣⎦⎛⎫⎪⎝⎭n 取到最大值26,∴a 1a 2…a n 的最大值为64.高考必会题型题型一 等差、等比数列的基本运算例1 已知等差数列{a n }的前n 项和为S n ,且a 3=11,S 3=24. (1)求数列{a n }的通项公式;(2)设b n =a n (n +6)a n +1-5,求数列{b n }中的最小的项.解 (1)∵a 3=a 1+2d ,S 3=3a 1+3×22d =3a 1+3d ,∴⎩⎪⎨⎪⎧ a 1+2d =11,3a 1+3d =24⇒⎩⎪⎨⎪⎧a 1=5,d =3.∴a n =5+(n -1)×3=3n +2. (2)b n =a n (n +6)a n +1-5=3n 2+20n +123n=n +4n +203≥2n ·4n +203=323. 当且仅当n =4n ,即n =2时,b n 取得最小值323,∴数列{b n }中的最小的项为323. 点评 等差(比)数列基本运算的关注点(1)基本量:在等差(比)数列中,首项a 1和公差d (公比q )是两个基本的元素. (2)解题思路:①设基本量a 1和公差d (公比q );②列、解方程(组):把条件转化为关于a 1和d (q )的方程(组),然后求解,注意整体计算,以减少计算量.变式训练1 (1)等比数列{a n }前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则数列{a n }的公比为________.(2)(2015·课标全国Ⅱ)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7等于( ) A.21 B.42 C.63 D.84 答案 (1)13(2)B解析 (1)设等比数列{a n }的公比为q ,则当q =1时, S 1=a 1,2S 2=4a 1,3S 3=9a 1,S 1,2S 2,3S 3不成等差数列; 当q ≠1时,∵S 1,2S 2,3S 3成等差数列,∴4S 2=S 1+3S 3,即4×a 1(1-q 2)1-q =a 1+3×a 1(1-q 3)1-q ,即3q 2-4q +1=0,∴q =1(舍)或q =13.(2)设等比数列{a n }的公比为q ,则由a 1=3,a 1+a 3+a 5=21,得3(1+q 2+q 4)=21,解得q 2=-3(舍去)或q 2=2,于是a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42,故选B. 题型二 等差数列、等比数列的性质及应用例2 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=______. (2)设等比数列{a n }的前n 项和为S n ,若27a 3-a 6=0,则S 6S 3=________.答案 (1)10 (2)28解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,即a 5=5,a 2+a 8=2a 5=10.(2)由题可知{a n }为等比数列,设首项为a 1,公比为q , 所以a 3=a 1q 2,a 6=a 1q 5, 所以27a 1q 2=a 1q 5,所以q =3,由S n =a 1(1-q n )1-q ,得S 6=a 1(1-36)1-3,S 3=a 1(1-33)1-3,所以S 6S 3=a 1(1-36)1-3·1-3a 1(1-33)=28.点评 等差(比)数列的性质盘点变式训练2 (1){a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n 等于( ) A.11 B.17C.19 D.21(2)在正项等比数列{a n }中,3a 1,12a 3,2a 2成等差数列,则a 2 016-a 2 017a 2 014-a 2 015等于( )A.3或-1B.9或1C.1D.9 答案 (1)C (2)D解析 (1)∵S n 有最大值,∴d <0, 又a 11a 10<-1,∴a 11<0<a 10, ∴a 10+a 11<0,S 20=10(a 1+a 20)=10(a 10+a 11)<0, S 19=19a 10>0,∴S 19为最小正值. (2)设数列{a n }的公比为q (q >0), 依题意,a 3=3a 1+2a 2,∴a 1q 2=3a 1+2a 1q ,整理得:q 2-2q -3=0, 解得q =3或q =-1(舍),∴a 2 016-a 2 017a 2 014-a 2 015=a 2 014·q 2-a 2 015·q 2a 2 014-a 2 015=q 2=9. 题型三 等差、等比数列的综合应用例3 已知等比数列{a n }中,首项a 1=3,公比q >1,且3(a n +2+a n )-10a n +1=0(n ∈N *). (1)求数列{a n }的通项公式;(2)设{b n +13a n }是首项为1,公差为2的等差数列,求数列{b n }的通项公式和前n 项和S n .解 (1)∵3(a n +2+a n )-10a n +1=0,∴3(a n q 2+a n )-10a n q =0,即3q 2-10q +3=0, ∵公比q >1,∴q =3.又∵首项a 1=3,∴数列{a n }的通项公式为a n =3n . (2)∵{b n +13a n }是首项为1,公差为2的等差数列,∴b n +13a n =1+2(n -1),即数列{b n }的通项公式为b n =2n -1-3n -1.前n 项和S n =-(1+3+32+…+3n -1)+[1+3+…+(2n -1)]=-12(3n -1)+n 2.点评 (1)对数列{a n },首先弄清是等差还是等比,然后利用相应的公式列方程组求相关基本量,从而确定a n 、S n .(2)熟练掌握并能灵活应用等差、等比数列的性质,也是解决此类题目的主要方法. 变式训练3 (2015·北京)已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7,问:b 6与数列{a n }的第几项相等? 解 (1)设等差数列{a n }的公差为d .因为a 4-a 3=2,所以d =2.又因为a 1+a 2=10,所以2a 1+d =10,故a 1=4. 所以a n =4+2(n -1)=2n +2(n =1,2,…). (2)设等比数列{b n }的公比为q . 因为b 2=a 3=8,b 3=a 7=16,所以q =2,b 1=4.所以b 6=4×26-1=128.由128=2n +2,得n =63, 所以b 6与数列{a n }的第63项相等.高考题型精练1.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1等于( ) A.2 B.-2 C.12 D.-12答案 D解析 因为等差数列{a n }的前n 项和为S n =na 1+n (n -1)2d ,所以S 1,S 2,S 4分别为a 1,2a 1-1,4a 1-6.因为S 1,S 2,S 4成等比数列,所以(2a 1-1)2=a 1·(4a 1-6).解得a 1=-12.2.已知无穷等差数列{a n },前n 项和S n 中,S 6<S 7,且S 7>S 8,则( ) A.在数列{a n }中a 7最大 B.在数列{a n }中,a 3或a 4最大C.前三项之和S 3必与前10项之和S 10相等D.当n ≥8时,a n <0 答案 D解析 由于S 6<S 7,S 7>S 8, 所以S 7-S 6=a 7>0,S 8-S 7=a 8<0,所以数列{a n }是递减的等差数列,最大项为a 1, 所以A ,B 均错,D 正确.S 10-S 3=a 4+a 5+…+a 10=7a 7>0, 故C 错误.3.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为( ) A.-110 B.-90C.90 D.110 答案 D解析 ∵a 3=a 1+2d =a 1-4,a 7=a 1+6d =a 1-12, a 9=a 1+8d =a 1-16, 又∵a 7是a 3与a 9的等比中项, ∴(a 1-12)2=(a 1-4)·(a 1-16),解得a 1=20.∴S 10=10×20+12×10×9×(-2)=110.4.已知S n 是等差数列{a n }的前n 项和,且S 6>S 7>S 5,给出下列五个命题:①d <0;②S 11>0;③使S n >0的最大n 值为12;④数列{S n }中的最大项为S 11;⑤|a 6|>|a 7|,其中正确命题的个数是( )A.5B.4C.3D.1 答案 B解析 ∵S 6>S 7>S 5,∴a 7<0,a 6>0,a 6+a 7>0, 因此|a 6|>|a 7|;d =a 7-a 6<0; S 11=11(a 1+a 11)2=11a 6>0;S 12=12(a 1+a 12)2=6(a 6+a 7)>0,而S 13=13a 7<0,因此满足S n >0的最大n 值为12;由于a 7<0,a 6>0,数列{S n }中的最大项为S 6, ∴④错,①②③⑤正确,故选B.5.在正项等比数列{a n }中,a 1=1,前n 项和为S n ,且-a 3,a 2,a 4成等差数列,则S 7的值为( )A.125B.126C.127D.128 答案 C解析 设正项等比数列{a n }的公比为q (q >0),且a 1=1,由-a 3,a 2,a 4成等差数列,得2a 2=a 4-a 3, 即2a 1q =a 1q 3-a 1q 2. 因为q >0,所以q 2-q -2=0. 解得q =-1(舍)或q =2.则S 7=a 1(1-q 7)1-q =1·(1-27)1-2=127.6.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n 为整数的正整数n 的个数是( ) A.2 B.3C.4 D.5答案 D解析 由等差数列的前n 项和及等差中项, 可得a n b n =12(a 1+a 2n -1)12(b 1+b 2n -1)=12(2n -1)(a 1+a 2n -1)12(2n -1)(b 1+b 2n -1)=A 2n -1B 2n -1=7(2n -1)+45(2n -1)+3=14n +382n +2=7n +19n +1=7+12n +1 (n ∈N *), 故当n =1,2,3,5,11时,a nb n 为整数.即正整数n 的个数是5.7.(2016·江苏)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________. 答案 20解析 设等差数列{a n }公差为d ,由题意可得: ⎩⎪⎨⎪⎧a 1+(a 1+d )2=-3,5a 1+5×42d =10,解得⎩⎪⎨⎪⎧a 1=-4,d =3, 则a 9=a 1+8d =-4+8×3=20.8.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是________. 答案 20解析 等差数列{a n }的公差为d ,则⎩⎪⎨⎪⎧3a 1+6d =105,3a 1+9d =99, 即⎩⎪⎨⎪⎧a 1+2d =35,a 1+3d =33, ∴⎩⎪⎨⎪⎧a 1=39,d =-2. ∴S n =39n +n (n -1)2×(-2)=-n 2+40n =-(n -20)2+400,当n =20时,S n 取得最大值.9.公差不为0的等差数列{a n }的部分项123,,,k k k a a a …构成等比数列,且k 1=1,k 2=2,k 3=6,则k 4=________. 答案 22解析 根据题意可知等差数列的a 1,a 2,a 6项成等比数列,设等差数列的公差为d ,则有(a 1+d )2=a 1(a 1+5d ),解得d =3a 1,故a 2=4a 1,a 6=16a 1⇒4k a =a 1+(n -1)·(3a 1)=64a 1,解得n =22, 即k 4=22.10.若数列{a n }对任意的正整数n 和m 等式a 2n +m =a n ×a n +2m 都成立,则称数列{a n }为m 阶梯等比数列.若{a n }是3阶梯等比数列有a 1=1,a 4=2,则a 10=________. 答案 8解析 由题意有,当{a n }是3阶梯等比数列,a 2n +3=a n a n +6,a 24=a 1a 7,所以a 7=4,由a 27=a 4a 10,有a 10=a 27a 4=8.11.(2016·北京)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和. 解 (1)设数列{a n }的公差为d ,{b n }的公比为q ,由⎩⎪⎨⎪⎧ b 2=b 1q =3,b 3=b 1q 2=9,得⎩⎪⎨⎪⎧b 1=1,q =3. ∴{b n }的通项公式b n =b 1q n -1=3n -1,又a 1=b 1=1,a 14=b 4=34-1=27,∴1+(14-1)d =27,解得d =2.∴{a n }的通项公式a n =a 1+(n -1)d =1+(n -1)×2 =2n -1(n =1,2,3,…). (2)设数列{c n }的前n 项和为S n . ∵c n =a n +b n =2n -1+3n -1,∴S n =c 1+c 2+c 3+…+c n=2×1-1+30+2×2-1+31+2×3-1+32+…+2n -1+3n -1=2(1+2+…+n )-n +30×(1-3n )1-3=2×(n +1)n 2-n +3n -12=n 2+3n -12.即数列{c n }的前n 项和为n 2+3n -12.12.在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29. (1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为q 的等比数列,求{b n }的前n 项和S n . 解 (1)设等差数列{a n }的公差是d ,∵a 3+a 8-(a 2+a 7)=2d =-6, ∴d =-3.∴a 2+a 7=2a 1+7d =-23,解得a 1=-1. ∴数列{a n }的通项公式为a n =-3n +2.(2)∵数列{a n +b n }是首项为1,公比为q 的等比数列, ∴a n +b n =q n -1,即-3n +2+b n =q n -1,∴b n =3n -2+q n -1.∴S n =[1+4+7+…+(3n -2)]+(1+q +q 2+…+q n -1)=n (3n -1)2+(1+q +q 2+…+q n -1),故当q =1时,S n =n (3n -1)2+n =3n 2+n2;当q ≠1时,S n =n (3n -1)2+1-q n1-q.。