基于Mathematica的数值计算.ppt
- 格式:ppt
- 大小:528.01 KB
- 文档页数:65
第六章数值计算命令与例题数值问题由一组已知数据来求出一组结果数据,使得这两组数据之间满足预先制定的某种关系的问题,数值计算就是通过对数学问题解有效的近似处理去获得比较满意解的计算方法。
这里只介绍与数值计算中最基本方法的一些命令与例题。
6.1求近似函数在生产和实验中, 人们经常遇到需要通过某个未知(或复杂)的函数f(x)在有限个给定点的函数值:{x i, y i}, i=1,2,…., n, 这里f(x i) = y i 去获得函数f(x)的近似函数ϕ(x), 以便于处理涉及到f(x)的计算或其他处理问题, 这种求近似函数ϕ(x)的方法主要有拟合方法和插值方法。
一般, 曲线拟合是常用的拟合方法, 而插值方法常用的有多项式插值与分段插值方法, 在Mathematica 中它们都有相应的命令来获得相应的近似函数。
6.1.1 曲线拟合曲线拟合主要用来求一元近似函数, 它是根据一组函数值(通常是测量值或试验数据)去寻找描述相应函数关系的一种常用数据逼近方法, 是根据最小二乘原理的意义下获得近似函数的, 此近似函数具有在数据点处的误差平方和最小的特点。
通过拟合得到的函数关系通常称为经验公式, 该函数不必经过任何的数据点, 是实际函数的一种近似函数。
曲线拟合结果的好坏与选用什么类型的函数作为拟和曲线类型有关。
记函数集合:M=Span[ϕ0, ϕ1, ϕ2,…, ϕm]={ ϕ(x)| ϕ(x)= a 0 ϕ0(x)+a1ϕ1(x)+…+a mϕm(x), a i∈R}称集合M为函数ϕ0, ϕ1, ϕ2,…, ϕm张成的空间,m+1个函数ϕ0(x), ϕ1(x), ϕ2(x),…, ϕm(x)称为拟合基函数集合, 它们都是已知的函数。
拟合基函数集合不同对应不同的拟合函数类, 如果要用曲线拟合方法得到经验公式, 通常是先画出所给数据的散点图, 再根据散点图选择合适的拟和函数类型做曲线拟合。
应该注意的是:选择不同的拟合函数类会得到不同的拟合函数,拟合函数的好坏依赖于所选的拟合函数类,如果你知道的曲线类型多, 就容易获得满意的拟合函数。
第五章 数值分析和数值计算1. 如何求插值多项式给定n 个点( x i ,y i ),(i=1,2,…,n),构造一个次数不超过n-1的多项式函数f(x),使得f(x i )=y i ,则称f(x)为拉格朗日插值多项式。
可以证明该多项式函数由公式))...()(())...()((...))...()(())...()(())...()(())...()((1211212321231113121321--------++------+------=n n n n n n n n n n x x x x x x x x x x x x y x x x x x x x x x x x x y x x x x x x x x x x x x y y唯一给定。
Mathematica 提供了根据插值点数据计算拉格朗日插值多项式的函数InterpolatingPolynomial ,下面是其调用格式:InterpolatingPolynomial[data,var]作出以data 为插值点数据,以var 为变量名的插值多项式。
例:在多数情况下,我们构造插值函数的目的在于计算函数f(x)的值,而并不在意插值多项式的具体表示形式。
对于拉格朗日插值多项式,当n 较大时,得到的高次插值多项式由于截断误差和舍入误差的影响,往往误差较大。
此时在实际应用中,一般采用分段插值。
Mathematica 提供了分段插值函数Interpolation ,其使用格式为:Interpolation[data,InterpolationOrder->n]这里InterpolationOrder->n 指定插值多项式的次数,默认值为3。
此外数据data 中还可以包括插值点处的导数,格式为:{{x1,{y1,dy1}},{x2,{y2,dy2}},…}例:已知f(0)=0,f(1)=2,f’(0)=1,f’(1)=1,求3次插值多项式f(x),并计算f(0.72)和画出函数f(x)在[0,1]区间上的图形。
第五章 数值分析和数值计算1. 如何求插值多项式给定n 个点( x i ,y i ),(i=1,2,…,n),构造一个次数不超过n-1的多项式函数f(x),使得f(x i )=y i ,则称f(x)为拉格朗日插值多项式。
可以证明该多项式函数由公式))...()(())...()((...))...()(())...()(())...()(())...()((1211212321231113121321--------++------+------=n n n n n n n n n n x x x x x x x x x x x x y x x x x x x x x x x x x y x x x x x x x x x x x x y y唯一给定。
Mathematica 提供了根据插值点数据计算拉格朗日插值多项式的函数InterpolatingPolynomial ,下面是其调用格式:InterpolatingPolynomial[data,var]作出以data 为插值点数据,以var 为变量名的插值多项式。
例:在多数情况下,我们构造插值函数的目的在于计算函数f(x)的值,而并不在意插值多项式的具体表示形式。
对于拉格朗日插值多项式,当n 较大时,得到的高次插值多项式由于截断误差和舍入误差的影响,往往误差较大。
此时在实际应用中,一般采用分段插值。
Mathematica 提供了分段插值函数Interpolation ,其使用格式为:Interpolation[data,InterpolationOrder->n]这里InterpolationOrder->n 指定插值多项式的次数,默认值为3。
此外数据data 中还可以包括插值点处的导数,格式为:{{x1,{y1,dy1}},{x2,{y2,dy2}},…}例:已知f(0)=0,f(1)=2,f’(0)=1,f’(1)=1,求3次插值多项式f(x),并计算f(0.72)和画出函数f(x)在[0,1]区间上的图形。