材料学-钢铁部分作业
- 格式:doc
- 大小:84.00 KB
- 文档页数:15
钢铁材料基础知识钢铁材料基础知识1 材料:⾦属、⾮⾦属2 ⾦属材料:共性:有光泽、良的导热导电性能,⾦属学中分为晶体⿊⾊⾦属:铁、钴、镍有⾊⾦属(⾮⿊⾊⾦属)3 钢铁材料纯铁、钢材、铸铁3.1 纯铁:铁的密度为7.9克/⽴⽅厘⽶,熔点,是1534℃,3.2 钢:铁中加⼊碳,0.02-2.11%之间,理论上讲,我们使⽤的是钢,丌是铁,有时将低碳钢叫做铁,是错误的。
3.3 钢的⼀些性能物理性能熔点在1148℃以上;密度在7.85克/⽴⽅厘⽶;线膨胀系数10.6-12×10-6×/℃;弹性模量E=210GPa材料⼒学中简⽀梁公式y=PX/12EI×(3l2/4-x2)最⼤挠度y=PL3/48EJ I 惯性矩悬臂梁y=PX2/6EI×(3l-x)最⼤挠度y= PL3/3EJRmax=Mmax/WZGB228-1987 ⾦属拉伸试验⽅法GB/T228-2002 ⾦属材料室温拉伸试验⽅法开始改GB/T228.1-2010 ⾦属材料拉伸试验第1部分:室温试验⽅法抗拉强度Re(σb);屈服强度Rm(σs);断后伸长率A%;硬度(HB、HR、)不抗拉强度紧密相关⼤约是Re=0.3-0.6HB GB/T229-2007 ⾦属材料夏⽐摆锤冲击试验⽅法冲击吸收能量K(94标准为吸收功)化学性能:五⼤元素 C Si Mn S P 影响韧性碳对钢材性能的影响铁中加⼊碳之后,随着碳含量增加,钢材的抗拉强度增加。
韧性下降4 钢材的种类按化学成份分类(1) 碳素钢:a.低碳钢(C≤0.25%);b.中碳钢(0.25≤C≤0.60%);c.⾼碳钢(C≥0.60%)。
(2)合⾦钢:a.低合⾦钢(合⾦元素总含量≤5%)b.中合⾦钢(合⾦元素总含量>5~10%)c.⾼合⾦钢(合⾦元素总含量>10%)。
按⽤途分(1)普通钢a.碳素结构钢:。
b.低合⾦结构钢c.特定⽤途的普通结构钢(2)优质钢(包括⾼级优质钢)(a)优质碳素结构钢;(b)合⾦结构钢;(c)弹簧钢;(d)易切钢;(e)轴承钢;(f)特定⽤途优质结构钢。
材料物理课后作业1. 介绍本次材料物理课后作业主要涉及材料的基本概念、结构与性质、材料的热力学以及材料的力学性能等内容。
通过解答下面的题目,可以进一步巩固对这些知识的理解,并且提升对材料物理的应用能力。
2. 题目2.1 材料的基本概念1.请简要说明什么是材料?2.请列举常见的工程材料的分类。
2.2 结构与性质1.请简要说明晶体和非晶体的区别。
2.请解释金属的塑性和韧性分别是什么。
2.3 材料的热力学1.简要解释材料的内能和焓的概念。
2.如果一个材料发生相变,其内能会发生变化吗?为什么?2.4 材料的力学性能1.定义杨氏模量,它是用来衡量什么物理量的?2.弹性模量和切变模量分别用于描述什么性质?3. 回答题目3.1 材料的基本概念1.材料是指一切用于制造商品或构建工程的物质。
它可以是任何形式的物质,包括金属、陶瓷、聚合物等。
材料在制造业和工程领域具有重要的作用,它决定了产品的性能和特性。
2.常见的工程材料可以按照性质分为金属材料、陶瓷材料、聚合物材料和复合材料等。
其中,金属材料具有优良的导电性和导热性,常见的金属材料有铁、铜、铝等。
陶瓷材料具有较高的硬度和耐磨性,常见的陶瓷材料有瓷器、玻璃等。
聚合物材料具有较好的可塑性和绝缘性能,常见的聚合物材料有塑料、橡胶等。
最后,复合材料是由不同材料组合而成的材料,可以充分发挥各种材料的优点,常见的复合材料有玻璃钢、碳纤维等。
3.2 结构与性质1.晶体是具有高度有序的结构,其原子、离子或分子按照规则的方式排列。
晶体具有清晰的晶格结构和明确的晶面,其具有固定的熔点和局部松弛。
非晶体则是没有明确的结构和晶面的材料,其原子、离子或分子的排列没有规则性。
非晶体具有不确定的熔点和局部松弛。
2.金属的塑性是指在外力作用下,金属材料可以发生形变而不断裂。
金属具有较好的塑性,这是因为金属的结晶结构具有密堆积的原子排列方式,相邻的晶粒通过滑移机制可以相对容易地滑动。
韧性是指材料在断裂前能够吸收较大的能量。
《材料科学基础》作业参考答案第二章1.回答下列问题:(1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与[111],(132)与[123],(322)和[236]。
(2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。
解答:(1)(2)首先求(111)和(112)的交线。
由式(2-7),即得u=k1l2-k2l1=1x2-1x1=1v=l1h2-l2h1=1x1-2x1=-1w=h1k2-h2k1=1x1-1x1=0所以,(111)和(112)两晶面交线的晶向指数为[110]或者[110]。
如下图所示。
3 立方晶系的{111}、{110}、{123}晶面族各包括多少晶面?写出它们的密勒指数。
解答:++++++++=)213()231()321()132()312()321()231()123(}123{+++++++)312()132()213()123()132()312()231()132()123()213()321()231()213()123()312()321(++++++++注意:书中有重复的。
如(111)与(111)应为同一晶面,只是位于坐标原点的位置不同。
6.(略)7.(题略) (1)(2)用公式 求。
(3) 用公式 求。
(1)d(100)=0.286nmd(110)=0.202nmd(123)=0.076nm显然,d(100)最大。
222hkl d h k l =++(2) d(100)=0.365nmd(111)=0.211nmd(112)=0.149nm显然,d(100)最大。
(3) d(1120)=0.1605 nmd(1010)=0.278nmd(1012)=0.190nm显然,d(1010)最大。
由(1)、(2)、(3)得低指数的面间距较大,而高指数的晶面间距则较小8.回答下列问题:(1)通过计算判断(110)、(132)、(311)晶面是否属于同一晶带?(2)求(211)和(110)晶面的晶带轴,并列出五个属于该晶带的晶面的密勒指数。
金属材料学习题与思考题第七章铸铁1、铸铁与碳钢相比,在成分、组织和性能上有什么区别?(1)白口铸铁:含碳量约2.5%,硅在1%以下白口铸铁中的碳全部以渗透碳体(Fe3c)形式存在,因断口呈亮白色。
故称白口铸铁,由于有大量硬而脆的Fe3c,白口铸铁硬度高、脆性大、很难加工。
因此,在工业应用方面很少直接使用,只用于少数要求耐磨而不受冲击的制件,如拔丝模、球磨机铁球等。
大多用作炼钢和可锻铸铁的坯料(2)灰口铸铁;含碳量大于4.3%,铸铁中的碳大部或全部以自由状态片状石墨存在。
断口呈灰色。
它具有良好铸造性能、切削加工性好,减磨性,耐磨性好、加上它熔化配料简单,成本低、广泛用于制造结构复杂铸件和耐磨件。
(3)钢的成分要复杂的多,而且性能也是各不相同钢是含碳量在0.04%-2.3%之间的铁碳合金。
我们通常将其与铁合称为钢铁,为了保证其韧性和塑性,含碳量一般不超过1.7%。
钢的主要元素除铁、碳外,还有硅、锰、硫、磷等,而且钢还根据品质分类为①普通钢(P≤0.045%,S≤0.050%)②优质钢(P、S均≤0.035%)③高级优质钢(P≤0.035%,S≤0.030%)按照化学成分又分①碳素钢:.低碳钢(C≤0.25%).中碳钢(C≤0.25~0.60%).高碳钢(C≤0.60%)。
②合金钢:低合金钢(合金元素总含量≤5%).中合金钢(合金元素总含量>5~10%).高合金钢(合金元素总含量>10%)。
2、C、Si、Mn、P、S元素对铸铁石墨化有什么影响?为什么三低(C、Si、Mn低)一高(S高)的铸铁易出现白口?(1)合金元素可以分为促进石墨化元素和阻碍石墨化元素,顺序为:Al、C、Si、Ti、Ni、P、Co、Zr、Nb、W、Mn、S、Cr、V、Fe、Mg、Ce、B等。
其中,Nb为中性元素,向左促进程度加强,向右阻碍程度加强。
C和Si是铸铁中主要的强烈促进石墨化元素,为综合考虑它们的影响,引入碳当量CE = C% + 1/3Si%,一般CE≈4%,接近共晶点。
7--1炼钢的基本任务是什么,通过哪些手段实现炼钢的基本任务:四脱脱碳,氧,磷,硫;两去去气和去夹杂;两调整调整成分和温度,采用的主要技术手段为:供氧,造渣,升温,加脱氧剂和合金化操作7--2磷和硫对钢产生哪些危害磷:引起钢的冷脆,钢的塑性和冲击韧性降低,降低钢的表面张力,并使钢的焊接性能与冷弯性能变差;硫:使钢的热加红性能变坏,引起钢的热脆性;降低钢的焊接性能,引起高温龟裂;硫还是连铸坯中偏析最为严重的元素;7--3实际生产中为什么要将ωMn/ ωS作为一个指标进行控制答:答:Mn在钢的凝固范围内生成MnS和少量FeS;这样可有效防止钢热加工过程中的热脆,故在实际生产中将ωMn/ωS比作为一个指标进行控制,提高ωMn/ωS,可以提高钢的延展性,当ωMn/ωS≧7时不产生热脆;7—4氢和氮对钢产生那些危害氢在固态钢中溶解度很小,在钢水凝固和冷却过程中,氢会和一氧化碳,氮气等气体一起析出,形成皮下气泡中心缩孔,疏松,造成白点和发纹;钢热加工过程中,钢中还有氢气的气孔会沿加工方向被拉长形成发裂,进而引起钢材的强度,塑性,冲击韧性的降低,即发生“氢脆”现象;钢中的氮是以氮化物的形式存在,他对钢质量的影响体现出双重性;氮含量高的钢种长时间放置,将会变脆,这一现象称为“老化”或“时效”原因是钢中氮化物的析出速度很慢,逐渐改变着钢的性能;低碳钢产生的脆性比磷还严重;钢中氮含量高时,在250—450摄氏温度范围,其表面发蓝,钢的刚度升高,冲击韧性降低,称之为“蓝脆”;氮含量增加,钢的焊接性能变坏;7--5钢中的夹杂物是如何产生的,对钢的性能产生哪些影响答:①冶炼和浇注过程中,带入钢液中的炉渣和耐火材料及钢液被大气氧化所形成的氧化产物;②脱氧的脱氧产物;③随着钢液温度的降低,S、O、N等杂质元素的溶解度下降,于是这些不溶解的杂质元素就呈非金属化合物在钢中沉淀;④凝固过程中因溶解度降低、偏析而发生反应的产物;钢中非金属夹杂物的存在通常被认为是有害的;主要表现对钢的强度、延性、韧性、疲劳等诸方面的影响;7—7钢的力学性能指标有哪些,其含义是什么钢材常见的力学性能通俗解释归为四项,即:强度、硬度、塑性、韧性;简单的可这样解释:强度,是指材料抵抗变形或断裂的能力;有二种:屈服强度σb、抗拉强度σs;强度指标是衡量结构钢的重要指标,强度越高说明钢材承受的力也叫载荷越大;硬度,是指材料表面抵抗硬物压人的能力;常见有三种:布氏硬度HBS、洛氏硬度HRC、维氏硬度HV;硬度是衡量钢材表面变形能力的指标,硬度越高,说明钢的耐磨性越好;即不容易磨损;塑性,是指材料产生变形而不断裂的能力;有两种表示方法:伸长率δ、断面收缩率ψ;塑性是衡量钢材成型能力的指标,塑性越高,说明钢材的延展性越好,即容易拉丝或轧板;韧性也叫冲击韧性,是指材料抵抗冲击变形的能力,表示方法为冲击值αk;冲击韧性是衡量钢材抗冲击能力的指标,数值越高,说明钢材抵抗运动载荷的能力越强;一般情况下,强度低的钢材,硬度也低,塑性和韧性就高,例如钢板、型材,就是由强度较低的钢材生产的;而强度较高的钢材,硬度也高,但塑性和韧性就差,例如生产机械零件的中碳钢、高碳钢,就很少看到轧成板或拉成丝;7—8钢按用途可分为哪几类1 建筑及工程用钢:a.普通碳素结构钢;b.低合金结构钢;c.钢筋钢;2 结构钢a.机械制造用钢:a调质结构钢;b表面硬化结构钢:包括渗碳钢、渗氨钢、表面淬火用钢;易切结构钢;d冷塑性成形用钢:包括冷冲压用钢、冷镦用钢;b.弹簧钢c.轴承钢3 工具钢:a.碳素工具钢;b.合金工具钢;c.高速工具钢;4 特殊性能钢:a.不锈耐酸钢;b.耐热钢:包括抗氧化钢、热强钢、气阀钢;c.电热合金钢;d.耐磨钢;e.低温用钢;f.电工用钢;5 专业用钢——如桥梁用钢、船舶用钢、锅炉用钢、压力容器用钢、农机用钢等;8--1熔渣在炼钢中的作用体现在哪些方面答:①去除铁水和钢水中的磷、硫等有害元素,同时能将铁和其它有用元素的损失控制最低;②保护钢液不过度氧化,不吸收有害气体,保温,减少有益元素烧损;③防止热量散失,以保证钢的冶炼温度;④吸收钢液中上浮的夹杂物及反应产物;8--2什么是熔渣的氧化性,在炼钢过程中熔渣的氧化性是如何体现的熔渣的氧化性也称炉渣的氧化能力,是指在一定的温度下,单位时间内熔渣向钢液供氧的数量;炉渣的氧化性在炼钢过程中的作用体现在对炉渣自身、对铁水和对炼钢操作工艺影响三个方面;1、影响化渣速度,渣中的FeO能促进石灰溶解,加速化渣,改善钢铁反应动力学条件,加速传质过程;影响熔渣粘度;影响熔渣向熔池传氧;2、影响钢水含氧量,当钢水含碳量相同时,钢水氧化性强,则钢水含碳量高;影响钢水脱磷,熔渣氧化性强,有利于脱磷;3、影响铁合金收得率,氧化性强,降低铁合金收得率;影响炉衬寿命,熔渣氧化性强,炉衬寿命降低;影响金属收得率,氧化性强金属收得率低;8--3炼钢过程残余锰的含义是什么,钢液中残余锰有何作用答:简单的说就是在一炉钢水吹炼到终点时,钢水中会有一定含量的锰;残锰的作用: 1防止钢液的过氧化,或避免钢液中含过多的过剩氧,以提高脱氧合金的收得率,减少钢液中氧化物夹杂;2可作为钢液温度高低的标态3节约Fe-Mn合金的用量8—5炼钢过程的碳氧化反应的作用是什么,脱碳速度如何表达作用:①加大钢-渣界面,加快反应的进行;②搅拌熔池均匀成分和温度;③有利于非金属夹杂物的上浮和有害气体的排出;④放热升温;脱碳速率表达式:-dωc%/dt=kωc%;c8—6什么是磷的分配系数和炉渣磷熔,影响炼钢过程脱磷的因素有哪些8—7什么是硫容,影响炼钢过程脱硫的因素有哪些8—8钢液的脱氧方式有哪几种,各有什么特点答:按脱氧原理分:脱氧方法有三种,即沉淀脱氧法,扩散脱氧法和真空脱氧法;沉淀脱氧法:又叫直接脱氧;把块状脱氧剂加入到钢液中,脱氧元素在钢液内部与钢中氧直接反应,生成的脱氧产物上浮进入渣中的脱氧方法称为沉淀脱氧;特点:在钢液内部进行,脱氧速度快;但生成的脱氧产物有可能难以完全上浮而成为钢中非金属夹杂;扩散脱氧法:又叫间接脱氧;将粉状的脱氧剂如C粉﹑Fe-Si粉﹑CaSi粉﹑Al粉加到炉渣中,降低炉渣中的氧含量,使钢液中的氧向炉渣中扩散,从而达到降低钢液中氧含量的一种脱氧方法;特点:在渣中进行,钢液中的氧需要向渣中转移,故脱氧速度慢,脱氧时间长;但脱氧产物在渣相内形成,不在钢中生成非金属夹杂物;真空脱氧法:是利用降低系统的压力来降低钢液中氧含量的脱氧方法;只适用于脱氧产物为气体的脱氧反应如C----O反应;常用于炉外精炼特点:脱氧产物为气体,易于排除,不会对钢造成非金属夹杂的污染,故这种脱氧方法的钢液洁净度高;但需要有专门的真空设备;8—9什么是较为活泼的金属在炼钢过程中的转变温度,金属铬在不锈钢冶炼中如何保证其不被氧化当温度大于转变温度时,金属与氧的结合能力比碳与氧的结合能力差,当温度小于转变温度时,则相反;脱碳保铬9-1 转炉和电炉用的原材料各有哪些答:转炉:铁水生铁,废钢,铁合金,造渣剂,冷却剂,增碳剂,燃料和氧化剂;电炉:废钢,生铁,造渣剂,冷却剂,增碳剂,燃料和氧化剂;9-2 转炉炼钢对铁水成分和温度有何要求1成分:Si为%%、Mn为%%、 P≤%、S≤%;2带渣量:进入转炉的铁水要求带渣量不得超过%;3温度:我国炼钢规定入炉铁水温度应大于1250℃,并且要相对稳定;9—3什么是活性石灰,它有哪些特点答:通常把在1050℃-1150℃温度下,在回转窑或新型竖窖内焙烧的石灰叫活性石灰;它具有高反应能力,体积密度小,孔隙度高,比表面积大晶粒细小等特点;9—4萤石在炼钢中起什么作用答:加速石灰溶解,迅速改善炉渣流动性;10-1氧气顶吹转炉冶炼过程中元素的氧化、炉渣成分和温度的变化体现出什么样的特征答:元素变化:吹炼初期,Si、Mn大量氧化,随着吹炼的进行,由于石灰的溶解,2FeOSiO2转变为2CaOSiO2Si被氧化至很低程度;而吹炼后期,炉温上升MnO被还原,Mn含量上升;CPS均在吹炼中期,氧化脱去速度最快;炉渣成分变化:枪位低时,FeO降低,矿石多时,FeO增高,脱碳速度高时,FeO低,吹炼初期,由于Si的氧化炉渣碱度不高,但随着石灰的溶解直至吹炼结束,炉渣碱度均呈上升;温度变化:入炉铁水1300℃左右;吹炼前期结束:1500℃左右;吹炼中期:1500℃-1550℃;吹炼后期:1650℃-1680℃.10—2什么是转炉的炉容比,确定装入量应考虑哪些因素装入量指炼一炉钢时铁水和废钢的装入数量;炉容比:它是指炉内自有空间的容积与金属装入量之比,通常在0.7—1.0波动,我国转炉炉容比一般在0.75.熔池深度::合适的熔池深度应大于顶枪氧气射流对熔池的最大穿透深度,以保证生产安全,炉底寿命和冶炼效果;炉子附属设备:应与钢包容量,浇注吊车起重能力,转炉倾动力矩大小,连铸机的操作等相适应;10-3 供氧制度的含义是什么,氧枪的枪位对熔池中的冶金过程产生哪些影响供氧制度:确定合理的喷头结构、供氧强度、氧压和枪位控制;氧枪的枪位的影响:枪位低,氧气射流对熔池的冲击力大,冲击深度深,炉内反应速度快,产生大量CO2使熔池内部搅拌充分,降低了熔渣中的全铁含量;枪位高反之;10-4 转炉的成渣过程有何特点,成渣速度主要受哪些因素的影响,如何提高成渣速度吹炼初期:炉渣主要来自于铁水中的硅、锰、铁的氧化物,碱度逐渐得到提高;吹炼中期:FeO含量逐渐降低,石灰熔化速度有所减缓,炉渣泡沫化程度迅速提高;吹炼末期:脱碳速度下降,渣中FeO含量再次升高,石灰加快熔化,熔池中乳化和泡沫现象趋于减弱和消失; 成渣速度主要受石灰熔化速度的影响改变石灰本身的质量,铁水的成分,适当的采取高枪位,加入助溶剂;10—5造渣的方法有哪几种,各有什么特点答:有三种;单渣法,工艺比较简单,吹炼时间短,劳动条件好,易于实现自动控制;双渣法,双渣操作脱磷效率可达95%以上,脱硫效率约60%左右,操作的关键是决定合适的放渣时间;双渣留渣法,此法的优点是可加速下炉吹炼前期初期渣的形成;10—6什么是终点控制,终点的标志是什么答:终点控制是转炉吹炼末期的重要操作,主要指终点温度和和成分的控制;达到终点的表现为:①钢中碳含量达到所炼钢种要求的范围;②钢中P、S含量低于规定下限要求一定范围;③出钢温度保证能顺利进行精炼和浇铸;④达到钢种要求控制的含氧量;10-7 什么是溅渣护炉,其操作有什么要求利用MgO含量到达饱和或者过饱和的炼钢终点渣,通过高压氮气的吹溅,使其在炉衬表面形成一层高熔点的熔渣层,并与炉衬很好的粘接;要求:调整好熔渣成分,留渣量要合适,控制溅渣枪位,控制氮气的压力与流量,保证溅渣时间;10-8 底吹氧气转炉炼钢法与顶吹氧气转炉炼钢法相比体现出哪些工艺特征优点:金属收得率高,铁锰、铝合金消耗量降低,脱氧剂和石灰消耗量降低,氧耗降低,烟尘和喷溅少,脱碳速度快、冶炼周期短、生产率高,废钢比增加,搅拌能力大、氮含量低; 缺点:炉龄较低,氧化铁含量少、化渣比较困难、脱磷效果不如顶吹,钢中氢含量较高; 10-10 顶底复合吹炼工艺与顶吹工艺相比有哪些特点成渣速度快,金属收得率高,脱硫条件好,钢水锰、磷含量高,钢水氧含量低,渣中FeO 含量低;答:①成渣速度快,需要的时间比顶吹转炉短;②渣中∑FeO含量从吹炼初期到中期逐渐降低,中期变化平稳,后期稍有升高;③顶底复吹工艺比顶吹工艺的脱氮效率高;④出钢前钢水中的残锰比顶吹转炉高;⑤脱磷率、脱硫率比顶吹转炉高;⑥石灰单耗低,渣量少,能形成高碱度氧化性炉渣,提前脱磷,直接拉碳;11—1何为“短流程”,它具有哪些优点,电炉炼钢工艺路线的“三位一体”,“四个一”指什么答:废钢—电炉炼钢流程,其流程短,设备布置、工艺衔接紧凑,投入产出快,故称为“短优点:投资少,建设周期短,生产能耗低,操作成本低,劳动效率高,占地面积小,环境污染小;“三位一体”:电炉冶炼—炉外精炼—连铸“四个一”:电炉—炉外精炼—连铸—连轧11-4 传统电炉氧化法冶炼过程包括哪几个阶段,其中熔化、氧化、还原各期的主要任务传统6阶段:补炉、装料、熔化、氧化、还原、出钢;熔化:熔化块状炉料,加热到氧化温度;提前造渣,早期去磷;减小钢液吸气与挥发;氧化:继续脱磷到要求—脱磷;脱碳至规格下限—脱碳;去除气、去夹杂—二去;提高钢液温度—升温;还原:脱氧至要求—脱氧;脱硫至一定值—脱硫;调整成分—合金化;调整温度—调温; 11—5试述现代电炉炼钢工艺操作特点;答:配以炉外精炼,电炉采用留钢留渣操作,达到快速熔化与升温操作,脱磷操作,脱碳操作,合金化,良好的温度控制,泡沫渣操作;11-8 氧-燃烧嘴主要解决什么问题在尽可能短的时间内将废钢熔化并使钢液温度达到出钢温度;11—10废钢预热节能技术有哪几种说出其设备特点和节能效果;答:有四种;双壳电炉法:两个炉体一套供电系统,提高变压器的时间利用率,缩短冶炼时间,可回收废气带走热量的30%以上节电40~50kWh/t;竖窑式电炉:竖炉炉体为椭圆形,在炉体相当炉顶第四孔的位置配置一竖窑烟道,并与熔化室连通,节能效果明显,可回收废气带走热量的60%~70%,节电60~80kWh/t;炉料连续预热电炉:由炉料连续输送系统,废钢预热系统,电炉熔炼系统,燃烧室及余热回收系统等四部分组成,降低电耗60~100kWh/t;11-11 电炉炼钢采取无渣出钢的意义是什么,渣、钢分离技术有哪些,偏心炉底出钢电炉的优点有哪些氧化性的炉渣带入钢包精炼过程将会使精炼过程中钢液增磷,降低脱氧、脱硫能力,降低合金回收率以及影响吹氩效果与真空度等;低位,偏心炉底,偏位炉底,侧面炉底,水平,滑阀等出钢法;优点:出钢倾动角度的减少:简化电炉倾动结构;降低短网的阻抗;增加水冷炉壁使用面积,提高炉体寿命;留钢留渣操作:无渣出钢,改善钢质,有利于精炼操作;留钢留渣,有利电炉冶炼、节能; 炉底部出钢:降低出钢温度,节约电耗;减少二次氧化,提高钢的质量;提高钢包寿命; 12—1比较传统炼钢流程和现代炼钢流程,指出传统炼钢流程的特点,试述钢水二次精炼的优越性;答:传统炼钢流程的缺点:低效率,高成本,钢种质量低,合格率低,冶炼时间长,环境污染严重,工艺控制难于掌控;二次精炼的优越性:提高钢的质量,扩大品种,缩短冶炼时间,提高生产率,调节炼钢炉与连铸的生产节奏,降低炼钢成本,提高经济效益;12-2 试述钢水二次精炼的手段及达到的目的;基本手段有搅拌、真空、添加精炼剂、加热、渣洗、喷吹及喂丝等几种;当前各种炉外精炼方法也都是这些基本手段的不同组合;目的:脱碳、脱气H、N、CO、脱氧、脱硫、去除夹杂物、控制夹杂物的形态、调整成分及温度;12-3 什么是铁水预处理,铁水预处理的种类有哪些铁水兑入炼钢炉之前,对其进行脱除杂质元素或从铁水中回收有价值元素的一种铁水处普通铁水预处理:脱硅、脱硫、脱磷三脱特殊铁水预处理:提钒、提铌、提钨等12-4 为什么铁水预脱磷前必须进行铁水预脱硅铁水中硅的氧势比鳞的氧势低,当脱磷过程中加入氧化剂后,硅与氧的结合能力远远大于磷,所以硅比磷先氧化;为了减少脱磷剂用量、提高脱磷效率,开发了铁水预脱硅技术; 12—5简单分析金属镁预脱硫的基本原理;1金属镁溶于铁水:Mg固——Mg液——Mg气——Mg溶于铁水2高温下,镁和s有强亲和能力,铁水中Mg和气态的镁都能与铁水中的硫迅速反应生成固态的硫化镁,反应生成的硫化镁再铁水温度下是固态的并进入渣中;12-6 如何实现铁水同时脱磷、脱硫喷吹石灰粉剂,可以在铁水罐中不同部位造成不同氧势,喷嘴及氧枪附近氧势高,可以脱磷;灌底、内衬及渣铁界面氧势低,有利于脱硫;12—7钢水二次精炼的主要方法有哪些答:二次精炼又称炉外精炼,LF法、RH法、VD法、VOD法、AOD法;12-8 LE电炉主要有哪些冶金功能钢水升温、调温及保温功能;强化脱氧、脱硫功能;合金微调功能;12-9 RH真空处理的工作原理及冶金功能是什么原理:脱气室下部设有与其相通的两根循环流管,脱气处理时将将环流管插入钢液,靠脱气室抽真空的压差使钢液由管子进入脱气室,同时上升管中吹入驱动气体氩气,利用气泡泵原理引导钢水通过脱气室和下降管产生循环运动,并在脱气室内脱除气体;功能:真空脱碳;真空脱气;脱硫;脱磷;升温;均匀钢水温度;均匀钢水成分和去除夹杂物;12—10试述不锈钢炉外精炼的种类,AOD与VOD法各自的特点,解释“降碳保铬”的含义; 13—1连铸与模铸相比体现出那些优越性1、成材率高;2、节约能源;3、减少劳动强度;4、改善劳动环境;5、生产效率高;13—3如何确定液相穴深度和冶金长度液相穴深度L液是指从结晶器液面开始到铸坯中心液相凝固终了的长度,也称为液心长度;根据最大拉速确定的液相穴深度为冶金长度L冶;冶金长度是连铸机的重要结构参数,决定着连铸机的生产能力,也决定了铸机半径或高度,对二次冷却区和矫直区结构以及铸坯的质量都会产生重要影响;13-4 中间包冶金的含义是什么中间包,位于钢包与结晶器之间,起着减压、稳流、去渣、储钢、分流等作用;现代连铸的应用和发展过程中,中间包的作用越来越重要,其内涵不断扩大,从而形成了一个独特领域;13-6 “负滑脱”的含义是什么,浇注速度提高后可采取哪些措施来解决坯壳与结晶器壁的粘接问题含义:振动过程中结晶器下行速度大于拉坯速度措施:使用新型保护渣,采用非正弦振动;13-8 什么是凝固偏析,生产工艺中可采取哪些措施来控制偏析的产生凝固结构中溶质浓度分布不均匀,最先凝固的部分溶质含量较低,而最后凝固的部分溶质含量则很高;措施:增加钢液冷凝速度;合适的铸坯断面;采用各种方法控制钢液的流动;工艺因素;降低钢液中S、P含量;电磁搅拌;凝固末端的轻压下技术;13-11连铸坯产生内部裂纹的根本原因是什么,有哪些具体措施可以减少因应力造成的裂纹从结晶器下口拉出带液芯的铸坯,在弯曲、矫直和压辊的压力作用下,由于凝固前沿薄弱的固液界面上沿一次树晶或等轴晶界裂开;采用压缩浇注技术、采用多点矫直技术、连续矫直技术;二冷区压辊辊距要合适、对弧要准;二冷区冷却水分配要适当,保持铸坯表面温度均匀;拉辊的压下量要合适;应力集中合理的陪睡和合适的冷却制度,以使铸呸的表面温度避开高温下的脆性区间,冷却要均匀,防止回热;13—13什么是浇注温度,如何确定连铸的浇注温度是指中间包内的钢水温度;浇注温度Tc由下式确定:Tc=Tl+△TTl——钢水的液相线温度;它取决于钢水所含元素的性质和含量;可根据铁与各元素间相图或查有关手册进行计算;△T——钢水过热度;该值要根据浇注的钢种、铸坯断面、生产实际条件等多种因素确定;一般取值范围为5—40℃,钢水流动性好、浇注过程温降小、铸坯断面大则取下限,反之亦然;如高碳钢小方坯连铸,可取15—25℃,不锈钢小方坯连铸则应取25—35℃;13-14 连铸保护渣的冶金功能是什么,其在结晶器中体现出什么样的结构特征功能:绝热保温;隔绝空气;吸收非金属夹杂物,净化钢液;在铸坯凝固坯壳与结晶器内壁之间形成融化渣膜;改善了结晶器与坯壳间的传热;保护渣有三层结构:液渣层、烧结层、粉渣层;形成的渣膜也为三层:冷凝式呈玻璃态或极细晶粒固体层、中间液体-晶体共存层、凝固坯壳侧液态层;。
第一部分基本概念及定义1. 高炉法:传统的以焦炭为能源,与转炉炼钢相配合,组成高炉—转炉—轧机流程,被称为长流程,是目前的主要流程。
2. 非高炉法:泛指高炉以外,不以焦炭为能源,通常分为直接还原和熔融还原,一般与电炉配合,组成直接还原或熔融还原—电炉—轧机流程,被称为短流程,是目前的辅助流程。
3. 钢铁联合企业:将铁矿石在高炉内冶炼成生铁,用铁水炼成钢,再将钢水铸成钢锭或连铸坯,经轧制等塑形变形方法加工成各种用途的钢材。
4. 高炉有效容积:由高炉出铁口中心线所在平面到大料钟下降位置下沿水平面之间的容积。
5. 铁矿石:凡是在一定的技术条件下,能经济提取金属铁的岩石。
6. 富矿:一般含铁品位超过理论含铁量70%的矿,对于褐铁矿、菱铁矿及碱性脉石矿含铁量可适当放宽。
7. 还原性能:矿石中铁结合的氧被还原剂夺取的难易程度。
主要取决于矿石的致密程度、空隙及气孔分布状态。
一般还原性好,碳素燃料消耗量低。
8. 熔剂:由于高炉造渣的需要,入炉料中常需配加一定数量的助熔剂,该物质就称为熔剂。
9. 耐火度:抗高温熔化性能的指标,用耐火锥变形的温度表示,它表征耐火材料的热性质,主要取决于化学组成、杂质数量和分散程度。
实际使用温度要比耐火度低。
10. 荷重软化点:在施加一定压力并以一定升温速度加热时,当耐火材料塌毁时的温度。
它表征耐火材料的机械特性,耐火材料的实际使用温度不得超过荷重软化点。
11. 耐急冷急热性(抗热震性):是指在温度急剧变化条件下,不开裂、不破碎的性能。
12. 抗蠕变性能:荷重工作温度下,形变率。
13. 抗渣性:在使用过程中抵御渣化的能力。
14. 高炉有效容积利用系数(吨/米·日)=合格生铁折合产量/(有效容积×规定工作日)。
15. 入炉焦比:干焦耗用量/合格生铁产量(Kg/t),一般250~550Kg/t。
16. 冶炼强度:干焦耗用量/(有效容积×实际工作日),t/m3·h。
备课笔记绪论一、本课程主要内容金属材料可分为五类,即钢铁材料、非铁金属材料、金属功能材料、金属间化合物材料和金属基复合材料,本课程学习前两类金属材料,其余的金属材料在别的课程中学习。
1、钢铁材料(1)合金化原理①合金元素在钢中与Fe,C的相互作用。
②合金元素在相变中的作用。
(2)各类钢铁材料2、非铁金属材料介绍铜合金、铝合金、镁合金、钛合金的特点及应用。
二、研究思路使用条件→性能要求→组织结构→化学成分↑生产工艺1、化学成分:碳含量;合金元素种类及含量。
2、生产工艺:(1) 材料生产的全过程。
(2) 不同钢种生产过程中的特殊问题。
如工程结构钢的带状组织,轴承钢的夹杂物,高碳钢的碳化物不均匀性等。
(3) 不同钢种的热处理特点。
不同的合金元素,对淬火加热温度、冷却方式、回火温度、回火冷却方式等热处理工艺制度的不同影响。
3、金属材料的性能金属材料,尤其是钢铁材料,之所以对人类文明发挥那样重要的作用,一方面是由于它本身具有比其它材料远为优越的性能;另一方面是由于它那始终孕育着在性能方面以及数量、质量方面的巨大潜在能力,能随着日益增长的要求,不断更新、发展。
(1) 使用性能:金属材料在使用时抵抗外界作用的能力。
①力学性能:如强度、塑性、韧性等。
②化学性能:如抗腐蚀、抗氧化等。
③物理性能:如电磁性能等。
(2) 工艺性能:金属材料适应实际生产工艺要求的能力。
主要包括:铸造性;锻造性;深冲性;冷弯性;切削性;淬透性;焊接性等。
如建造九江长江大桥15MnVN钢的焊接性。
使用性能是保证能不能使用,而工艺性能是保证能不能生产和制造的问题。
两者既有联系又有不同,有时是一致的,有时互相矛盾。
例如,一些要求高强度、高硬度、耐高温的材料,常给铸造、压力加工、机械加工带来困难,有时甚至否定材料。
因此,一方面需要改进加工工具或加工制作方法,另一方面要改善材料的工艺性能。
如含铜时效钢06MnNiCuNb,用于制造大型舰船,采用厚板焊接,要求淬透性好,强韧性好,可焊性好,采用低碳加铜时效。
第一章一、解:1.滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象, 称为滞弹性。
2. 塑性:在给定载荷下,材料产生永久变形的特性。
3•解理台阶:解理裂纹与螺型位错相交形成解理台阶。
4. 河流状花样:解理裂纹与螺型位错相遇后,沿裂纹前端滑动二相互汇合,同号台阶相互汇合长大,当汇合台阶足够大时,便成为河流状花样。
5. 强度:材料在外力作用下抵抗永久变形和断裂的能力称为强度。
二、解:1.E :弹性模量。
2. d 0.2 :屈服强度3. b b :抗拉强度4. £ :条件应变或条件伸长率。
三、解:由d m= ( E Y s/ao)?得:丫s= d m2 • ao/E ①将代入d c= (2E • 丫s/ JI a)?=d m- ( 2*ao/刃*a)=504MPA.四、解:由题中所给式子知:⑴:材料的成分增多,会引起滑移系减少、孪生、位错钉插等,材料越容易断裂;⑵:杂质:聚集在晶界上的杂质越多,材料越容易断裂;⑶:温度:温度降低,位错摩擦阻力越大,所以材料越容易断裂;⑷、晶粒大小:晶粒越小,位错堆积越少,晶界面积越大,材料韧性越好,所以不容易断裂;⑸、应力状态:减小切应力与正应力比值的应力状态都会使材料越容易断裂;⑹、加载速率:加载速率越大,材料越容易断裂五、解:两者相比较,前者为短比例式样,后者为长比例式样,而对于韧性金属材料,比例试样尺寸越短,其断后伸长率越大,所以 d 5大于d 10.第二章作业题1应力状态软性系数:按“最大切应力理论”计算的最大切应力与按“相当最大正应力理论”计算的最大正应力的比值。
2缺口效应:截面的急剧变化产生缺口,在静载荷作用下,缺口截面上的应力状态将发生变化,产生缺口效应,影响金属材料的力学性能。
3布氏硬度:用一定直径的硬质合金球做压头,施以一定的试验力,将其压入试样表面,经规定保持时间后卸除,试样表面残留压痕。
HBW通过压痕平均直径求得。
钢铁绪论1、根据Fe-C相图,写出冷却过程中三相恒温转变反应式,并说明转变后的组织的性能特点。
(1)包晶转变。
L+δ→γ (1495 °C) 生成w(C)=0.17%的γ相即奥氏体A。
[奥氏体性能]:具有一定的强度和硬度(σb=400 MPa,170~220HBS),塑性和韧性也好(δ=40%~50%)。
奥氏体是一种高温组织,稳定存在的温度范围为727~1394℃,显微组织为多边形晶粒,晶粒内常可见到孪晶(昌粒的平行的直线条),生产中利用奥氏体塑性好的特点,常将钢加热到高温奥氏体状态进行塑性加工。
(2)共晶转变。
L→γ+ Fe3C (1148°C) 共晶转变产物共晶体(γ+Fe3C)是奥氏体与渗碳体的机械混合物,称为莱氏体,用符号Ld表示。
[莱氏体性能]:莱氏体的力学性能与渗碳体相似,硬度很高,塑性极差,几乎为零。
(3)共析转变。
γ→α+ Fe3C (727°C) 转变产物是铁素体与渗碳体的机械混合物(α+Fe3C),称为珠光体,符号为P。
[珠光体性能]:力学性能介于铁素体与渗碳体之间,强度较高,硬度适中,塑性和韧性较好(σb=770MPa、180HBS、δ=20%~35%、AKU=24~32J)。
2、请说明铁碳合金中基本物相铁素体和渗碳体的性能特点。
铁素体的力学性能特点是塑性、韧性好,而强度、硬度低。
(δ=30%~50%,AKU=128~160J)σb=180~280MPa,50~80HBS)。
渗碳体的力学性能特点是硬度高,脆性大,塑性几乎为零。
渗碳体是钢中的强化相,根据生成条件不同渗碳体有条状、网状、片状、粒状等形态,它们的大小、数量、分布对铁碳合金性能有很大影响。
第一章合金化1.试述合金元素在钢中分布规律及合金元素的分类。
合金元素在钢中的分布:①溶入铁素体、奥氏体和马氏体中,以固溶体的形式存在。
②形成强化相,如溶入渗碳体形成合金渗碳体,形成特殊碳化物和金属间化合物等。
③形成非金属夹杂物,如合金元素与O、N、S作用形成氧化物、氮化物和硫化物。
④有些元素如Pb、Cu等既不溶于铁,也不形成化合物,而在钢中以游离态存在。
分类:按与铁相互作用的特点分:①奥氏体形成元素,如C、N、Cu、Mn、Ni、Co等;②铁素体形成元素,如Cr、V、Si、Al、Ti、Mo、W等。
按与碳相互作用分①非碳化合物形成元素,如Ni、Cu、Si、Al、P等;②碳化物形成元素,如Cr、Mo、V、Ti、Zr、Nb等。
按对奥氏体层错能影响分①提高奥氏体层错能的元素,如Ni、Cu、C等;②降低奥氏体层错能的元素,如Mn、Cr、Ru、Ir等。
2.讨论过渡族金属的结构特性及其在钢中形成碳化物的规律。
答:过渡族金属大多为体心立方和面心立方结构或六方密排结构,其内部电子构造为dxs2,d电子层未填满。
在每一周期,随着过渡族金属原子序数的增大,金属d层电子数填满程度增大。
d层愈未填满,则金属与碳的结合力愈增强。
因而,在每一周期,随着过渡族金属原子序数的增大,金属与碳的结合力或结合强度将逐步下降,所形成的碳化物的稳定性下降。
过渡族金属,沿周期自左向右(即从Ti到Ni),d层和s层电子填满程度增大,发生从体心立方点阵到面心立方或六方密排点阵的过渡。
第IV与V族金属的碳化物具有简单的NaCl型面心立方点阵,而VI族的碳化物则是复杂六方点阵。
铬碳化物Cr23C6和所有锰和铁的碳化物(VII~VIII族)则具有复杂立方、复杂六方和正交晶系的点阵。
形成规律:当rC/rM>0.59时,形成复杂点阵结构。
Cr、Mn、Fe是属于这一类的元素,它们形成Cr7C3、Cr23C6、Fe3C、Mn3C等形式的碳化物。
当rC/rM<0.59时,形成简单点阵结构,又称为间隙相。
金属原子一般形成具有配位数12的六方晶系或立方晶系,碳原子在金属原子所形成的晶体点阵中没有固定的位置,它们填充于晶体点阵的间隙中。
属于这类型的元素有Mo、W、V、Ti、Nb、Zr等,它们形成的碳化物有VC、TiC、NbC等MC型,Mo2C、W2C等M2C型。
3.有哪些合金元素强烈阻止奥氏体晶粒的长大?阻止奥氏体晶粒长大有什么好处?Ti、V、Zr、Nb等强碳化合物形成元素强烈阻止奥氏体晶粒长大,起到细化晶粒的作用。
4. 总结合金元素对过冷奥氏体分解过程的影响。
答:合金元素可以使钢的C曲线发生显著变化。
几乎所有的合金元素(除Co外)都使C曲线向右移动,即减慢珠光体类型转变产物的形成速度。
C曲线右移的结果,降低了钢的临界冷却速度,提高了钢的淬透性。
合金元素对淬透性影响的大小取决于该元素的作用强度(单位含量对淬透性的提高量)及其可能的溶解量。
这样,钢中最常用的提高淬透性的元素主要有以下六种:Cr、Mn、Mo、Si、Ni、B。
合金元素只有当淬火加热溶入奥氏体中时,才能起到提高淬透性的作用。
含Cr、Mo、W、V等强碳化物形成元素的钢,若淬火加热温度不高、保温时间较短、碳化物未溶解时,非但不能提高淬透性,反而会由于未溶碳化物粒子能成为珠光体转变的核心,使淬透性下降。
除Co、Al以外,所有的合金元素都使马氏体转变温度下降,,而使残余奥氏体增多。
5.为什么一般钢的强化工艺都采用淬火-回火?将钢加热到相变温度以上,保温一定时间,然后快速冷却以获得马氏体组织的热处理工艺称为淬火。
淬火时钢的重要强化方法,其本质是马氏体转变。
钢件淬火后,为了消除内应力并获得所要求的组织和性能,将其加热到Ac1以下的某一温度,保温一段时间,然后冷却至室温的热处理工艺叫做回火。
淬火钢一般不能直接使用,必须进行回火。
这是因为:第一,淬火后得到的是性能很脆的马氏体组织,并存在有内应力,容易产生变形和开裂;第二淬火马氏体和残余奥氏体都是不稳定组织,在工作中会发生分解,导致零件尺寸的变化,这对于精密零件是不允许的;第三。
为了获得要求的强度、硬度、韧性和塑性,以满足零件的使用要求。
6.总结合金元素对钢强韧性的影响规律。
答:(1)合金元素加入钢中,首要的目的是提高淬透性,保证在淬火时容易获得马氏体。
(2)合金元素加入的第二个目的是提高钢的回火稳定性,使钢回火时析出的碳化物更细小。
均匀和稳定;并使马氏体的微细晶粒及高密度位错保持到较高温度。
这样,在相同韧性的条件下,合金钢比碳钢具有更高的强度。
此外,有些合金元素还可使钢产生二次硬化,得到良好的高温性能。
Mo、W、V、Al等元素可稍微减弱第一类回火脆性,而Mn、Cr则促进这类回火脆性。
加入Si、Cr等可使回火脆性的温度向高温方向推移。
加入合金元素W、Mo可防止第二类回火脆性。
(3)合金元素通过置换固溶强化机制,能够直接提高钢的强度,但作用有限。
固溶到铁素体中的元素,可起到固溶强化的作用。
固溶强化的强化量(屈服强度的增量)与溶质原子的浓度有关。
间隙式溶质原子(如钢中的C、N等)所产生的强化增量,大致与溶质浓度的平方根成正比;置换式溶质原子(如钢中的Ni、Mn、Si、Cr等)所造成的强化量,大致与与溶质浓度之间成线性关系。
间隙式溶质原子强化作用较置换式溶质原子大10~100倍以上。
其中C、N 的强化效果最大;P的强化效果也很显著,但它增大钢的冷脆性;一般以Mn、Si等为强化元素较适宜。
合金元素在强化铁素体的同时,将促进其产生脆性断裂。
在置换型合金元素处于低浓度范围时,许多元素开始稍稍降低T50而当含量增大时,将逐步升高T50。
只有Ni不同于其它元素,在所有浓度情况下,均降低铁素体的断口转折温度。
合金浓度界限,对V和Cr是<1%,对Si<0.8%,对Mn<2%。
Ni、Mn是改善钢基体韧性的两个主要元素。
(4)加入低浓度的强碳化物形成元素Nb、Ti、V和Al,可细化晶粒,提高强度同时也改善韧性。
第二章工程构件用钢1、叙述构件用钢一般的服役条件、加工特点和性能要求。
服役条件:工程结构件长期受静载荷;互相无相对运动;受大气(海水)侵蚀;有些构件受疲劳冲击;一般在-50~100℃范围内使用;加工特点:由构件用钢的基本要求和加工工艺决定的,焊接是构成金属结构的常用方法,一般都要经过如剪切、冲孔、热弯、深冲等成型工艺;性能要求:(1)足够的强度和韧度(2)良好的焊接性和成型工艺性(3)良好的耐腐蚀性及低的冷脆转变温度2、为什么低合金高碳钢用锰作为主要的合金元素?1)Mn的作用是强化铁素体;降低A3温度,有轻微化铁素体晶粒的作用;增加珠光体的量。
(2)低合金高强度钢的基本成分应考虑低碳,稍高的锰含量,并适当用硅强化。
3、在低合金高强度工程结构钢中大多采用微合金元素(Nb、Ti、V等),它们的主要作用是什么?答:(1)细化晶粒细化晶粒可以是强度提高又可以是韧性变好,是最经济最有效的改善钢的性能的方法之一。
(2)组织奥氏体晶粒长大在锻造和轧制过程中,会发生晶粒长大现象。
析出碳,氮化合物弥散分布。
(3)。
沉淀强化微合金钢中的沉淀强化相主要是低温下析出的Nb,和Vc(4)改变钢的显微组织在轧制加热过程中溶于奥氏体的微合金元素提高了过冷奥氏体的稳定性,降低了发生先共析铁素体和珠光体的温度范围,降低了发生先共析铁素体和珠光体组织更细小,并使相间沉淀Nb(C.N)和V(C.N)的粒子更细小另,由于Nb、V、Ti的微合金化可以生成弥散的碳化物、氮化物和碳氮化物,它们能钉扎晶界,加热时能阻止A晶粒长大,冷却后可得到细小的F和P,所以在低合金高强度钢中,常利用Nb、V、Ti合金来细化晶粒。
第三章机器零件用钢1、机器零件用钢和构件用钢对使用性能和工艺性能上的要求有什么不同?机器零件用钢以力学性能为主,工艺性能力辅。
其力学性能具体要求如下:(1)较高的疲劳强度或耐久强度。
(2)具有高的屈服强度、抗拉强度以及较高的断裂抗力。
(3)具有良好的耐磨性和接触疲劳强度。
(4)具有较高的韧性。
工艺性能要求:良好的切削加工性能和热处理性能。
构件用钢以工艺性能为主,以力学性能为辅。
(1)工艺性能要求:良好的冷变形性能和焊接性能;(2)力学性能要求:①弹性模量大,以保证构件有更好的刚度。
②有足够的抗塑性变形及抗破断的能力。
③缺口敏感性及冷脆转变性小。
④具有一定的耐大气腐蚀与耐海水腐蚀的性能。
1、构件用钢(1)构件用钢使用性能a、力学性能:保证构件有相当的强度、刚度和足够的塑性变形能力。
σb/σs较大且δ、ψ较大时,一般对缺口的敏感性和冷脆倾向较小。
b、化学稳定性:材料有一定的耐大气、海水等环境腐蚀能力。
(2)工艺性能:构件在使用时常常有冷变形、焊接成形及连接要求,故必须要求具有良好的冷变形和焊接性能。
机械零件用钢机器零件用钢的主要工艺性能:以切削加工性能和热处理工艺性能使用性能:零件用钢以力学性能为主,工艺性能力辅。
其力学性能具体要求如下:(1)机器零件在常温或温度波动不大的条件下,承受反复同向或反复交变载荷作用,因而要求机器零件用钢应有较高的疲劳强度或耐久强度。