导论西安交大材料科学基础
- 格式:ppt
- 大小:406.00 KB
- 文档页数:12
第一章8. 计算下列晶体的离于键与共价键的相对比例(1) NaF(2) CaO ⑶Z nS解:1、查表得:X Na =0.93,X F =3.981(0.93 3.98) 2根据鲍林公式可得 NaF 中离子键比例为:[1 e 4 ] 100% 90.2%共价键比例为:1-90.2%=9.8%2(1.00 3.44) 22、 同理,CaO 中离子键比例为:[1 e 4] 100% 77.4%共价键比例为:1-77.4%=22.6%23、 ZnS 中离子键比例为:ZnS 中离子键含量[1 e 1/4(2.58 1.65) ] 100% 19.44%共价键比例为:1-19.44%=80.56%10说明结构转变的热力学条件与动力学条件的意义•说明稳态结构与亚稳态结构之间的关系。
答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度 的大小,反映转变过程中阻力的大小。
稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。
稳态结 构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚 至长期存在。
但在一定条件下,亚稳态结构向稳态结构转变。
第二章1. 回答下列问题:(1) 在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向:(001 )与[210] , (111)与[112] , (110)与[111], (132)与[123], (322)与[236: (2) 在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。
(3) 在立方晶系的一个晶胞中画出同时位于(101). (011)和(112)晶面上的[111]晶向。
解:1、2 .有一正交点阵的 a=b, c=a/2。
课程重点在上述教学内容中,重点为以下四部分:第二章材料的晶体结构一般情况下,金属材料都是晶态,陶瓷材料中大多呈晶态,而高分子材料为部分晶态。
材料的晶体结构从本质上决定着材料的性能。
因此,晶体结构是学习本课程的基础知识,也是学习后续各门课程必备的基本知识。
第四章材料的相结构与相图材料都是由不同的相组成的,各组成相又通过其类型、数量、形状、大小、分布等特征——材料的组织——直接影响着材料的性能,而不同材料中的相组成及其类型、数量、形状、大小、分布等信息已经被前人记录在相图中。
因此,熟练掌握各类相图的特征,掌握分析相图的基本技能,准确地通过相图了解材料的性能,自如地运用相图制定各种加工工艺,对材料研究和材料加工成形尤为重要。
第五章材料的凝固材料制备与成形,如冶炼、液相烧结、铸造、焊接等过程中都会发生材料的凝固,而凝固过程中的形核、生长、原子的迁移及再分配等都会影响到材料或制品的组织和性能。
因此,这部分内容也是相当重要的。
第八章材料的变形与断裂对于结构材料,主要是使用材料的力学性能,但材料承载时都会发生变形甚至断裂。
掌握材料变形的过程、特别是塑性变形的方式及其机理,是寻求提高材料强、韧性途径的理论基础。
另外,对于对于材料的塑性成形加工也具有重要意义。
因此,这部分内容也是本课程的重点。
课程难点第三章晶体缺陷,特别是其中的位错部分一般情况下,晶体中总是含有位错且具有易动性,从而使晶体的实际强度远低于其理论强度。
强、韧化材料的根本途径在于增大其中运动位错的阻力。
因此,掌握位错的基本概念,对于学习材料的变形与断裂,提高材料的力学性能有十分重要的理论意义。
然而,由于位错是晶体中原子排列不完整的线型区域,具有微观、抽象、复杂等特点,从而成为本课程中学习难度最大的部分。
学习中应当特别注意基本概念的理解,加强形象思维能力的提高。
在教学过程中,我们会加强例题和课堂练习,特别是运用三维动画、录像片、课堂讨论等手段帮助大家度过这一“难关”。
西安交通大学材料科学基础试卷(A)班级:_________学号__________姓名___________(注意:试卷满分100,时间100分钟,请考生将答案做于试卷答题纸上,违者以零分处理)一、名词解释(每小题1分,共10分)1.晶胞2.间隙固溶体3.临界晶核4.枝晶偏析5.离异共晶6.反应扩散7.临界分切应力8.回复9.调幅分解10.二次硬化二、判断正误(每小题1分,共10分)正确的在括号内画“√”,错误的画“×”1.金属中典型的空间点阵有体心立方、面心立方和密排六方三种。
( )2.作用在位错线上的力F的方向永远垂直于位错线并指向滑移面上的未滑移区。
( )3.只有置换固溶体的两个组元之间才能无限互溶,间隙固溶体则不能。
( )4.金属结晶时,原子从液相无序排列到固相有序排列,使体系熵值减小,因此是一个自发过程。
( )5.固溶体凝固形核的必要条件同样是ΔG B<0、结构起伏和能量起伏。
( )6.三元相图垂直截面的两相区内不适用杠杆定律。
( )7.物质的扩散方向总是与浓度梯度的方向相反。
( )8.塑性变形时,滑移面总是晶体的密排面,滑移方向也总是密排方向。
( )9.和液固转变一样,固态相变也有驱动力并要克服阻力,因此两种转变的难易程度相似。
( )10.除Co以外,几乎所有溶入奥氏体中的合金元素都能使C曲线左移,从而增加钢的淬透性。
( )三、作图题(每小题5分,共15分)1. 在简单立方晶胞中标出具有下列密勒指数的晶面和晶向:a)立方晶系 (421),(231),[112];b)六方晶系(1112),[3112]。
2. 设面心立方晶体中的(111)为滑移面,位错滑移后的滑移矢量为2a [110]。
(1)在晶胞中画出柏氏矢量b 的方向并计算出其大小。
(2)在晶胞中画出引起该滑移的刃型位错和螺型位错的位错线方向,并写出此二位错线的晶向指数。
3. 如下图所示,将一锲形铜片置于间距恒定的两轧辊间轧制。
《材料科学基础》(804)考试大纲一、《材料科学基础》(804)参考教材如下:
石德珂编著,《材料科学基础》第二版,机械工业出版社,2003二、《材料科学基础》考试大纲
第一章材料结构的基本知识
1、原子结构
2、原子结合键
3、原子排列方式
4、晶体材料组织
5、材料的稳态结构与亚稳态结构
第二章材料中的晶体结构
1、晶体学基础
2、纯金属的晶体结构、
3、离子晶体的结构
4、共价晶体的结构
第三章高分子材料结构
1、概述
2、高分子链的结构与构象
3、高分子的聚集态结构
4、高分子材料的性能与结构
第四章晶体缺陷(本章对位错的能量与交互作用不做要求)
1、点缺陷
2、位错的基本概念
3、位错的能量及交互作用。
一课程性质与任务《材料科学基础》是材料科学与工程系各专业本科生的一门重要的专业基础课,以介绍工程材料的基础理论为目的,既具有较强的理论性,又与生产实际有紧密的联系。
其任务是:1 研究材料的成份、组织结构、性能及三者间的关系。
2 掌握有关工程材料的基本理论和知识,训练用所学理论分析实际问题的方法和思路。
3 初步掌握材料的科学实验方法和有关的实验技术;掌握定量、半定量地解决工程材料问题的方法。
二教学安排1 材料科学基础》为15学分,计96学时,其中讲课84学时,实验、讨论等12学时。
23 实验: 实验共六次,计12学时,每次实验二学时。
内容为:(1) 显微镜的构造及使用;(2) 常见金属晶体结构和原子堆垛模型分析;(3) 二元合金平衡组织分析;(4) 二元合金不平衡组织分析;(5) 铁碳合金平衡组织与性能分析;(6) 金属的塑性变形与再结晶。
三教学目的和要求第一章工程材料中的原子排列目的:1.原子之间的键合2.介绍晶体学的基本概念及晶格类型3.晶向指数和晶面指数及其表示方法4.金属的晶体结构特点5.陶瓷的晶体结构6.晶体缺陷的类型及特征要求:1.掌握晶面、晶向的表示方法2.熟悉三种典型的晶体结构3.晶体缺陷的基本类型、基本特征、基本性质4.位错的应力场和应变能;位错的运动与交互作用第二章固体中的相结构目的:1.介绍金属固溶体的分类、结构特点及溶解度2.金属间化合物相的分类、特点及性能3.陶瓷晶体相的结构及特点4.玻璃相及其形成5.分子相的结构特点要求:1.熟悉合金相的主要类型,形成条件和性能特点2.理解Hume—Rothery规则;3.玻璃相的形成条件4.了解分子相的结构特点及分子晶体第三章凝固与结晶目的:1.介绍结晶的基本规律2.结晶的基本条件3.晶核的形成4.晶体的长大5.陶瓷、聚合物的凝固6.结晶理论的应用要求:1.掌握凝固理论及过冷度的概念2.晶体长大机制及界面形态3.用凝固理论解释或说明实际生产问题第四章二元相图目的:1.相、相平衡及相图制作2.二元匀晶相图3.二元共晶相图4.二元包晶相图5.其它二元要相图6.二元相图的分析方法7.介绍相图的热力学依据8.铸件的组织与偏析要求:1.能认识一般的二元相图,并会分析合金的结晶过程及得到的组织.2.掌握分析相图的方法3.能依据相图判断合金的工艺性能与机械性能4.理解成分过冷的形成、影响因素5.会分析铁碳合金平衡结晶过程及室温下所得到的组织6.说明含碳量的改变怎样影响铁碳合金的组织和性能第五章三元相图目的:1.介绍三元相图的几何特性2.三元匀晶相图3.三元共晶相图4.三元相图中的相平衡特征5.实用三元相图举例要求:1.熟悉三元合金成分表示方法,懂得直线定律与重心法则的应用2.掌握三元合金结晶过程中相与组织的转变规律3.会看简单的等温截面图和变温截面图第六章固体中的扩散目的:1.介绍扩散定律及其应用2.扩散的微观机理3.扩散的热力学理论4.反应扩散5.一些影响扩散的重要因素要求:1.扩散第一、第二定律的表达式,适用的条件,各符号的意义和单位2.说明扩散系数的意义和影响扩散的因素3.认识几种重要的扩散现象4.了解扩散的实际应用,如渗碳过程等第七章塑性变形目的:1.介绍滑移系统和Schmid定律金属的应力一应变曲线2.单晶体的塑性变形3.多晶体塑性变形的特点4.合金的塑性变形5.冷变形金属的组织与性能6.聚合物的塑性变形7.陶瓷材料的塑性变形要求:1.熟悉滑移、孪生变形的主要特点2.说明多晶体塑性变形的过程及特点3.理解加工硬化、细晶强化等产生的原因和它的实际意义4.塑性变形过程中组织和性能的变化规律第八章回复和再结晶目的:1.介绍冷变形金属在加热时组织和力学性能的变化2.回复机制及动力学3.再结晶时组织的变化及影响再结晶的因素4.再结晶后晶粒的长大过程5.金属的热变形要求:1.变形金属发生回复和再结晶的条件是什么?有些什么变化?2.T再对生产有什么意义?如何确定T再?影响T再的因素有哪些?3.再结晶后晶粒大小如何控制?4.动态回复过程中位错运动有何特点?从显微组织上如何区分动、静态回复和动、静态再结晶第九章复合效应与界面目的:1.复合材料、增强体及复合效应2.复合材料增强原理3.复合材料的界面要求:1.了解研究界面的意义2.界面类型及性能3.界面结合原理4.对界面的基本要求及控制界面的原理第十章固态相变目的:1.介绍固态相变的特点2.固态相变的形核3.固态相变的核长大4.扩散型相变示例5.无扩散型相变6.陶瓷的相变与增韧要求:1.了解固态相变有哪些类型?2.掌握贝氏体转变与珠光体转变、马氏体转变有什么异同点?3.马氏体相变有哪些特征一、考试内容1.工程材料中的原子排列:(1)原子键合,工程材料种类;(2)原子的规则排列:晶体结构与空间点陈,晶向及晶面的表示,金属的晶体结构,陶瓷的晶体结构。
西安交通大学《材料科学基础》课程教学大纲英文名称:Fundamentals of Materials Science课程编号:MATL3001学时:96 学分:6适用对象:材料科学与工程专业本科生先修课程:大学物理、普通化学、物理化学、工程力学课程的性质和目的“材料科学基础”是材料科学与工程学科各专业本科生的必修课,是后续各门专业课程的理论基础课,也是材料科学与工程学科各专业的材料工作者从事材料科学基础研究以及开发新材料、新工艺必备的基本知识和基本能力。
学习本课程的目的,是使学习者深刻理解材料的成分-结构-工艺-组织-性能诸方面的内在联系的根本原因、基本知识和基本应用,为学习后续专业课程奠定坚实的基础理论知识;为将来创造新理论、研制新材料、开发新工艺提供新思路和理论指导课程教学内容绪论第一章材料结构的基本知识第一节原子结构一、原子的电子分布;二、元素周期表及性能的周期性变化第二节原子结合键一、一次键;二、二次键;三、混合键;四、结合键的本质及原子间距第三节原子排列方式一、晶体与非晶体;二、原子排列的研究方法第二章材料中的晶体结构第一节晶体学基础一、空间点阵和晶胞;二、晶系和布拉菲点阵;三、晶向指数和晶面指数;四、晶面间距;五、晶带及晶带定理;六、晶体的极射赤面投影图第二节纯金属的晶体结构一、金属的典型晶体结构;二、多晶型性;三、晶体的原子半径;第三节离子晶体的结构一、离子晶体的主要特点;二、离子半径、配位数和负离子配位多面体;三、离子晶体的结构规则;四、离子晶体的典型结构第四节共价晶体的结构一、共价晶体的主要特点;二、共价晶体的典型结构第三章晶体缺陷第一节点缺陷一、点缺陷的类型;二、点缺陷的浓度;三、点缺陷与材料行为;第二节位错的基本概念一、位错学说的产生;二、位错的几何形态;三、位错的运动第三节位错的弹性性质一、应力和应变分析;二、位错的应力场;三、为错的应变能第四节作用在位错线上的力一、Petch-Koehler公式;二、外加应力对位错的作用力;三、位错间的互作用力;四、位错与溶质原子的互作用力; 五、位错的线张力; 六、位错运动的点阵阻力;七、晶体表面对位错的作用力——映像力第五节实际晶体结构中的位错一、全位错;二、堆垛层错;三、不全位错;四、位错反应第六节晶体中的界面一、晶界的结构与晶界能;二、表面及表面能;三、表面吸附与晶界内吸附;四、浸润行为;五、界面能与显微组织形貌的变化第四章材料的相结构与相图第一节材料的相结构一、固溶体;二、化合物第二节二元相图及其类型一、相图的基本知识;二、一元系相图;三、二元系相图;四、材料性能与相图的关系第三节复杂相图分析一、分析方法;二、复杂相图分析举例;三、铁-碳合金相图第四节相图的热力学基础一、固溶体的吉布斯自由能-成分曲线;二、克劳修斯-克莱普隆方程;三、相平衡条件;四、由吉布斯自由能-成分曲线推测相图第五节三元系相图及其类型一、三元相图的成分表示方法;二、三元匀晶相图;三、三元系中的相平衡分析;四、具有四相共晶反应的三元系相图;五、三元系相图实例分析第五章材料的凝固第一节材料凝固时晶核的形成一、结晶的基本规律;二、均匀形核;三、形核率;四、非均匀形核第二节材料凝固时晶体的生长一、晶核长大的必要条件;二、固/液界面的微观构造;三、晶核长大方式第三节固溶体的凝固一、固溶体的平衡凝固;二、固溶体的不平衡凝固;三、成分过冷及其影响第四节共晶合金的凝固一、共晶体的形态;二、共晶体的形核及生长;三、先共晶相的形态第五节制造工艺与凝固组织一、铸锭和铸件凝固的组织与偏析;二、连续铸造和熔化焊的凝固组织第六节用凝固法材料的制备技术一、区域提纯;二、制备单晶;三、用快速冷凝法制备金属玻璃;四、定向凝固第六章高分子材料的结构第一节高分子材料概述一、高分子材料的基本概念;二、高分子材料的合成;三、高分子材料的分类第二节高分子链的结构及构象一、高分子链的化学组成;二、结构单元的键接方式和构型;三、高分子链的几何形状;四、高分子链的构象及柔顺性第三节高分子的聚集态结构一、晶态聚合物的结构;二、非晶态聚合物的结构;三、聚合物的结晶度与玻璃化温度第四节高分子材料的性能与结构一、高分子材料的主要性能特点;二、高分子材料性能与结构的关系;三、改变高分子材料性能的途径第七章固态扩散第一节扩散定律及其应用一、扩散第一定律;二、扩散第二定律第二节扩散的微观机制一、扩散的主要机制;二、扩散系数;三、扩散激活能第三节扩散的驱动力及反应扩散一、扩散的驱动力;二、反应扩散第四节影响扩散的因素一、温度的影响;二、原子键力的影响;三、晶体结构的影响;四、固溶体类型及浓度的影响;五、晶体缺陷的影响第八章材料的变形与断裂第一节金属变形概述第二节金属的弹性变形一、弹性变形的主要特点;二、弹性模量的物理意义;三、弹性模量在工程上的应用第三节滑移与孪生变形一、晶体的滑移与观察;二、滑移机制;三、晶体的滑移系;四、孪生变形第四节单晶体的塑性变形一、施密特定律;二、晶体的始滑移系;三、夹头固定情况下滑移过程中的晶体转动;四、晶体滑移的种类;六、单晶体表面滑移线方位(晶向指数)的确定第五节多晶体的塑性变形一、多晶体塑性变形的特点;二、细晶强化及其机理第六节纯金属的形变强化一、金属的形变强化;二、形变强化的位错机理;三、单晶体的形变强化;四、形变强化的工程意义第七节合金的变形与强化一、固溶体的变形与固溶强化;二、多相合金的变形与强化第八节冷变形金属的组织与性能一、冷变形金属的组织变化;二、冷变形金属的性能变化第九节金属的断裂一、理论断裂强度;二、实际断裂强度第十节冷变形金属的回复和再结晶一、冷变形金属加热时的组织和性能变化;二、冷变形金属的回复;三、冷变形金属的再结晶;四、再结晶后的晶粒长大第十一节金属的热变形、蠕变及超塑性一、金属的热变形;二、金属的蠕变;三、金属的超塑性第十二节陶瓷晶体的变形一、陶瓷晶体变形的特点;二、影响陶瓷晶体变形的主要因素第十三节高分子材料的变形一、热塑性塑料的变形;二、热固性塑料的变形第九章固体材料的电子结构与物理性能第一节固体的能带理论一、能带的形成;二、金属的能带结构与导电性;三、费米能;四、半导体与绝缘体第二节半导体一、本征半导体;二、掺杂半导体;三、化合物半导体第三节材料的磁性一、原子的磁矩;二、抗磁体、顺磁体和铁磁体;三、磁化曲线与磁畴结构第四节材料的光学性能一、光子的能量;一、光的吸收与透射;二、材料的发光性能第五节材料的热学性能一、摩尔热容;二、热膨胀;三、导热性能第六节形状记忆合金一、问题的提出;二、形状记忆现象;三、形状记忆效应;四、形状记忆原理简介;五、常用形状记忆合金;六、形状记忆合金应用举例;七、工程设计练习;八、本节小结;九、一道课后思考题课程重点在上述教学内容中,重点为以下四部分:第二章材料的晶体结构一般情况下,金属材料都是晶态,陶瓷材料中大多呈晶态,而高分子材料为部分晶态。
材料科学基础_西安交通大学中国大学mooc课后章节答案期末考试题库2023年1.缩聚反应得到的缩聚物都是碳链高分子聚合物。
答案:错误2.对于三元系来讲,单相区和两相区,两相区和三相区,三相区和四相区为面接触;单相区和三相区,两相区和四相区为线接触;_____ 和四相区为点接触。
答案:单相区3.四相共晶型反应是指由 ____ 固定成分单相在某一温度下同时生成 _____ 固定成分单相的反应。
答案:一个,三个;4.下坡扩散的扩散通量与该处的浓度梯度的符号相同。
答案:错误5.包共晶型反应是指____固定成分的单相在一定温度下同时形成____固定成分的单相的过程,包括共晶反应和共析反应。
答案:两个,两个;6.根据溶质分子在溶剂晶格中所占位置,可以将固溶体分为:答案:间隙固溶体_置换固溶体7.按中间相形成时起主要作用的因素,可把中间相分为三类:答案:尺寸因素化合物_正常价化合物_电子化合物8.锡的结合键主要是答案:金属键9.二次键包括答案:范德华力_氢键10.硅(Z=14)和锗(Z=32)具有相似的性质答案:正确11.相律只适用于热力学平衡状态。
平衡状态下各相的 ____ 应相等,每一组元在各相中的化学位必须相同。
答案:温度_压力12.按照平衡组织来对碳钢进行分类,碳钢可以分为答案:亚共析钢_共析钢_过共析钢13.化学位也称偏摩尔吉布斯自由能,它是 ____、____和____的函数。
答案:成分_温度_压力14.组元只能由单一元素组成。
答案:错误15.相律和相图不能反映各平衡相的结构、分布状态及具体形貌。
答案:正确16.相率和相图只在热力学平衡条件下成立。
答案:正确17.在某些情况下,自由度的值可能小于零。
答案:错误18.包晶相图是指两组元,在液态无限互溶,固态下有限互溶或者不互溶,并且发生包晶转变的相图.答案:正确19.一个晶面族中所有晶面的面间距不一定相等。
答案:错误20.包晶相图是指两组元在液态无限互溶,固态有限互溶或者完全不互溶,且冷却过程中发生共晶反应的相图。
第一章8.计算下列晶体的离于键与共价键的相对比例(1)NaF (2)CaO (3)ZnS解:1、查表得:X Na =0.93,X F =3.98根据鲍林公式可得NaF 中离子键比例为:21(0.93 3.98)4[1]100%90.2%e ---⨯=共价键比例为:1-90.2%=9.8% 2、同理,CaO 中离子键比例为:21(1.00 3.44)4[1]100%77.4%e---⨯=共价键比例为:1-77.4%=22.6%3、ZnS 中离子键比例为:21/4(2.581.65)[1]100%19.44%ZnS e--=-⨯=中离子键含量共价键比例为:1-19.44%=80.56%10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。
答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。
稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。
稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。
但在一定条件下,亚稳态结构向稳态结构转变。
第二章1.回答下列问题:(1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与 [111],(132)与[123],(322)与[236] (2)在立方晶系的一个晶胞中画出(111)和 (112)晶面,并写出两晶面交线的晶向指数。
(3)在立方晶系的一个晶胞中画出同时位于(101). (011)和(112)晶面上的[111]晶向。
解:12.有一正交点阵的 a=b, c=a/2。
某晶面在三个晶轴上的截距分别为 6个、2个和4个原子间距,求该晶面的密勒指数。