合金化原理
- 格式:ppt
- 大小:1.07 MB
- 文档页数:75
合金化原理合金化是指将两种或两种以上的金属或非金属熔炼在一起,形成新的金属材料。
合金化的原理是通过改变金属的晶体结构,使其性能得到改善。
合金化可以提高金属的硬度、强度、耐热性、耐腐蚀性等性能,从而扩大金属的应用范围。
下面将从合金化的原理、方法和应用三个方面来详细介绍合金化的相关知识。
合金化的原理。
合金化的原理主要包括固溶强化、析出强化和相变强化三种方式。
固溶强化是指将一种金属溶解在另一种金属的晶格中,形成固溶体,从而提高金属的硬度和强度。
析出强化是指在合金中形成一种或多种溶解度有限的化合物,这些化合物的形成可以提高合金的硬度和强度。
相变强化是指在材料中发生相变时,晶粒的形态和尺寸发生变化,从而提高材料的性能。
合金化的方法。
合金化的方法主要包括熔炼法、粉末冶金法和表面合金化法。
熔炼法是将两种或两种以上的金属熔炼在一起,然后冷却凝固成合金。
粉末冶金法是将金属粉末混合后通过压制、烧结等工艺形成合金。
表面合金化法是将一种金属的表面覆盖上另一种金属,以改善金属的表面性能。
合金化的应用。
合金化广泛应用于航空航天、汽车制造、电子设备等领域。
在航空航天领域,合金化可以提高材料的耐高温、耐腐蚀性能,从而保证飞机在极端环境下的安全飞行。
在汽车制造领域,合金化可以提高汽车零部件的强度和硬度,延长零部件的使用寿命。
在电子设备领域,合金化可以提高电子元器件的导电性能和耐磨性能,从而提高设备的性能和可靠性。
总结。
合金化是一种重要的金属材料改性方法,通过改变金属的组织结构和成分,可以显著提高金属材料的性能。
合金化的原理主要包括固溶强化、析出强化和相变强化三种方式,合金化的方法主要包括熔炼法、粉末冶金法和表面合金化法。
合金化广泛应用于航空航天、汽车制造、电子设备等领域,为各行业的发展提供了重要的支撑。
通过对合金化的原理、方法和应用的介绍,相信读者对合金化有了更深入的了解,也希望本文能够对相关领域的科研工作者和工程技术人员有所帮助。
第五章耐腐蚀金属材料§5-1金属耐腐蚀合金化原理工业上所用的金属材料中,纯金属并不多,应用较多的因此是铁、铜、镍、钛、铝、镁等各种金属的合金。
本节讨论如何通过合金化和热处理等途径,从成分和组织上使合金具有高的耐蚀性,并表明其作用原理。
一、提高金属的热力学稳定性以热力学稳定性高的元素进行合金化,向不耐蚀的合金中进进热力学稳定性高的合金元素进行合金化,可在合金表层形成由贵金属组元组成的连续保卫层,提高其耐蚀性。
例如,铜中加金,镍中加铜,铬中加镍等。
然而其应用是有限的。
因为,一方面要虚耗大量的贵金属,经济上珍贵;另一方面,由于合金组元在固态中的溶解度是有限的,许多合金要获得具有多组元的单一固溶体是对照困难的。
二、落低阴极活性在阴极操纵的金属腐蚀中,可用进一步加强阴极极化的方式来落低腐蚀速度。
如金属在酸中的活性溶解就能够用落低阴极活性的方法减少腐蚀。
具体方法是:1.减小金属或合金中的活性阴极面积金属或合金在酸中腐蚀时,阴极析氢过程优先在氢超电压低的阴极相或夹杂物上进行。
假如减少合金中的阴极相或夹杂物,减小了活性阴极面积,增加了阴极极化电流密度,增加阴极极化程度,阻碍阴极过程的进行,提高耐蚀性。
例如,当铝中铁含量减少时,其在盐酸中的耐蚀性提高,如P128图1。
这是由于铁能形成阴极相。
关于阴极操纵的腐蚀过程,采纳固溶处理获得单相固溶体组织,可提高耐蚀性。
反之,退火或时效处理落低其耐蚀性。
2.进进氢超电压高的元素进进氢超电压高的元素,可提高阴极析氢超电压,显著落低合金在酸中的腐蚀速度。
但它只适用于不产生钝化的析氢腐蚀。
如金属在非氧化性或氧化性低的酸中的活性溶解过程。
例如,在锌中含有铁、铜等电位较高的金属杂质时,进进氢超电压高的镉、汞,可使锌在酸中腐蚀速度显著落低。
又如,在含有较多杂质铁的工业纯镁中,添加0.5-1%锰可大大落低其在氯化物水溶液中的腐蚀速度,这是由于锰比铁高得多的析氢超电压之故。
三、落低合金的阳极活性用合金化的方法落低合金的阳极活性,尤其是用提高合金钝性的方法阻碍阳极过程的进行,可提高合金的耐蚀性,它是一种最有效、应用最广泛的措施。
合金化原理的应用1. 简介合金化是指通过将两种或多种金属进行熔炼、混合或固相反应,使其形成一个新的金属系统的技术过程。
它利用不同金属之间的原子间相互作用,通过特定的工艺条件,使合金具有优异的性能。
合金化技术在材料科学、工程技术和制造业等领域有广泛的应用。
2. 合金化的种类合金化可以分为两类,包括固溶体合金化和化合物合金化。
2.1 固溶体合金化固溶体合金化是指通过将两种或多种金属溶解在一起,形成具有均匀分布的晶格结构的合金。
它可以通过固溶体混合、固溶体反应等方式进行。
固溶体合金化常用来改善材料的机械强度、耐蚀性、耐热性等性能。
固溶体合金化的常见应用包括: - 不锈钢的制备:将铁、铬、镍等元素进行固溶体合金化,可生成不锈钢,具有优异的耐腐蚀性能; - 铝合金的制备:将铝与其他金属(如铜、镁、锌等)进行固溶体合金化,可获得强度高、耐腐蚀性好的铝合金材料。
2.2 化合物合金化化合物合金化是指两种或多种金属元素之间形成化学化合物的过程。
在化合物合金中,金属元素的原子结合形式是固定的,有着严格的比例。
化合物合金常用来改善材料的导电性、磁性、光学性能等。
化合物合金化的常见应用包括: - 磁性材料的制备:将铁、镍、钴等金属与其他元素形成化合物合金,可获得具有特定磁性的材料,如永磁材料; - 半导体材料的制备:将硅、锗等半导体元素与其他金属形成化合物合金,可获得具有特定电学性能的材料,如硅锗合金。
3. 合金化的应用案例3.1 钢材中的合金化钢是一种由铁和碳组成的合金材料,通过在钢中添加其他金属或非金属元素,可以改变钢材的性能。
常见的钢材合金化应用包括: - 不锈钢:通过在钢中添加铬、镍等元素进行固溶体合金化,使钢具有耐腐蚀性能; - 高速钢:通过在钢中添加钨、钼等元素进行固溶体合金化,使钢具有高温硬度和耐热性能; - 合金结构钢:通过在钢中添加硅、锰等元素进行化合物合金化,使钢具有特定的力学性能。
3.2 铝合金中的合金化铝合金是由铝为基体,通过与其他金属形成固溶体合金或化合物合金进行合金化改性的材料。
1、影响加热速度的因素有哪些?为什么?答:(1)加热方法(加热介质)的不同。
由综合传热公式Q=а(T介-T工)得知,当加热介质与被加热工件表面温度差(T 介-T工)越小,单位表面积上在单位时间内传给工件表面的热量越小,因而加热速度越慢。
(2)工件在炉内排布方式的影响。
工件在炉内的排布方式直接影响热量传递的通道,例如辐射传递中的挡热现象及对流传热中影响气流运动情况等,从而影响加热速度。
(3)工件本身的影响。
工件本身的几何形状、工件表面积与其体积之比以及工件材料的物理性能(C、λ、γ等)直接影响工件内部的热量传递及温度,从而影响加热速度。
同种材料制成的工件,当其特征尺寸s与形状系数k的乘积相等时,以同种方式加热时则加热速度相等2、回火炉中装置风扇的目的是什么?气体渗碳炉中装置风扇的目的是什么?答:回火炉中装置风扇的目的是为了温度均匀,避免因为温度不均而造成材料回火后的硬度不均。
气体渗碳炉中装置的风扇的目的是为了气氛的均匀,避免造成贫碳区从而影响组织性能。
3、今有T8钢工件在极强的氧化气氛中分别与950度和830度长时间加热,试述加热后表层缓冷的组织结构,为什么?答:根据题意,由于气氛氧化性强,则炉火碳势低。
在950℃长时间加热时,加热过程中工件表面发生氧化脱碳。
工件最外层发生氧化反应,往里,由于950℃高于Fe-C状态图中的G点,所以无论气氛碳势如何低,脱碳过程中从表面至中心始终处于A状态,缓冷后,由表面至中心碳浓度由于脱碳和扩散作用,碳含量依次升高直至0.8%,所以组织依次为铁素体和珠光体逐渐过渡到珠光体,再至相当于碳含量为0.8%的钢的退火组织(P+C)。
当工件在830℃加热时,温度低于G点,最外层依然会发生氧化反应。
往里,工件将在该温度下发生脱碳。
由于气氛氧化性极强,则碳势将位于铁素体和奥氏体的双相区,所以工件发生完全脱碳。
由外及里的组织在缓冷后依次是铁素体,铁素体加珠光体,珠光体加渗碳体。
4、今有一批ZG45铸钢件,外形复杂,而机械性能要求高,铸后应采用何种热处理?为什么?答:实现应该采用均匀化退火,以消除铸件的偏析和应力(如果偏析不严重,也可以采用完全退火。
一、工程结构钢的合金化原理1、低碳:由于低温韧性、焊接性和冷成型性能的要求高,其碳质量分数一般不超过0.25%。
2、加入以锰为主的合金元素,起固溶强化作用,提高钢的强度和韧性。
3、加入铌、钛或钒等辅加元素,起弥散强化作用,提高钢的强度和韧性。
4、加入少量铜(<0.4%)和磷(0.1%左右)等,可提高抗腐蚀性能。
二、调质钢合金化特点1、中碳,碳质量分数一般在0.25%~0.50%之间,以0.4%居多。
碳量过低,不易淬硬,回火后强度不够;碳量过高则韧性不够。
2、加入提高淬透性的元素,如Cr、Mn、Ni、Si、B等。
3、加入防止第二类回火脆性的元素,如Mo、W等。
三、轴承钢的合金化特点1、高碳,为了保证轴承钢的高硬度、高耐磨性和高强度,碳质量分数应较高,一般为0.95%~1.10%。
2、铬为基本合金元素,铬含量为0.40%~1.65%。
铬能提高淬透性,并与基体金属形成合金渗碳体(Fe,Cr)3C,呈细密、均匀分布,从而提高钢的耐磨性,特别是疲劳强度。
3、加入硅、锰、钒等提高淬透性四、渗碳钢的合金化特点(1)碳质量分数一般在0.10%~0.25%之间,以保证零件心部有足够的塑性和韧性。
(2)加入提高淬透性的合金元素,常加入Cr、Ni、Mn等,以提高经热处理后心部的强度和韧性。
Cr还能细化碳化物、提高渗碳层的耐磨性,Ni则对渗碳层和心部的韧性非常有利。
(3)加入阻碍奥氏体晶粒长大的元素,主要加入少量强碳化物形成元素Ti、V、W、Mo等,形成稳定的合金碳化物。
除了能阻止渗碳时奥氏体晶粒长大外,还能增加渗碳层硬度,提高耐磨性。
五、氮化钢的合金化特点1、低碳2、铬、钼、锰可使钢获得足够的淬透性。
3、钼及钒能使钢在500~580℃之间长时间保温时保持强度。
为了防止或减轻钢发生回火脆化,往往须要在氮化钢中加入0.2~0.5%钼。
六、弹簧钢的合金化特点1、中、高碳。
一般为0.50%~0.70%。
碳质量分数过低,强度不足。
第一章合金化原理碳钢中的常存杂质1.锰(Mn )和硅(Si )炼钢过程中随脱氧剂或者由生铁残存而进入钢中的。
Mn:可固溶,也可形成高熔点MnS(1600℃)夹杂物。
MnS在高温下具有一定的塑性,不会使钢发生热脆。
Si:可固溶,也可形成SiO2夹杂物。
Mn和Si是有益杂质,但夹杂物MnS、SiO2将使钢的疲劳强度和塑、韧性下降。
2.硫(S)和磷(P)S:S和Fe能形成FeS,并易发生热脆(裂)。
P:可固溶于α-铁,但剧烈地降低钢的韧性,特别是低温韧性,称为冷脆。
磷可以提高钢在大气中的抗腐蚀性能。
S和P是有害杂质,但可以改善钢的切削加工性能。
3.氮(N)、氢(H)、氧(O)N:在α-铁中可溶解。
N可以与钒、钛、铌等形成稳定的氮化物,有细化晶粒和沉淀强化。
H:在钢中和应力的联合作用将引起金属材料产生氢脆。
O:在钢中形成硅酸盐2MnO•SiO2、MnO•SiO2或复合氧化物MgO•Al2O3、MnO•Al2O3。
N、H、O是有害杂质。
碳钢的分类1.按钢中的碳含量1)按Fe-Fe3C相图分类亚共析钢0.0218%≤w c≤0.77% 共析钢w c=0.77% 过共析钢:0.77%<w c≤2.11%2)按钢中碳含量的多少分类低碳钢:w c ≤0.25% 中碳钢:0.25%<w c≤0.6% 高碳钢:w c>0.6%2.按钢的质量(品质),碳钢可分为(1)普通碳素钢(2)优质碳素钢(3)高级优质碳素钢(4)特级优质碳素钢3.按钢的用途分类,碳钢可分为(1)碳素结构钢(2)优质碳素结构钢(3)碳素工具钢(4)一般工程用铸造碳素钢4.按钢冶炼时的脱氧程度分类,可分为(1)沸腾钢F (2)镇静钢Z (3)半镇静钢b (4)特殊镇静钢TZ碳钢的用途1-普通碳素结构钢(1)主要用于一般工程结构和普通零件(2)热轧后空冷是这类钢通常的供货状态。
(3)普通碳素结构钢的牌号表示方法由代表屈服点的字母(Q)、屈服点数值、质量等级符号(A、B、C、D)及脱氧方法符号(F、b、Z、TZ)等四个部分按顺序组成。
合金化作用合金化作用是指将两种或两种以上的金属或者金属与非金属元素混合在一起,通过特定的加热和冷却过程,使其形成一种新的材料。
合金化作用不仅可以改变材料的物理和化学性质,还可以提高材料的强度、硬度、耐腐蚀性和耐磨性等特性。
本文将探讨合金化作用的原理、应用和影响。
合金化作用是基于金属原子之间的固溶原理。
当两种或两种以上的金属原子混合在一起时,它们之间形成了一个晶格结构。
这个晶格结构能够有效地阻止原子的移动,并提供了额外的电子层,从而增加了材料的硬度和强度。
此外,合金化作用还能够改变晶格的尺寸和形状,从而影响材料的导电性、热传导性和磁性等特性。
合金化作用在工业和科学研究领域有着广泛的应用。
首先,合金化作用可以用来改善金属材料的性能。
例如,钢是一种由铁、碳和其他元素组成的合金,通过调整合金中碳的含量,可以获得不同强度和硬度的钢材。
此外,合金化作用还可以用来改善材料的耐腐蚀性能。
例如,不锈钢是一种由铁、铬和其他元素组成的合金,具有出色的耐腐蚀性能,可广泛应用于制造厨具和化工设备等领域。
合金化作用还可以用来改变材料的热处理性能。
热处理是指通过加热和冷却等过程,改变材料的晶格结构和性能。
合金化作用可以通过调整合金中的元素含量和加热温度,来控制材料的晶格结构和相变行为。
例如,铝合金是一种常见的合金材料,通过合金化作用可以获得良好的热处理性能,用于制造飞机和汽车等领域。
合金化作用还可以用来改变材料的电学和磁学性能。
通过合金化作用,可以调整材料中的电子结构和磁性原子的分布,从而影响材料的导电性、磁性和电磁性能。
例如,铁镍合金是一种具有良好磁性和磁记忆效应的合金材料,广泛应用于制造磁头和磁记录介质等领域。
合金化作用对材料性能的影响主要取决于合金中各元素的含量和相互作用。
通过调整合金中元素的含量和比例,可以获得不同性能的合金材料。
此外,合金化作用还受到加热和冷却过程的影响。
不同的加热温度和冷却速率会导致不同的晶格结构和相变行为,从而影响材料的性能。
机械合金化的过程机理
机械合金化的过程机理
机械合金化是一种新型的合金化技术,是指通过机械外力的作用,在金属或其他材料的原子层面上引起变形,使不同材料的原子网被强行融合在一起。
它是最近几十年发展起来的一种新型的合金化工艺,其主要原理是利用机械力量将两种不同的金属材料结合在一起,从而形成一种新的合金材料。
机械合金化的过程主要有以下两个步骤:
1)金属表面处理:首先对金属进行表面处理,使金属表面的氧
化物层被破坏,从而为后面的机械合金化操作提供了一个可行的环境。
2)机械合金化:然后采用机械力量将两种金属材料结合在一起,并通过控制机械外力的强度和时间,使得这两种金属材料的原子网能够在微观尺度上完成融合。
机械合金化过程中会发生一些不可逆的微观变化,使得机械合金化的结果比传统合金化方法得到的结果要稳定得多,也更具有耐久性。
在高温下,机械合金化技术可以有效地抑制金属材料的表面氧化及使之产生更快的表面结合力,这些特性使得机械合金化技术的应用变得非常普遍。
- 1 -。