数列求和之错位相减法
- 格式:ppt
- 大小:291.00 KB
- 文档页数:4
1数列求和之错位相减法一、题型要求:错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法)。
二、例题讲解:1、求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S2、求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和.三、练习巩固:1、(2012-信宜二模)设{}n a 为等比数列,121(1)2n n n T na n a a a -=+-+++,已知11T =,24T =,(1)求数列{}n a 的首项和公比;(2)求数列{}n T 的通项公式.;2、(2015-漳浦校级模拟)等差数列}{n a 中,.2,49197a a a ==数列}{n b 满足n a n n a b 22⋅=(1)求数列}{n a 的通项公式;(2)求数列}{n b 的前n 项和n S3、(2014-肇庆高三期末)已知数列{}n a 满足11=a ,n a a na n n n =-++11,*N n ∈.(1)求数列{}n a 的通项公式;(2)设2nn nb a =,数列{}n b 的前n 项和为n T ,求n T ;4、(2014-肇庆高三期末)已知数列{}n a 满足11=a ,121+=+n n a a (*N n ∈).(1)求数列{}n a 的通项公式;(2)设n S 为数列}12{+n a n的前n 项和,求n S ;35、(2014-惠州调研)已知数列{}n a 的前n 项和为n S ,且有12n n a S -=;数列{}n b 满足(27)n n b n a =-(1)求数列{}n a 和{}n b 的通项公式;(2)求数列{}n b 的前n 项和为n T6、(2014-珠海六校联考)已知数列{}n a 为等差数列,且5714,20a a ==,数列{}n b 的前n 项和为n S ,且满足132n n S S -=+(2,*)n n ≥∈N ,123b =. (1)求数列{}n a ,{}n b 的通项公式;(2)若n n n c a b =⋅,n T 为数列{}n c 的前n 项和,求n T .7、(2014-中山期末)数列{n a }的前n 项和为n S ,2131(*)22n n S a n n n N +=--+∈. (1)设n n b a n =+,证明:数列{}n b 是等比数列;(2)求数列{}n nb 的前n 项和n T ;8、(2014-梅州质检)设等比数列{n a }的前n 项和为Sn ,已知122(*)n n a S n N +=+∈。
.数列求和之错位相减法、倒序相加法}}{{bac、错位相减法适用于1是等差数列,,其中是等比数列。
b×=a nnnnn的两边同乘以公比步骤:此时可把式子1)q1qq(10,得到且,两式错位相减整理即可求出.S n2、倒序相加法适用于数列首尾项的和为定值。
2n?1n】已知数列1【例0)a?(,5a,,(2n?1)a1,3a项和,求前.{}的等差数列,且满足0【例2】已知是一个公差大于aa a=55,a+a=16n7632{}的通项公式:(Ⅰ)求数列a n a{}}{}{nS.(Ⅱ)若数列和数列满足等式:的前项和bab n?b,求数列nnnnnn22222】求和:3【例89sin?sin3?2sin1?sin?1??????????Rfxx,点】已知函数4【例xfyx,yPxP,??图像上,是函数221112x24?1.的两个点,且线段PP P的横坐标为的中点212P的纵坐标是定值;(Ⅰ)求证:点n????????mmNn,,? ,?1,?af2aa的前的通项公式为求数列m,(Ⅱ)若数列??nnn m??S项的和;m【变式训练】n?2?12n?3、已知数列项和.1求前aa44a?a?62?)...,0,2a,,,,,(-8+2n1 / 2.??a}{{}322n的:2、若数列的通项公式为满足等式bb?a?na?b n,求数列,数列nnnnn nS前项和n cos179cos178??cos3??cos1?cos2.的值3、求【过关练习】ba{{2,1.设数列,nba)=b,}b(a-a}=nS=2为等比数列,且的前项和为nnn111221a{)求数列(1}b}{的通项公式;和nn a c{c(2)设,求数列.n n T}=项和的前nnn b n{}已知2、Sa?b?2,a?b?27n a{b}是等比数列,,是等差数列,其前且项和为,4411nnn S?b?10.44{})求数列1(a{b}的通项公式;与nn**(2)记T?12??2a?10bbT?ab?a?b?an?n?NN );证明,(,nnnn?n121nn1??2,xy lg?n2?n?nn12求和3、已知yx lg(x?S lg?x?y)lg(?y)?lg n2 / 2。
题型-数列求和之错位相减法数列求和之错位相减法一、题型要求:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n和公式的推导方法)。
二、例题讲解:1、求和:$S_n=1+3x+5x^2+7x^3+。
+(2n-1)x^{n-1}$,其中$x=2$。
2、求数列$2,3.n$前$n$项的和。
三、练巩固:1、(2012-信宜二模)设$\{a_n\}$为等比数列,$T_n=na_1+(n-1)a_2+。
+2a_{n-1}+a_n$,已知$T_1=1$,$T_2=4$。
1)求数列$\{a_n\}$的首项和公比;2)求数列$T_n$的通项公式;2、(2015-漳浦校级模拟)等差数列$\{a_n\}$中,$a_7=4$,$a_{19}=2a_9$。
数列$\{b_n\}$满足$b_n=a_n\times2$。
1)求数列$\{a_n\}$的通项公式;2)求数列$\{b_n\}$的前$n$项和$S_n$;4、(2014-肇庆高三期末)已知数列$\{a_n\}$满足$a_1=1$,$a_{n+1}=2a_n+1$($n\in N^*$)。
1)求数列$\{a_n\}$的通项公式;2)设$b_n=\frac{a_{2n}}{n}$,数列$\{b_n\}$的前$n$项和为$T_n$,求$T_n$;5、(2014-惠州调研)已知数列$\{a_n\}$的前$n$项和为$S_n$,且有$S_n=1-a_n$。
数列$\{b_n\}$满足$2b_n=(2n-7)a_n$。
1)求数列$\{a_n\}$和$\{b_n\}$的通项公式;2)求数列$\{b_n\}$的前$n$项和$T_n$;6、(2014-珠海六校联考)已知数列$\{a_n\}$为等差数列,且$a_5=14$,$a_7=20$,数列$\{b_n\}$的前$n$项和为$S_n$,且满足$3S_n=S_{n-1}+2$($n\geq2$,$n\in N^*$),$b_1=$。
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式.形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可.目录简介举例错位相减法解题编辑本段简介错位相减较常用在数列的通项表现为一个等差数列与一个等比数列的乘积,如an=(2n-1)*2^(n-1),其中2n-1部分可以理解为等差数列,2^(n-1)部分可以理解为等比数列.编辑本段举例例如:求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0)当x=1时,Sn=1+3+5+…+(2n-1)=n^2;当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1);∴xSn=x+3x^2+5x^3+7x^4+…+(2n-1)*x^n;两式相减得(1-x)Sn=1+2x[1+x+x^2+x^3+…+x^(n-1)]-(2n-1)*x^n;化简得Sn=(2n-1)*x^(n+1)-(2n+1)*x^n+(1+x)/(1-x)^2编辑本段错位相减法解题错位相减法是求和的一种解题方法.在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用.这是例子(格式问题,在a后面的数字和n都是指数形式):S=a+2a2+3a3+……+(n-2)an-2+(n-1)an-1+nan (1)在(1)的左右两边同时乘上a.得到等式(2)如下:aS= a2+2a3+3a4+……+(n-2)an-1+(n-1)an+nan+1 (2)用(1)—(2),得到等式(3)如下:(1-a)S=a+(2-1)a2+(3-2)a3+……+(n-n+1)an-nan+1 (3)(1-a)S=a+a2+a3+……+an-1+an-nan+1 S=a+a2+a3+……+an-1+an用这个的求和公式.(1-a)S=a+a2+a3+……+an-1+an-nan+1 最后在等式两边同时除以(1-a),就可以得到S 的通用公式了.例子:求和Sn=3x+5x^2+7x^3+……..+(2n-1)·x的n-1次方(x不等于0)当x=1时,Sn=1+3+5+…..+(2n-1)=n^2;; 当x不等于1时,Sn=3x+5x^2+7x^3+……..+(2n-1)·x 的n-1次方所以xSn=x+3x^2+5x^3+7x四次方……..+(2n-1)·x的n次方所以两式相减的(1-x)Sn=1+2x(1+x+x^2+x^3+...+x的n-2次方)-(2n-1)·x的n次方.化简得:Sn=(2n-1)·x地n+1次方-(2n+1)·x的n次方+(1+x)/(1-x)平方Cn=(2n+1)*2^n Sn=3*2+5*4+7*8+...+(2n+1)*2^n 2Sn=3*4+5*8+7*16+...+(2n-1)*2^n+(2n+1)*2^(n+1) 两式相减得-Sn=6+2*4+2*8+2*16+...+2*2^n-(2n+1)*2^(n+1) =6+2*(4+8+16+...+2^n)-(2n+1)*2^(n+1) =6+2^(n+2)-8-(2n+1)*2^(n+1) (等比数列求和) =(1-2n)*2^(n+1)-2 所以Sn=(2n-1)*2^(n+1)+2 错位相减法这个在求等比数列求和公式时就用了Sn= 1/2+1/4+1/8+.+1/2^n 两边同时乘以1/2 1/2Sn= 1/4+1/8+.+1/2^n+1/2^(n+1)(注意跟原式的位置的不同,这样写看的更清楚些)两式相减1/2Sn=1/2-1/2^(n+1) Sn=1-1/2^n。