高等数学A(一)第一次测试09-10真题答案
- 格式:doc
- 大小:292.00 KB
- 文档页数:5
大学2013~2014学年第一学期课程考试试卷(A 卷) 课 程 考试时间………………注:请将答案全部答在答题纸上,直接答在试卷上无效。
………………一、填空题(每小题2分,共10分) (1) =-∞→x x x )11(lim e1 . (2) 设)tan(2x x y +=,则=dy dx x x x )(sec )21(22++ .(3) 曲线36223+++=x x x y 的拐点是 )6,1(- . (4) =-⎰10211dx x 2π . (5) =⎰∞+121dx x1 . 二、选择题(每小题2分,共10分) (1) =∞→x x x 2sin lim (A) (A) 0. (B) 1. (C) 2. (D)21. (2) 设xx x f tan )(=,则0=x 是函数)(x f 的(A) (A) 可去间断点. (B) 跳跃间断点. (C) 第二类间断点. (D) 连续点.(3) 当0→x 时,下列变量中与x 是等价无穷小的是(B)(A) x 3sin . (B) 1-x e . (C) x cos . (D) x +1.(4) 函数)(x f 在0x 点可导是它在该点连续的(C)(A) 充分必要条件. (B) 必要条件. (C) 充分条件. (D) 以上都不对.(5) 设)(x f 在),(∞+-∞内有连续的导数,则下列等式正确的是(D)(A) ⎰=')()(x f dx x f . (B)C x f dx x f dx d +=⎰)()(. (C) )0()())((0f x f dt t f x-='⎰. (D) )())((0x f dt t f x ='⎰.三、计算下列极限、导数(每小题6分,共18分) (1) 213lim 21-++--→x x x x x .解: )13)(2()13)(13(lim 213lim 2121x x x x x x x x x x x x x x ++--+++-+--=-++--→→ 62)13)(2(1lim 2)13)(2)(1(22lim 11-=++-+-=++-+--=→→x x x x x x x x x x(2) 22)2(sin ln lim x x x -→ππ.解:)2(4sin cos lim )2(sin ln lim 222x x xx x x x --=-→→ππππ 812sin lim 41sin 12cos lim 4122-=---=⋅--=→→x x x x x x πππ (3) 设函数)(x y y =由方程0ln =+-y x y y 所确定,求:dxdy 和22dx y d . 两边对x 求导得:01)1(ln ='+-'+y y y所以得; yy ln 21+=' yy ln 21+='四、计算下列积分(每小题8分,共32分)(1) ⎰-dx x x )2sin(2. 解:C x x d x dx x x +-=---=-⎰⎰)2cos(21)2()2sin(21)2sin(2222 (2) ⎰-dx x 21. 解:令t x sin =,2||π≤t ,则:⎰⎰=-tdt dx x 22cos 1 C t t t C t t dt t ++=++=+=⎰cos sin 2122sin 412)2cos 1(21 C x x x +-+=2121arcsin 21 (3) ⎰10arctan xdx . 解:⎰⎰+-=10210101]arctan [arctan dx x x x x xdx 2ln 214)]1ln(21[4102-=+-=ππx (4) ⎰10dx e x . 解:令x t =,则2t x =,tdt dx 2=,⎰⎰=10102dt te dx e t x 22][22101010=-==⎰⎰dt e te tde t t t 五、综合题(每小题10分,共20分)(1) 设函数)(x y y =由参数方程⎪⎩⎪⎨⎧=++=⎰22031t u du e y t t x 所确定,求函数)(x y y =的极值. 解:23124t te dx dy t +=,令0=dxdy ,得0=t ,代入得:1=x 。
往年安徽成人高考专升本高等数学一真题及答案高等数学(一)一、选择题:1~10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内. 1. 当0≠b ,当0→x 时,bx sin 是2x 的 ( )A. 高阶无穷小量B. 等价无穷小量C. 同阶但不等价无穷小量D. 低阶无穷小量2. 设函数)(x f 可导,且2)1()1(lim 0=-+→f x f xx ,则=')1(f( )A. 2B. 1C.21D. 03. 函数112)(3+-=x x x f 的单调减区间为 ( )A. ),(+∞-∞B. )2,(--∞C. )2,2(-D. ),2(+∞4. 设0)(0='x f ,则0x x = ( )A. 为)(x f 的驻点B. 不为)(x f 的驻点C. 为)(x f 的极大值点D. 为)(x f 的极小值点5. 下列函数中为xe xf 2)(=的原函数的是 ( )A. xe B.xe 221 C. xe 2D. xe 226. ⎰=dx x x 2cos( )A. C x +-2sin 2 B. C x +-2sin 21C. C x +2sin 2D.C x +2sin 217.⎰=02x t dt te dxd ( )A. 2x xe B. 2x xe - C. 2x xe-D. 2x xe--8. 设yx z =,则=∂∂xz ( )A. 1-y yxB. x x yln C. 1-y xD. x xy ln 1-9. 设32y x z +=,则=)1,1(dz( )A. dy dx 23+B. dy dx 32+C. dy dx +2D. dy dx 3+10. 级数∑∞=-12)1(n nn k(k 为非零常数) ( )A. 绝对收敛B. 条件收敛C. 发散D. 收敛性与k 的取值有关二、填空题:11~20小题,每小题4分,共40分. 把答案填在题中横线上.11. =+→220)1ln(lim xx x _________. 12. 函数22)(-+=x x x f 的间断点为=x _________. 13. 设xe x y +=2,则=dy _________. 14. 设100)2(x y +=,则='y _________.15.⎰=-x dx3_________. 16. ⎰-=+1121dx x x_________. 17.⎰=13dx e x _________.18. 设x y z sin 2=,则=∂∂xz_________. 19. 微分方程x y 2='的通解为=y _________.20. 级数∑∞=1n nx的收敛半径=R _________.三、解答题:21~28小题,共70分. 解答应写出推理、演算步骤. 21. (本题满分8分) 计算1)1sin(lim21--→x x x .22. (本题满分8分) 设曲线方程为x e y x+=,求0='x y 以及该曲线在点)1,0(处的法线方程.23. (本题满分8分) 计算⎰-dx xe x.24. (本题满分8分) 计算⎰+edx x x1ln 1.25. (本题满分8分)求曲线3x y =与直线x y =所围图形(如图中阴影部分所示)的面积S .26. (本题满分10分) 设二元函数522--+++=y x y xy x z ,求z 的极值.27. (本题满分10分) 求微分方程x y xy =+'1的通解.28. (本题满分10分) 计算⎰⎰Dydxdy x 2,其中D 是由直线x y =,1=x 及x 轴围成的有界区域.往年高等数学(一)试题参考答案一、选择题:每小题4分,共40分. 1. D 2. C 3. C 4. A 5. B6. D7. B8. A9. B 10. A二、填空题:每小题4分,共40分. 11. 1 12. 2 13. dx e x x)2(+ 14. 99)2(100x + 15. C x +--3ln 16. 0 17. )1(313-e 18. x y cos 219. C x +220. 1三、解答题:共70分. 21. 解:xx x x x x 2)1cos(lim 1)1sin(lim121-=--→→ 21=. 22. 解:1+='xe y ,20='=x y .曲线在点)1,0(处的法线方程为)0(211--=-x y , 即022=-+y x .23. 解:设t x =,则2t x =,tdt dx 2=.⎰⎰⋅=--tdt t e dx xe tx2⎰-=dt e t 2C e t +-=-2 C e x+-=-2.24. 解:⎰⎰⎰+=+ee e dx x x dx x dx x x 111ln 1ln 1 eex x 121)(ln 21ln +=23=.25. 解:由对称性知⎰-=13)(2dx x x S104241212⎪⎭⎫ ⎝⎛-=x x21=. 26. 解:12++=∂∂y x xz,12-+=∂∂y x y z .由⎩⎨⎧=-+=++,,012012y x y x 解得⎩⎨⎧=-=.11y x ,222=∂∂xz,12=∂∂∂y x z ,222=∂∂y z . 2)1,1(22=∂∂=-x z A ,1)1,1(2=∂∂∂=-y x z B ,2)1,1(22=∂∂=-yzC .032<-=-AC B ,0>A ,因此点)1,1(-为z 的极小值点,极小值为6-.27. 解:⎪⎪⎭⎫ ⎝⎛+⎰⎰=⎰-C dx xe e y dx x dx x 11()⎰+=C dx x x21⎪⎭⎫ ⎝⎛+=C x x 3311. 28. 解:⎰⎰⎰⎰=Dxydy x dx ydxdy x1022⎰=10421dx x 105101x = 101=.。
《数学试题一》参考答案 一、填空题1、-32、z=(x ²+y ²)3、1ln y y yx dx x xdy -+4、21zye -5、x+y=06、2πR ²7、28、22π二、选择题1、D2、C3、B4、B5、C三、1、解:sin 1lim 1x xx y xy →∞→∞⎛⎫+ ⎪⎝⎭=1..sin 1lim 1xy x xxyx y xy →∞→∞⎛⎫+ ⎪⎝⎭=sin lim xyx y e→∞→∞=0e =12、解:令u=x+y ,D=xy //12..zf u f v f yf xu xv xδδδδδδδδδδ=+=+2//12///122().z f yf x y yf f f y yyδδδδδδδδ=+∂=++其中 /////11112f fx fyδδ=+ /////22122f f x f yδδ=+所以 2///////////////1112221221112222()()zf xf f y f xf f x y f xyf f x yδδ=++++=++++∂四、 解:所求直线的方向向量10443152i j S i j k k⎛⎫ ⎪=-=--- ⎪ ⎪ ⎪-⎝⎭即方向向量(4,3,1)S =---所求直线方程为325431x y z +--==---五、1、解:令2222222x 1x y x y y +=--+=得 ①即在XOY 面上的投影为22x 1y +=由题知P=X Q= -Y R=Z 由高斯公式得xdydz ydzdx zdxdy-+∑⎰⎰22215(111)6dv dv d d dz ρπρπθρρ-ΩΩ=-+===⎰⎰⎰⎰⎰⎰⎰⎰⎰曲面积分为56π。
2、解:连接OA 补全图形,由题知:sin 2xP e y x y=--c o s xQ e y x=-则cos 1xQe y x∂=-∂ c o s 2xPe y y∂=-∂ 由格林公式得(s i n2)(c o s )()2xxLDDQP e y x y dx e y x dy dxdy dxdy x yπ∂∂--+-=-==∂∂⎰⎰⎰⎰⎰ 对AO 段202(sin 2)(cos )(2)222x xLLxdx xdx e y x y dx e y x dy ππ-=-=---+-=--=+⎰⎰⎰所以六、1、解:由111lim1,R=1n n n n nxn∞-→∞=+=±∑得收敛半径R=1,当时幂级数均发散因此:11S x S x 0x n n nx∞-=→∑收敛域为I=(-1,1),设和函数为()即()=两边从积分x1221111()(1.............)x (1,1)1............1-xxn nxnnnn n n s x dx nxdx xxx x x x x x x ∞∞∞-=-=====+++++∈-=+++++∑∑∑⎰⎰当时()x21()11x s x dx x xx =--⎰所以两边对求导数得s(x)=所以和函数()21()1s x x =-(1,1)x ∈-122111111111122248489114nn n n n n n n n -∞∞∞+===⎛⎫⎛⎫===⨯=⎪ ⎪⎝⎭⎝⎭⎛⎫- ⎪⎝⎭∑∑∑2、解:2()ln(32)ln(1)ln(2)ln(1)ln(1)ln 22x f x x x x x x =++=+++=++++得(]1(1)ln(1),1,11nn n x xx n ∞+=-+=∈-+∑[]11(1)1ln(1)ln(1),2,22122n nn n x x x x n +∞+=-⎛⎫+==+∈- ⎪+⎝⎭∑(]11111(1)11(1)()ln(1)ln 2(1)ln 2,1,11221nnn n n n n n f x xx xx n n ∞∞++++==--=+++=++∈-++∑∑七、解:作拉格朗日函数 M λ、为参数 2L(,,)(1)()x y z x y z z M x y λ=+++-++则22120,120,10,x ,1,1x y z L ux L uy L y x y λλ=+==+==+===-+=得又,111,,m in 122222x y ==±=-所以由题知,最值一定存在,且在极值点取得,则max=1+八、证明:12n 1111,lim ,(......)n n n n n n n n n n n u u s s s s u u u u s u ∞∞∞∞→∞====∴=∴+++=∑∑∑∑ 绝对收敛收敛,设部分和为则是个常数收敛。
同济大学 高等数学A1一、填空题 (每小题 3分,满分18分)1. 曲线2()ln(1)x f x x =+的渐近线是0x =. (22211lim lim lim 2ln(1)21x x x x x x x xx→∞→∞→∞+===∞++, 无水平渐近线;220001limlim lim ln(1)x x x x x x x x→→→===∞+,垂直渐近线0x =,注:220,ln(1)x x x →+)2. 已知0()lim12x f x x→=,且()f x 在0x =处可导,则(0)2f '=.(因0lim 20x x →=,则0lim ()0x f x →=,又()f x 在0x =处可导从而必连续,则0lim ()(0)x f x f →=,故(0)0f =,0()1()(0)1limlim (0)12202x x f x f x f f x x →→-'===-,进而(0)2f '=)3. 曲线2cos y x x x =+在点(0,0)处的切线方程是y x =. (2cos sin y x x x x '=+-,(0)1y '=)4. 2311lim 3n n k k n→∞==∑. (222223331123(1)(21)1lim lim lim 63nn n n k k n n n n nn n →∞→∞→∞=+++⋅⋅⋅+++===∑; 定积分定义:12231220110111lim lim d 33nnn n k k k k x x x n n n n →∞→∞==⎡⎤⎛⎫==== ⎪⎢⎥⎝⎭⎣⎦∑∑⎰.) 5. ()f x 的一个原函数是2sec x ,则2()d sec tan x f x x x x x C=-+⎰.(2(sec )()x f x '=,22222(sec )d dsec sec sec d sec tan x x x x x x x x x x x x C '==-=-+⎰⎰⎰)6. 微分方程ex yy +'=的通解为e e +y x C --=. (分离变量e d e d y xy x -=;两边积分e e +y xC --=)二、计算下列各题. (每小题5分,满分20分) 1. 10(1)e limxx x x →+-. (0,洛必达法则,幂指函数求导转化为指数函数)解:11ln(1)ln(1)20000(1)ln(1)(1)e 1lim lim lim e lim e 1x x x x x x x x x x x x x x x x x ++→→→→'⎡⎤+⎢⎥-+'⎡⎤+-⎣⎦+===⋅⎢⎥⎣⎦ln(1)222000(1)ln(1)ln(1)elim elime lim e lim (1)23232x xx x x x x x x x x x x x x x x +→→→→-++-+--=⋅=⋅=⋅=+++.2. 20e sin 1lim (arcsin )x x x x →--. (0,洛必达法则,结合等价无穷小)解:220000e sin 1e sin 1e cos e sin 1lim=lim lim lim (arcsin )222x x x x x x x x x x x x x x x →→→→-----+===. 3. 2ln(1),arctan ,x t y t ⎧=+⎨=⎩求22d d y x . (参数方程求导)解:22d 2d 1,d 1d 1x t y t t t t ==++,221d d 1d 2d 1d 1d 2yt t x t tt yxt ++===;221d 22d d d 223d 2d 1()d (1)d 4y tx t x t tt y t xt-+-+===. 4.设arcsin 2xy x =(0)y ''. (显函数求导)解:1arcsinarcsin 222x x y x '=+=,12y ''==,1(0)2y ''=. 三、计算下列各题. (每小题5分,满分25分) 1.d (21)x x x -⎰. (拆项) 解:d 2(21)21d =()d =ln |21|ln ||+(21)(21)21x x x x x x x C x x x x x x --=------⎰⎰⎰2. d e ex x x -+⎰. (凑形式) 解:22d e d de arctan e e e e 1e 1x x x x x x x x x C -===++++⎰⎰⎰ 3.220max{,}d x x x ⎰. (分段函数) 解:1223212220010117max{,}d d d 236x x x x x x x x x ⎡⎤⎡⎤=+=+=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰.4.10arctan d x x x ⎰. (分部积分)解:21111122220000011π1arctan d arctan d (arctan d arctan )d 22821x x x x x x x x x x x x ⎡⎤==-=-⎣⎦+⎰⎰⎰⎰ []11200π11π1π1(1)d arctan 8218242x x x x =--=--=-+⎰5.1x +∞⎰(倒代换1x t =或换元去根号)解:令1x t =,[]011201101π()d arcsin 2x t t t t +∞=-===⎰⎰⎰.x2另法:令sec x t =,则d sec tan d x t t t =,[]πππ222010sec tan πd 1d sec tan 2t t x t t t t t +∞⋅====⋅⎰⎰⎰. 四 (7分) 求微分方程22y y y x '''++=+的通解. (齐次方程通解+非齐次方程特解)解:特征方程:2210r r ++=;特征根:121r r ==-;对应齐次方程通解 12()e x Y C C x -=+0λ=不是特征重根 设特解*y ax b =+,代入方程得1a =,0b = 即*y x =所求通解为12()exy C C x x -=++.五 (8分) 讨论函数32695y x x x =-+-的单调性、极值、凹凸性与拐点.解:(,)D =-∞+∞,231293(1)(3)y x x x x '=-+=--,612y x ''=-当1x =,3x =时,0y '=;当2x =时,0y ''=.故()f x 的单减区间[1,3];单增区间(,1]-∞,[3,)+∞. ()f x 的极大值为(1)1f =-,极小值为(3)5f =-. ()f x的凹区间[2,)+∞;凸区间(,2]-∞;拐点 (2,3)-. 六(8分) 求由抛物线2(01)y x x =≤≤与直线12y =,1x =及y 轴所围成平面图形绕x 轴旋转而成的 旋转体的体积.解:54101π()d ππππ44584010x x V x x ⎡=-=-=-=⎢⎥⎣⎦, 1514211π)d ππ45420x x V x x ⎡⎤-=-=-==⎢⎣, 12V V V =+=+=.七 (8分) 设0()|cos |d x F x t t =⎰, (定积分----函数的周期性)(1) 当n 为正整数且π(1)πn x n ≤≤+时,证明:2()2(1)n F x n ≤≤+;(2) ()lim x F x x→∞.解:(1) 因π(1)πn x n ≤≤+,则π(1)π0|cos |d |cos |d |cos |d n x n t t t t t t +≤≤⎰⎰⎰,又[][]πππππ22ππ022|cos |d cos d cos d sin sin 2t t t t t t t t =+-=-=⎰⎰⎰,由周期性知ππ0|cos |d |cos |d 2n t t n t t n ==⎰⎰,(1)ππ|cos |d (1)|cos |d 2(1)n t t n t t n +=+=+⎰⎰.故2()2(1)n F x n ≤≤+.(2) 因π(1)πn x n ≤≤+,则111(+1)ππn x n ≤≤,又2()2(1)n F x n ≤≤+,则2()2(1)(1)ππn F x n n x n +≤≤+,而22lim (1)ππx n n →∞=+,2(1)2lim ππx n n →∞+=,由夹逼准则知, ()2limπx F x x →∞=.八 (6分) 证明:当0x y >>时,成立不等式ln ln 2x y x yx y -+<-. (注意不等式的等价变形)证明:原式变形为112ln x xy yx y-+<,令x t y =,即证当1t >时,11ln 2t t t -+<. 令()2(1)(1)ln f t t t t =--+,则11()2ln 1ln t f t t t t t +'=--=--, 22111()tf t t t t-''=-+= 当1t >时,()0f t ''<,则()f t '在[1,)+∞上单调递减,(1)0f '=,有()0f t '< 进而()f t 在[1,)+∞上单调递减,(1)0f =,有()0f t <,即2(1)(1)ln 0t t t --+<,亦即11ln 2t t t -+<,1t >. 故当0x y >>时,成立不等式 ln ln 2x y x y x y -+<-.。
《高等数学教程》第一章 习题答案习题1-1 (A)1.(1)),2()2,1()1,(+∞⋃⋃-∞ (2)]1,0()0,1[⋃-(3)),1()1,1()1,(+∞⋃-⋃--∞ (4)πk x ≠且),2,1,0(2±±=+≠k k x ππ (5)),2,1,0()352,32( ±±=++k k k ππππ(6)]3,1[- 2.202)(6,916,6h x +++ 3.0,22,22,21 5.(1)奇函数 (2)非奇非偶函数 (3)偶函数 (4)奇函数 (5)奇函数(6)当)(x f 为奇函数或偶函数时,该函数为偶函数;当)(x f 为非奇非偶函数时,该函数为非奇非偶函数. (7)偶函数 (8)奇函数6.(1)是周期函数,π2=T (2)是周期函数,4=T (3)是周期函数,4=T (4)不是周期函数7.(1)a cx b dx y -+-=(2)2arcsin 31xy = (3)21-=-x e y (4)xxy -=1log 2(5)2xx e e y --=8.(1)2,x a u u y -== (2)2,x u e y u == (3)cos ,lg ==u u y (4)x v tgv u u y 6,,2=== (5)21,,cos ,xw e v v u arctgu y w -==== (6)22,ln ,ln ,x w w v v u u y ====9.(1)]1,1[- (2) zk k k ∈+])12(,2[ππ (3)]1,[a a --(4)若210≤<a ,则]1,[a a D -=;若21>a ,则=D Ф. 10.4)]([x x =ϕϕ,xx 22)]([=ψψ,x x 22)]([=ψϕ,22)]([x x =ϕψ. 11.1,4-==b a12.⎪⎩⎪⎨⎧>-=<=0,10,00,1)]([x x x x g f ,⎪⎪⎩⎪⎪⎨⎧>=<=-1,1,11,)]([1x e x x e x f g13.)20(,])2([22r h h r h V <<-=π14.πααπααππ20,4)2(242223<<--=r V 15.),2(,])[(32232+∞--=r r r h h r V π16.(1)⎪⎩⎪⎨⎧≥<<⋅--≤≤=1600,751600100,01.0)100(901000,90x x x x p(2) ⎪⎩⎪⎨⎧≥<<-≤≤=-=1600,151600100,01.0311000,30)60(2x x x x x x x x p p(3)21000=p (元)习题1-1 (B)1.)(x f 为偶函数.2.41)1(,2)(222-+=--=xx xx f x x f 3.⎩⎨⎧≥<=0,0,0)]([2x x x x g f ,⎩⎨⎧≥<=0,0,0)]([2x x x x f g4.22123x x ++ 8.⎩⎨⎧-≤-<<--=-1,101,1)(x x e x f x9.]0,(,)1ln()(-∞-=x x g10.奇函数,偶函数,偶函数,偶函数. 12.1)2005(=f习题1-2 (A)1.(1)121+n ,0 (2)11)1(1+-+n n ,0 (3)2+n n,1 (4)1)1()1(+-⋅+n n ,没有极限(5)222)1(1)1(2)1(1+++++++n n n n ,21 (6)2)2)(1()1(++-n n ,没有极限.2.(1)17; (2)24; (3)]3[ε3.0,]1[ε习题1-3 (A)3.0002.0=δ4.397≥Z6.1)(lim )(lim 00==+-→→x f x f x x ,1)(lim 0=→x f x 1)(lim 0-=-→x x ϕ,1)(lim 0=+→x x ϕ,)(lim 0x x ϕ→不存在.习题1-4 (A)3.(1)0; (2)0; (3)04.0lim 1=-→y x ; ∞=→y x 1lim 习题1-4 (B)3.x x y cos =在),(+∞-∞上无界,但当+∞→x 时,此函数不是无穷大. 5.当1,0==b a 时,)(x f 是无穷小量; 当b a ,0≠为任意实数时,)(x f 是无穷大量.习题1-5 (A)1.(1)0; (2)1; (3)1; (4)103; (5)231aa -; (6)23x ; (7)34; (8)1-. 2.(1)43-; (2)0; (3)∞; (4)41-;(5)503020532⋅; (6) 41-.3.(1)⎪⎩⎪⎨⎧>-=<<1,11,010,1a a a ; (2)3; (3)34; (4)21-4.(1)10; (2)2)(m n mn -; (3)n m; (4)0; (5)0; (6)21; (7)43; (8)21.习题1-5 (B)1.(1)2; (2)21-; (3)561-; (4)2)13(2-a (5)23; (6)⎪⎩⎪⎨⎧<∞=>2,2,12,0k k k ; (7)2; (8)0 .2.1,1-==βα3.9=a4.1,1-==b a5.不一定.习题1-6 (A)1.(1)2; (2)3; (3)21; (4)-1; (5)a cos ; (6)2π; (7)1; (8)2; (9)1; (10)x . 2.(1)1-e ; (2)2e ; (3)2-e ; (4)2-e ; (5)1-e ; (6)2e .习题1-6 (B)1.(1)21; (2)π2; (3)1; (4)0;(5)0; (6)1; (7)0; (8)1-e . 2.(4)3; (5)251+. 习题1-7 (A)1. 当0→x 时,34x x -比32x x +为高阶无穷小.2. (1)同阶,但不是等价; (2)同阶,且为等价.3.21=α 4.m =α6.(1)23; (2)⎪⎩⎪⎨⎧>∞=<nm n m nm ,,1,0; (3)21;(4)21; (5)b a ; (6)41.习题1-7 (B)1.(1)32; (2)2e ; (3)21; (4)0; (5)1; (6)41-; (7)∞; (8)1. 5.x x x x p 32)(23++=. 6.a A ln .习题1-8 (A)1.1=a2.)(x f 在0=x 处连续3.(1)1=x 为可去间断点,补充2)1(-=f2=x 为第二类间断点(2)0=x 和2ππ+=k x 为可去间断点,补充0)2(,1)0(=+=ππk f f ;)0(≠=k k x π为第二类间断点.(3)1=x 为第一类间断点 (4)0=x 为第二类间断点.4.(1)1=x 为可去间断点,补充32)1(=f ;(2)0=x 为可去间断点,补充21)0(=f ;(3)1=x 为可去间断点,补充2)1(π-=f ;0=x 为第二类间断点;(4)2=x 为可去间断点,补充41)2(=f ;0=x 为第一类间断点;2-=x 为第二类间断点. (5)0=x 为第一类间断点; (6)a x =为第一类间断点; (7)1=x 为第一类间断点; (8)1-=x 为第二类间断点.习题1-8 (B)1. 1±=x 为第一类间断点.2. 1,0==b a3. 25=a 4. ),2,1,0(22 ±±=-=n n a ππ5. 0,=-=b a π6. (1)当1,0≠=b a 时,有无穷间断点0=x ; (2)当e b a =≠,1时,有无穷间断点1=x .习题1-9 (A)1.连续区间为:),2(),2,3(),3,(+∞---∞21)(l i m 0=→x f x ,58)(lim 3-=-→x f x ,∞=→)(lim 2x f x .2.连续区间为:),0(),0,(+∞-∞.3. (1) -1; (2) 1; (3) h ; (4) -1; (5) 22-; (6) -2; (7) 1; (8) 1; (9) ab ; (10) 5e ; (11) -1; (12) 2. 4. 1=a 5. 1=a习题1-9 (B)1. (1)0=x 为第一类间断点; (2)1-=x 为第一类间断点; (3)0=x 为第一类间断点; (4)1±=x 为第一类间断点; (5)无间断点.2. 1,0==b a3. (1)1-e ; (2)21-e ; (3)a e cot ; (4)0;(5)0; (6)-2; (7)21; (8)82π.4.21总复习题一一. 1. D 2. D 3. D 4. B 5. C 6. D 7. D 8. C 9. D 10. D二.1. ⎪⎩⎪⎨⎧≥<-=-0,0,)(22x x x x x x f2. ]2,2[,)1arcsin(2--x3. -14. 必要,充分5. 必要,充分6. 充分必要7.21 8. b a = 9.56 10. 第二类,第一类 三. 1. 11)(-+=x x x ϕ 2. 20051,20052004=-=βα 3. 1lim =∞→n n x 4. 4 5. 4e 6. -50 7.a ln 218. 当0≤α时,)(x f 在0=x 处不连续;当1,0-=>βα时,)(x f 在0=x 处不连续; 当1,0-≠>βα时,)(x f 在0=x 处不连续. 9. 82-部分习题选解 习题1-2 (B)1. 根据数列极限的定义证明:(1))0(1lim 时>=∞→a a nn证明:(ⅰ) 0>∀ε当1>a 时,令)0(1>+=n n n h h a n nn n n n n nh h h n n nh h a >++-++=+=∴ 22)1(1)1( εεan na h n ><<<∴0∴取1][+=εaN ,当N n >时,有ε<<=-nah a n n 1,即1lim =∞→n n a(ⅱ)当1=a 时,显然成立. (ⅲ)当10<<a 时,令11>=ab ∴11lim lim ==∞→∞→nn nn ab∴1lim =∞→nn a 综合(ⅰ),(ⅱ),(ⅲ),∴当0>a 时,有1lim =∞→nn a . 习题1-6 (B)3.设0,00>y x ,n n n y x x =+1,21nn n y x y +=+. 证明:n n n n y x ∞→∞→=lim lim 证明:2nn n n y x y x +≤),2,1,0(011 =≤≤∴++n y x n nnnn n n n nn n n n n y y y y x y x x x y x x =+≤+==≥=∴++2211),2,1,0( =n 由此可知数列}{n x 单调增加,数列}{n y 单调减少, 又011110y y y y x x x x n n n n ≤≤≤≤≤≤≤≤≤++ ∴}{n x 与}{n y 都是有界的.由“单调有界数列必有极限”准则, ∴}{n x ,}{n y 都收敛.设b y a x n n n n ==∞→∞→lim ,lim由21n n n y x y +=+,2lim lim n n n n n y x y +=∴∞→∞→ b a b a b =⇒+=∴2即n n n n y x ∞→∞→=lim lim . 习题1-10 (B)3.设函数)(x f 在]1,0[上非负连续,且0)1()0(==f f ,试证:对)1,0(∈∀l ,必存在一点]1,0[0l x -∈,使)()(00l x f x f +=. 证明:令)1,0(,)()()(∈∀+-=l l x f x f x F )(x f 在]1,0[上连续,)(l x f +在]1,[l l --上连续, )(x F ∴在]1,0[l -上连续.又 0)1()1()1()1(0)()()0()0(≥-=--=-≤-=-=l f f l f l F l f l f f F )0)((≥x f 0)1()0(≤-⋅∴l F F(ⅰ)若0)0(=F ,取00=x ,即)()0(l f f = (ⅱ)若0)1(=-l F ,取l x -=10,即)1()1(f l f =- (ⅲ))01(,0)0(≠-≠l F F 0)1()0(<-⋅∴l F F 由零点存在定理,必存在一点]1,0[0l x -∈,使0)(0=x F , 即)()(00l x f x f +=.综合(ⅰ),(ⅱ),(ⅲ),对)1,0(∈∀l ,必存在一点]1,0[0l x -∈,使)()(00l x f x f +=.总复习题一三.11.设)(x f 在],[b a 上连续,且)(x f 在],[b a 上无零点. 证明)(x f 在],[b a 上不变号.证明:(反证法)假设)(x f 在],[b a 变号, 即],[,21b a x x ∈∃,使0)(,0)(21<>x f x f 即0)()(21<⋅x f x f )(x f 在],[b a 上连续,∴)(x f 在],[21x x 上连续. 由零点存在定理知,),(),(21b a x x ⊂∈∃ξ,使0)(=ξf 即ξ是)(x f 在],[b a 上的一个零点. 这与)(x f 在],[b a 上无零点矛盾, )(x f ∴在],[b a 上不变号.。
20092010学年第一学期《高等数学1》考试参考答案与评分标准2009-2010学年第一学期《高等数学1》考试参考答案与评分标准一、选择题(每小题4分,共24分。
在每小题的四个备选答案中选出一个正确答案,请将其代码填写在题后的括号内。
错选、多选或未选均无分)1.当0x x →时,)(x α、)(x β都是无穷小,则当0x x →时( )不一定是无穷小.(A) )()(x x βα+, (B) )()(22x x βα+ , (C) [])()(1ln x x βα⋅+, (D) )()(2x x βα。
【解】 应选D 。
2. 设a 不是π的整数倍,极限ax ax ax -→⎪⎭⎫⎝⎛1sin sin lim 的值是( ).(A ) 1, (B )e , (C )ae cot ,(D )ae tan 。
【解】 应选C 。
事实上ax a x ax a x a a x a x -→-→⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛11sin sin sin 1lim sin sin limaa x a x ax a a x a a x sin 1sin sin sin sin sin sin sin sin 1lim ⋅---→⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+=aa e sin 1cos ⋅=ae cot =。
3. 函数⎪⎩⎪⎨⎧=≠-+=0 ,0 ,1sin )(2x a x x e x x f ax 在0=x 处连续,则=a ( ).(A )1, (B ) 0, (C )e (D )1-。
【解】 应选D 。
事实上由于()a e a x x e x x f axx axx x 212cos lim 1sin lim )(lim 2020+=⋅+=-+=→→→,而af =)0(,要使函数)(x f 在0=x 处连续,必需且只需)0()(lim 0f x f x =→,即a a =+21,解得1-=a 。
4. 设函数)(x f 在点a x =处可导,那么极限=--+→hh a f h a f h )2()(lim 0( ). (A ) )(3a f ', (B ))(2a f ',(C) )(a f ', (D ))(31a f ' 。
西安⼯业⼤学⾼数09-10第⼀学期(1)期末考题及答案分析⾼等数学(A )期末考试试题⼀、单项选择题(每⼩题3分,共15分)1.当0→x 时,下列变量极限不存在的是(). (A )x arctan ;(B )xx 1sin;(C )xx +-11ln;(D )x e 1.2.0)(,0)(00<''='x f x f 是函数)(x f y =在0x x =处取得极⼤值的⼀个()(A )充分必要条件;(B )充分条件,⾮必要条件;(C )必要条件,⾮充分条件;(D )既⾮充分条件,⼜⾮必要条件.3.下列等式成⽴的是()(A ))()(x f dx x f d =?;(B )dx x f dx x f d )()(=?;(C ))()(x f dx x f ='? (D )dx x f dx x f ?=')()(. 4.设)(x f 在],[b a 上⾮负,在),(b a 内,0)(,0)(>''>'x f x f 记[])()(21b f a f ab I +-=,dxx f I b a=)(2,)()(3a f a b I -=,则()(A )321I I I <<;(B )132I I I <<;(C )123I I I <<;(D )213I I I <<. 5.关于函数dte t xf t)1()(的极值,正确的是()(A )极⼩值为f -=1)1(;(B )极⼩值为 e f -=2)1(;(C )极⼤值为 e f -=1)1(;(D )极⼤值为 e f -=2)1(. ⼆、填空题(每⼩题3分,共15分) 1.设0→x 时,)cos(1ax -与12 -xe是等价⽆穷⼩,则=a .2.设函数)(x f 可导,)(cos 2x f y =,则=dy .3.设曲线的⽅程是)1ln(2x y +=,则曲线的拐点是 .4.不定积分=+?dx x x 1 .5.设曲线)(x f y =上任⼀点),(y x M 处的切线,恒垂直于此点与原点的连线,则y满⾜的微分⽅程是 .三、完成下列各题(每⼩题6分,共36分) 1. 求极限??--→x e xx 111lim 0. 2. 设 ,212=-=tt ey e x 求 22dx yd . 3.设函数)(x y 是由1)1(022=+-?dt t y x y所确定,求dy .4.设xx sin 是)(x f 的⼀个原函数,求dx x f x ?')(.5设?∞+-∞→=+121lim dx xex xaxx ,求a .6.求⼀阶微分⽅程yedxdy x -=-+1)1(的通解.四、(7分)设())1(1ln )(21>++=?x xx dt tt f x ,求dxx f ?)(.五、(7分)已知)(x f 在点6=x 的邻域内为可导函数,且,0)(lim 6=→x f x ,2009)(lim 6='→x f x 求极限 .)6()(lim3666x dtdu u f t x t x -→六、(8分)在抛物线)30(2≤≤=x x y 上求⼀点P ,过P 点作抛物线的切线,使此切线与抛物线及直线3,0==x y 所围成的图形⾯积最⼩.七、(7分)设 ,0<+≥+=x ex x x f x 求?-2)1(dx x f .⼋、(5分)已知函数)(x f 在),2[∞+上可导,0)(>x f ,且满⾜不等式)(])([x f x xf -≤'.试证在),2[∞+上2)(xA x f ≤,其中A 为与x ⽆关的常数.⾼等数学(A )期末考试试题参考答案及评分标准(2010年1⽉5⽇)⼀、单项选择题(每⼩题3分,共15分) 1.D 2.B 3.B 4.C 5.B ⼆、填空题(每⼩题3分,共15分).12±2. xdx sin )x (cosf 22'- 3 . )ln ,(21±4. C )x ()x (++-+2325132152 5.yx dxdy -=三、完成下列各题(每⼩题6分,共36分).1. 解:)e (x )e (x lim x e lim xxx x x 1111100---=??? ?--→→……………………………………………..1分 21x x +-=→………………………………………………..2分xel i mxx 210-=→………………………………………………….....2分2120-=-=→xx limx ………………………………………………….1分2. 解:ttt eee dxdy 1222==………………………………………………………………………3分tttteeee dxy d 322222121-…………………………………...…………………….3分3. 解:两端同时对x 求导得…………………………………………………………………..1分 0122 2=+-+dxdy )y (dxdy xxy ………………………………………………….3分2212x y xy dxdy -+=……………………………………………………………..….1分即dx xy xydy 2212-+=………………………………………..………………………1分4. 解:由题意知2xxsin x cos x )xx sin ()x (f -='=……………………………………2分则)x (df x dx )x (f x ??=' ………………………………………………………. …….…1分 dx )x (f )x (xf ?-=…………………………………………………………….…… 2分C xx sin x cos C xx sin x………………………….1分5解:因为 aaxx axx ex lim x lim 2222121=+=??+∞→∞→………………………………2分[][]+∞-+∞→+∞-+∞-+∞-+∞--+-=+-=-=?111xxxee)ex (lim dx exexdedx xeeeelim e)e (lim xx xx 2111=+-+-=-+∞→+∞→……………..…………………..3分所以 )(l n a eea122122-= =………………………………...………....1分6.解:由题意得y+11,也即dx x dy eeyy 111+=+……………………….2分两端同时积分得C ln )x ln()e ln(dx x dy eeyyy++=+?+=+?11111………3分所以原微分⽅程的通解为 )x (C ey11+=+ 或 []11-+=)x (C ln y ………….....1分四、(7分)解:对()211xx ln dt t)t (f x ++=?两端同时求导得……………………..1分222x (xx x)x (f +=+=++++ =……...2分C x)x(d xdx xx dx )x (f ++=++= +=∴2222111121 1…………...3分五、(7分)解:2 6603666636)x (du)u (f x lim)x x t x --=-→→…………………………2分)x ()x (xf du )u (f limxx --=?→6666………………………………………………2分660-'---=→)x (f x )x (f )x (f limx …………………………………………2分2009= …………………………………………………………………...…1分六、(8分)在抛物线)x (x y 302≤≤=上求⼀点P ,过P 点作抛物线的切线,使此切线与抛物线及直线30==x ,y 所围成的图形⾯积最⼩.解:设切点P 的坐标为)x ()y ,x (30000≤≤,则切线斜率为002x )x (y =',切线⽅程为 )x x (x y y 0002-=-,即2002x x x y -=,…………………………….1分令0=y ,得切线与x 轴交点的横坐标为20x ,令3=x ,得切线与直线3=x 交点的纵坐标为2006x x -,要使此切线与抛物线及直线30==x ,y 所围成的图形⾯积最⼩,既是切线与直线30==x ,y 所围成的图形⾯积最⼤…………………………………………….2分设该⾯积为S ,则)x x )(x ()x (S 2000062321--=………………..……………….2分[]0000020026641262321641x )x ()x ()x )(x ()x x ()x (S ---=--=')x )(x (002643--=………………………..……………………………..2分令00=')x (S ,得惟⼀驻点20=x ,依题意,该驻点就是使)x (S 0取得最⼤值的点,所以所求的点P 的坐标为),()y ,x (4200=…………………………………………...…….1分七、(7分)解:?---======-11111201dx )x (f dt )t (f dx )x (f x t ……………………..2分[]1001100111111111)x ln(de)ee(dx xdx exxxx+++-=+++=--….3分[][][])e (ln )x ln()eln(x x12111001+=+++-=-………….........………2分⼋、(5分)已知函数)x (f 在),[∞+2上可导,0>)x (f ,且满⾜不等式)x (f ])x (xf [-≤'.试证在),[∞+2上2xA )x (f ≤,其中A 为与x ⽆关的常数.证:由于)x (f 在),[∞+2上可导,0>)x (f ,则x)x (f )x (f )x (f )x (f x )x (f )x (f ])x (xf [2-≤'?-≤'+?-≤'…..2分于是当2>x 时有dt t dt )t (f )t (f x x ?-≤'222……………………………….1分即[][]222222442222x)(f )x (f x(f )x (f x ln )(f )x (f ln t ln )t (f ln x x ≤≤≤?-≤-令)(f A 24=,代⼊即证………………………………………………………………2分。
高等数学(A 一)第一次测试试卷
(2009年11月)
教师 班级 姓名 学号 成绩
一、[
63'⨯'
1.设⎪⎩⎪⎨⎧=≠=,0
,0
0 ,)(x x x x
x f 则
A .)(x f 在0=x 极限存在且连续;
B .)(x f 在0=x 的左、右极限存在但不相等;
C .)(x f 在0=x 极限存在但不连续;
D .)(x f 在0=x 的左、右极限不存在。
2.数列极限=∞→n
n
n x
2sin
2lim ( )。
A. x ;
B. 0;
C. ∞ ;
D. 不存在但非∞。
3.若3214
lim 1
x x x ax x →--+-存在且有限,则a =( ).
A. 2
B. 1
C. 8
D. 4
4.设函数⎪
⎪⎩⎪
⎪⎨⎧>++=<+=0,sin )
1ln(0
,10,)(22
x xb
x x x x x a x f ,其中)(x f 在x = 0连续,则在 A .1,1==b a ; B .e b a ==,1; C .0,2
1
=-
=b a ; D .e b a =-=,1。
5.设)(0x f '存在,则) ()
()2(lim
000
=-+→h
x f h x f h
A .)(0x f ';
B .)(20x f '-;
C .)(0x f '-;
D .)(20x f '. 6.如果函数f (x )与)(x g 对于区间),(b a 内每一点都有)()(x g x f '=',则在),(b a 内必有
A .)()(x g x f =;
B .21)(,)(c x g c x f ==;
C .1)()(+=x g x f ;
D .c x g x f +=)()(
二、[8163'=⨯'] 填空:
1.函数)(x f 的定义域[]1,0,则)(2x f 的定义域为 []1,1- 。
2.设)(x f 可微,且)(3x f y =,则有=dy dx x f x )(332' 。
3.曲线x x y 33-=上切线平行x 轴的点有 )2,1(),2,1(-- 两点 。
4.已知函数()f x 具有任意阶导数,且2()[()]f x f x '=,则当n 为大于2的正整数时,()f x 的n 阶导数()()n f x 是___1)]([!+n x f n _____.
5.d ( C x +2t a n 2
1
)=sec 22x d x 。
6.
()x
x x cot 0
sin 1lim +→=_____e ______。
三、[4246'=⨯']计算下列极限: 1.
x
x x e x x arctan 1
)1ln(lim
---+→
解:原式212)1(lim 1)1(lim 11111
lim 0202
0-=-+-=--=+---
=→→→x e x e x
e x x
x e x x x x x x x 2. x
x x lim 0+
→
解:原式x
x x e
ln 0
lim +
→=
x
x x e
ln lim 0+
→=x
x x e 1ln lim 0
+→=2
011lim
x x x e
-
+
→=1)
(lim 0==-+
→x x e
3.
)]11ln([2
lim x x x x +-∞
→ 解:原式 ])
1ln(1[12
0lim t t t x t t +-=
→20
)1ln(lim t t t t +-=→2
1211
1lim 0=+-
=→t t t 4.
)
cos 1(sin )1(cos 2
4
sin 0
lim
x x e x x x -⋅-⋅→
解:原式
22
1sin 2
240
lim
=⋅=→x x x
x
四、[1237'=⨯']试求下列函数的导数或微分: 1. 244ln 2
arccos
x x
x y -++=求y ' 解:
22
42221)2
(112
arccos x x
x x x
y --+⋅
--⋅
+='2422arccos x
x x --
= 2. ()
2
2ln 21arctan
y x x y +=确定y 为x 的函数,已知1=x 时,0=y 求)
0,1(22)0,1(,dx
y d dx dy
解:方程两边同时对x 求导,得
22222
222()1y x y
x yy x y x y x
'-'+=++ 即xy y x yy ''-=+ 解得x y y x y +'=
-, 1)
0,1(=dx dy
2)()
1)(())(1()
0,1(2
)
0,1(2
2=-'-+--'+=
y x y y x y x y dx y
d
3.设方程⎪⎩⎪⎨⎧=+-++=0
1sin 3
232
y t e t t x y ,确定y 为x 的函数,t 为参变量,求导数0d d =t x y 。
解:0=t 时,1,3==y x
,26+=t dt dx
,20=∴=t dt
dx
0cos sin =-⋅+⋅⋅
dt dy t e t dt dy e y y e dt
dy t =∴=0
故
2
0d d e
t x y ==
五、 [9'] 当λ为何值时,可使函数 ⎪⎩⎪⎨⎧=≠=0
00
1cos )(x x x
x x f λ
在0=x 处 1. 连续但不可导; 2. 可导
解: ∵⎩⎨
⎧≤>==→→0
,01cos
lim )(lim 0
λλλ不存在x x x f x x , ∴当且仅当0>λ时()y f x =在0x =处连续.
又 ⎩⎨⎧≤>==---→→1
1 ,01cos lim 0)0()(lim 1
00λλλ不存在x x x f x f x x , ∴当且仅当1>λ时()y f x =在0x =处可导.
综合上述:1。
当10≤<λ时,()y f x =在0=x 处连续但不可导; 2。
当1>λ时,()y f x =在0=x 处可导。
六、证明题:[46'+']
1.设)(x f 在]10[,
上连续,在)10(,内可导,且0)1(=f 。
求证:存在)10(,ξ∈,使()
()f ξf ξξ
'=-。
[6'] 证明:构造辅助函数)()(x xf x F =,()()()F x f x xf x ''=+
根据题意)()(x xf x F =在]10[,
上连续,在)10(,内可导,且0)1(1)1(=⋅=f F , 0)0(0)0(=⋅=f F ,从而由罗尔中值定理得:存在)10(,ξ∈,使
()()()0F ξf ξξf ξ''=+=,即
()
()f ξf ξξ'=-。
2.设在区间(a ,b )内,函数)(x f 满足关系:2
2)()(y x y f x f -≤- 。
证明:)(x f 为常数函数。
[4']
证明:),(b a x ∈∀,0),,(≠∆∈∆+x b a x x ,则 2
2)()(x x f x x f ∆≤-∆+
x x
x f x x f ∆≤∆-∆+≤
2)
()(0
∵02lim 0
=∆→∆x x ,
∴0
lim
→∆x 0)
()(=∆-∆+x
x f x x f ,即),(,0)(b a x x f ∈≡'
∴)(x f 在区间(a ,b )内为常数函数。