江岸区2019~2020学年度第一学期期中考试八年级数学试题
- 格式:pdf
- 大小:218.85 KB
- 文档页数:2
武汉市江岸区XXXX八年级上期中数学试卷含答案解析)-湖北省武汉市江安区8年级(高一)数学期中试卷1多项选择题(共10题,每题3分,满分30分)1。
(3分)以下四个标志分别列出绿色食品、循环利用、节能节水。
轴对称图形是()a .b .c .d .2。
(3个点)如图所示,△ABC的顶点a用作BC侧的高度。
以下方法是正确的()a .b .c .d .3。
(3点)已知三角形的两条边的长度分别为3和8。
那么三角形的第三条边的长度可以是()a . 5b . 10c . 11d . 124。
(3分)。
在以下几组条件中,是()a. ∠a = ∠d,∠B=∠E,∠c = ∠f.c. ∠b = ∠e = 90,BC=EF可以确定△ ABC ∠def。
Ac = df b。
AB = de,BC=EF,5。
(3点)如图所示,肖敏做了一个角平分线ABCD,其中AB=AD,BC=DC,将仪器上的点与顶点ra. SSSb. asac。
AAS d . sa6。
(3点)如图所示,△ABC和△A’B’C ‘关于直线l对称,且∠a = 105,∠c’ = 30。
然后∠B=( )源科学(净z x k)a . 25 B . 45 c . 30d . xxxx试卷1多项选择题(10项,每项3分,满分30分)1。
(3分)在绿色食品、循环利用、节能节水的以下四个标志中,什么是轴对称的是()源科学#网Z#X#X#K]参考答案和问题分析a .b .c .d .[解]解:a,是轴对称的,所以a符合问题的含义;B,不是轴对称图形,所以B不符合问题的含义;C,不是轴对称图形,所以C不符合问题的含义;它不是轴对称图形,所以d不符合问题的含义。
因此,a 2。
(3个点)如图所示,△ABC的顶点a用作BC侧的高度。
下列方法是正确的()a .b .c .d .[解决方案]解决方案:对于△ABC,BC侧的高度是选项a。
因此,选择是:a.3。
(3点)已知三角形两边的长度分别为3和8。
2019-2020学年度八年级第一学期上册湖北省各区数学期中考试卷拉分题(压轴题)汇集目录01. 2019 — 2020青山区期中压轴汇编02. 2019 — 2020武昌区八校期中压轴汇编03. 2019 — 2020黄陂区期中压轴汇编04. 2019 — 2020汉阳区期中压轴汇编05. 2019 — 2020洪山区期中压轴汇编06. 2019 — 2020江汉区期中压轴汇编07. 2019 — 2020东湖高新区期中压轴汇编08. 2019 — 2020江岸区东西湖期中压轴汇编09. 2019 — 2020武昌拼搏联盟期中压轴汇编10. 2019— 2020江夏区期中压轴汇编[2019-2020]【八年级上册数学期中试】【青山区】10.如图,408=30° ,初、N分别是边。
4、08上的定点,P、。
分别是边。
8、Q4上的动点,记N AMP=Z1, NQNQ=N2,当MP+P0+QV最小时,则关于Nl、N2的数量关系正确的是( )A. Nl + N2=90'B. 2Z2-Z1=3O°C.2Z1 + Z2=18O°D. Zl-Z2 = 90°答案:D16.如图,中,,4C=8. .43=10, ZU5c的面积为30, 平分NA4C,尸、E分别为工C、上两动点,连接CE、EF,则CE+E产的最小值为.答案:623.(本题10 分)如图1, RtZL"CgRtZ\DFE,其中乙4c3=N£>庄=90° , BC=EF.(1)若两个三角形按图2方式放置,HC、DF交于点。
,连接AD. BO,则乂尸与CD的数量关系为, BO与AD的位置关系:(2)若两个三角形按图3方式放置,其中C、3(D)、尸在一条直线上,连接〃为中点,连接FM. CM.探究线段厂Af与CM之间的关系,并证明;(3)若两个三角形按图4方式放置,其中8、C(D)、下在一条直线上,点G、H分别为FC、KC的中点,连接GH、BE交于点、K,求证:BK=EK.答案:(1)AF=CD, BO工AD(2)Evmm:且E吆理由如下: 延长EH交Cl延长线于点H可证AEFM* AAHM(AAS):・FM=MH, EF=AHV /FCH=9C:.CM=FM=MH•:EF=AH=BC, BF=AC:.FC=CH又FM=MH:.CM±FM(3)连接8H, EG,在HG上取点/ BJ=BH可证△国7g △EFG (SIS)再证4BKJq 4EFG (zUS):.BK=EK24.(本题本分)如图,AJBC的顶点d(0, 3), B(b, 0), CG, 0)在x轴上,若S+3>+ c-3|=0.(1)请判断△,ISC的形状并予以证明:(2)如图,过X3上一点。
2019-2020学年湖北省武汉市江岸区八年级(上)第三次月考数学试卷一.单选题(共10题;共30分)1.(3分)如图,点B、F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是()A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC2.(3分)下列运算结果为a6的是()A.a2+a3B.a2•a3C.(﹣a2)3D.a8÷a23.(3分)已知在△A BC中,∠A与∠C的度数比是5:7,且∠B比∠A大10°,那么∠B为()A.40°B.50°C.60°D.70°4.(3分)已知:如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F,则图中共有全等三角形()A.5对 B.4对 C.3对 D.2对5.(3分)若一个多边形的每个外角都为30°,则这个多边形是()A.十二边形B.十边形C.八边形D.六边形6.(3分)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C.7或9 D.9或127.(3分)如图,木工师傅从边长为90cm的正三角形木板上锯出一正六边形木块,那么正六边形木板的边长为()A.34cm B.32cm C.30cm D.28cm8.(3分)如图,在△ABC中,AC=10,BC=8,AB垂直平分线交AB于点M,交AC于点D,则△BDC的周长为()A.14 B.16 C.18 D.209.(3分)如图,已知△ABC≌△ADE,∠D=55°,∠AED=76°,则∠C的大小是()A.50°B.60°C.76°D.55°10.(3分)等腰三角形的一个内角是50°,则另外两个角的度数分别是()A.65°,65°B.50°,80°C.65°,65°或50°,80° D.50°,50°二.填空题(共8题;共24分)11.(3分)直角三角形中有一个锐角为30°,它的对边长为4cm,则斜边上的高是.12.(3分)如图,在△ABC中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角形对.13.(3分)分解因式:a2﹣16=.14.(3分)分解因式:(x﹣1)2﹣4=.15.(3分)如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连结OC,若∠AOC=125°,则∠ABC=.16.(3分)在实数范围内因式分解:x2﹣2=.17.(3分)如图,△ABC≌△ADE,∠EAC=25°,则∠BAD=°.18.(3分)若多项式2x2﹣5x+m有一个因式为(x﹣1),那么m=.三.解答题(共6题;共36分)19.(6分)如图,已知△ABC中,高为AD,角平分线为AE,若∠B=28°,∠ACD=52°,求∠EAD 的度数.20.(6分)如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.21.(6分)CD是线段AB的垂直平分线,则∠CAD=∠CBD.请说明理由.解:∵CD是线段AB的垂直平分线(已知),∴AC=,=BD()在△ADC和中,=BC,AD=,CD=(),∴≌().∴∠CAD=∠CBD (全等三角形的对应角相等).22.(6分)用若干块边长为20cm的正三角形瓷砖和一块边长为20cm正六边形的瓷砖铺成一边长为1.2m的正六边形的地面,则需要这样的正三角形瓷砖多少块?23.(6分)如图,有一直角三角形ABC,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,当P点运动到AC上什么位置时△ABC才能和以A、P、Q为顶点的三角形全等.24.(6分)如图所示,AD是∠BAC的平分线,DE⊥AB,垂足为E,DF⊥AC,垂足为F,且BD=CD.求证:BE=CF.四.综合题(10分)25.(10分)已知点A1(2,5)关于y轴的对称点A2,关于原点的对称点A3(1)求△A1A2A3的面积(2)如果将△A1A2A3沿着直线y=﹣5翻折可得到△B1B2B3,请写出B1,B2,B3的坐标.2019-2020学年湖北省武汉市江岸区八年级(上)第三次月考数学试卷参考答案与试题解析一.单选题(共10题;共30分)1.(3分)如图,点B、F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是()A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC【解答】解:∵AB∥ED,AB=DE,∴∠B=∠E,∴当BF=EC时,可得BC=EF,可利用“SAS”判断△ABC≌△DEF.故选:A.2.(3分)下列运算结果为a6的是()A.a2+a3B.a2•a3C.(﹣a2)3D.a8÷a2【解答】解:A、a3÷a2不能合并,故A错误;B、a2•a3=a5,故B错误;C、(﹣a2•)3=﹣a6,故C错误;D、a8÷a2=a6,故D正确;故选:D.3.(3分)已知在△ABC中,∠A与∠C的度数比是5:7,且∠B比∠A大10°,那么∠B为()A.40°B.50°C.60°D.70°【解答】解:依题意可设∠A与∠C的度数分别为5n°、7n°,则∠B=∠A+10°=5n°+10°,在△ABC中,∠A+∠B+∠C=180°,即5n°+5n°+10°+7n°=180°,解得n°=10°.所以∠B=5n°+10°=60°.故选:C.4.(3分)已知:如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F,则图中共有全等三角形()A.5对 B.4对 C.3对 D.2对【解答】解:单独的两个全等三角形的对数是3,分别是:△BDE≌△CDF、△DGE≌△DGF、△AGE≌△AGF;由两个三角形组合的全等的大三角形的对数是1,是:△AED≌△AFD;由三个小三角形组合的全等的大三角形的对数是1,是:△ADB≌△ADC;所以共5对,故选A.5.(3分)若一个多边形的每个外角都为30°,则这个多边形是()A.十二边形B.十边形C.八边形D.六边形【解答】解:360°÷30°=12.故这个多边形是十二边形.故选:A.6.(3分)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C.7或9 D.9或12【解答】解:当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;所以这个三角形的周长是12.故选:B.7.(3分)如图,木工师傅从边长为90cm的正三角形木板上锯出一正六边形木块,那么正六边形木板的边长为()A.34cm B.32cm C.30cm D.28cm【解答】解:图中小三角形也是正三角形,且边长等于正六边形的边长,所以正六边形的周长是正三角形的周长的,正六边形的周长为90×3×=180cm,所以正六边形的边长是180÷6=30cm.故选:C.8.(3分)如图,在△ABC中,AC=10,BC=8,AB垂直平分线交AB于点M,交AC于点D,则△BDC的周长为()A.14 B.16 C.18 D.20【解答】解:∵边AB的垂直平分线交AC于点D,AC=6,BC=4,∴AD=BD,∴△BDC的周长=BC+CD+BD=BC+CD+AD=BC+AC=10+8=18.故选:C.9.(3分)如图,已知△ABC≌△ADE,∠D=55°,∠AED=76°,则∠C的大小是()A.50°B.60°C.76°D.55°【解答】解:∵△ABC≌△ADE,∴∠C=∠AED=76°;故选:C.10.(3分)等腰三角形的一个内角是50°,则另外两个角的度数分别是()A.65°,65°B.50°,80°C.65°,65°或50°,80° D.50°,50°【解答】解:当50°是底角时,顶角为180°﹣50°×2=80°,当50°是顶角时,底角为(180°﹣50°)÷2=65°.故选:C.二.填空题(共8题;共24分)11.(3分)直角三角形中有一个锐角为30°,它的对边长为4cm,则斜边上的高是2cm.【解答】解:∵直角三角形中有一个锐角为30°,它的对边长为4cm,∴其斜边长为8cm,∴另一条直角边的长为:=4,设斜边上的高为h,则8h=4×4,解得:h=2,故答案为:2cm.12.(3分)如图,在△ABC中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角形4对.【解答】解:∵AD⊥BC,AB=AC∴D是BC中点∴BD=DC,∵AD=AD,∴△ABD≌△ACD(SSS);E、F分别是DB、DC的中点∴BE=ED=DF=FC∵AD⊥BC,AD=AD,ED=DF∴△ADF≌△ADE(HL);∵∠B=∠C,BE=FC,AB=AC∴△ABE≌△ACF(SAS)∵EC=BF,AB=AC,AE=AF∴△ABF≌△ACE(SSS).∴全等三角形共4对,分别是:△ABD≌△ACD(HL),△ABE≌△ACF(SAS),△ADF≌△ADE (SSS),△ABF≌△ACE(SAS).故答案为4.13.(3分)分解因式:a2﹣16=(a+4)(a﹣4).【解答】解:a2﹣16=(a+4)(a﹣4),故答案为:(a+4)(a﹣4).14.(3分)分解因式:(x﹣1)2﹣4=(x+1)(x﹣3).【解答】解:(x﹣1)2﹣4,=(x﹣1)2﹣22,=(x﹣1﹣2)(x﹣1+2),=(x﹣3)(x+1),故答案为:(x﹣3)(x+1).15.(3分)如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连结OC,若∠AOC=125°,则∠ABC=70°.【解答】解:∵AD⊥BC,∠AOC=125°,∴∠C=∠AOC﹣∠ADC=125°﹣90°=35°,∵D为BC的中点,AD⊥BC,∴OB=OC,∴∠OBC=∠C=35°,∵OB平分∠ABC,∴∠ABC=2∠OBC=2×35°=70°.故答案为:70°.16.(3分)在实数范围内因式分解:x2﹣2=(x﹣)(x+).【解答】解:x2﹣2=(x﹣)(x+).故答案是:(x﹣)(x+).17.(3分)如图,△ABC≌△ADE,∠EAC=25°,则∠BAD=25°.【解答】解:∵△ABC≌△ADE,∴∠CAB=∠EAD,∴∠CAB﹣∠EAB=∠EAD﹣∠BAD,即:∠BAD=∠EAC=25°,故答案为25.18.(3分)若多项式2x2﹣5x+m有一个因式为(x﹣1),那么m=3.【解答】解:由2x2﹣5x+m有一个因式为(x﹣1),得(2x2﹣5x+m)÷(x﹣1)=2x﹣3,2x2﹣5x+m=(x﹣1)(2x﹣3),m=3.故答案为:3.三.解答题(共6题;共36分)19.(6分)如图,已知△ABC中,高为AD,角平分线为AE,若∠B=28°,∠ACD=52°,求∠EAD 的度数.【解答】解:∵AD为高,∠B=28°,∴∠BAD=62°,∵∠ACD=52°,∴∠BAC=∠ACD﹣∠B=24°,∵AE是角平分线,∴∠BAE=BAC=12°,∴∠EAD=∠BAD﹣∠BAE=50°.20.(6分)如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴∠A=∠D.21.(6分)CD是线段AB的垂直平分线,则∠CAD=∠CBD.请说明理由.解:∵CD是线段AB的垂直平分线(已知),∴AC=BC,AD=BD(线段垂直平分线上的点到线段两端的距离相等)在△ADC和△BDC中,AC=BC,AD=BD,CD=CD(公共边),∴△ADC≌△BDC(SSS).∴∠CAD=∠CBD (全等三角形的对应角相等).【解答】解:∵CD是线段AB的垂直平分线(已知),∴AC=BC,AD=BD(线段垂直平分线上的点到线段两端的距离相等)在△ADC和△BDC中,AC=BC,AD=BD,CD=CD(公共边),∴△ADC≌△BDC(SSS).∴∠CAD=∠CBD (全等三角形的对应角相等).故答案为:BC;BC;线段垂直平分线上的点到线段两端的距离相等;△BDC;AC;BD;CD;公共边;△ADC;△BDC;SSS.22.(6分)用若干块边长为20cm的正三角形瓷砖和一块边长为20cm正六边形的瓷砖铺成一边长为1.2m的正六边形的地面,则需要这样的正三角形瓷砖多少块?【解答】解:∵边长为1.2m的正六边形的地面的面积为:×1202×6=21600(cm2),一块边长为20cm正六边形的瓷砖的面积为:×202×6=600(cm2),一块边长为20cm的正三角形瓷砖的面积为:×202=100(cm2),∴需要这样的正三角形瓷砖(21600﹣600)÷100=210块.23.(6分)如图,有一直角三角形ABC,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,当P点运动到AC上什么位置时△ABC才能和以A、P、Q为顶点的三角形全等.【解答】解:根据三角形全等的判定方法HL可知:①当P运动到AP=BC时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=5cm;②当P运动到与C点重合时,AP=AC,在Rt△ABC与Rt△QPA中,,∴Rt△QAP≌Rt△BCA(HL),即AP=AC=10cm,∴当点P与点C重合时,△ABC才能和△APQ全等.综上所述,当P运动到AP=BC、点P与点C重合时,△ABC才能和△APQ全等.24.(6分)如图所示,AD是∠BAC的平分线,DE⊥AB,垂足为E,DF⊥AC,垂足为F,且BD=CD.求证:BE=CF.【解答】证明:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF.又∵BD=CD,∴Rt△DBE≌Rt△DCF(HL).∴BE=CF.四.综合题(10分)25.(10分)已知点A1(2,5)关于y轴的对称点A2,关于原点的对称点A3(1)求△A1A2A3的面积(2)如果将△A1A2A3沿着直线y=﹣5翻折可得到△B1B2B3,请写出B1,B2,B3的坐标.【解答】解:(1)如图所示:关于y轴对称的两点:横坐标互为相反数,纵坐标相等,则点A2坐标为(﹣2,5);关于原点对称的两点:横、纵坐标均互为相反数,则A3坐标为(﹣2,﹣5);=×4×10=20.则S△A1A2A3(2)点A1(2,5)关于y=﹣5对称的点B1的坐标为(2,﹣15);点A2(﹣2,5)关于y=﹣5对称的点B2的坐标为(﹣2,﹣15);点A3(﹣2,﹣5)关于y=﹣5对称的点B3的坐标为(﹣2,﹣5);。
第l 页2019〜2020学年度第一学期期末考试八年级数学试题一、选择题(共10小题,每小题3分,共30分)1 •从2018年起,武汉市实行垃圾分类.以下是几种垃圾分类的图标.其中哪个图标是轴对称图形6 .已知点A (加,4)与点夙3E )关于x 轴对称,那么(m ♦ 〃加,的值为( ) A. -1B. 1C. -72017D. 720177 .如图,对一个正方形进行了分割,通过面积恒等,能够验证下列郢个等式( ) A. x 2->2 = (x-y)(x + ^) B. (x-y)2 = x 2-2xy + y 2 C. (x + y)2 = x 2*2xy + y 2 D.(x - y)2 4x> = (x + y)2AB2 .下列各组线段,能构成三角形的是(A. lcm.3cm.5cm C 4cm,4cm. 1cm 3 .下列式子正确的是( )A. a 5 + a 3 = a 6 C. (6a62)2= 12a 2644 .若分式头4=0,则”值为()CB. 2cm. 4cm ,6cmD. 8cm, 8cm, 20cm B. (a 3)2 = a 5 D. a" - a = a ,5.如图,在 RSABC 中,NBCA=9(T,/A=3(r,CD «LA3,垂足为点。
.则AD 与BD 之比为()A. 2:1B. 3:1C. 4:1D. 5:18 .如图,在AABC中,AB的垂直平分线交AB于点D,交BC于点E .若BC = 7,AC = 6,则^ACE 的周长为()A.8B.11C.13D.15 9,某种产品的原料提价,因而厂家决定对产品进行提价,现有3种方案:①第一次提价加%,第二次提价〃%;②第一次提价,第二次提价加%;③第一次、第二次提价均为"尹%•其中m 和〃是不相等的正数.下列说法正确的是()A.方案(1)提价最多B.方案(2)提价最多.C.方案(3)提价最多D.三种方案提价一样多10.如图,已知AABC为等腰三角形,AB = AC,/BAC<9(T, 1将△ABC沿AC翻折至△ADC.E为BC的中点,F为AD / \的中点,线段EF交AC于点G,若2鬻 =m(mWl), / \/\ ' 噂=()A. mC.加+ 1二、填空题(共6小题,每小题3分,共18分)11.一个n边形,从一个顶点出发的对角线有条,这些对角线将n边形分成了个三角形,这个n边形的内角和为.12.华为mate30 5G手机上使用7nm的芯片,Inm = 0.OOOOOOl.cm.则7nm用科学记数法表示为_______ c m.13.巳知” = *32” = b,加,〃为正整数•则.14.若工2 -8%十加是完全平方式,则m = .15.已知(1+/>)(1+4)=]2+加上+12,其中p,q为正整数,则m =.16.如图,长方形ABCD的面枳为S,延长CB至点E,延长CD至点F,已知BE・QF= 6.则△AEF 三、解答题(共8小题,共72分)的面积为(用S和员的式子表示).第16题第2页17.(本题8分)⑴计算(工+2)(z + 3)⑵分解因式3 i + 6z/3 y2⑻(本题8分冼化简,再求值心一七)x彩,其中3f19.(本题8分)解方程:汽+ 1 = U第3页20.(本题8分)按要求作图(1)已知线段AB和直线/,画出线段AB关于直线/的对称图形;(2)如图,牧马人从A地出发♦先到草地边某一处牧马,再到河边饮马•然后回到8处,请画出现短路径.21.(本题8分)如图1,已知△的(:中NCAB内部的射线AD与NAC8的外角的平分线CE相交于点P.若NB = 4(T,NCPA=20・.第4页(1)求证AD平分NCAB;(2)如图2,点F是射线AD上一点,FG垂直平分BC于点G.FHJ.AB于点H,连接FC,若AH = 5.AC = 3,求HB. ,22.(本题10分)用分式方程解决问题:元旦假期有两个小组去攀登一座高h米的山,第二组的攀登速度是第一组的a倍.(1)若A =450,。
湖北省武汉市2019-2020学年八年级(上)期中模拟试卷数学一、选择题(本大题共6小题,每小题3分,共12分)1.以下轴对称图形中,对称轴条数最少的是()A.B.C.D.2.下列长度的三条线段能组成直角三角形的是()A.1,2,3 B.2,3,4 C.3,4,5 D.5,6,73.根据下列已知条件,能够画出唯一△ABC的是()A.AB=6,BC=5,∠A=50°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8 D.∠A=40°,∠B=50°,∠C=90°4.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.40°B.30°C.50°D.60°5.如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A.5 B.4 C.10 D.86.规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1.其中能判定四边形ABCD和四边形A1B1C1D1全等有()个.A.1 B.2 C.3 D.4二、填空题(本大题共10小题,每空3分,共30分)7.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若AD=13,AC=12,则点D到AB 的距离为.8.如图,在△ABC中,∠ABC、∠ACB的角平分线交于点O,MN过点O,且MN∥BC,分别交AB、AC 于点M、N.若MN=5cm,CN=2cm,则BM=cm.9.如图,在△ABC中,AB=4,AC=3,BC=5,AD是△ABC的角平分线,DE⊥AB于点E,则DE长是.10.如图,一块形如“Z”字形的铁皮,每个角都是直角,且AB=BC=EF=GF=1,CD=DE=GH=AH =3,现将铁片裁剪并拼接成一个和它等面积的正方形,则正方形的边长是.11.如图,△ABC,△ADE均是等腰直角三角形,BC与DE相交于F点,若AC=AE=1,则四边形AEFC 的周长为.12.如图,△ABC是边长为6的等边三角形,D是BC上一点,BD=2,DE⊥BC交AB于点E,则AE=.13.如图,在△ABC中,∠C=90°,AB的垂直平分线分别交AB、AC于点D、E,AE=5,AD=4,线段CE的长为.14.已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=.15.下面是“经过已知直线外一点作这条直线的垂线“的尺规作图过程.16.如图,在△ABC 中,∠C =90°,∠A =34°,D ,E 分别为AB ,AC 上一点,将△BCD ,△ADE 沿CD ,DE 翻折,点A ,B 恰好重合于点P 处,则∠ACP = .三、解答题(共6小题,满分52分)17.(9分)(1)请在图中画出三个以AB 为腰的等腰△ABC .(要求:1.锐角三角形,直角三角形,钝角三角形各画一个;2.点C 在格点上.)(2)如图,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,AC =BD .求证BC =AD .18.(8分)如图,甲、乙两艘轮船同时从港口O 出发,甲轮船向南偏东45°方向航行,乙轮船以每小时15海里的速度向南偏西45°方向航行,2小时后两艘轮船之间的距离为50海里,问甲轮船平均每小时航行多少海里?19.(8分)如图,正方形网格中每个小正方形边长都是1.(1)画出△ABC关于直线l对称的图形△A1B1C1;(2)在直线l上找一点P,使PB=PC;(要求在直线l上标出点P的位置)(3)连接PA、PC,计算四边形PABC的面积.20.(7分)如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,使点B落在长方形内点F处,且DF=6,求BE的长.21.(8分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.22.(12分)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的等角分割线.(3)在△ABC中,∠A=42°,CD是△ABC的等角分割线,直接写出∠ACB的度数.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共12分)1.以下轴对称图形中,对称轴条数最少的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、有四条对称轴,B、有六条对称轴,C、有四条对称轴,D、有二条对称轴,综上所述,对称轴最少的是D选项.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列长度的三条线段能组成直角三角形的是()A.1,2,3 B.2,3,4 C.3,4,5 D.5,6,7【分析】根据勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.【解答】解:A、12+22≠32,不能组成直角三角形,故此选项错误;B、22+32≠42,不能组成直角三角形,故此选项错误;C、32+42=52,能组成直角三角形,故此选项正确;D、52+62≠72,不能组成直角三角形,故此选项错误;故选:C.【点评】此题主要考查了勾股定理的逆定理,要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.3.根据下列已知条件,能够画出唯一△ABC的是()A.AB=6,BC=5,∠A=50°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8 D.∠A=40°,∠B=50°,∠C=90°【分析】根据全等三角形的判定方法可知只有C能画出唯一三角形.【解答】解:A、已知AB、BC和BC的对角,不能画出唯一三角形,故本选项错误;B、∵AB+BC=5+6=11<AC,∴不能画出△ABC;故本选项错误;C、已知两角和夹边,能画出唯一△ABC,故本选项正确;D、根据∠A=40°,∠B=50°,∠C=90°不能画出唯一三角形,故本选项错误;故选:C.【点评】本题考查了全等三角形的判定方法;一般三角形全等的判定方法有SSS、SAS、ASA、AAS,熟练掌握全等三角形的判定方法是解题的关键.4.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.40°B.30°C.50°D.60°【分析】根据邻补角的定义求出∠AED,再根据全等三角形对应边相等可得AD=AE,然后利用等腰三角形的两底角相等列式计算即可得解.【解答】解:∵∠AEC=110°,∴∠AED=180°﹣∠AEC=180°﹣110°=70°,∵△ABD≌△ACE,∴AD=AE,∴∠AED=∠ADE,∴∠DAE=180°﹣2×70°=180°﹣140°=40°.故选:A.【点评】本题考查了全等三角形的性质,等腰三角形的判定与性质,熟记性质并准确识图是解题的关键.5.如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A.5 B.4 C.10 D.8【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选:D.【点评】本题考查了等腰三角形的性质以及勾股定理的知识,熟练掌握等腰三角形的性质是解题的关键.6.规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1.其中能判定四边形ABCD和四边形A1B1C1D1全等有()个.A.1 B.2 C.3 D.4【分析】根据条件能证明△ABC≌△A1B1C1,和△AC D≌△A1B1C1,的条件.【解答】解:有一组邻边和三个角对应相等的两个四边形全等,故①②③正确.故选:C.【点评】本题考查了三角形全等的判定与性质,解题的关键是注意:多边形的全等可以通过作辅助线转化为证明三角形全等的问题.二、填空题(本大题共10小题,每空3分,共30分)7.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若AD=13,AC=12,则点D到AB 的距离为 5 .【分析】根据勾股定理求CD,根据角平分线性质得出DE=CD,即可得出答案.【解答】解:在Rt△ACD中,AD=13,AC=12,由勾股定理得:CD=5,过D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=5,即点D到AB的距离为5,故答案为:5.【点评】本题考查了角平分线性质和勾股定理,能熟记角平分线性质的内容是解此题的关键,注意:在角的内部,角平分线上的点到角两边的距离相等.8.如图,在△ABC中,∠ABC、∠ACB的角平分线交于点O,MN过点O,且MN∥BC,分别交AB、AC 于点M、N.若MN=5cm,CN=2cm,则BM= 3 cm.【分析】只要证明MN=BM+CN即可解决问题;【解答】解:∵∠ABC、∠ACB的平分线相交于点O,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠OBC=∠MOB,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠OCN,∴BM=MO,ON=CN,∴MN=MO+ON,即MN=BM+CN,∵MN=5cm,CN=2cm,∴BM=5﹣2=3cm,故答案为3cm.【点评】此题考查学生对等腰三角形的判定与性质和平行线性质的理解与掌握.此题关键是证明△BMO,△CNO是等腰三角形.9.如图,在△ABC中,AB=4,AC=3,BC=5,AD是△ABC的角平分线,DE⊥AB于点E,则DE长是.【分析】由△ABC的三边长,可证明△ABC为直角三角形,作DH⊥AC于H,利用角平分线的性质得DH=DE,根据三角形的面积公式得×DE•AB+×DH•AC=AB•AC,于是可求出DE的值.【解答】解:作DH⊥AC于H,∵AD是△ABC的角平分线,DE⊥AB于点E,∴DH=DE,∵AB=4,AC=3,BC=5,∴△ABC为直角三角形,∴DE•AB+DH•AC=AB•AC,∴DH=DE=,故答案为:【点评】本题考查了勾股定理的逆定理运用以及角平分线的性质,能够证明ABC为直角三角形,得到DE•AB+DH•AC=AB•AC是解题的关键.10.如图,一块形如“Z”字形的铁皮,每个角都是直角,且AB=BC=EF=GF=1,CD=DE=GH=AH=3,现将铁片裁剪并拼接成一个和它等面积的正方形,则正方形的边长是.【分析】延长BC交HG于点M,延长HG交DE于点N,先计算出不规则铁皮的面积,再计算面积相等的正方形的面积.【解答】解:如图所示,延长BC交HG于点M,延长HG交DE于点N,则四边形ABMH、CDNM为矩形,四边形GFEN为正方形.所以“Z”字形的铁皮的面积=S矩形ABMH +S矩形CDNM+S正方形GFEN=AH•AB+CD•DN+GF•EF =3×1+3×2+1×1 =10.∴正方形的边长=故答案为:.【点评】本题考查了矩形、正方形的判定和面积及算术平方根.解决本题的关键是利用割补的办法计算出不规则铁皮的面积.11.如图,△ABC,△ADE均是等腰直角三角形,BC与DE相交于F点,若AC=AE=1,则四边形AEFC的周长为2.【分析】根据等腰直角三角形的性质和等腰三角形的判定得到BE=EF=CF=CD,于是得到四边形AEFC的周长=AB+AC.【解答】解:∵△ABC,△ADE均是等腰直角三角形,∴∠B=∠D=45°,∠BEF=∠DCF=90°,∴△BEF,△DCF均是等腰直角三角形,∴BE=EF=CF=CD,∴四边形AEFC的周长=AE+EF+AC+CD=AB+AC,∵AC=AE=1,∴AB=AD=,∴四边形AEFC的周长=AE+EF+AC+CD=AB+AC=2,故答案为:2.【点评】本题考查了等腰直角三角形的性质,熟练掌握等腰直角三角形的判定与性质是解题的关键.12.如图,△ABC是边长为6的等边三角形,D是BC上一点,BD=2,DE⊥BC交AB于点E,则AE=2 .【分析】在Rt△BED中,求出BE即可解决问题;【解答】解:∵△ABC是等边三角形,∴∠B=60°,∵DE⊥BC,∴∠EDB=90°,∵BD=2,∴EB=2BD=4,∴AE=AB﹣BE=6﹣4=2,故答案为2【点评】本题考查等边三角形的性质、直角三角形的30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.如图,在△ABC中,∠C=90°,AB的垂直平分线分别交AB、AC于点D、E,AE=5,AD=4,线段CE的长为 1.4 .【分析】由AB的垂直平分线DE交AC于点D,垂足为E,根据线段垂直平分线的性质,求得AB,根据相似三角形的性质得到结论.【解答】解:∵DE是AB的垂直平分线,∴AB=2AD=8,∠ADE=∠C=90°,∴△ADE∽△ACB,∴,∴AC=6.4,∴CE=1.4,故答案为:1.4.【点评】此题考查了线段垂直平分线的性质、相似三角形的判定和性质,熟练掌握的线段垂直平分线性质是解决问题的关键.14.已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=.【分析】根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△BDC中,由勾股定理求出BD即可.【解答】解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD=DC=1,∵△ABC是等边三角形,∴BC=AC=1+1=2,BD⊥AC,在Rt△BDC中,由勾股定理得:BD==,即DE=BD=,故答案为:.【点评】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.15.下面是“经过已知直线外一点作这条直线的垂线“的尺规作图过程.【分析】由AP =AQ 、BP =BQ ,依据到线段两端点距离相等的点在线段的垂直平分线上知点A 、B 在线段PQ 的中垂线上,据此可得PQ ⊥l .【解答】解:由作图可知AP =AQ 、BP =BQ ,所以点A 、B 在线段PQ 的中垂线上(到线段两端点距离相等的点在线段的垂直平分线上), 所以PQ ⊥l ,故答案为:到线段两端点距离相等的点在线段的垂直平分线上.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握线段中垂线的性质及过直线外一点作已知直线的垂线的尺规作图.16.如图,在△ABC 中,∠C =90°,∠A =34°,D ,E 分别为AB ,AC 上一点,将△BCD ,△ADE 沿CD ,DE 翻折,点A ,B 恰好重合于点P 处,则∠ACP = 22° .【分析】根据折叠的性质即可得到AD =PD =BD ,可得CD =AB =AD =BD ,根据∠ACD =∠A =34°,∠BCD =∠B =56°,即可得出∠BCP =2∠BCD =112°,即可得出∠ACP =112°﹣90°=22°.【解答】解:由折叠可得,AD =PD =BD ,∴D 是AB 的中点,∴CD =AB =AD =BD ,∴∠ACD=∠A=34°,∠BCD=∠B=56°,∴∠BCP=2∠BCD=112°,∴∠ACP=112°﹣90°=22°,故答案为:22°.【点评】本题主要考查了折叠的性质以及三角形内角和定理的运用,解题时注意:三角形内角和是180°.三、解答题(共6小题,满分52分)17.(9分)(1)请在图中画出三个以AB为腰的等腰△ABC.(要求:1.锐角三角形,直角三角形,钝角三角形各画一个;2.点C在格点上.)(2)如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.【分析】(1)根据等腰三角形、直角三角形、锐角三角形的特点和网格特点,再根据勾股定理画出即可;(2)根据直角三角形的全等判定证明即可.【解答】解:(1)如图所示:(2)证明:∵AC⊥BC,BD⊥AD,在Rt△ADB与Rt△BCA中,,∴Rt△ADB≌Rt△BCA(HL),∴BC=AD.【点评】此题考查了等腰三角形的性质,全等三角形的判定和性质,关键是根据直角三角形的全等判定即可.18.(8分)如图,甲、乙两艘轮船同时从港口O出发,甲轮船向南偏东45°方向航行,乙轮船以每小时15海里的速度向南偏西45°方向航行,2小时后两艘轮船之间的距离为50海里,问甲轮船平均每小时航行多少海里?【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,根据勾股定理解答即可.【解答】解:根据题意知∠AOB=90°,OB=2×15=30海里,AB=50海里,由勾股定理得,OA====40海里,则甲轮船每小时航行=20海里.答:甲轮船每小时航行20海里.【点评】本题考查了勾股定理的应用,熟练运用勾股定理进行计算,基础知识,比较简单.19.(8分)如图,正方形网格中每个小正方形边长都是1.(1)画出△ABC关于直线l对称的图形△A1B1C1;(2)在直线l上找一点P,使PB=PC;(要求在直线l上标出点P的位置)(3)连接PA、PC,计算四边形PABC的面积.【分析】(1)根据网格结构找出点A 、B 、C 对应点A 1、B 1、C 1的位置,然后顺次连接即可;(2)过BC 中点D 作DP ⊥BC 交直线l 于点P ,使得PB =PC ;(3)S 四边形PABC =S △ABC +S △APC ,代入数据求解即可.【解答】解:(1)所作图形如图所示:(2)如图所示,过BC 中点D 作DP ⊥BC 交直线l 于点P ,此时PB =PC ;(3)S 四边形PABC =S △ABC +S △APC=×5×2+×5×1=.【点评】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出点A 、B 、C 的对应点,然后顺次连接.20.(7分)如图,在长方形ABCD 中,AB =8,AD =10,点E 为BC 上一点,将△ABE 沿AE 折叠,使点B 落在长方形内点F 处,且DF =6,求BE 的长.【分析】由折叠的性质可知BE =EF ,设BE =EF =x ,然后再依据勾股定理的逆定理可证明△ADF 为直角三角形,则E、D、F在一条直线上,最后,在Rt△CED中,依据勾股定理列方程求解即可.【解答】解:∵将△ABE沿AE折叠,使点B落在长方形内点F处,∴∠AFE=∠B=90°,AB=AF=8,BE=FE.在△ADF中,∵AF2+DF2=62+82=100=102=AD2,∴△ADF是直角三角形,∠AFD=90°.∴D,F,E在一条直线上.设BE=x,则EF=x,DE=6+x,EC=10﹣x,在Rt△DCE中,∠C=90°,∴CE2+CD2=DE2,即(10﹣x)2+82=(6+x)2.∴x=4.∴BE=4.【点评】本题主要考查的是翻折的性质、勾股定理的逆定理、勾股定理的定理,依据勾股定理列出关于x的方程是解题的关键.21.(8分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.【分析】(1)根据线段垂直平分线和等腰三角形性质得出AB=AE=CE,求出∠AEB和∠C=∠EAC,即可得出答案;(2)根据已知能推出2DE+2EC=7cm,即可得出答案.【解答】解:(1)∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=∠AED=35°;(2)∵△ABC周长13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.【点评】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形外角性质的应用,主要考查学生综合运行性质进行推理和计算的能力,题目比较好,难度适中.22.(12分)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的等角分割线.(3)在△ABC中,∠A=42°,CD是△ABC的等角分割线,直接写出∠ACB的度数.【分析】(1)根据“等角三角形”的定义解答;(2)根据三角形内角和定理求出∠ACB,根据角平分线的定义得到∠ACD=∠DCB=∠ACB=40°,根据“等角三角形”的定义证明;(3)分△ACD是等腰三角形,DA=DC、DA=AC和△BCD是等腰三角形,DB=BC、DC=BD四种情况,根据等腰三角形的性质、三角形内角和定理计算.【解答】解:(1)△ABC与△ACD,△ABC与△BCD,△ACD与△BCD是“等角三角形”;(2)∵在△ABC中,∠A=40°,∠B=60°∴∠ACB=180°﹣∠A﹣∠B=80°∵CD为角平分线,∴∠ACD=∠DCB=∠ACB=40°,∴∠ACD=∠A,∠DCB=∠A,∴CD=DA,∵在△DBC中,∠DCB=40°,∠B=60°,∴∠BDC=180°﹣∠DCB﹣∠B=80°,∴∠BDC=∠ACB,∵CD=DA,∠BDC=∠ACB,∠DCB=∠A,∠B=∠B,∴CD为△ABC的等角分割线;(3)当△ACD是等腰三角形,DA=DC时,∠ACD=∠A=42°,∴∠ACB=∠BDC=42°+42°=84°,当△ACD是等腰三角形,DA=AC时,∠ACD=∠ADC=69°,∠BCD=∠A=42°,∴∠ACB=69°+42°=111°,当△BCD是等腰三角形,DC=BD时,∠ACD=∠BCD=∠B=46°,∴∠ACB=92°,当△BCD是等腰三角形,DB=BC时,∠BDC=∠BCD,设∠BDC=∠BCD=x,则∠B=180°﹣2x,则∠ACD=∠B=180°﹣2x,由题意得,180°﹣2x+42°=x,解得,x=74°,∴∠ACD=180°﹣2x=32°,∴∠ACB=106°,∴∠ACB的度数为111°或84°或106°或92°.【点评】本题“等角三角形”的定义、等腰三角形的性质、三角形内角和定理,灵活运用分情况讨论思想是解题的关键.。
2019-2020学年湖北省武汉市江岸区八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.3.(3分)已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.124.(3分)下列各组条件中,能够判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,∠C=∠F B.AB=DE,BC=EF,∠A=∠DC.∠B=∠E=90°,BC=EF,AC=DF D.∠A=∠D,AB=DF,∠B=∠E5.(3分)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SSS B.ASA C.AAS D.SAS6.(3分)如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°7.(3分)如图,△ABC中,∠A=50°,BD,CE是∠ABC,∠ACB的平分线,则∠BOC的度数为()A.105°B.115°C.125°D.135°8.(3分)如图,在△ADE中,线段AE,AD的中垂线分别交直线DE于B和C两点,∠B=α,∠C=β,则∠DAE的度数分别为()A.B.C. D.9.(3分)如图,△ABC中,CE平分∠ACB的外角,D为CE上一点,若BC=a,AC=b,DB=m,AD=n,则m﹣a与b﹣n的大小关系是()A.m﹣a>b﹣n B.m﹣a<b﹣nC.m﹣a=b﹣n D.m﹣a>b﹣n或m﹣a<b﹣n10.(3分)如图,∠AOB=30°,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠OQN=β,当MP+PQ+QN最小时,则关于α,β的数量关系正确的是()A.β﹣α=60°B.β+α=210°C.β﹣2α=30°D.β+2α=240°二、填空题(每题3分,共18分)的坐标是(1,2),则点P的坐标是.11.(3分)已知点P关于x轴的对称点P112.(3分)若正多边形的内角和是外角和的4倍,则正多边形的边数为.13.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AB交边BC于点D,若CD=4,AB=15,则△ABD的面积是.14.(3分)如图,在平面直角坐标系中,△ABC是以C为直角顶点的直角三角形,且AC=BC,点A的坐标为(﹣1,0),点B的坐标为(0,4),则点C的坐标为.15.(3分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为(3,0),则第17次碰到长方形边上的点的坐标为.16.(3分)如图,△ABC是直角三角形,记BC=a,分别以直角三角形的三边向外作正方形ABDE,正方形ACFG,正方形BCMN,过点C作BA边上的高CH并延长交正方形ABDE的边DE于K,则四边形BDKH的面积为.(用含a的式子表示)三、解答题(共8道小题,共72分)17.(8分)在△ABC中,∠B=∠A+10°,∠C=30°,求△ABC各内角的度数.18.(8分)如图:AC⊥BC,BD⊥AD,BD与AC交于E,AD=BC,求证:BD=AC.19.(8分)如图,已知点E,C在线段BF上,且BE=CF,AB∥DE,AC∥DF,AC与DE相交于点O,求证:S四边形ABEO =S四边形OCFD.20.(8分)如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.21.(8分)(1)如图1,已知△ABC,请画出△ABC关于直线AC对称的三角形.(2)如图2,若△ABC与△DEF关于直线l对称,请作出直线l(请保留作图痕迹)(3)如图3,在矩形ABCD中,已知点E,F分别在AD和AB上,请在边BC上作出点G,在边CD作出点H,使得四边形EFGH的周长最小.22.(10分)如图,四边形ABCD为正方形(各边相等,各内角为直角),E是BC边上一点,F 是CD上的一点.(1)若△CFE的周长等于正方形ABCD的周长的一半,求证:∠EAF=45°;(2)在(1)的条件下,若DF=2,CF=4,CE=3,求△AEF的面积.23.(10分)如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连接AE,作AF⊥AE且AF=AE.(1)如图1,过F点作FD⊥AC交AC于D点,求证:EC+CD=DF;(2)如图2,连接BF交AC于G点,若=3,求证:E点为BC中点;(3)当E点在射线CB上,连接BF与直线AC交于G点,若=,则= (直接写出结果)24.(12分)如图1,点A和点B分别在y轴正半轴和x轴负半轴上,且OA=OB,点C和点D 分别在第四象限和第一象限,且OC⊥OD,OC=OD,点D的坐标为(m,n),且满足(m﹣2n)2+|n ﹣2|=0.(1)求点D的坐标;(2)求∠AKO的度数;(3)如图2,点P,Q分别在y轴正半轴和x轴负半轴上,且OP=OQ,直线ON⊥BP交AB于点N,MN⊥AQ交BP的延长线于点M,判断ON,MN,BM的数量关系并证明.2019-2020学年湖北省武汉市江岸区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【解答】解:为△ABC中BC边上的高的是A选项.故选:A.3.(3分)已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,而小于:3+8=11.则此三角形的第三边可能是:10.故选:B.4.(3分)下列各组条件中,能够判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,∠C=∠F B.AB=DE,BC=EF,∠A=∠DC.∠B=∠E=90°,BC=EF,AC=DF D.∠A=∠D,AB=DF,∠B=∠E【解答】解:如图:A、不符合全等三角形的判定定理,即不能推出△ABC≌△DEF,故本选项错误;B、不符合全等三角形的判定定理,即不能推出△ABC≌△DEF,故本选项错误;C、符合直角三角形全等的判定定理HL,即能推出△ABC≌△DEF,故本选项正确;D、不符合全等三角形的判定定理,即不能推出△ABC≌△DEF,故本选项错误;故选:C.5.(3分)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SSS B.ASA C.AAS D.SAS【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:A.6.(3分)如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°【解答】解:∠C=∠C'=30°,则△ABC中,∠B=180°﹣105°﹣30°=45°.故选:B.7.(3分)如图,△ABC中,∠A=50°,BD,CE是∠ABC,∠ACB的平分线,则∠BOC的度数为()A.105°B.115°C.125°D.135°【解答】解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=130°,∵BO、CO分别是△ABC的角∠ABC、∠ACB的平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°,故选:B.8.(3分)如图,在△ADE中,线段AE,AD的中垂线分别交直线DE于B和C两点,∠B=α,∠C=β,则∠DAE的度数分别为()A.B.C. D.【解答】解:∵∠B=α,∠C=β,∴∠BAC=180°﹣α﹣β,∵线段AE,AD的中垂线分别交直线DE于B和C两点,∴BA=BE,DA=DC,∴∠BEA=,∠CDA=,∴∠DAE=180°﹣﹣=,故选:A.9.(3分)如图,△ABC中,CE平分∠ACB的外角,D为CE上一点,若BC=a,AC=b,DB=m,AD=n,则m﹣a与b﹣n的大小关系是()A.m﹣a>b﹣n B.m﹣a<b﹣nC.m﹣a=b﹣n D.m﹣a>b﹣n或m﹣a<b﹣n【解答】解:在CM上截取CG=CA,连接DG.∵CD=CD,∠ACD=∠DCG,AC=CG,∴△ACD≌△GCD,∴AD=DG=n,在△BDG中,BD=m,BG=BC+CG=BC+AC=a+b,∴m+n>a+b,∴m﹣a>b﹣n.故选:A.10.(3分)如图,∠AOB=30°,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠OQN=β,当MP+PQ+QN最小时,则关于α,β的数量关系正确的是()A.β﹣α=60°B.β+α=210°C.β﹣2α=30°D.β+2α=240°【解答】解:如图,作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA于Q,交OB于P,则MP+PQ+QN最小,易知∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,∵∠OQN=180°﹣30°﹣∠ONQ,∠OPM=∠NPQ=30°+∠OQP,∠OQP=∠AQN=30°+∠ONQ,∴α+β=180°﹣30°﹣∠ONQ+30°+30°+∠ONQ=210°.故选:B.二、填空题(每题3分,共18分)11.(3分)已知点P关于x轴的对称点P的坐标是(1,2),则点P的坐标是(1,﹣2).1的坐标是(1,2),则点P的坐标是(1,﹣2).【解答】解:点P关于x轴的对称点P1故答案为:(1,﹣2).12.(3分)若正多边形的内角和是外角和的4倍,则正多边形的边数为10 .【解答】解:设这个多边形的边数是n,根据题意得,(n﹣2)•180°=4×360°,解得n=10,答:这个多边形的边数为10,故答案为:10.13.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AB交边BC于点D,若CD=4,AB=15,则△ABD的面积是30 .【解答】解:作DE⊥AB于E,由基本尺规作图可知,AD是△A BC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=30,故答案为:30.14.(3分)如图,在平面直角坐标系中,△ABC是以C为直角顶点的直角三角形,且AC=BC,点A的坐标为(﹣1,0),点B的坐标为(0,4),则点C的坐标为(﹣,).【解答】解:作CE⊥x轴于E,CF⊥y轴于F,则∠ECF=90°,又∠ACB=90°,∴∠ECA=∠FCB,在△ECA和△FCB中,,∴△ECA≌△FCB,∴CE=CF,AE=BF,设AE=BF=x,则x+1=4﹣x,解得,x=,∴CE=CF=,∴点C的坐标为(﹣,),故答案为:(﹣,).15.(3分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为(3,0),则第17次碰到长方形边上的点的坐标为(1,4).【解答】解:根据题意,如下图示:根据图形观察可知,每碰撞6次回到始点.∵17÷6=2…5,∴第17次碰到长方形边上的点的坐标为(1,4),故答案为(1,4).16.(3分)如图,△ABC是直角三角形,记BC=a,分别以直角三角形的三边向外作正方形ABDE,正方形ACFG,正方形BCMN,过点C作BA边上的高CH并延长交正方形ABDE的边DE于K,则四边形BDKH的面积为a2.(用含a的式子表示)【解答】解:∵BC⊥AC,CH⊥BA,∴BC2=BH•BA,即BH•BA=a2,∵四边形ABDE是正方形,∴BD=BA,∴四边形BDKH的面积=BH•BD=BH•BA=a2,故答案为:a2.三、解答题(共8道小题,共72分)17.(8分)在△ABC中,∠B=∠A+10°,∠C=30°,求△ABC各内角的度数.【解答】解:∵在△ABC中,∠B=∠A+10°,∠C=30°,∴∠B+∠A=150°,∴解得:,故∠A=70°,∠B=80°,∠C=30°.18.(8分)如图:AC⊥BC,BD⊥AD,BD与AC交于E,AD=BC,求证:BD=AC.在Rt △ABD 和Rt △BAC 中,,∴在Rt △ABD ≌Rt △BAC (HL ),∴BD=AC .19.(8分)如图,已知点E ,C 在线段BF 上,且BE=CF ,AB ∥DE ,AC ∥DF ,AC 与DE 相交于点O ,求证:S 四边形ABEO =S 四边形OCFD .【解答】证明:∵BE=CF ,∴BE+CE=CF+CE即BC=EF .∵AB ∥DE ,AC ∥DF ,∴∠B=∠DEF ,∠C=∠DFE ,在△ABC 和△DEF 中,,∴△ABC ≌△DEF ,∴S △ABC 与S DEF ,∴S △ABC ﹣S △ECO =S DEF ﹣S △ECO ,∴S 四边形ABEO =S 四边形OCFD .20.(8分)如图,点E 在AB 上,△ABC ≌△DEC ,求证:CE 平分∠BED .∴∠B=∠BEC,∴∠BEC=∠DEC,∴CE平分∠BED.21.(8分)(1)如图1,已知△ABC,请画出△ABC关于直线AC对称的三角形.(2)如图2,若△ABC与△DEF关于直线l对称,请作出直线l(请保留作图痕迹)(3)如图3,在矩形ABCD中,已知点E,F分别在AD和AB上,请在边BC上作出点G,在边CD作出点H,使得四边形EFGH的周长最小.【解答】解:(1)如图1,△AB′C即为所求;(2)如图2,直线l即为所求;(3)如图3,四边形EFGH即为所求.22.(10分)如图,四边形ABCD为正方形(各边相等,各内角为直角),E是BC边上一点,F 是CD上的一点.(1)若△CFE的周长等于正方形ABCD的周长的一半,求证:∠EAF=45°;(2)在(1)的条件下,若DF=2,CF=4,CE=3,求△AEF的面积.【解答】(1)证明:延长CF至G,使DG=BE,连接AG,如图所示:∵四边形ABCD是正方形,∴∠BAD=∠ABE=∠ADF=90°,AB=BC=CD=AD,∴∠ADG=90°,∵△CFE的周长等于正方形ABCD的周长的一半,∴CE+CF+EF=CD+BC,∴DF+BE=EF,∴DF+DG=EF,即GF=EF,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∴∠EAG=90°,在△AEF和△AGF中,,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=×90°=45°;(2)解:∵DF=2,CF=4,CE=3,∴AB=AD=CD=BC=2+4=6,BE=BC﹣CE=3,由(1)得:△AEF的面积=△AGF的面积=△ABE的面积+△ADF的面积=×6×3+×6×2=15.23.(10分)如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连接AE,作AF⊥AE且AF=AE.(1)如图1,过F点作FD⊥AC交AC于D点,求证:EC+CD=DF;(2)如图2,连接BF交AC于G点,若=3,求证:E点为BC中点;(3)当E点在射线CB上,连接BF与直线AC交于G点,若=,则= (直接写出结果)【解答】证明:(1)如图1,∵∠FAD+∠CAE=90°,∠FAD+∠F=90°,∴∠CAE=∠F,在△ADF和△ECA中,,∴△ADF≌△ECA(AAS),∴AD=CD,FD=AC,∴CE+CD=AD+CD=AC=FD,即EC+CD=DF;证明:(2)如图2,过F点作FD⊥AC交AC于D点,∵△ADF≌△ECA,∴FD=AC=BC,在△FDG和△BCG中,,∴△FDG≌△BCG(AAS),∴GD=CG,∵=3,∴=2,∴=,∵AD=CE,AC=BC∴=,∴E点为BC中点;(3)过F作FD⊥AG的延长线交于点D,如图3,∵=,BC=AC,CE=CB+BE,∴=,由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,∴CG=GD ,AD=CE ,∴=,∴=,∴==,∴=.故答案为:.24.(12分)如图1,点A 和点B 分别在y 轴正半轴和x 轴负半轴上,且OA=OB ,点C 和点D 分别在第四象限和第一象限,且OC ⊥OD ,OC=OD ,点D 的坐标为(m ,n ),且满足(m ﹣2n )2+|n ﹣2|=0.(1)求点D 的坐标;(2)求∠AKO 的度数;(3)如图2,点P ,Q 分别在y 轴正半轴和x 轴负半轴上,且OP=OQ ,直线ON ⊥BP 交AB 于点N,MN⊥AQ交BP的延长线于点M,判断ON,MN,BM的数量关系并证明.【解答】解:(1)∵(m﹣2n)2+|n﹣2|=0,又∵(m﹣2n)2≥0,|n﹣2|≥0,∴n=2,m=4,∴点D坐标为(4,2).(2)如图1中,作OE⊥BD于E,OF⊥AC于F.∵OA=OB,OD=OC,∠AOB=∠COD=90°,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴EO=OF(全等三角形对应边上的高相等),∴OK平分∠BKC,∴∠OBD=∠OAC,易证∠AKB=∠BOA=90°,∴∠OKE=45°,∴∠AKO=135°.(3)结论:BM=MN+ON.理由:如图2中,过点B作BH∥y轴交MN的延长线于H.∵OQ=OP,OA=OA,∠AOQ=∠BOP=90°,∴△AOQ≌△BOP,∴∠OBP=∠OAQ,∵∠OBA=∠OAB=45°,∴∠ABP=∠BAP,∵NM⊥AQ,BM⊥ON,∴∠ANM+∠BAQ=90°,∠BNO+∠ABP=90°,∴∠ANM=∠BNO=∠HNB,∵∠HBN=∠OBN=45°,BN=BN,∴△BNH≌△BNO,∴HN=NO,∠H=∠BON,∵∠HBM+∠MBO=90°,∠BON+∠MBO=90°,∴∠HBM=∠BON=∠H,∴MH=MB,∴BM=MN+NH=MN+ON.。
2019-2020学年湖北省武汉市江岸区八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列几何图形不一定是轴对称图形的是()A. 三角形B. 长方形C. 正五边形D. 圆2.以下列各组线段为边,能组成三角形的是()A. 2,3,6B. 3,4,5C. 5,6,11D. 7,8,183.过五边形的一个顶点的对角线共有()条.A. 1B. 2C. 3D. 44.如图,用尺规作一个角等于已知角,其理论依据是()A. SSSB. SASC. ASAD. AAS5.点M(−3,2)关于y轴对称的点的坐标为()A. (−3,−2)B. (3,−2)C. (3,2)D. (−3,2)6.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A. 50°B. 80°C. 50°或80°D. 40°或65°7.一个多边形的内角和是外角和的2倍,这个多边形的边数是()A. 4B. 6C. 8D. 108.如图,正五边形ABCDE,BG平分∠ABC,DG平分正五边形的外角∠EDF,则∠G=()A. 36°B. 54°C. 60°D. 72°9.已知△ABC的内角平分线相交于点O,三边的垂直平分线相交于点I,直线OI经过点A.若∠BAC=40°,则∠ABC=()A. 40°B. 50°C. 70°D. 80°10.如图,在△ABC中,点D是线段AB的中点,DC⊥BC,作∠EAB=∠B,DE//BC,连接CE.若BCAE =25,设△BCD的面积为S,则用S表示△ACE的面积正确的是()A. 52S B. 3S C. 4S D. 92S二、填空题(本大题共6小题,共18.0分)11.若一个三角形的三条高的交点在三角形外部,此三角形是______ 三角形.12.已知等腰三角形的两边长分别是2和4,那么这个等腰三角形的周长是______.13.一个三角形的两边长分别为2、3,则第三边上的中线a的范围是______.14.如图,点O是三角形内角平分线的交点,点I是三角形外角平分线的交点,则∠O与∠I的数量关系是______.15.等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形的一个底角的度数为______.16.如图,已知点I是△ABC的角平分线的交点.若AB+BI=AC,设∠BAC=α,则∠AIB=______(用含α的式子表示).三、解答题(本大题共8小题,共72.0分)17.如图,根据图上标注的信息,求出α的大小.18.如图,已知∠ABD=∠DCA,∠DBC=∠ACB,求证:AB=DC.19.如图,已知△ABC,AB、AC的垂直平分线的交点D恰好落在BC边上.(1)判断△ABC的形状;(2)若点A在线段DC的垂直平分线上,求AC的值.BC20.如图,在下列带有坐标系的网格中,△ABC的顶点都在边长为1的小正方形的顶点上.(1)直接写出坐标:A______,B______;(2)画出△ABC关于y轴的对称的△DEC(点D与点A对应).(3)用无刻度的直尺,运用全等的知识作出△ABC的高线BF(保留作图痕迹).21.如图,Rt△ABC≌Rt△CED(∠ACB=∠CDE=90°),点D在BC上,AB与CE相交于点F.(1)如图1,直接写出AB与CE的位置关系;(2)如图2,连接AD交CE于点G,在BC的延长线上截取CH=DB,射线HG交AB于K,求证:HK=BK.22.如图,在△ABC中,CE为三角形的角平分线,AD⊥CE于点F交BC于点D.(1)若∠BAC=96°,∠B=28°,直接写出∠BAD=______°;(2)若∠ACB=2∠B①求证:AB=2CF.=______.②若EF=2,CF=5,直接写出BDCD23.如图1,AB=AC,EF=EG,△ABC≌△EFG,AD⊥BC于点D,EH⊥FG于点H.(1)直接写出AD、EH的数量关系:______;(2)将△EFG沿EH剪开,让点E和点C重合.①按图2放置△EHG,将线段CD沿EH平移至HN,连接AN、GN,求证:AN⊥GN;②按图3放置△EHG,B、C(E)、H三点共线,连接AG交EH于点M.若BD=1,AD=3,求CM的长度.24.已知:如图,在平面直角坐标系中,A(a,0)、B(0,b),且|a+2|+(b+2a)2=0,点P为x轴上一动点,连接BP,在第一象限内作BC⊥AB且BC=AB.(1)求点A、B的坐标;(2)如图1,连接CP.当CP⊥BC时,作CD⊥BP于点D,求线段CD的长度;(3)如图2,在第一象限内作BQ⊥BP且BQ=BP,连接PQ.设P(p,0),直接写出S△PCQ=______.答案和解析1.【答案】A【解析】解:A、三角形,不是轴对称图形,符合题意;B、长方形,是轴对称图形,不合题意;C、正五边形,是轴对称图形,不合题意;D、圆是轴对称图形,不合题意;故选:A.根据轴对称图形的定义即可判断.本题考查轴对称图形,解题的关键是理解轴对称图形的定义,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.2.【答案】B【解析】解:根据三角形的三边关系,知A、2+3=5<6,不能组成三角形;B、3+4=7>5,能组成三角形;C、5+6=11,不能组成三角形;D、7+8=15<18,不能组成三角形.故选:B.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析即可.此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数是解题关键.3.【答案】B【解析】解:如图所示:过五边形的一个顶点可作2条对角线.故选:B.直接利用多边形的性质画出对角线,即可求解.此题主要考查了多边形的对角线,正确画出图形是解题关键.4.【答案】A【解析】解:根据作图过程可知,OC=O′C′,OD=O′D′,CD=C′D′,∴利用的是三边对应相等,两三角形全等,即作图原理是SSS.故选:A.根据作图过程以及全等三角形的判定方法进行判断解答.本题主要考查了作一个角等于已知角的理论依据,数学问题不仅要知道是什么,还有知道为什么,追根朔源方可学好.5.【答案】C【解析】解:点M(−3,2)关于y轴对称的点的坐标为(3,2),故选:C.根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(−x,y),可以直接得到答案.此题主要考查了考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容,比较基础,关键是熟记点的坐标变化规律.6.【答案】C【解析】【分析】本题考查了等腰三角形的性质和三角形的内角和定理,能对问题正确地进行分类讨论是解答此题的关键。
湖北省武汉市部分学校2019-2020学年八年级上学期期中数学试题一、选择题(每题3分,共30分)1. 下列图形中,不是轴对称图形的是( )A. B. C. D.【答案】A 【解析】 【分析】观察四个选项图形,根据轴对称图形的概念即可得出结论.【详解】根据轴对称图形的概念,可知:选项A 中的图形不是轴对称图形. 故选A .【点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.2. 下列运算中,正确的是( ) A. 326a a a •= B. 2a a a +=C. ()222a-b =a b - D. 236()a a =【答案】D 【解析】 【分析】A.根据同底数幂相乘,底数不变,指数相加 :32325a a a a +•==;B.根据合并同类项法则:把系数相加,字母及字母指数不变,2a a a +=C.根据完全平方公式:()222a-b =a 2ab+b - D.根据幂的乘方,底数不变,指数相乘:236()a a = 【详解】A. 32325a a a a +•==,故A 错误; B. 2a a a +=,故B 错误;C. ()222a-b =a 2ab+b -,故C 错误; D. 236()a a =,故D 正确. 故选D【点睛】此题考查的是幂的性质,合并同类项法则及完全平方公式,熟记法则和公式并学会应用是解决此题的关键.3. 点P (﹣3,5)关于x 轴的对称点P′的坐标是( ) A. (3,5) B. (5,﹣3)C. (3,﹣5)D. (﹣3,﹣5)【答案】D 【解析】 【分析】利用在平面直角坐标系中,两点关于x 轴对称规律:横坐标不变,纵坐标互为相反数,进行求解. 【详解】(3,5)P -关于x 轴的对称点'P 的坐标是(3,5)-- 故选:D.【点睛】本题考查了平面直角坐标系中,点的坐标的对称性问题,设某点坐标为(,)x y ,则有:(1)其关于x 轴的对称点的坐标为(,)x y -;(2)其关于y 轴的对称点的坐标为(,)x y -;(3)其关于原点的对称点的坐标为(,)x y --,掌握理解点的对称性规律是解题关键. 4. 下列各式可以用平方差公式计算的是( ) A. (-a+4c)(a-4c) B. (x-2y)(2x+y) C. (-3a-1)(1-3a) D. (-0.5x-y)(0.5x+y)【答案】C 【解析】 【分析】利用平方差公式即可解答. 【详解】解:(-3a -1)(1-3a ) =-(1+3a )(1-3a ) =-(1-9a 2), 故选C.【点睛】本题考查平方差公式,熟悉掌握是解题关键.5. 如图,在△ABC 中,BC 的垂直平分线交AB 于点D ,交BC 于点E ,若∠A=50°,∠DCB =2∠ACD ,则∠B的度数为( )A. 26°B. 36°C. 52°D. 45°【答案】C 【解析】 【分析】根据∠DCB =2∠ACD ,可设∠ACD=x °,则∠DCB=2x °,再利用DE 垂直平分线BC ,可得DB=DC ,从而得到∠DCB=∠DBC=2x °,最后利用△ABC 的内角和是180°列方程即可. 【详解】解:∵∠DCB =2∠ACD ,设∠ACD=x °∴∠DCB=2x ° ∵DE 垂直平分线BC ∴DB=DC∴∠DCB =∠B=2x °∴∠ACB=∠ACD +∠DCB=3x ° ∵∠A +∠B +∠ACB=180°,∠A=50° ∴50+2x +3x=180 解得: x=26 ∴∠B=52° 故选C.【点睛】此题考查的是垂直平分线的性质和三角形的内角和定理,找到图中各个角的关系是解决此题的关键.6. 把多项式32363x x x -+分解因式,下列结果正确的是( ) A. x(3x+1)(x-3) B. ()2321x x x -+C. ()2363x x x -+ D. ()231x x -【答案】D 【解析】 【分析】利用提公因式法将3x 提出,此时不难发现括号里是完全平方公式,继续利用公式因式分解即可.(注:因式分解要彻底!) 【详解】32363x x x -+ =()2321x x x -+ =()231x x - 故选D.【点睛】此题考查的是因式分解,需先用提公因式法因式分解,再用公式法因式分解. (注:因式分解要彻底!)7. 如图,在△ABC 中,∠C=90°,∠A=15°,∠DBC=60°,BC=1,则AD 的长为( )A. 1.5B. 2C. 3D. 4【答案】B 【解析】 【分析】先利用∠C=90°,∠DBC=60°,求出∠BDC=30°,再利用30°所对的直角边是斜边的一半可求出BD 的长,再利用外角求出∠DBA ,即可发现AD=BD. 【详解】解:∵∠C=90°,∠DBC=60° ∴∠BDC=30° ∴BD=2BC=2又∵∠BDC 是△BDA 的外角 ∴∠BDC=∠A +∠DBA ∴∠DBA=∠BDC -∠A=15° ∴∠DBA=∠A ∴AD=BD=2 故选B【点睛】此题考查的是(1)30°所对的直角边是斜边的一半;(2)三角形的外角等于与它不相邻的两个内角之和;(3)等角对等边,解决此题的关键是利用以上性质找到图中各个边的数量关系 8. 若()()21+21x x ax ++的结果中,2x 的系数是 - 2 ,则a 等于( )A. - 2B. 1C. - 4D. 以上都不对【答案】C 【解析】 【分析】将()()21+21x x ax ++展开并化简,根据2x 的系数是 – 2列方程即可.【详解】()()21+21x x ax ++=232212x ax x ax x +++++ =()()322211x a x a x +++++∵2x 的系数是 – 2 ∴22a +=- 解得4a =- 故选C.【点睛】此题考查的是多项式乘多项式,掌握多项式乘多项式法则是解决此题的关键. 9. 计算()200620071-22⎛⎫• ⎪⎝⎭的结果为( ) A. 1 B. -1C. 2D. -2【答案】D 【解析】 【分析】先逆用同底数幂的乘法将()()()20072006-2-2-2=,再利用乘法结合律和逆用积的乘方即可.【详解】()200620071-22⎛⎫• ⎪⎝⎭=()()200620061-2-22⎛⎫ ⎪⎝⎭=()20061-2-22⎛⎫⨯ ⎪⎝⎭=()()2006-1-2=-2故选D.【点睛】此题考查的是逆用同底数幂的乘法和逆用积的乘方,熟练掌握幂的性质是解决此题的关键.10. 如图,等边△ABD与等边△ACE,连接BE、CD,BE的延长线与CD交于点F,下列结论:(1)BE=CD ;(2)AF平分∠EAC ;(3)∠BFD=60°;(4)AF+FD=BF 其中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】(1)先证△BAE≌△DAC,即可得到BE=CD;(2)利用四点共圆的判定证出A、E、F、C四点共圆,再利用反证法假设(2)成立得到与条件矛盾即可说明假设不成立;(3)根据A、E、F、C四点共圆,可求出∠EFC,然后就可求∠BFD;(4)利用截长补短法:在BF上找到点G使得FG=FA,先证△AFG是等边三角形,再证△BAG≌△DAF即可证出结论.【详解】在BF上找到点G使得FG=FA,如下图所示:∵△ABD和△ACE是等边三角形∴∠BAD=∠EAC=60°,AB=AD,AE=AC∴∠BAD-∠EAD=∠EAC-∠EAD∴∠BAE=∠DAC,在△BAE和△DAC中,AE AC=⎩∴△BAE≌△DAC,(SAS)∴BE=CD,故(1)正确;∠BEA=∠ACD,∵∠AEB+∠AEF=180°,∴∠AEF+∠ACF=180°,∴A、E、F、C四点共圆,∴假设(2)正确,即∠EAF=∠CAF由圆的性质可得EF=FC∴∠FEC=∠FCE∴∠FEC+∠AEC=∠FCE+∠ACE∴∠AEF=∠ACF又∵∠AEF+∠ACF=180°(已证)∴∠AEF=∠ACF=90°而题中的∠AEF是动角,不一定是90°,矛盾,故(2)不一定正确;∵A、E、F、C四点共圆,∠EAC=60°∴∠EFC=120°,∴∠BFD=180°-∠EFC =60°,故(3)正确;∵AE=AC,∴∠AFC=∠AFE=12∠EFC=60°∵FG=FA,∴△AFG是等边三角形,∴AG=AF,∠FAG=60°∵∠BAG+∠GAD=60°,∠FAD+∠GAD =60°,∴∠BAG =∠FAD,在△BAG和△DAF中,G F A A =⎩∴△BAG ≌△DAF (SAS ), ∴BG=FD ,∴AF +FD=FG +BG=BF ,故(4)正确; ∴正确的结论有3个. 故选C .【点睛】此题考查的是等边三角形的性质和判定、全等三角形的判定、反证法,四点共圆的判定和圆的性质,此题难度较大,要学会借助辅助线解决问题.二、填空题(每题3分,共30分)11. 计算()()253a b a -⋅-=_____. 【答案】315a b 【解析】()()25a b 3a -⋅-=[ (-5)×(-3)(2aa ⋅)b=315ab .故答案为315a b.12. 若()03x -有意义,则x 的取值范围是_____. 【答案】x≠3. 【解析】 【分析】根据任何非0数的0次幂等于1进行解答. 【详解】由题意得,x-3≠0, 解得x≠3. 故答案为x≠3.【点睛】本题考查的是零指数幂的知识,掌握任何非0数的0次幂等于1是解题的关键. 13. 已知3? ,? 5m n x x ==, 则m n x +=_____________; 【答案】15 【解析】 【分析】逆用同底数幂相乘即可求出. 【详解】m n x + =m n x x • =3×5 =15 故答案为15【点睛】此题考查的是逆用同底数幂的乘法,熟练掌握幂的性质是解决此题的关键. 14. 分解因式:22ma mb -=_________________________. 【答案】()()m a b a b +-. 【解析】试题分析:原式=22()m a b -=()()m a b a b +-.考点:提公因式法与公式法的综合运用.15. 如图,△ABC 中,AB=AC ,AD 是BC 边上的高,△ABC 的周长为30cm , BD=4cm,则AC 的长为____________cm ;【答案】11 【解析】 【分析】因为AB=AC ,AD 是BC 边上的高,根据三线合一可得BC=2BD ,再用周长减去BC 的差除以2即可. 【详解】∵AB=AC ,AD 是BC 边上的高,BD=4cm ∴BC=2BD=8cm ∵△ABC 的周长为30cm ∴AB +AC +BC=302AB=30-8解得AB=11.故答案为11【点睛】此题考查的是等腰三角形的三线合一:等腰三角形顶角的平分线,底边上的高,底边上的中线重合,解决此题的关键是利用三线合一和周长求腰长. 16. 若24x x m -+是完全平方式,则m=____________; 【答案】4 【解析】 【分析】24x x m -+=222x x m -••+,对比完全平方公式()2222a ab b a b -+=-可得2,2,x a b m b ===即可求出m.【详解】∵24x x m -+=222x x m -••+ 对比完全平方公式()2222a ab b a b -+=-可得:2,2,x a b m b ===∴m=4【点睛】此题考查的是配方,掌握完全平方公式的特征是解决此题的关键. 17. 等腰△ABC 的顶角为30°,腰长为5,则ABC =S △______________; 【答案】254【解析】 【分析】过点B 作BD ⊥AC ,利用30°所对的直角边是斜边的一半,可求出BD ,然后求面积即可. 【详解】如图所示,过点B 作BD ⊥AC∵∠A=30°,AB=AC=5∴BD=12AB=52∴S △ABC =12BD ·AC=254故答案为25 4【点睛】此题考查的是直角三角形的性质:30°所对的直角边是斜边的一半和面积的求法,掌握构造辅助线的方法是解决此题的关键.18. 已知,等腰△ABC中,AB=AC,∠BAC=120°,P为直线BC上一点,BP=AB,则∠APB的度数为___________ .【答案】15°或75°【解析】【分析】由P为直线BC上一点,BP=AB,有两种情况:①若P在CB延长线上时,利用等腰三角形的性质求出∠ABC 的度数,再利用外角性质即可求出∠APB;②如P在BC上时,两次利用等腰三角形的性质即可求出∠APB. 【详解】如图所示,由P为直线BC上一点,BP=AB,有两种情况:①若P在CB延长线上,即P1的位置时,∵AB=AC,∠BAC=120°∴∠ABC=∠ACB=12(180°-∠BAC)=30°又∵AB=BP1∴∠BP1A=∠BAP1∵∠ABC是△BP1A的外角∴∠ABC=∠BP1A+∠BAP1∴∠AP1B=15°②如P在BC上,即P2的位置时,∵AB=AC,∠BAC=120°∴∠ABC=∠ACB=12(180°-∠BAC)=30°又∵AB=BP2∴∠BP2A=∠BAP2=12(180°-∠ABC)=75°综上所述:∠APB=15°或75° 故答案为15°或75°.【点睛】此题考查的是等腰三角形的性质:等边对等角和三角形的外角性质:三角形的外角等于与它不相邻的两个内角之和.利用BP=AB 进行分类讨论是此题需注意的地方.19. 如图,在四边形ABCD 中,∠A=60°, ∠ADC=∠ABC=90°,在AB 、AD 上分别找一点F 、E ,连接CE 、EF 、CF ,当△CEF 的周长最小时,则∠ECF 的度数为______.【答案】60° 【解析】 【分析】此题需分三步:第一步是作出△CEF 的周长最小时E 、F 的位置(用对称即可);第二步是证明此时的△CEF 的周长最小(利用两点之间线段最短);第三步是利用对称性求此时∠ECF 的值.【详解】分别作出C 关于AD 、AB 的对称点分别为C 1、C 2,连接C 1C 2,分别交AD ,AB 于点E 、F 再连接CE 、CF 此时△CEF 的周长最小,理由如下:在AD 、AB 上任意取E 1、F 1两点 根据对称性:∴CE=C 1E ,CE 1=C 1E 1,CF=C 2F ,CF 1=C 2F 1∴△CEF 的周长= CE +EF +CF= C 1E +EF +C 2F= C 1C 2 而△CE 1F 1的周长= CE 1+E 1F 1+CF 1= C 1E 1+E 1F 1+C 2F 1 根据两点之间线段最短,故C 1E 1+E 1F 1+C 2F 1>C 1C 2 ∴△CEF 的周长的最小为:C 1C 2.∵∠A=60°,∠ADC=∠ABC=90°∴∠DCB=360°-∠A-∠ADC-∠ABC=120°∴∠CC1C2+∠CC2C1=180°-∠DCB=60°根据对称性:∠CC1C2=∠ECD,∠CC2C1=∠FCB∴∠ECD+∠FCB=∠CC1C2+∠CC2C1=60°∴∠ECF=∠DCB-(∠ECD+∠FCB)=60°故答案为60°【点睛】此题考查的是周长最小值的作图方法(对称点),及周长最小值的证法:两点之间线段最短,掌握周长最小值的作图方法是解决此题的关键.20. 如图,在△ABC中,AC=BC,∠ACB=90°,BD平分∠ABC交AC于点D,BD=6,则△ABD的面积为__________ .【答案】9【解析】【分析】过点D作DE⊥AB,交AB于点E,设DE=x,利用角平分线的性质和等腰三角形的判定可得DE=DC=AE,利用勾股定理求出AB和x的关系,再利用勾股定理和BD=6列出方程求出x2,最后代入到面积公式即可. 【详解】过点D作DE⊥AB,交AB于点E,设DE=x,∵AC=BC,∠ACB=90°∴∠ABC=∠A=45°∵BD平分∠ABC,DE⊥AB,DC⊥BC∴DE=DC,且△AED为等腰直角三角形∴DE=DC=AE=x∴x∴BC=AC=AD+DC=)x在Rt △ABC 中(x Rt △BCD 中 BC 2+DC 2=BD 2即:x +x )2+x 2=62解得x 2=18-∴△ABD 的面积=12DE ·AB=12x ·(x=12( x 2 =9 故答案为9【点睛】此题考查的是角平分线的性质、等腰三角形的性质与判断和勾股定理,利用勾股定理列方程是解决此题的关键.三、解答题(21题8分,22题7分,23题7分,24题8分,25、26、27每题10分)21. 计算(1)2342()()n n ⋅(2)(-6a 2b 5c)÷(-2ab 2)2 (3)(3x+y )(x-2y)(4)2-32)(2)(2)y x x y x y +--+( 【答案】(1)14n ;(2)32-bc ;(3)3x 2-5xy-2y 2;(4)10y 2-12xy 【解析】 【分析】(1)利用幂的乘方和同底数幂相乘计算即可; (2)利用幂的乘方和同底数幂相除计算即可; (3)利用多项式乘多项式法则展开即可;(4)利用完全平方公式和平方差公式展开,再合并同类项即可. 【详解】解:(1)2342()()n n ⋅=68n n ⋅ =14n(2)(-6a 2b 5c)÷(-2ab 2)2 =(-6a 2b 5c) ÷(4 a 2b 4) =32-bc (3)(3x+y )(x-2y) =3x 2-6xy+xy-2y 2 =3x 2-5xy-2y 2(4)2-32)(2)(2)y x x y x y +--+( =9y 2-12xy+4x 2-4x 2+ y 2 =10y 2-12xy【点睛】此题考查的是(1)幂的乘方和同底数幂相乘;(2)幂的乘方和同底数幂相除;(3)多项式乘多项式法则;(4)完全平方公式和平方差公式.22. (1)画出△ABC 关于y 轴的对称图形111A B C ∆,其中A 、B 、C 的对应点分别为1A ,1B ,1C (2)ABC S= .(3)画出以CA 为腰的等腰△CAD ,点D 在y 轴右侧的小正方形的顶点上,且△CAD 的面积为6 .【答案】(1)图见详解;(2)6.5;(3)图见详解. 【解析】 【分析】(1)利用111A B C ∆和△ABC 关于y 轴对称画图即可;(2)将△ABC 用一个长方形框住,用长方形的面积减去三个直角三角形的面积即可;(3)以C 为圆心,以CA 为半径作圆,此时发现:满足点D 在y 轴右侧的小正方形的顶点上:一共有四处,在利用△CAD 的面积为6,判断即可.【详解】解:(1)利用111A B C ∆和△ABC 关于y 轴对称,画出图即可,如下图所示:111A B C ∆即为所求;(2)将△ABC 用一个长方形框住,如下图所示:可发现△ABC 的面积等于长方形的面积减去三个直角三角形的面积, 所以ABC S=5×3-12×5×1-12×3×2-12×3×2=6.5; (3)如图所示:以CA 为腰的等腰△CAD 的做法是:以C 为圆心,以CA 为半径作圆此时发现:满足点D 在y 轴右侧的小正方形的顶点上:一共有四处, 图中△ACD 的面积为:12×4×3=6,恰满足题意; 利用平行线之间的距离处处相等,过此时的D 作AC 的平行线,发现此时该直线与圆弧的交点不在小正方形的顶点上,故不存在其它点满足条件 所以此时的D 满足题意. 故此时的△CAD 即为所求.【点睛】此题考查的是(1)画关于y 轴对称图形,利用画圆确定点的个数,及网格中三角形的面积求法. 23. 先化简,再求值:2[()(2)8]2x y y x y x x +-+-÷,其中2x =-. 【答案】142x -,-5. 【解析】试题分析:根据完全平方公式和单项式乘多项式的法则计算,再利用多项式除单项式的法则计算,然后代入数据计算即可. 试题解析:原式=,当2x =-时,原式=1(2)41452⨯--=--=-. 考点:整式的混合运算—化简求值.24. 如图,∠ACB=90°,AC=BC ,D 为△ABC 外一点,且AD=BD ,DE ⊥AC 交CA 的延长线于点E ,(1)求证:DE=AE+BC .(2)若ACBD 6DE 3S ==四边形,,求线段AE 的长. 【答案】(1)见详解;(2)1 【解析】 【分析】(1)连接CD ,利用垂直平分线的判定即可得CD 垂直平分AB ,再利用三线合一得到∠ACD=12∠ACB ,然后证出△ECD 为等腰直角三角形得到DE=EC 即可.(2)先证△CAD ≌△CBD ,可得S △CAD = S △CBD =12ACBD S 四边形,再利用三角形的面积和高求出底AC ,再利用(1)的结论就可求出AE. 【详解】(1)连接CD∵AC=BC ,AD=BD∴点C 和点D 都在AB 垂直平分线上 ∴CD 垂直平分AB ∴CD 平分∠ACB∵∠ACB=90° ∴∠ACD=12∠ACB=45° ∵DE ⊥AC∴△ECD 为等腰直角三角形,DE=EC ∵EC=AE +AC= AE +BC ∴DE=AE+BC.(2)在△CAD 和△CBD 中AC BC CD CD AD BD =⎧⎪=⎨⎪=⎩∴△CAD ≌△CBD (SSS ) ∴S △CAD = S △CBD =12ACBD 3S =四边形 ∵DE=3∴AC=2 S △CAD ÷DE=2 ∵DE= EC=AE+AC ∴AE= DE -AC=1【点睛】此题考查的是①垂直平分线的判定;②三线合一;③等腰三角形的判定;④全等三角形的判定;(3)已知三角形的面积和高,求底.此题的解题关键是作出辅助线.25. 如图1是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)请用两种不同的方法求图2中阴影部分的面积. 方法1: ; 方法2: ;(2)观察图2,请你写出下列三个代数式:22),(),m n m n mn +-(之间的等量关系: ;(3)根据(2)题中的等量关系,解决下面的问题:已知a+b=3,ab=2 , 求33a b ab -的值.【答案】(1)S 阴=(m +n )2-4mn ;S 阴(m-n )2;(2)(m-n )2 =(m +n )2-4mn ;(3)6或-6 【解析】 【分析】(1)方法1:利用大正方形的面积减去四个长方形的面积;方法2:直接用m-n 算出阴影部分的边长求面积即可;(2)由(1)中两种算面积的方法可得到22),(),m n m n mn +-(之间的等量关系; (3)先将33a b ab -因式分解,再利用(2)的结论计算即可. 【详解】解:(1)方法1:S 阴=S 正方形-S 长方形 =(m +n )2-4mn方法2:由图2可得,阴影部分的边长为m-n ,故S 阴=(m-n )2(2)由(1)中两种算面积的方法可得:(m-n )2=(m +n )2-4mn(3)∵a+b=3,ab=2∴(a-b )2 =(a+b )2-4 ab =1 ∴a -b=±1 当a-b=1时,33a b ab -=()22ab a b -=()()ab a b a b -+ =6当a-b=-1时, 33a b ab -=()22ab a b - =()()ab a b a b -+ =-6【点睛】此题考查的是用整式的乘法,利用图形的面积得到一个公式,再利用公式解决问题.26. 已知:如图, △ABC 中,AB=AC,D 在AC 上,E 在BC 上,A E,B D 交于F,∠AFD=60°,∠FDC+∠FEC=180°.(1)求证:BE=CD.(2)如图2,过点D作DG⊥AF于G,直接写出AE ,FG, BF的关系.(3)如图3,在(2)的条件下,连接CG,若FG=BF,△AGD的面积等于5,求GC的长度.【答案】(1)见详解;(2)AE-BF=2FG;(3)25【解析】【分析】(1)证明△ABE≌△BCD即可;(2)利用△ABE≌△BCD,可得AE=BD,由图可知DF=BD-BF,再利用30°所对的直角边是斜边的一半,可得DF=2GF,即可得到AE ,FG, BF的关系;(3)连接BG,将三角形CBG绕点C顺时针旋转,是CB与CA重合,G点落在M处连接GM,先利用条件证出△GCM为等边三角形,再证出△GAM为等腰直角三角形,利用△AGD的面积等于5,求出GA2,最后利用勾股定理求出GM即为GC.【详解】解:(1)∵∠FDC+∠FEC=180°,∠FEC+∠AEB=180°∴∠FDC=∠AEB∵AB=AC∴∠ABC=∠ACB∵∠BAE=180°―∠ABC―∠AEB∠CBD=180°―∠ACB―∠FDC∴∠BAE=∠CBD∵∠AFD是△ABF的外角∴∠AFD=∠BAE+∠ABF=∠CBD+∠ABF=∠ABC∴∠ABC=60°∴△ABC是等边三角形∴AB=BC在△ABE和△BCD中FDC AEBABC ACB AB BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△BCD (AAS )∴BE=CD(2)∵△ABE ≌△BCD∴AE=BD在Rt △GFD 中∵∠GFD=60°∴∠GDF=30°∴2DF FG =∴BD -BF=2FG∴AE -BF=2FG(3)连接BG ,将三角形CBG 绕点C 顺时针旋转,是CB 与CA 重合,G 点落在M 处连接GM.可得BG=AM ,CG=CM ,∠GBC=∠MAC ,∠GCB=∠MCA∴∠MCG=∠MCA +∠ACG=∠GCB +∠ACG=∠ACB=60°∴△GCM 为等边三角形∴CG=CM=GM∵FG=BF ,∠GFD 是△FBG 的外角 ∴∠FBG=∠FGB=12∠GFD=30°又∵∠GDF=30°∴GB=GD ,∠BGD=120°又∵∠BAD=60°∴点A 在以G 为圆心,GB 为半径的圆上∴GB=GD=GA ,△AGD 的面积等于5∴∠GAB=∠GBA=12∠FGB=15°,12GD ·GA=5∴GA2=10由(1)中△ABE≌△BCD∴∠DBC=∠GAB=15°∴∠GBC=∠FBG+∠DBC=45°∴∠CAM=45°∴∠GAM=90°∴△GAM为等腰直角三角形,∴GM=222GA AM GA+=2=20=25∴GC=GM= 25【点睛】此题考查的是(1)等边三角形的性质和全等三角形的判定;(2)30°所对的直角边是斜边的一半;(3)利用旋转得到全等三角形从而得到直角三角形和等边三角形,掌握此题的作辅助线的方法是解决此题的关键.27. 已知,如图,在平面直角坐标系中,A(-3a,0),B(0,4a),△ABO的面积是6.(1)求B的坐标.(2)在x轴的正半轴上有一点C,使∠BAO=2∠BCA,AB=5,动点P从A出发,沿线段AC运动,速度为每秒1个单位长度,设点P的运动时间为t,△BCP的面积为S,用含t的式子来表示S .(3)在(2)的条件下,在P出发的同时,Q从B出发.沿着平行于x轴的直线,以每秒2个单位长度的速度匀速向右运动,在y轴上是否存在一点R,使△PQR为以PQ为腰的等腰直角三角形,求出满足条件的t,并直接写出点R的坐标.【答案】(1)(0,4);(2)S=22-2t;(3)存在;t=2;(0,9)【解析】【分析】(1)把坐标转化成长度,再利用面积求a即可,再将a代入B点坐标中;(2)作BA关于y轴的对称线段BD,利用角的关系和等角对等边证出BD=DC,即可求出AC,再用t表示出PC,即可求出S与t的关系式;(3)假设存在,过点Q作QD⊥x轴,交x轴于D,利用△PQR为以PQ为腰的等腰直角三角形证出△RQB≌△PQD从而得到边的关系,再利用时间t表示BQ,AP的长度,找到等量关系列出方程,即可求出t,求出OR即可.【详解】解:(1)∵A(-3a,0),B(0,4a),点A在x轴负半轴上,点B在y轴正半轴上∴a>0,OA=3a,OB=4a∵△ABO的面积是6 ∴12OA·OB=6 ∴6a2=6 解得:a=1 ∴A的坐标为(-3,0),B的坐标为(0,4) (2)作BA关于y轴的对称线段BD,如图所示,∠BAO=∠BDO,BA=BD=5,AD=2AO=2DO=6 又∵∠BAO=2∠BCA ∴∠BDO=2∠BCA ∵∠BDO=∠DBC+∠BCA∴∠DBC=∠BCA∴BD=DC=5∴AC=AD+DC=11∵动点P从A出发,速度为每秒1个单位长度∴AP=t,PC=11-t∴S=12BO·PC=22-2t(3)存在,过点Q作QD⊥x轴,交x轴于D若△PQR 为以PQ 为腰的等腰直角三角形∴QR=QP,∠PQR=90°∴∠RQB+∠BQP=90°由Q 从B 出发,沿着平行于x 轴的直线向右行驶,QD⊥x 轴∴四边形BODQ 为矩形∴∠BQP+∠PQD=90°,∠QBR=90°,QD=BO=4,BQ=OD∴∠RQB=∠PQD在△RQB 和△PQD 中QDP RQB PQD QBR QR QP ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△RQB≌△PQD(AAS )∴BQ=QD=4,BR=DP∵Q 从B 出发,速度为每秒2个单位,P 从A 出发每秒1个单位∴2t=4解得:t=2此时AP=t=2∴OP=3-t=1∴BR=DP= OP+OD=1+4=5∴OR=OB+BR=9∴R 的坐标为(0,9)【点睛】此题考查是(1)坐标转化成长度;(2)等角对等边和动点问题;(3)矩形的判定,全等三角形的判定与动点问题.解决此题的关键是利用时间t 表示图中的线段长度,再找到等量关系求t 即可.新人教部编版初中数学“活力课堂”精编试题。
2019-2020学年八年级上学期期中考试数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求1.若分式的值不存在,则x的取值是()A.x=﹣2 B.x≠﹣2 C.x=3 D.x≠32.若分式的值等于0,则x的取值是()A.x=0 B.x=3 C.x=﹣3 D.x=3或x=﹣3 3.下列式子变形,正确的是()A.=B.=﹣C.=D.=4.下列分式中,是最简分式的是()A.B.C.D.5.用科学记数法表示:0.00002018是()A.2.018×10﹣5B.2.018×10﹣4C.201.8×10﹣7D.2018×10﹣56.计算:()﹣3的结果是()A.﹣B.C.D.﹣7.如图,图中三角形的个数共有()A.3个B.4个C.5个D.6个8.如图,CD是△ABC的角平分线,∠A=30°,∠B=66°,则∠BDC的度数是()A.96°B.84°C.76°D.72°9.下列语句:①你叫什么名字;②负数的绝对值等于它的相反数;③相等的角是对顶角;④明天下雨吗?属于命题的是()A.①②B.②③C.③④D.①②③④10.在△ABC和△DEF中,下列条件不能判断这两个三角形全等的是()A.AB=DE,AC=DF,∠A=∠D B.∠A=∠D,∠B=∠E,AB=DEC.AC=DF,BC=EF,∠B=∠E D.AB=DE,AC=DF,BC=EF11.如图,∠CAB=60°,CD垂直平分AB,垂足为点D,∠CAB的平分线交CD于点E,连接EB,则∠BEC的度数是()A.120°B.110°C.100°D.90°12.如图,∠ADB=∠ACB=90°,AC与BD相交于点O,且OA=OB,下列结论:①AD=BC;②AC=BD;③∠CDA=∠DCB;④CD∥AB,其中正确的有()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,每小题3分,共18分13.若分式的值为0,则x的值是.14.分式,,的最简公分母是.15.若3x=10,3y=5,则3x﹣y=.16.命题“等腰三角形的两个底角相等”的逆命题是.17.如图,在△ABC中,AC=BC,∠B=70°,EF是AC边的垂直平分线,垂足为E,交BC 于点F,则∠AFE的度数等于.18.已知ab=1,m=+,则﹣m2018的值等于.三、解答题:本大题共8小题,满分66分,解答应写出文字说明、证明过程或演算步骤19.先约分,再求值:,其中x=﹣2,y=﹣.20.计算:(1)•(2)÷(3)()2(4)()321.计算(1)()3•()2•()2(2)()4•()3÷()522.计算:(1)+﹣(2)﹣﹣23.如图,已知AB∥ED,CD∥BF,AE=CF.求证:AB=ED.24.如图,AB=CD,AD=BC,E、F分别是AC上的点,且AE=CF(1)求证:AB∥CD;(2)求证:BE=DF.25.如图,已知AD∥BC,点E是CD上一点,AE平分∠BAD,BF平分∠ABC,延长BE交AD 的延长线于点F(1)求证:△ABE≌△AFE;(2)若AD=2,BC=6,求AB的长.26.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用的时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水.(1)分别求甲、乙两种污水处理器的污水处理效率;(2)若某厂每天同时开甲、乙两种污水处理器处理污水共4小时,且甲、乙两种污水处理器处理污水每吨需要的费用分别30元和50元,问该厂每个月(以30天计)需要污水处理费多少?参考答案与试题解析一.选择题(共12小题)1.若分式的值不存在,则x的取值是()A.x=﹣2 B.x≠﹣2 C.x=3 D.x≠3【分析】直接利用分式有意义的条件得出x的值,进而得出答案.【解答】解:∵分式的值不存在,∴2x+4=0,解得:x=﹣2,则x的取值是:﹣2.2.若分式的值等于0,则x的取值是()A.x=0 B.x=3 C.x=﹣3 D.x=3或x=﹣3 【分析】直接利用分式的值为零则分子为零分母不为零,进而得出答案.【解答】解:∵分式的值等于0,∴|x|﹣3=0,2x﹣6≠0,解得:x=﹣3,故选:C.3.下列式子变形,正确的是()A.=B.=﹣C.=D.=【分析】根据分式的基本性质解答.【解答】解:A、原式=,故本选项错误;B、原式=﹣,故本选项正确;C、原式=,故本选项错误;D、原式=,故本选项错误;故选:B.4.下列分式中,是最简分式的是()A.B.C.D.【分析】根据最简分式的标准是分子,分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,然后对每一选项进行整理,即可得出答案.【解答】解:A.=,不符合题意;B.=,不符合题意;C.=,不符合题意;D.是最简分式,符合题意;5.用科学记数法表示:0.00002018是()A.2.018×10﹣5B.2.018×10﹣4C.201.8×10﹣7D.2018×10﹣5【分析】根据科学记数法的形式选择即可.【解答】解:0.00002018=2.018×10﹣5,故选:A.6.计算:()﹣3的结果是()A.﹣B.C.D.﹣【分析】先根据负整数指数幂的定义进行变形,再求出即可.【解答】解:()﹣3=()3=,故选:B.7.如图,图中三角形的个数共有()A.3个B.4个C.5个D.6个【分析】根据三角形的定义,找出图中所有的三角形,数出其个数即可得出结论.【解答】解:图中是三角形的有:△AOC、△BOD、△AOB、△ABC、△ABD.故选:C.8.如图,CD是△ABC的角平分线,∠A=30°,∠B=66°,则∠BDC的度数是()A.96°B.84°C.76°D.72°【分析】根据三角形内角和定理求出∠ACB的度数,再根据CD是△ABC的角平分线,即可求出∠ACD的度数;再根据三角形内角和外角的关系即可求出∠BDC的度数.【解答】解:∵∠A=30°,∠B=66°,∴∠ACB=180°﹣30°﹣66°=84°,∵CD是△ABC的角平分线,∴∠ACD=∠ACB=×84°=42°.∴∠BDC=∠A+∠ACD=30°+42°=72°.故选:D.9.下列语句:①你叫什么名字;②负数的绝对值等于它的相反数;③相等的角是对顶角;④明天下雨吗?属于命题的是()A.①②B.②③C.③④D.①②③④【分析】根据命题是判断性语句,可得答案.【解答】解:①你叫什么名字,没有作出判断,不是命题;②负数的绝对值等于它的相反数,正确,是命题;③相等的角是对顶角,正确,是命题;④明天下雨吗?是疑问句,不是命题,故选:B.10.在△ABC和△DEF中,下列条件不能判断这两个三角形全等的是()A.AB=DE,AC=DF,∠A=∠D B.∠A=∠D,∠B=∠E,AB=DEC.AC=DF,BC=EF,∠B=∠E D.AB=DE,AC=DF,BC=EF【分析】根据题意画出图形,再由全等三角形的判定定理对各选项进行逐一判断即可.【解答】解:如图所示,A、AB=DE,AC=DF,∠A=∠D,符合SAS定理,∴△ABC≌△DEF,故本选项正确;B、∠A=∠D,∠B=∠E,AB=DE,符合ASA定理,∴△ABC≌△DEF,故本选项正确;C、∵AC=DF,BC=EF,∠B=∠E,不符合全等三角形的判定定理,故本选项错误;D、∵AB=DE,AC=DF,BC=EF,符合SSS定理,∴△ABC≌△EFD,故本选项正确.故选:C.11.如图,∠CAB=60°,CD垂直平分AB,垂足为点D,∠CAB的平分线交CD于点E,连接EB,则∠BEC的度数是()A.120°B.110°C.100°D.90°【分析】根据三角形的外角的性质可知:∠BEC=∠B+∠EDB,想办法求出∠B,∠EDB即可解决问题;【解答】解:∵AE平分∠CAB,∠CAB=60°,∴∠EAD=∠CAB=30°,∵CD垂直平分线段AB,∴EA=EB,∠EDB=90°,∴∠B=∠EAD=30°,∴∠BEC=∠EDB+∠B=90°+30°=120°,故选:A.12.如图,∠ADB=∠ACB=90°,AC与BD相交于点O,且OA=OB,下列结论:①AD=BC;②AC=BD;③∠CDA=∠DCB;④CD∥AB,其中正确的有()A.1个B.2个C.3个D.4个【分析】由△ABC≌△BAD(AAS),推出AD=BC,AC=BD,故①②正确,再证明CO=OD,可得∠CDA=∠DCB,故③正确,由∠CDO=∠OAB,可得CD∥AB,故④正确;【解答】解:∵OA=OB,∴∠DAB=∠CBA,∵∠ACB=∠BDA=90°,AB=BA,∴△ABC≌△BAD(AAS),∴AD=BC,AC=BD,故①②正确,∵BC=AD,BO=AO,∴CO=OD,∴∠CDA=∠DCB,故③正确,∵∠COD=∠AOB,∴∠CDO=∠OAB,∴CD∥AB,故④正确,故选:D.二.填空题(共6小题)13.若分式的值为0,则x的值是0 .【分析】分式值为零的条件是分子等于零且分母不等于零.【解答】解:∵分式的值为0,∴x=0.将x=0代入x+1=1≠0.当x=0时,分式分式的值为0.故答案为:0.14.分式,,的最简公分母是12a2b2c.【分析】根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式确定;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:因为三分式中的常数项系数的最小公倍数是12,a的最高次幂是2,b的最高次幂是2,c的最高次幂是1,所以三分式的最简公分母是12a2b2c.故答案为:12a2b2c.15.若3x=10,3y=5,则3x﹣y= 2 .【分析】先根据同底数幂的除法进行变形,再代入求出即可.【解答】解:∵3x=10,3y=5,∴3x﹣y=3x÷3y=10÷5=2,故答案为:2.16.命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.17.如图,在△ABC中,AC=BC,∠B=70°,EF是AC边的垂直平分线,垂足为E,交BC 于点F,则∠AFE的度数等于50°.【分析】根据等腰三角形的性质得到∠CAB=∠B=70°,根据三角形的内角和得到∠C =180°﹣∠CAB﹣∠B=40°,根据线段垂直平分线的性质得到CF=AF,EF⊥AC,于是得到结论.【解答】解:∵AC=BC,∠B=70°,∴∠CAB=∠B=70°,∴∠C=180°﹣∠CAB﹣∠B=40°,∵EF是AC边的垂直平分线,∴CF=AF,EF⊥AC,∴∠EAF=∠C=40°,∴∠AFE=90°﹣40°=50°,故答案为:50°.18.已知ab=1,m=+,则﹣m2018的值等于﹣1 .【分析】先利用异分母分式的加减法法则,计算m的值,再求出﹣m2018的值.【解答】解:m=+==∵ab=1,∴m==1∴﹣m2018=﹣12018=﹣1故答案为:﹣1三.解答题(共8小题)19.先约分,再求值:,其中x=﹣2,y=﹣.【分析】先把分子分母因式分解,再约分得到原式=,然后把x、y的值代入计算即可.【解答】解:原式==,当x=﹣2,y=﹣时,原式==.20.计算:(1)•(2)÷(3)()2(4)()3【分析】(1)先分解因式,再根据分式的乘法法则求出即可;(2)先把除法变成乘法,再根据分式的乘法法则求出即可;(3)根据分式的乘方法则求出即可;(4)根据分式的乘方法则求出即可.【解答】解:(1)•=•=﹣2x(x+1)=﹣2x2﹣2x;(2)原式=•=;(3)()2=;(4)()3=﹣=﹣.21.计算(1)()3•()2•()2(2)()4•()3÷()5【分析】(1)先算乘方,再算乘法即可;(2)先算乘方,把除法变成乘法,再算乘法即可.【解答】解:(1)原式=••=;(2)原式=••=﹣.22.计算:(1)+﹣(2)﹣﹣【分析】(1)直接通分进而利用分时加减运算法则计算得出答案;(2)直接通分进而利用分时加减运算法则计算得出答案.【解答】解:(1)+﹣=+﹣=;(2)﹣﹣=﹣﹣==﹣.23.如图,已知AB∥ED,CD∥BF,AE=CF.求证:AB=ED.【分析】根据平行线性质得到∠A=∠DEC,∠C=∠AFB,根据全等三角形的性质即可得到结论.【解答】证明:∵AB∥ED,CD∥BF,∴∠A=∠DEC,∠C=∠AFB,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ABF与△EDC中,∴△ABF≌△EDC,(ASA),∴AB=ED.24.如图,AB=CD,AD=BC,E、F分别是AC上的点,且AE=CF(1)求证:AB∥CD;(2)求证:BE=DF.【分析】(1)由全等三角形的判定定理SSS证得△ABD≌△CDB,则该全等三角形的对应角相等,即∠ABD=∠CDB,故AB∥CD;(2)欲证明BE=DF,只需推知△ABE≌△CDF即可.【解答】证明:(1)在△ABD与△CDB中,,∴△ABD≌△CDB(SSS),∴∠ABD=∠CDB,∴AB∥CD;(2)由(1)知,AB∥CD,∴∠BAE=∠DCF,又AB=CD,AE=CF,∴△ABE≌△CDF(SAS),∴BE=DF.25.如图,已知AD∥BC,点E是CD上一点,AE平分∠BAD,BF平分∠ABC,延长BE交AD 的延长线于点F(1)求证:△ABE≌△AFE;(2)若AD=2,BC=6,求AB的长.【分析】(1)根据角平分线的定义可得∠BAE=∠EAF,∠ABF=∠EBC,再根据两直线平行,内错角相等可得∠EBC=∠F,然后求出∠ABF=∠F,再利用“角角边”证明△ABE 和△AFE全等即可;(2)根据全等三角形对应边相等可得BE=FE,然后利用“角边角”证明△BCE和△FDE 全等,根据全等三角形对应边相等可得BC=DF,然后根据AD+BC整理即可得证.【解答】证明:(1)∵AE、BE分别平分∠DAB、∠CBA,∴∠BAE=∠EAF,∠ABF=∠EBC,∵AD∥BC,∴∠EBC=∠F,∠ABF=∠F,在△ABE和△AFE中,,∴△ABE≌△AFE(AAS);(2)∵△ABE≌△AFE,∴BE=EF,在△BCE和△FDE中,,∴△BCE≌△FDE(ASA),∴BC=DF,∴AD+BC=AD+DF=AF=AB,即AD+BC=AB.∵AD=2,BC=6,∴AB=8.26.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用的时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水.(1)分别求甲、乙两种污水处理器的污水处理效率;(2)若某厂每天同时开甲、乙两种污水处理器处理污水共4小时,且甲、乙两种污水处理器处理污水每吨需要的费用分别30元和50元,问该厂每个月(以30天计)需要污水处理费多少?【分析】(1)首先设甲种污水处理器每小时处理污水x吨,则设乙种污水处理器每小时处理污水(x+20)吨,根据题意可得等量关系:甲种污水处理器处理25吨的污水=乙种污水处理器处理35吨的污水所用时间,根据等量关系,列出方程,再解即可.(2)根据题意列出计算式解答即可.【解答】解:(1)设甲种污水处理器每小时处理污水x吨,由题意得,,解之得,x=50,经检验,x=50是原方程的解,所以x=50,x+20=70,答,甲种污水处理器每小时处理污水50吨,乙种污水处理器每小时处理污水70吨.(2)30×4×50×30+30×4×70×50=180000+420000=600000(元),答:该厂每个月(以30天计)需要污水处理费600000元.。
湖北省武汉市江岸区2019-2020学年八年级上学期数学期中考试试卷一、单选题1. 下列几何图形中,一定是轴对称图形的是( )A . 三角形B . 四边形C . 平行四边形D . 圆2. 以下列各组线段为边,能组成三角形的是( )A . 2,3,6B . 3,4,5C . 5,6,11D . 7,8,183. 过五边形的一个顶点的对角线共有()条A . 1B . 2C . 3D . 44. 用直尺和圆规作一个角等于已知角,其依据是()A . SSSB . SASC . ASAD . AAS5. 点P(-3,2)关于轴对称的点的坐标是( )A . (3,2)B . (-3,-2)C . (3,-2)D . (2,-3).6. 已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )A . 50°B . 80°C . 50°或80°D . 50°或65°7. 一个多边形的内角和是外角和的倍,则这个多边形的边数为( )A .B .C .D .8. 如图,正五边形ABCDE,BG平分∠ABC,DG平分正五边形的外角∠EDF,则∠G=()A . 36°B . 54°C . 60°D . 72°9. 已知△ABC的内角平分线相交于点O,三边的垂直平分线相交于点I,直线OI经过点A.若∠BAC=40°,则∠ABC=()A . 40°B . 50°C . 70°D . 80°10. 如图,在△ABC中,点D是线段AB的中点,DC⊥BC,作∠EAB=∠B,DE∥BC,连接CE.若,设△BC D的面积为S,则用S表示△ACE的面积正确的是()A .B . 3SC . 4SD .二、填空题11. 如果一个三角形两边上的高所在的直线的交点在三角形的外部,那么这个三角形是________三角形.12. 已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是________.13. 一个三角形的两边分别2、3,则第三边上的中线a的范围是________14. 如图,点O是三角形内角平分线的交点,点I是三角形外角平分线的交点,则∠O与∠I的数量关系是________15. 等腰三角形一腰上的高与另一腰所夹角为40°,则该等腰三角形底角为________16. 如图,已知点I是△ABC的角平分线的交点.若AB+BI=AC,设∠BAC=α,则∠AIB=________(用含α的式子表示)三、解答题17. 如图,根据图上标注的信息,求出α的大小18. 如图,已知∠ABD=∠DCA,∠DBC=∠ACB,求证:AB=DC19. 如图,已知△ABC,AB、AC的垂直平分线的交点D恰好落在BC边上(1)判断△ABC的形状(2)若点A在线段DC的垂直平分线上,求的值20. 如图,在下列带有坐标系的网格中,△ABC的顶点都在边长为1的小正方形的顶点上(1)直接写出坐标:A,B(2)①画出△ABC关于y轴的对称的△DEC(点D与点A对应)②用无刻度的直尺,运用全等的知识作出△ABC的高线BF(保留作图痕迹)21. 如图,Rt△ABC≌Rt△CED(∠ACB=∠CDE=90°),点D在BC上,AB与CE相交于点F(1)如图1,直接写出AB与CE的位置关系(2)如图2,连接AD交CE于点G,在BC的延长线上截取CH=DB,射线HG交AB于K,求证:HK=BK22.如图,在△ABC 中,CE 为三角形的角平分线,AD ⊥CE 于点F 交BC 于点D(1) 若∠BAC =96°,∠B =28°,直接写出∠BAD =°(2) 若∠ACB =2∠B① 求证:AB=2CF② 若EF =2,CF =5,直接写出 =23. 如图1,AB =AC ,EF =EG ,△ABC ≌△EFG ,AD ⊥BC 于点D ,EH ⊥FG 于点H(1) 直接写出AD 、EH 的数量关系:(2)将△EFG 沿EH 剪开,让点E 和点C 重合,按图2放置△EHG ,将线段CD 沿EH 平移至HN ,连接AN 、GN ,求证:AN ⊥GN(3) 按图3放置△EHG ,B 、C (E )、H 三点共线,连接AG 交EH 于点M.若BD =1,AD =3,求CM 的长度24.已知:如图,在平面直角坐标系中,A(a ,0)、B(0,b),且|a +2|+(b +2a)=0,点P 为x 轴上一动点,连接BP ,在第一象限内作BC ⊥AB 且BC =AB(1) 求点A 、B 的坐标(2) 如图1,连接CP.当CP ⊥BC 时,作CD ⊥BP 于点D ,求线段CD 的长度(3) 如图2,在第一象限内作BQ ⊥BP 且BQ =BP ,连接PQ.设P(p ,0),直接写出S =2△PCQ参考答案1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.。