人教版高数选修2-2第8讲:数学归纳法(学生版)
- 格式:doc
- 大小:1.12 MB
- 文档页数:9
庖丁巧解牛知识·巧学一、数学归纳法一般地,证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0时命题成立;(2)(归纳推理)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.上述证明方法叫做数学归纳法.深化升华①数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须是真实可靠的;它的第二步称为递推步骤,是命题具有后继传递性的保证,即命题只要对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法.这两步各司其职,缺一不可.特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性.如果没有第一步而仅有第二步,命题也有可能是假命题.②数学归纳法的优点是克服了完全归纳法的繁杂、不可行的缺点,又克服了不完全归纳法结论不可靠的不足,是一种科学的方法,使我们认识到由繁到简,由特殊到一般,由有限到无穷的数学思想.知识拓展归纳法由一系列有限的特殊事例得出一般结论的推理方法,通常叫做归纳法,根据考察的对象是全部还是部分,归纳法又分为完全归纳法与不完全归纳法.二、数学归纳法的主要应用1.用数学归纳法证明不等式问题对与正整数有关的不等式的证明,如果用其他的方法比较困难,此时可考虑利用数学归纳法证明.使用数学归纳法的难点在第二个步骤上,这时除了一定要运用归纳假设外,还要较多地运用不等式的证明等其他方法,对所要证明的不等式加以变形,寻求其与归纳假设的联系是问题的突破口.要点提示在数学归纳法中,由n=k时成立推证n=k+1时也成立是关键和难点,在推证时一般要用到比较法、放缩法、配凑法、分析法等.2.用数学归纳法证明整除问题对于整数a,b,如果a=b·c,c为整数,则称a能被b整除;对于多项式A,B,如果A=B·C,C为整式,则称A能被B整除.由多项式的定义容易得出:对多项式A,B,C,P,如果A能被C整除,那么PA也能被C整除;如果A,B能被C整除,那么A+B或A-B也能被C整除.疑点突破用数学归纳法证明整除问题,P(k) P(k+1)的整式变形是难点,找出它们之间的差异,从而决定n=k时,P(k)做何种变形是关键的一步.一般地,将n=k+1时P(k+1)的整式分拆配凑成P(k)的形式,再利用归纳假设和基本事实,这个变形是难点.3.用数学归纳法证明几何问题用数学归纳法证明几何问题时,难点就是在P(k) P(k+1)递推时,找出从n=k到n=k+1时的递推公式,这是关键所在.方法点拨分析增加一条曲线或直线后,点、线段、曲线段、平面块在P(k)的基础上增加了多少,就能找出相应的递推关系.问题·探究问题有两堆棋子数目相等,均为n颗,两人做游戏,轮流取子,规定每人可在其中任一堆里每次取走若干颗,但不能不取,也不能同时从两堆里取,直至取尽,取到最后一颗棋子者为胜者.你能用数学知识证明后者取胜吗?思路:这是一个与正整数有关的问题,所以可以考虑利用数学归纳法来处理.探究:(1)当n=1时,即两堆中,每堆各一颗,先取者只能在其中一堆里取一颗,则另一堆的一颗是最后一颗,由后者取得,问题得证.(2)假设当n≤k 时,命题正确,即后者取胜;那么当n=k+1时,若先取者取走l 颗棋子(1≤l≤k+1),这样一堆还剩下(k+1-l)≤k 颗,另一堆仍有k+1颗,这时候取者可在较多的一堆里也取走l 颗,使两堆棋子数保持相等,且都不大于k.由归纳假设推得后者取胜.由(1)(2)可知对于任意自然数n,后取者都能得胜.典题·热题例1用数学归纳法证明:(n+1)(n+2)…(n+n)=2n ·1·3·…·(2n -1),其中n ∈N *.思路分析:用数学归纳法证明一个与正整数有关的命题时,关键是第二步,要注意当n=k+1时,等式两边的式子与n=k 时等式两边的式子的联系,增加了哪些项或减少了哪些项,问题就容易解决了.证明:(1)当n=1时,左边1+1=2,右边=21·1=2,等式成立.(2)假设当n=k 时,等式成立,即(k+1)(k+2)…(k+k)=2k ·1·3·…·(2k -1).则当n=k+1时,(k+2)…(k+1+k)(k+1+k+1)=(k+2)(k+3)…(k+k)(2k+1)(2k+2)=(k+1)(k+2)…(k+k)·2(2k+1)=2k ·1·3…(2k -1)·2(2k+1)=2k+1·1·3…(2k -1)(2k+1).即当n=k+1时,等式也成立.由(1)(2)可知对一切n ∈N *,等式成立.误区警示 当n=k+1时,等式的左边容易错写成(k+1)(k+2)…(k+k )(k+k+1).这时我们要注意式子(n+1)(n+2)…(n+n)的结构特征以及该式与n 之间的关系.例2求证:65312111>+++++n n n ,(n≥2,n ∈N *). 思路分析:本题在由n=k 到n=k+1的推证过程中应用了“放缩”的技巧,使问题简单化,这是利用数学归纳法证明不等式常用的方法之一.证明:(1)当n=2时,右边=6561514131>+++,不等式成立. (2)假设当n=k(k≥2,k ∈N *)时命题成立,即65312111>+++++k k k . 则当n=k+1时,)1(31231131312)1(11)1(1+++++++++++++k k k k k k )11331231131(312111+-+++++++++++=k k k k k k k 65)113313(65)11331231131(65=+-+⨯+>+-++++++>k k k k k k 所以当n=k+1时不等式也成立.由(1)(2)知原不等式对一切n≥2,n ∈N *均成立.深化升华 数学归纳法的应用通常与其他方法联系在一起,如比较法,放缩法,配凑法,分析法和综合法等.例3利用数学归纳法证明:(3n+1)·7n -1(n ∈N *)能被9整除.思路分析:第一步当n=1时,可计算(3n+1)·7n -1的值,从而验证它是9的倍数;第二步要设法变形成为“假设”+“9的倍数”的形式,进而论证能被9整除.证明:(1)当n=1时,(3×1+1)×71-1=27,能被9整除,所以命题成立.(2)假设当n=k(k ∈N *)时命题成立,即(3k+1)·7k -1能被9整除.那么当n=k+1时,[3(k+1)+1]·7k+1-1=(3k+4)·7k+1-1=(3k+1)·7k+1-1+3·7k+1=[(3k+1)·7k -1]+3·7k+1+6·(3k+1)·7k=[(3k+1)·7k -1]+7k (21+6×3k+6)=[(3k+1)·7k -1]+9·7k (2k+3).由归纳假设知(3k+1)·7k -1能被9整除,而9·7k (2k+3)也能被9整除,故[3(k+1)+1]·7k+1-1能被9整除.这就是说,当n=k+1时,命题也成立.由(1)(2)知对一切n ∈N *,(3n+1)·7n -1能被9整除.深化升华 涉及整除的问题,常利用提取公因式凑成假设、凑出整除式等方法,其中等价变换的技巧性往往较强.例4平面内有n(n≥2)条直线,其中任何两条不平行,任何三条不过同一个点,证明交点的个数f(n)等于2)1( n n . 思路分析:本例的关键是弄清增加一条直线能够增加多少个不同的交点,解此类问题时常运用几何图形的性质.证明:(1)当n=2时,两条直线的交点只有1个,又f(2)=21×2×(2-1)=1, 因此,当n=2时,命题成立.(2)假设当n=k(k≥2)时命题成立,就是说,平面内满足题设的任何k 条直线的交点的个数f(k)= 21k(k-1).现在来考虑平面内有k+1条直线的情况.任取其中的1条直线,记为l(如图2-3-1).图2-3-1由上面的假设,除l 以外的其他k 条直线的交点的个数为f(k)=21k(k-1).另外,因为已知任何两条直线不平行,所以直线l 必与平面内其他k 条直线都相交(有k 个交点);又因为已知任何三条直线不过同一点,所以上面的k 个交点两两不同,且与平面内其他的21k(k-1)个交点也两两不相同,从而平面内交点的个数为21k(k-1)+k=21k [(k-1)+2] =21(k+1)[(k+1)-1].这就是说,当n=k+1时,k+1条直线的交点个数f(k+1)=21(k+1)[(k+1)-1]. 根据(1)(2),可知命题对任何大于1的正整数都成立.拓展延伸 有n 个圆,其中每两个圆都相交于两点,并且每三个圆都不相交于同一点.求证:这n 个圆把平面分成f(n)=n 2-n+2个部分.思路分析:由k 到k+1时,研究第k+1个圆与其他k 个圆的交点的个数问题.证明:(1)当n=1时,即一个圆把平面分成2个部分,f(1)=2;又n=1时,n 2-n+2=2,所以命题成立.(2)假设n=k 时,命题成立,即k 个圆把平面分成f(k)=k 2-k+2个部分;那么设第k+1个圆记为⊙O,由题意,它与k 个圆中每个圆交于两点,又无三圆交于同一点,于是它与其他k 个圆相交于2k 个点.把⊙O 分成2k 条弧而每条弧把原区域分成2块,因此该平面的总区域增加2k 块,即f(k+1)=k 2-k+2+2k=(k+1)2-(k+1)+2,即n=k+1时命题成立.由(1)(2)知对任何n ∈N *命题均成立.深化升华 用数学归纳法证明这类几何问题,关键是弄清从k 到k+1的变化规律,也就是找出新增加的相应的元素的个数.例5(2006辽宁高考)已知函数f(x)=13++x x (x≠-1).设数列{a n }满足a 1=1,a n+1=f(a n ),数列{b n }满足b n =|a n 3-|,S n =b 1+b 2+…+b n (n ∈N *).(1)用数学归纳法证明b n ≤12)13(--n n; (2)证明S n <332. 思路分析:本题考查数列、等比数列、不等式等基础知识及运用数学归纳法解决有关问题的能力.证明:(1)当x≥0时,f(x)=1+12+x >1. ∵a 1=1,∴a n ≥1(n ∈N *). 下面用数学归纳法证明不等式b n ≤12)13(--n n. ①当n=1时,b 1=3-1,不等式成立.②假设当n=k 时,不等式成立,即b k ≤12)13(--k k, 那么b k+1=|a k+1-3|=k k k k k b a a 2)13(2131|3|)13(1+-≤-≤+-- 所以当n=k+1时,不等式也成立.根据①②可知不等式对任意n ∈N *都成立.(2)由(1)知b n ≤12)13(--n n.∴S n =b 1+b 2+…+b n ≤(3-1)+2131)213(1)13(2)13(2)13(12----∙-=-++--n n n 33221311)13(=--∙-<. 故对任意n ∈N *,S n <332.。
2.3 数学归纳法1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.1.数学归纳法证明一个与正整数n 有关的命题,可按下列步骤进行:第一步,归纳奠基:证明当n 取______________时命题成立.第二步,归纳递推:假设____________时命题成立,证明当________时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.上述证明方法叫做数学归纳法.数学归纳法的第一步中n 的初始值怎样确定? 【做一做1】 用数学归纳法证明1+a +a 2+…+a n +1=1-a n +21-a(a ≠1),在验证n =1时,等式左边为( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 3【做一做2】 设S k =1k +1+1k +2+1k +3+…+12k ,则S k +1为( )A .S k +12k +2B .S k +12k +1+12k +2C .S k +12k +1-12k +2D .S k +12k +2-12k +1【做一做3】 在应用数学归纳法证明凸n 边形的对角线有12n (n -3)条时,第一步验证n等于__________.2.数学归纳法的框图表示答案:1.第一个值n 0(n 0∈N *) n =k (k ≥n 0,k ∈N *) n =k +1 思考讨论提示:数学归纳法的第一步中n 的初始值应根据命题的具体情况而确定,不一定是n 0=1,如证明n 边形的内角和为(n -2)·180°时,其初始值n 0=3.【做一做1】 C 因为左边式子中a 的最高指数是n +1,所以当n =1时,a 的最高指数为2,根据左边式子的规律可得,当n =1时,左边=1+a +a 2.【做一做2】 C 因式子右边各分数的分母是连续正整数,则由S k =1k +1+1k +2+…+12k ,①得S k +1=1k +2+1k +3+…+12k +12k +1+12(k +1).②由②-①,得S k +1-S k =12k +1+12(k +1)-1k +1=12k +1-12(k +1).故S k +1=S k +12k +1-12(k +1),故选C. 【做一做3】 3 ∵三角形是边数最少的凸多边形, ∴需验证的第一个n 值为3. 2.n =n 0 n =k +1 正整数1.如何理解数学归纳法? 剖析:数学归纳法是专门证明与正整数集有关的命题的一种方法,它是一种完全归纳法,是对不完全归纳法的完善.证明分两步,其中第一步是命题成立的基础,称为“归纳奠基”;第二步解决的是延续性问题,又称“归纳递推”.运用数学归纳法证明有关命题应注意以下几点:(1)两个步骤缺一不可.(2)在第一步中,n 的初始值不一定从1取起,也不一定只取一个数(有时需取n =n 0,n 0+1等),证明应视具体情况而定.(3)第二步中,证明n =k +1时,必须使用假设,否则就会打破数学归纳法步骤间的严密逻辑关系,造成推理无效.(4)证明n =k +1成立时,要明确求证的目标形式,一般要凑出假设里给出的形式,以便使用假设,然后再去凑出当n =k +1时的结论,这样就能有效减少论证的盲目性.数学归纳法的理论根据是皮亚诺的归纳公理:任何一个正整数集A ,若①1∈A ;②由k ∈A 可推出k +1∈A ,则A 含有所有的正整数.2.运用数学归纳法要注意哪些?剖析:正确运用数学归纳法应注意以下几点: (1)验证是基础.数学归纳法的原理表明:第一个步骤是要找一个数n 0,这个n 0就是我们要证明的命题对象的最小自然数,这个自然数并不一定都是“1”,因此“找准起点,奠基要稳”是我们正确运用数学归纳法第一个要注意的问题.(2)递推是关键.数学归纳法的实质在于递推,所以从“k ”到“k +1”的过程,必须把归纳假设“n =k ”作为条件来导出“n =k +1”时的命题,在推导过程中,要把归纳假设用上一次或几次.(3)正确寻求递推关系.我们已经知道数学归纳法的第二步递推是至关重要的,那么如何寻求递推关系呢? ①在第一步验证时,不妨多计算几项,并争取正确写出来,这样对发现递推关系是有帮助的.②探求数列通项公式要善于观察式子或命题的变化规律,观察n 处在哪个位置.③在书写f (k +1)时,一定要把包含f (k )的式子写出来,尤其是f (k )中的最后一项.除此之外,多了哪些项,少了哪些项都要分析清楚.题型一 用数学归纳法证明等式 【例题1】 用数学归纳法证明:⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19⎝⎛⎭⎫1-116…⎝⎛⎭⎫1-1n 2=n +12n(n ≥2,n ∈N *). 分析:第一步先验证等式成立的第一个值n 0;第二步在n =k 时等式成立的基础上,等式左边加上n =k +1时新增的项,整理出等式右边的项.反思:在应用数学归纳法证题时应注意以下几点:①验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定为1.②递推是关键:正确分析由n =k 到n =k +1时式子项数的变化是应用数学归纳法成功证明问题的保障.③利用假设是核心:在第(2)步证明中一定要利用归纳假设,这是数学归纳法证明的核心环节,否则这样的证明方法就不是数学归纳法.题型二 用数学归纳法证明不等式【例题2】 已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1),(1)证明:a n ≥2n -1(n ∈N *). (2)试比较11+a 1+11+a 2+…+11+a n与1的大小,并说明理由. 分析:(1)求f ′(x )→得到式子a n +1≥(a n +1)2-1→利用数学归纳法证明a n ≥2n -1(n ∈N *)(2)由a n ≥2n -1得1+a n ≥2n →11+a n ≤12n →利用放缩法证明不等式成立 反思:利用数学归纳法证明与n 有关的不等式是数学归纳法的主要应用之一,应用过程中注意:①证明不等式时,从n =k 到n =k +1的推导过程中要应用归纳假设,有时需要对目标式进行适当的放缩来实现.②与n 有关的不等式的证明有时并不一定非用数学归纳法不可,还经常用到不等式证明中的比较法、分析法、配方法、放缩法等.题型三 用数学归纳法证明几何问题【例题3】 有n 个圆,其中每两个圆相交于两点,并且每三个圆都不相交于同一点,求证:这n 个圆把平面分成f (n )=n 2-n +2部分.分析:解答本题的关键是在第二步中如何正确地应用假设.反思:用数学归纳法证明几何问题的关键是“找项”,即几何元素从k 个变成(k +1)个时,所证的几何量将增加多少,这需用到几何知识或借助于几何图形来分析,在实在分析不出来的情况下,将n =k +1和n =k 分别代入所证的式子,然后作差,即可求出增加量,然后只需稍加说明即可,这也是用数学归纳法证明几何命题的一大技巧.题型四 易错辨析【例题4】 用数学归纳法证明:1+4+7+…+(3n -2)=12n (3n -1).错解:证明:(1)当n =1时,左边=1,右边=1,左边=右边,等式成立. (2)假设当n =k (k ≥1,k ∈N *)时等式成立,即1+4+7+…+(3k -2)=12k (3k -1),则当n =k +1时,需证1+4+7+…+(3k -2)+[3(k +1)-2]=12(k +1)(3k +2)(*).由于等式左边是一个以1为首项,公差为3,项数为k +1的等差数列的前n 项和,其和为12(k +1)(1+3k +1)=12(k +1)(3k +2),所以(*)式成立,即n =k +1时等式成立.根据(1)和(2),可知等式对一切n ∈N *都成立.错因分析:判断用数学归纳法证明数学问题是否正确,关键要看两个步骤是否齐全,特别是第二步假设是否被应用,如果没有用到假设,那就是不正确的.错解在证明当n =k +1等式成立时,没有用到假设“当n =k (k ≥1,k ∈N *)时等式成立”,故不符合数学归纳法证题的要求.答案:【例题1】 证明:(1)当n =2时,左边=1-14=34,右边=2+12×2=34,∴左边=右边.(2)假设n =k (k ≥2,k ∈N *)时结论成立,即⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19…⎝⎛⎭⎫1-1k 2=k +12k . 那么n =k +1时,利用归纳假设有:⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19…⎝⎛⎭⎫1-1k 2⎣⎡⎦⎤1-1(k +1)2=k +12k ⎣⎡⎦⎤1-1(k +1)2=k +12k ·k (k +2)(k +1)2 =k +22(k +1)=(k +1)+12(k +1).∴即n =k +1时等式也成立.综合(1)(2)知,对任意n ≥2,n ∈N *等式恒成立. 【例题2】 (1)证明:∵f ′(x )=x 2-1, ∴a n +1≥(a n +1)2-1=a 2n +2a n .①当n =1时,a 1≥1=21-1,命题成立;②假设当n =k (k ≥1,k ∈N *)时命题成立,即a k ≥2k -1; 那么当n =k +1时,a k +1≥a 2k +2a k =a k (a k +2)≥(2k -1)(2k-1+2)=22k -1≥2k +1-1.即当n =k +1时,命题成立, 综上所述,命题成立. (2)解:11+a 1+11+a 2+…+11+a n<1. ∵a n ≥2n -1,∴1+a n ≥2n .∴11+a n ≤12n . ∴11+a 1+11+a 2+…+11+a n≤12+122+…+12n =1-12n <1. 【例题3】 证明:(1)当n =1时,分为两部分,f (1)=2,命题成立; (2)假设n =k (k ≥1,k ∈N *)时,被分成f (k )=k 2-k +2部分;那么当n =k +1时,依题意,第k +1个圆与前k 个圆产生2k 个交点,第k +1个圆被截为2k 段弧,每段弧把所经过的区域分为两部分,∴平面上增加了2k 个区域.∴f (k +1)=f (k )+2k =k 2-k +2+2k =(k +1)2-(k +1)+2,即n =k +1时命题成立, 由(1)(2)知命题成立.【例题4】 正解:证明:(1)当n =1时,左边=1,右边=1,左边=右边,等式成立.(2)假设当n =k (k ≥1,k ∈N *)时等式成立,即1+4+7+…+(3k -2)=12k (3k -1),则当n =k +1时,1+4+7+…+(3k -2)+[3(k +1)-2]=12k (3k -1)+(3k +1)=12(3k 2+5k +2)=12(k +1)(3k +2)=12(k +1)[3(k +1)-1], 即当n =k +1时等式成立.根据(1)和(2),可知等式对一切n ∈N *都成立.1用数学归纳法证明3n≥n 3(n ≥3,n ∈N ),第一步应验证( ) A .n =1 B .n =2 C .n =3 D .n =42已知f (n )=11112n n n +++++ (21),则( ) A .f (n )共有n 项,当n =2时,f (2)=1123+B .f (n )共有n +1项,当n =2时,f (2)=111234++C .f (n )共有n 2-n 项,当n =2时,f (2)=1123+D .f (n )共有n 2-n +1项,当n =2时,f (2)=111234++3已知n 为正偶数,用数学归纳法证明1111234-+-+…+11n -=1112242n n n ⎛⎫++⋅⋅⋅+ ⎪++⎝⎭时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证( )A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立4设平面内有n 条直线,其中任何两条直线不平行,任何三条直线不共点.若k 条直线将平面分成f (k )个部分,k +1条直线将平面分成f (k +1)个部分,则f (k +1)=f (k )+__________.5用数学归纳法证明2222111111234n n+++⋅⋅⋅+<-(n ≥2,n ∈N *).答案:1.C 由题知,n 的最小值为3,所以第一步验证n =3是否成立,选C. 2.D 由题意知f (n )最后一项的分母为n 2, 故f (2)=2111232++,排除选项A ,选项C. 又f (n )=211101()n n n n n ++++++-…, 所以f (n )的项数为n 2-n +1项.故选D.3.B 因为假设n =k (k ≥2为偶数),故下一个偶数为k +2,故选B.4.k +1 第k +1条直线与原来的k 条直线相交,有k 个交点,这k 个交点把第k +1条直线分成k +1部分(线段或射线),这k +1部分把它们所在的平面区域一分为二,故平面增加了k +1部分.5.分析:证明:(1)当n =2时,左边=21124=,右边=11122-=. 因为1142<,所以不等式成立. (2)假设n =k (k ≥2,k ∈N *)时,不等式成立, 即2222111111234k k++++<-…, 则当n =k +1时,22222211111111234(1)(1)k k k k +++++<-+++… =22222(1)1(1)111(1)(1)(1)k k k k k k k k k k k k +-+++-=-<-+++ =111k -+. 所以当n =k +1时,不等式也成立.综上所述,对任意n ≥2的正整数,不等式都成立.。
励学国际学科学生讲义年级:上课次数:学员姓名:辅导科目:数学学科教师:宋冰洁课题数学归纳法课型□预习课□同步课■复习课□习题课授课日期及时段教学内容数学归纳法【要点梳理】要点一:数学归纳法的概念与原理1.数学归纳法的定义对于某些与自然数n有关的命题常常采用下面的方法来证明它的正确性:先证明当n取第一个值n0时命题成立;然后假设当n=k(k N*,k≥n0)时命题成立,证明当n=k+1时命题也成立这种证明方法就叫做数学归纳法要点诠释:即先验证使结论有意义的最小的正整数n0,如果当n=n0时,命题成立,再假设当n=k(k≥n0,k∈N*)时,命题成立.(这时命题是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于n0的正整数n0+1,n0+2,…,命题都成立.2.数学归纳法的原理数学归纳法是专门证明与正整数集有关的命题的一种方法,它是一种完全归纳法。
它的证明共分两步:①证明了第一步,就获得了递推的基础。
但仅靠这一步还不能说明结论的普遍性.在第一步中,考察结论成立的最小正整数就足够了,没有必要再考察几个正整数,即使命题对这几个正整数都成立,也不能保证命题对其他正整数也成立;②证明了第二步,就获得了递推的依据。
但没有第一步就失去了递推的基础.只有把第一步和第二步结合在一起,才能获得普遍性的结论。
其中第一步是命题成立的基础,称为“归纳基础”(或称特殊性),第二步是递推的证据,解决的是延续性问题(又称传递性问题)。
3.数学归纳法的功能和适用范围1.数学归纳法具有证明的功能,它将无穷的归纳过程根据归纳公理转化为有限的特殊演绎(直接验证和演绎推理相结合)过程.2. 数学归纳法一般被用于证明某些与正整数n(n取无限多个值)有关的数学命题。
但是,并不能简单地说所有与正整数n有关的数学命题都可使用数学归纳法证明。
要点二:运用数学归纳法的步骤与技巧1.用数学归纳法证明一个与正整数有关的命题的基本步骤:(1)证明:当n取第一个值n0(如n0=1或2等)命题正确;(2)假设当n=k(k∈N*,且k≥n0)时命题成立,以此为前提,证明当n=k+1时命题也成立.根据(1),(2)可以断定命题对于一切从n0开始的所有正整数n都成立.要点诠释:(1)不要弄错起始n0:n0不一定恒为1,也可能n0=2或3(即起点问题).(2)项数要估算正确:特别是当寻找n=k与n=k+1的关系时,项数的变化易出现错误(即跨度问题).(3)必须利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就过不去了,整个证明过程也就不正确了(即伪证问题).(4)切忌关键步骤含糊不清:“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”是数学归纳法的关键一步,也是证明问题最重要的环节,推导的过程中要把步骤写完整,另外要注意证明过程的严谨性、规范性(即规范问题).2.用数学归纳法证题的关键:运用数学归纳法由n=k到n=k+l的证明是证明的难点,突破难点的关键是掌握由n=k到n=k+1的推证方法.在运用归纳假设时,应分析由n=k到n=k+1的差异与联系,利用拆、添、并、放、缩等手段,或从归纳假设出发,或从n=k+1时分离出n=k时的式子,再进行局部调整;也可以考虑二者的结合点,以便顺利过渡.要点三:用数学归纳法证题的类型:1.用数学归纳法证明与正整数n 有关的恒等式...对于证明恒等的问题,在由证等式也成立时,应及时把结论和推导过程对比,也就是我们通常所说的两边凑的方法,以减小计算的复杂程度,从而发现所要证明的式子,使问题的证明有目的性. 2.用数学归纳法证明与正整数n 有关的整除性问题.....用数学归纳法证明整除问题时,由到时,首先要从要证的式子中拼凑出假设成立的式子,然后证明剩余的式子也能被某式(数)整除,这是数学归纳法证明问题的一大技巧。
第8讲 选修2-2复习小结一.基础知识回顾 (一)推理与证明1.归纳与内比:(1)归纳推理:从 中推演出 的结论的推理.归纳推理是由 到 、由 到 的推理.由归纳推理得到的结论 成立。
(2)类比推理:根据两个(或两类)对象之间在某些方面的 或 ,推演出它们在其他方面也 或 的推理.类比推理是由 到 的推理.由类比推理得到的结论 成立。
我们把 和 统称为 (3)演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由 到 的推理.(4)“三段论”是演绎推理的一般模式,包括:①大前提: ;②小前提 ;③结论 .2.数学证明方法:(1)综合法:①定义: ②框图表示:P ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→…→Q n ⇒Q (其中P 表示已知条件、已有的定义、公理、定理等,Q 表示要证明的结论).(2)分析法①定义: ②框图表示:Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件.(3)反证法:①定义:在证明数学命题时,先假定 成立,在这个前提下,若推出的结果与定义、公理、定理相矛盾,或与命题中的已知条件相矛盾,或与假定相矛盾,从而说明原命题成立,由此断定命题的结论成立,这种证明方法叫作反证法.② 反证法的证题步骤:(1)假设: ;(2)正确推理, ;(3)否定假设, .(4)数学归纳法:证明一个与 有关的命题,可按下列步骤进行:①(归纳奠基)证明当n 取 时命题成立;②(归纳递推)假设 .那么,命题对于从n 0开始的所有正整数n 都成立. (二)导数及其应用1.函数的平均变化率:一般地,已知函数y =f(x),x 0,x 1是其定义域内不同的两点,记Δx= 0,Δy =y 1-y 0= ,则当Δx≠0时,商 =ΔyΔx称作函数y =f(x)在区间[x 0,x 0+Δx](或[x 0+Δx ,x 0])的平均变化率. 2.函数y =f(x)在x =x 0处的导数:(1)定义:函数y =f(x)在点x 0处的瞬时变化率 通常称为f(x)在x =x 0处的导数,并记作 ,即 . (2)几何意义:函数f(x)在点x 0处的导数f′(x 0)的几何意义是过曲线y =f(x)上点(x 0,f(x 0))的 .导函数y =f′(x)的值域即为 . 3.函数f(x)的导函数:如果函数y =f(x)在开区间(a ,b)内每一点都是可导的,就说f(x)在开区间(a ,b)内可导,其导数也是开区间(a ,b)内的函数,又称作f(x)的导函数,记作 . 4.基本初等函数的导数公式表(右上表) 5.导数运算法则:(1)[f(x)±g(x)]′= ;(2)[f(x)g(x)]′= ; (3)⎣⎢⎡⎦⎥⎤′= [g(x)≠0].(4)复合函数的求导法则:设函数u =φ(x)在点x 处有导数u x ′=φ′(x),函数y =f(u)在点x 处的对应点u 处有导数y u ′=f′(u),则复合函数y =f(φ(x))在点x 处有导数,且y′x =y′u ·u′x ,或写作f′x (φ(x))=f′(u)φ′(x). 5.导数和函数单调性的关系:(1)若f′(x)>0在(a ,b)上恒成立,则f(x)在(a ,b)上是 函数,f′(x)>0的解集与定义域的交集的对应区间为 区间;(2)若f′(x)<0在(a ,b)上恒成立,则f(x)在(a ,b)上是 函数,f′(x)<0的解集与定义域的交集的对应区间为 区间(3)若在(a ,b)上,f′(x)≥0,且f′(x)在(a ,b)的任何子区间内都不恒等于零⇔f(x)在(a ,b)上为 函数,若在(a ,b)上,f′(x)≤0,且f′(x)在(a ,b)的任何子区间内都不恒等于零⇔f(x)在(a ,b)上为 函数.6.函数的极值:(1)判断f(x 0)是极值的方法:一般地,当函数f(x)在点x 0处连续时,①如果在x 0附近的左侧 ,右侧 ,那么f(x 0)是极大值;②如果在x 0附近的左侧 ,右侧 ,那么f(x 0)是极小值.(2)求可导函数极值的步骤①求f′(x);②求方程 的根;③检查f′(x)在方程 的根左右值的符号.如果左正右负,那么f(x)在这个根处取得 ;如果左负右正,那么f(x)在这个根处取得 . 7.函数的最值:(1)函数f(x)在[a ,b]上必有最值的条件如果函数y =f(x)的图象在区间[a ,b]上 ,那么它必有最大值和最小值.(2)求函数y =f(x)在[a ,b]上的最大值与最小值的步骤:①求函数y =f(x)在(a ,b)内的 ;②将函数y =f(x)的各极值与 比较,其中最大的一个是最大值,最小的一个是最小值. (三)定积分1.定积分的几何意义:如果在区间[a ,b]上函数f(x)连续且恒有f(x)≥0,那么函数f(x)在区间[a ,b]上的定积分的几何意义是直线 所围成的曲边梯形的 .2.定积分的性质(1)ʃb a kf(x)dx = (k 为常数);(2)ʃba [f 1(x)±f 2(x)]dx = ;(3)ʃba f(x)dx = .3.微积分基本定理:一般地,如果f(x)是区间[a ,b]上的连续函数,并且F′(x)=f(x),那么ʃba f(x)dx =F(b)-F(a),这个结论叫做 ,为了方便,我们常把F(b)-F(a)记成 ,即ʃb a f(x)dx =F(x)|ba =F(b)-F(a).4.定积分在几何中的应用:(1)当x ∈[a ,b]且f(x)>0时,由直线x =a ,x =b (a≠b),y =0和曲线y =f(x)围成的曲边梯形的面积S = (2)当x ∈[a ,b]且f(x)<0时,由直线x =a ,x =b (a≠b),y =0和曲线y =f(x)围成的曲边梯形的面积S = .(3)当x ∈[a ,b]且f(x)>g(x)>0时,由直线x =a ,x =b (a≠b)和曲线y =f(x),y =g(x)围成的平面图形的面积S = .(4)若f(x)是偶函数,则ʃa -a f(x)dx =2ʃa0f(x)dx ;若f(x)是奇函数,则 .5.定积分在物理中的应用:(1)匀变速运动的路程公式:做变速直线运动的物体所经过的路程s ,等于其速度函数v =v(t)[v(t)≥0]在时间区间[a ,b]上的定积分,即s =ʃba v(t)dt .(2)变力做功公式:一物体在变力F(x)(单位:N)的作用下做直线运动,如果物体沿着与F 相同的方向从x =a 移动到x =b (a<b)(单位:m),则力F 所做的功W =ʃba F(x)dx . (四)复数的引入1.数系的扩充:数系扩充的脉络是:符号表示为 ,2.复数的有关概念:(1)复数的概念:形如a +bi (a ,b ∈R )的数叫复数,其中a ,b 分别是它的 和 .(2)复数的分类:若 ,则a +bi 为实数,若 ,则a +bi 为虚数,若 ,则a +bi 为纯虚数.(3)复数相等:a +bi =c +di ⇔ (a ,b ,c ,d ∈R ).(4)共轭复数:a +bi 与c +di 共轭⇔ (a ,b ,c ,d ∈R ).(5)复平面:建立直角坐标系来表示复数的平面,叫做复平面.x 轴叫做实轴,y 轴叫做虚轴.实轴上的点表示 ;除原点外,虚轴上的点都表示 ;各象限内的点都表示 .复数集C 和复平面内 组成的集合是一一对应的,复数集C 与复平面内所有以 O 为起点的向量组成的集合也是一一对应的.(6)复数的模:向量OZ →的模r 叫做复数z =a +bi 的模,记作|z|或|a +bi|,即|z|=|a +bi|= .3.复数的运算:(1)复数的加、减、乘、除运算法则:设z 1=a +bi ,z 2=c +di(a ,b ,c ,d ∈R ),则①加法:z 1+z 2=(a +bi)+(c +di)= ;②减法:z 1-z 2=(a +bi)-(c +di)= ;③乘法:z 1·z 2=(a +bi)·(c+di)= ;④除法:z 1z 2=a +bic +di= = (c +di≠0).二.典例精析:探究点一:数学证明方法例1:(1)已知a ,b ,c 都是实数,求证:a 2+b 2+c 2≥13(a +b +c)2≥ab+bc +ca.(2)若a ,b ,c 是不全相等的正数,求证:lg a +b 2+lg b +c 2+lg c +a2>lg a +lg b +lg c.(3)若x ,y 都是正实数,且x +y>2,求证:1+x y <2与1+yx<2中至少有一个成立.(4)数列{a n }满足a n >0,S n =12(a n +1a n),求S 1,S 2,猜想S n ,并用数学归纳法证明.变式迁移1:(1)设a ,b ,c>0,证明:a 2b +b 2c +c2a ≥a+b +c.(2)已知a>0,求证: a 2+1a 2-2≥a+1a-2.(3)若a ,b ,c 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6.求证:a ,b ,c 中至少有一个大于0.(4)用数学归纳法证明122+132+142+…+1n 2<1-1n (n≥2,n∈N *).探究点二:导数及其应用例 2.已知函数k f x x x x k =+-+>2()l n (1)(0),2(1)当2k =时,求曲线()(1,(1y f x f =在点处的切线方程;(2)当1k ≠时,求函数()f x 的单调区间变式训练2:已知函数3()f x ax bx c =++在点1x =处取得极值8c -.(1) 求,a b 的值; (2)若()f x 有极大值18,求()f x 在[-3,3]上的最大值.探究点三:导数的实际应用例3:已知某家企业的生产成本z (单位:万元)和生产收入ω(单位:万元)都是产量x (单位:t )的函数,其解析式分别为:32187580z x x x =-+-, 15x ω=(1)试写出该企业获得的生产利润y (单位:万元)与产量x (单位:t )之间的函数解析式; (2)当产量为多少时,该企业能获得最大的利润?最大利润是多少?变式训练3:某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (km/h )的函数解析式可以表示为880312800013+-=x x y )1200(≤≤x ,已知甲、乙两地相距100km .(1)当汽车以40km/h 的速度匀速行驶时,从甲地到乙地要耗油多少升?(2) 当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?探究点四:复数的概念与运算例4:(1)已知复数z =a 2-7a +6a 2-1+(a 2-5a -6)i (a ∈R ),试求实数a 分别取什么值时,z 分别为: ① 实数; ②虚数; ③纯虚数.(2)如图所示,平行四边形OABC ,顶点O ,A ,C 分别表示0,3+2i ,-2+4i ,试求:①AO →、BC →所表示的复数;②对角线CA →所表示的复数;③ 求B 点对应的复数.(3)计算①+4-35;②-23+i 1+23i +⎝ ⎛⎭⎪⎫21-i 2 010;③ ⎝ ⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i ;变式迁移4:(1)当实数m 为何值时,z =m 2-m -6m +3+(m 2+5m +6)i ,①为实数;②为虚数;③ 为纯虚数;④复数z 对应的点在复平面内的第二象限(2)在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B.若C 为线段AB 的中点,则点C 对应的复数是__________.(3)求下列各题的结果:①已知复数z =3+i-32,z 是z 的共轭复数,则z·z =____.②复数-1+351+3i的值是___.③ 已知复数z 满足iz +i=2-i ,则z =______.三.方法规律作结1.用反证法证明问题的一般步骤:(1)反设:假定所要证的结论不成立,即结论的反面(否定命题)成立;(否定结论)(2)归谬:将“反设”作为条件,由此出发经过正确的推理,导出矛盾——与已知条件、已知的公理、定义、定理及明显的事实矛盾或自相矛盾;(推导矛盾) (3)结论:因为推理正确,所以产生矛盾的原因在于“反设”的谬误.既然结论的反面不成立,从而肯定了结论成立.(结论成立)2.数学归纳法:先证明当n 取第一个值n 0时命题成立,然后假设当n =k (k ∈N *,k ≥n 0)时命题成立,并证明当n =k +1时命题也成立,那么就证明了这个命题成立.这是因为第一步首先证明了n 取第一个值n 0时,命题成立,这样假设就有了存在的基础,至少k =n 0时命题成立,由假设合理推证出n =k +1时命题也成立,这实质上是证明了一种循环,如验证了n 0=1成立,又证明了n =k +1也成立,这就一定有n =2成立,n =2成立,则n =3成立,n =3成立,则n =4也成立,如此反复以至无穷,对所有n ≥n 0的整数就都成立了.3.(1)第①步验证n =n 0使命题成立时n 0不一定是1,是使命题成立的最小正整数.(2)第②步证明n =k +1时命题也成立的过程中一定要用到归纳递推,否则就不是数学归纳法. 1.准确理解曲线的切线,需注意的两个方面:(1)直线与曲线公共点的个数不是切线的本质特征,若直线与曲线只有一个公共点,则直线不一定是曲线的切线,同样,若直线是曲线的切线,则直线也可能与曲线有两个或两个以上的公共点.(2)曲线未必在其切线的“同侧”,如曲线y =x 3在其过(0,0)点的切线y =0的两侧.4.曲线的切线的求法:若已知曲线过点P(x 0,y 0),求曲线过点P 的切线则需分点P(x 0,y 0)是切点和不是切点两种情况求解.(1)点P(x 0,y 0)是切点的切线方程为y -y 0=f ′(x 0)(x -x 0).(2)当点P(x 0,y 0)不是切点时可分以下几步完成:第一步:设出切点坐标P ′(x 1,f(x 1));第二步:写出过P ′(x 1,f(x 1))的切线方程为y -f(x 1)=f ′(x 1)(x -x 1);第三步:将点P 的坐标(x 0,y 0)代入切线方程求出x 1;第四步:将x 1的值代入方程y -f(x 1)=f ′(x 1)(x -x 1)可得过点P(x 0,y 0)的切线方程. 5.求可导函数单调区间的一般步骤和方法:(1)确定函数f(x)的定义域;(2)求f ′(x),令f ′(x)=0,求出它在定义域内的一切实根;(3)把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;(4)确定f ′(x)在各个开区间内的符号,根据f ′(x)的符号判定函数f(x)在每个相应小开区间内的增减性.6.可导函数极值存在的条件:(1)可导函数的极值点x 0一定满足f ′(x 0)=0,但当f ′(x 1)=0时,x 1不一定是极值点.如f(x)=x 3,f ′(0)=0,但x =0不是极值点.(2)可导函数y =f(x)在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x)的符号不同.3.函数的最大值、最小值是比较整个定义区间的函数值得出来的,函数的极值是比较极值点附近的函数值得出来的.函数的极值可以有多有少,但最值只有一个,极值只能在区间内取得,最值则可以在端点取得,有极值的未必有最值,有最值的未必有极值,极值可能成为最值,最值只要不在端点必定是极值. 7.定积分ʃb a f(x)dx 的几何意义就是表示由直线x =a ,x =b (a ≠b),y =0和曲线y =f(x)围成的曲边梯形的面积;反过来,如果知道一个这样的曲边梯形的面积也就知道了相应定积分的值,如ʃ204-x 2dx =π (半径为2的1个圆的面积),ʃ2-24-x 2dx =2π.一.选择题1. i 是虚数单位,复数3+i1-i等于 ( )A .1+2iB .2+4iC .-1-2iD .2-i 2. (1+i)20-(1-i)20的值是 ( )A .-1 024B .1 024C .0D .1 024i3.由1=12,1+3=22,1+3+5=32,1+3+5+7=42,…,得到1+3+…+(2n -1)=n 2用( )A .归纳推理B .演绎推理C .类比推理D .特殊推理 4.用反证法证明命题“2+3是无理数”时,假设正确的是 ( )A .假设2是有理数B 假设3是有理数C .假设2或3是有理D .假设2+3是有理数5. 由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为 ( )A.12 B .1 C. 3 D. 32 6. 定积分 (1-cos x)dx 的值为 ( ) A . 2π-1 B .2π C .-2π D .2π+17.用数学归纳法证明:1+11+2+11+2+3+…+11+2+3+…+n =2nn +1时,由n =k 到n =k +1左边需要添加的项是 ( )A.2k (k +2)B.1k (k +1)C.1(k +1)(k +2)D.2(k +1)(k +2)8. 已知二次函数f(x)的图像如图所示,则其导函数f ′(x)的图像大致形状 ( )9. 若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为 ( )A .4x -y -3=0B .x +4y -5=0C .4x -y +3=0D .x +4y +3=010. 已知函数f(x)=2x 3+3x +cos x ,则f ′(x)等于 ( )A .6x 2+x -23-sin xB .2x 2+13x -23-sin xC .6x 2+13x -23+sin xD .6x 2+13x -23-sin x11. 已知函数f(x)=ax 3-x 2+x -5在(-∞,+∞)上既有极大值,也有极小值,则实数a的取值范围为 ( )A .a>13B .a≥13C .a<13且a≠0D .a≤13且a≠012.已知点P 在曲线y =4e x +1上α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π)二.填空题13.设f(x)=8sin 3x ,则曲线在点P(π6,1)处的切线方程为14.曲线y =x 3+3x 2+6x -10的切线中,斜率最小的切线方程是 .15. 如图,函数y =f(x)的图像在点P 处的切线方程是y =-x +8,则f(5)+f′(5)= 16. f(x)=x (x+1)(2x+1)(3x+1)…….(nx+1)则f′(0) =17.在平面几何中,△ABC 的内角平分线CE 分AB 所成线段的比为AEEB=ACBC,把这个结论类比到空间:在三棱锥A —BCD 中(如图所示),面DEC 平分二面角A —CD —B 且与AB 相交于E ,则得到的类比的结论是 .18.f(n)=1+12+13+…+1n (n ∈N *),经计算得f(2)=32,f(4)>2,f(8)>52,f(16)>3,f(32)>72,推测当n ≥2时,有 .19.曲线y =x 2和y 2=x 所围成的平面图形,绕x 轴旋转一周后,所形成的旋转体的体积为20.给出下面四个命题:①0比-i 大;②两个复数互为共轭复数,当且仅当其和为实数;③x +yi =1+i 的充要条件为x =y =1;④如果让实数a 与ai 对应,那么实数集与纯虚数集一一对应.其中真命题的个数是 . 三.解答题21.1,3,2能否为同一等差数列中的三项?说明理由.22.已知复数z 1=2-3i ,z 2=15-5i (2+i )2. 求:(1)z 1+z 2;(2)z 1·z 2;(3)z 1z 2.23.设a ,b 为实数,求证:a 2+b 2≥22(a +b).24.设复数z =lg(m 2-2m -2)+(m 2+3m +2)i ,当m 为何值时:(1)z 是实数?(2)z 是纯虚数?25.数列{a n }满足a 1=16,前n 项和S n =n (n +1)2a n .(1)写出a 2,a 3,a 4;(2)猜出a n 的表达式,并用数学归纳法证明. 26.已知复数z 1=1-i ,z 1·z 2+z 1=2+2i ,求复数z 2.27.设函数f(x)=x 3-3ax 2+3bx 的图像与直线12x +y -1=0相切于点(1,-11).(1)求a ,b 的值;(2)讨论函数f(x)的单调性.28.如图,某工厂拟建一座平面图为矩形,且面积为200 m 2的三级污水处理池,由于地形限制,长、宽都不能超过16 m ,如果池外周壁建造单价为 每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元(池壁厚度忽略不计,且池无盖).(1)写出总造价y(元)与污水处理池长x(m)的函数关系式,并指出其定义域;(2)污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.29.设f(x)=⎩⎪⎨⎪⎧x 2,x ≤0,cos x -1,x>0,试求f(x)dx.30.设函数f(x)=a 3x 3+bx 2+cx +d(a>0),且方程f′(x)-9x =0的两个根分别为1,4.若f(x)在(-∞,+∞)内无极值点,求a 的取值范围.。
《数学归纳法》教学案例(第一课时)一、设计思想:根据新课程标准的基本理念-----倡导积极主动、勇于探索的学习方式,设置恰当的教学情景,并通过亲自动手做实验(多米诺骨牌实验),感受事实,发现本质,提高数学的学习兴趣,体会数学推理的严谨性,发展学生的数学思维能力。
二、教材分析:本内容在选修2-2模块中的“推理与证明”这一章中,它的要求是:了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。
另外,数学归纳法内容抽象,思想新颖,通过对该部分的学习,对培养学生的逻辑思维能力与创新能力,全面提高学生的数学素质有十分重要的意义.三、学情分析:学生在此之前,已了解合情推理和演绎推理,并能用归纳和类比等进行简单的推理,他们虽然知道从特殊的几个事例推出一般结论不一定合理,但对如何为什么不一定明白。
再就是数学归纳法原理的理解上有一定困难,这就要教师创设教学情景,让学生经历数学发现、实验、观察,共同交流合作,寻求解决问题的办法。
四、教学目标:(1)知识与技能:了解“归纳法”和“数学归纳法”的原理;体会用数学归纳法证明的合理性;学会用“数学归纳法”证明的“两个步骤一个结论”的书写格式;初步掌握用“数学归纳法”证明简单的恒等式的方法。
(2)过程与方法:通过列举具体事例,亲自操作并仔细观察多米诺骨牌实验,发现数学归纳法的基本原理,将感性认识上升到理性认识,类比归纳出“数学归纳法”的基本步骤。
(3)情感、态度与价值观:培养大胆猜想,严格论证的辩证思维素质,感受数学推理的严谨性,培养学生对于数学内在美的感悟能力,提高学生学习数学的兴趣。
五、教学重点与难点:(1)重点:对“数学归纳法”的原理的理解,明白“两步一结论的重要性”,特别是第一第二步的辨证关系的理解。
(2)难点:如何理解用“数学归纳法”证题的可靠性和有效性。
六、教学策略与手段:数学实验法,引导发现法、感性体验法,学生合作交流、自主探索,再配合教师适时的引导、点拨、启发,从而使学生获得知识和能力上的发展。
数学归纳法教学设计人教版选修2-2第二章第三节古建能【教材分析】1、教学内容:数学归纳法是人教社全日制普通高级中学教科书数学选修2-2第二章第3节的内容,根据课标要求,本书该节共2课时,这是第一课时,其主要内容是数学归纳法的原理及其应用。
2、地位作用:在已经学习了不完全归纳法的基础上,介绍了数学归纳法,它是一种用于关于正整数命题的直接证法。
教材通过剖析生活实例中蕴含的思维过程揭示数学思想方法,即借助“多米诺骨牌”的设计思想,揭示数学归纳法依据的两个条件及它们之间的关系。
【学情分析】高二理科学生继学习完归纳与类比推理,证明方法中的综合法与分析法、反证法的基础上,在学生已具备归纳的思想,进一步学习证明方法的过程中学习本节知识的。
【教学目标】知识与技能:1 了解由归纳法得出的结论具有不可靠性, 理解数学归纳法的原理与本质;2 掌握数学归纳法证题的两个步骤及其简单应用;3 培养学生观察、探究、分析、论证的能力, 体会类比的数学思想.过程与方法:1创设情境,激发学生学习兴趣,让学生体验知识的发生与发展过程;2通过对数学归纳法的学习、应用,逐步体验观察、归纳、猜想、论证的过程,培养学生严谨的逻辑推理意识,并初步掌握论证方法;3通过发现问题、提出问题、分析问题、解决问题的过程,培养学生创新能力情感与价值观:1 通过对数学归纳法原理的探究,培养学生严谨的科学态度和勇于探索的精神;2通过对数学归纳法原理和本质的讨论,培养学生团结协作的精神;3通过置疑与探究,培养学生独立的人格与敢于创新的精神;【教学重点】(1)初步理解数学归纳法的原理.(2)明确用数学归纳法证明命题的两个步骤.(3)初步会用数学归纳法证明简单的与正整数有关数的恒等式. 【教学难点】(1)对数学归纳法原理的理解,即理解数学归纳法证题的严密性与有效性. (2)假设的利用,即如何利用假设证明当n=1时结论正确. 【教学方法】师生互动讨论、共同探究的方法【教学手段】aichoo 教学软件,平板电脑,多媒体辅助课堂教学 【教学过程】一、创设情境,提出问题问题 、数列{}(),1,1,*11N n a a a a a nn n n ∈+==+已知通过对4,3,2,1=n 前4项归纳,猜想出:n a n 1=,如何证明?为了寻求一种能够证明与正整数有关的数学问题的方法,从而引入本节课的新课内容一数学归纳法。
数学归纳法知识集结知识元数学归纳法知识讲解1.数学归纳法【知识点的认识】1.数学归纳法一般地,当要证明一个命题对于不小于某正整数n0的所有正整数n都成立时,可以用以下两个步骤:(1)证明当n=n0时命题成立;(2)假设当n=k(k∈N+,且k≥n0)时命题成立,证明n=k+1时命题也成立.在完成了这两个步骤后,就可以断定命题对于不小于n0的所有正整数都成立.这种证明方法称为数学归纳法.2.用数学归纳法证明时,要分两个步骤,两者缺一不可.(1)证明了第一步,就获得了递推的基础,但仅靠这一步还不能说明结论的正确性.在这一步中,只需验证命题结论成立的最小的正整数就可以了,没有必要验证命题对几个正整数成立.(2)证明了第二步,就获得了推理的依据.仅有第二步而没有第一步,则失去了递推的基础;而只有第一步而没有第二步,就可能得出不正确的结论,因为单靠第一步,我们无法递推下去,所以我们无法判断命题对n0+1,n0+2,…,是否正确.在第二步中,n=k命题成立,可以作为条件加以运用,而n=k+1时的情况则有待利用命题的已知条件,公理,定理,定义加以证明.完成一,二步后,最后对命题做一个总的结论.3.用数学归纳法证明恒等式的步骤及注意事项:①明确初始值n0并验证真假.(必不可少)②“假设n=k时命题正确”并写出命题形式.③分析“n=k+1时”命题是什么,并找出与“n=k”时命题形式的差别.弄清左端应增加的项.④明确等式左端变形目标,掌握恒等式变形常用的方法:乘法公式、因式分解、添拆项、配方等,并用上假设.例题精讲数学归纳法例1.(2020春∙安徽期末)已知f(n)=1++++…+(n∈N*),用数学归纳法证明f(n)>n时,有f(k+1)-f(k)=___.【答案】【解析】题干解析:∵假设n=k时,f(k)=1+,∴当n=k+1时,f(k+1)=1,∴f(k+1)-f(k)=.例2.(2020春∙慈溪市期中)用数学归纳法证明:“1+”由n=k(k∈N*,k>1)不等式成立,推理n=k+1时,不等式左边应增加的项数为____.【答案】2k【解析】题干解析:当n=k时,不等式左侧为1+++…+,当n=k+1时,不等式左侧为1+++…++++…+不等式左边增加的项数是(2k+1-1)-(2k-1)=2k.例3.(2020春∙徐汇区校级期末)用数学归纳法证明(n+1)(n+2)(n+3)…(n+n)=2n∙1∙3∙5…(2n-1)(n∈N*)时,从n=k到n=k+1时左边需增乘的代数式是______.【答案】4k+2【解析】题干解析:用数学归纳法证明(n+1)(n+2)(n+3)…(n+n)=2n∙1∙3∙5…(2n-1)(n∈N*)时,从n=k到n=k+1时左边需增乘的代数式是=2(2k+1).用数学归纳法证明不等式知识讲解1.用数学归纳法证明不等式【知识点的认识】1.数学归纳法一般地,当要证明一个命题对于不小于某正整数n0的所有正整数n都成立时,可以用以下两个步骤:(1)证明当n=n0时命题成立;(2)假设当n=k(k∈N+,且k≥n0)时命题成立,证明n=k+1时命题也成立.在完成了这两个步骤后,就可以断定命题对于不小于n0的所有正整数都成立.这种证明方法称为数学归纳法.2.用数学归纳法证明时,要分两个步骤,两者缺一不可.(1)证明了第一步,就获得了递推的基础,但仅靠这一步还不能说明结论的正确性.在这一步中,只需验证命题结论成立的最小的正整数就可以了,没有必要验证命题对几个正整数成立.(2)证明了第二步,就获得了推理的依据.仅有第二步而没有第一步,则失去了递推的基础;而只有第一步而没有第二步,就可能得出不正确的结论,因为单靠第一步,我们无法递推下去,所以我们无法判断命题对n0+1,n0+2,…,是否正确.在第二步中,n=k命题成立,可以作为条件加以运用,而n=k+1时的情况则有待利用命题的已知条件,公理,定理,定义加以证明.完成一,二步后,最后对命题做一个总的结论.3.用数学归纳法证明恒等式的步骤及注意事项:①明确初始值n0并验证真假.(必不可少)②“假设n=k时命题正确”并写出命题形式.③分析“n=k+1时”命题是什么,并找出与“n=k”时命题形式的差别.弄清左端应增加的项.④明确等式左端变形目标,掌握恒等式变形常用的方法:乘法公式、因式分解、添拆项、配方等,并用上假设.【解题方法点拨】1、观察、归纳、猜想、证明的方法:这种方法解决的问题主要是归纳型问题或探索性问题,结论如何?命题的成立不成立都预先需要归纳与探索,而归纳与探索多数情况下是从特例、特殊情况下入手,得到一个结论,但这个结论不一定正确,因为这是靠不完全归纳法得出的,因此,需要给出一定的逻辑证明,所以,通过观察、分析、归纳、猜想,探索一般规律,其关键在于正确的归纳猜想,如果归纳不出正确的结论,那么数学归纳法的证明也就无法进行了.在观察与归纳时,n的取值不能太少,否则将得出错误的结论.例如证明n2>2n只观察前3项:a1=1,b1=2⇒a1<b1;a2=4,b2=4⇒a2=b2,a3=9,b3=8⇒a3>b3,就此归纳出n2>2n(n∈N+,n≥3)就是错误的,前n项的关系可能只是特殊情况,不具有一般性,因而,要从多个特殊事例上探索一般结论.2.从“n=k”到“n=k+1”的方法与技巧:在用数学归纳法证明不等式问题中,从“n=k”到“n=k+1”的过渡中,利用归纳假设是比较困难的一步,它不像用数学归纳法证明恒等式问题一样,只需拼凑出所需要的结构来,而证明不等式的第二步中,从“n=k”到“n=k+1”,只用拼凑的方法,有时也行不通,因为对不等式来说,它还涉及“放缩”的问题,它可能需通过“放大”或“缩小”的过程,才能利用上归纳假设,因此,我们可以利用“比较法”“综合法”“分析法”等来分析从“n=k”到“n=k+1”的变化,从中找到“放缩尺度”,准确地拼凑出所需要的结构.例题精讲用数学归纳法证明不等式例1.证明:x n-na n-1x+(n-1)a n能被(x-a)2整除(a≠0).【答案】详见解析【解析】题干解析:证明:当n=1时,x n-na n-1x+(n-1)a n=x-x=0易得此时x n-na n-1x+(n-1)a n 能被(x-a)2整除成立;设n=k时,x n-na n-1x+(n-1)a n能被(x-a)2整除成立,即x k-ka k-1x+(k-1)a k能被(x-a)2整除成立,则n=k+1时,x n-na n-1x+(n-1)a n=x k+1-(k+1)a k x+ka k+1=x k-ka k-1x+(k-1)a k+ka k─1(x─a)2即x n-na n-1x+(n-1)a n=x k+1-(k+1)a k x+ka k+1也能被(x-a)2整除综合,x n-na n-1x+(n-1)a n能被(x-a)2整除(a≠0)。
数学归纳法1、知识与技能(1)了解归纳法,理解数学归纳法的原理与实质,掌握数学归纳法证题的两个步骤。
(2)会证明简单的与正整数有关的命题。
2、过程与方法努力创设课堂愉悦的情境,使学生处于积极思考,大胆质疑的氛围,提高学生学习兴趣和课堂效率,让学生经历知识的构建过程,体会类比的数学思想。
3、情感态度价值观通过本节课的教学,使学生领悟数学思想和辩证唯物主义观点,激发学生学习热情,提高学生数学学习的兴趣,培养学生大胆猜想,小心求证的辩证思维素质,以及发现问题、提出问题的意见和数学交流能力。
教学重点、难点:教学重点:借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些简单的与正整数n(n取无限多个值)有关的数学命题。
教学难点:(1)学生不易理解数学归纳法的思想实质,具体表现在不了解第二个步骤的作用,不易根据归纳假设作出证明。
(2)运用数学归纳法时,在“归纳递推”的步骤中发现具体问题的递推关系。
第2课时一、复习巩固数学归纳法的两个步骤二、实例应用例1、平面内有n 个圆,其中每两个圆都相交于两点,且无3个圆交于一点。
求证:这n 个圆将平面分成()22f n n n =-+个部分。
解析:当1n =时,一个圆将平面分成2个部分,()12f =,结论成立; 假设当n k =时,结论成立,即n 个圆将平面分成()22f k k k =-+个部分,当1n k =+时,第(k+1)个圆与前面k 个圆有2k 个交点,这2k 个交点将第(k+1)个圆分成2k 段,每段将各自所在区域一分为二,于是增加了2k个区域,所以k+1个圆将平面分成了()()12f k f k k +=+个部分,()()22212221(1)2f k k k k k k k k +=-++=++=+-++; 所以,当1n k =+时,结论成立。
综上所述,这n 个圆将平面分成()22f n n n =-+个部分。
例2、对于n N *∈,求证:()1211(2)n n x x +-+++,可被()233x x ++整除。
数学归纳法数学归纳法:一般地,证明一个与正整数n 有关的命题,可按下列步骤进行:①归纳奠基:证明当n 取第一个值0n (*∈N n 0)时命题成立;②归纳递推:假设k n =(0n k ≥,*∈N k )时命题成立,证明当1+=k n 时命题也成立.只要完成以上两个步骤,就可以断定命题对从0n 开始的所有正整数n 都成立. 上述证明方法叫作数学归纳法.【例】用数学归纳法证明: ①()121321+=+⋅⋅⋅+++n n n ()*∈N n ;②()212531n n =-+⋅⋅⋅+++()*∈N n ;③12222112-=+⋅⋅⋅+++-n n ()*∈N n ; ④()()1212121751531311+=+-+⋅⋅⋅+⨯+⨯+⨯n n n n ()*∈N n .课堂练习1. 用数学归纳法证明等式1+2+3+…+(n+3)=()()243++n n (n ∈N ∗)时,第一步验证n=1时,左边应取的项是( )A.1B.1+2C.1+2+3D.1+2+3+42. 用数学归纳法证明“1+a+a 2+…+a 2n+1=a a n --+112(a ≠1)”,在验证n=1时,左端计算所得项为( ) A.1+a+a 2+a 3+a 4 B.1+a C.1+a+a 2 D.1+a+a 2+a35. 已知数列{a n }满足S n =2n −a n (n ∈N ∗)(1)计算a 1,a 2,a 3,a 4,并由此猜想通项公式a n ;(2)用数学归纳法证明(1)中的猜想.6. 已知数列{a n }满足12+=+n a S n n ,(1)写出a 1,a 2,a 3,并由此猜想a n 的表达式;(2)用数学归纳法证明所得结论.。
人教版高中《数学》选修2-2§2.3 数学归纳法(第一课时)一、教学目标:1、了解数学归纳法,理解数学归纳法的原理与实质,掌握归纳法证明的两个步骤;2、会证明简单的与正整数有关的命题。
二、教学重点、难点:1、重点:借助具体实例,了解数学归纳法的基本思想,掌握基本步骤,会用它证明一些与正整数n 有关的命题;2、难点:(1)学生不易理解数学归纳法的思想实质,具体表现在不了解第二步的作用,不易根据归纳假设作出证明;(2)运用数学归纳法时,在“归纳递推”的步骤中发现具体问题的递推关系。
三、教学手段:借助多媒体呈现多米诺骨牌等生活素材辅助课堂教学;四、教学过程:(一)创设情境,引入课题师:前面我们学习推理,并且知道由推理得到的结论是否正确,需要我们进一步验证。
我们来看这样的一道题目:已知数列{}n a 中,*111,()1n n na a a n N a +==∈+,试猜想数列的通项公式n a = 生:分别求出12341111,,,234a a a a ====,从而猜测1n a n=。
师:那么这个猜想是否正确?我们又该如何证明这个猜想?生:方法1:从n=5逐个验证?(由于n 为正整数,为无限个,所以可行性不高)方法2:通过构造新数列{}n b ,其中1n nb a =,先求出数列{}n b 的通项公式,从而得到{}n a 的通项公式;(技巧性较高,且有时新数列{}n b 不易构造)方法3:能否通过有限个步骤的推理,证明n 取所有正整数时,通项公式都成立? 师:带着这个问题,我们来观察一个关于多米诺骨牌游戏的视频。
(二)观看视频,动手实验观看多米诺骨牌游戏视频后,由学生来展示骨牌游戏:实验步骤:1、摆好骨牌,并由教师动手轻轻碰了第一块(并未推倒),发现实验不成功;2、由学生自己动手推倒骨牌,实验成功;3、再次摆好骨牌,教师调整最后3块的距离,发现并未全部倒下,实验失败。
师:我们一起来总结3次实验,那么要使游戏成功,所需条件有哪些?生:(1)第一块骨牌要倒下;(2)相邻的两块骨牌,前一块倒下一定导致后一块也倒下;师:若将每一块骨牌相应的看成数列的1234,,,a a a a ,那么这两个条件分别相当于:(1)首项1a 要符合n a 的通项公式;(2)假设n=k 时猜想成立,则必将导致n=k+1时猜想也成立;这样一来,就可以发现由n=1成立,就有n=2成立;n=2成立,就有n=3成立;n=3成立,就有n=4成立;n=4成立,就有n=5也成立……,所以对任意的正整数n ,猜想都成立。
数学归纳法
__________________________________________________________________________________
__________________________________________________________________________________
1、数学归纳法的原理及应用.
2、数学归纳法的思想实质及在归纳推理中发现具体问题的递推关系.
一、数学归纳法:
数学归纳法是证明关于正整数n的命题的一种方法,在高等数学中有着重要的用途,因而成为高考的热点之一。
近几年的高考试题,不但要求能用数学归纳法去证明现代的结论,而且加强了对于不完全归纳法应用的考查,既要求归纳发现结论,又要求能证明结论的正确性,因此,初步形成“观察—-归纳—-猜想—-证明”的思维模式,就显得特别重要。
一般地,证明一个与正整数n有关的命题,可按下列步骤进行:
(1)(归纳奠基)证明当n取第一个值n = n0时命题成立;
(2)(归纳递推)假设n=k()时命题成立,证明当时命题也成立。
只要完成这两个步骤,就可以断定命题对从开始的所有正整数n都成立。
上述证明方法叫做数学归纳法。
数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。
题型一、用数学归纳法证明恒等式
例1、例1数学归纳法证明13+23+33+…+n 3=
4
1 n 2(n +1)2
题型二、用数学归纳法证明不等式
例2、归纳法证明++++++312111n n n …n 31>10
9 (n >1,且N ∈n ).
题型三、用数学归纳法证明几何问题
例4.平面内有n )(*N n ∈个圆,其中每两个圆都相交于两点,且每三个圆都不相交于同一点,求证:这n 个圆把平面分成22
+-n n 个部分.
题型四、用数学归纳法证明整除问题
例4、 用数学归纳法证明32n +2-8 n -9()N ∈n 能被64整除.
题型五 归纳、猜想、证明
例8:是否存在常数a ,b ,c 使等式
对一切自然数n 都成立,并证明你的结
论。
一、选择题
1.用数学归纳法证明1+12+13+…+12n -1
<n (n ∈N *,n >1)时,第一步应验证不等式( ) A .1+12
<2 B .1+12+13
<2 C .1+12+13
<3 D .1+12+13+14
<3 2.用数学归纳法证明1+a +a 2+…+a
n +1=1-a n +
21-a (n ∈N *,a ≠1),在验证n =1时,左边所得的项为( )
A .1
B .1+a +a 2
C .1+a
D .1+a +a 2+a 3
3.设f (n )=1n +1+1n +2
+…+12n (n ∈N *),那么f (n +1)-f (n )等于( ) A.12n +1
B.12n +2
C.12n +1+12n +2
D.12n +1-12n +2
4.某个命题与自然数n 有关,若n =k (k ∈N *)时,该命题成立,那么可推得n =k +1时该命题也成立.现在已知当n =5时,该命题不成立,那么可推得( )
A .当n =6时该命题不成立
B .当n =6时该命题成立
C .当n =4时该命题不成立
D .当n =4时该命题成立
5.用数学归纳法证明命题“当n 是正奇数时,x n +y n 能被x +y 整除”,在第二步的证明时,正确的证法是( )
A .假设n =k (k ∈N *),证明n =k +1时命题也成立
B .假设n =k (k 是正奇数),证明n =k +1时命题也成立
C .假设n =k (k 是正奇数),证明n =k +2时命题也成立
D .假设n =2k +1(k ∈N ),证明n =k +1时命题也成立
6.凸n 边形有f (n )条对角线,则凸n +1边形对角线的条数f (n +1)为( )
A .f (n )+n +1
B .f (n )+n
C .f (n )+n -1
D .f (n )+n -2
7.用数学归纳法证明“对一切n ∈N *,都有2n >n 2-2”这一命题,证明过程中应验证( )
A .n =1时命题成立
B .n =1,n =2时命题成立
C .n =3时命题成立
D .n =1,n =2,n =3时命题成立
8.已知f (n )=(2n +7)·3n +9,存在自然数m ,使得对任意n ∈N *,都能使m 整除f (n ),则最大的m 的值为( )
A .30
B .26
C .36
D .6
9.已知数列{a n }的前n 项和S n =n 2a n (n ≥2),而a 1=1,通过计算a 2、a 3、a 4,猜想a n =( )。