二次函数与商品利润最大问题
- 格式:ppt
- 大小:2.42 MB
- 文档页数:17
第 2 课时商品收益最大问题1.经历数学建模的基本过程,能剖析实质问题中变量之间的二次函数关系.2.会运用二次函数务实质问题中的最大值或最小值.3.能应用二次函数的性质解决商品销售过程中的最大收益问题.一、情境导入红光旅社有 100 张床位,每床每天收费 10 元,客床可所有租出,若每床每天收费提高 2 元,则租出床位减少 10 张,若每床每天收费再提高 2 元,则租出床位再减少 10 张,以每提高 2 元的这类方式变化下去,每床每天应提高多少元,才能使旅社获取最大收益?二、合作研究研究点一:最大收益问题【种类一】利用分析式确立赢利最大的条件为了推动知识和技术创新、节能降耗,使我国的经济可以保持可连续发展.某工厂经过技术攻关后,产质量量不停提高,该产品按质量分为 10 个品位,生产第一品位 ( 即最低档 ) 的新产品一天生产 76 件,每件收益 10 元,每提高一个品位,每件可节俭能源耗费 2 元,但一天产量减少 4 件.生产该产品的品位越高,每件产品节俭的能源就越多,能否获取的收益就越大?请你为该工厂的生产提出建议.分析:在这个工业生产的实质问题中,跟着生产产品品位的变化,所获收益也在不停的变化,于是可成立函数模型;找出题中的数目关系:一天的总收益=一天生产的产品件数×每件产品的收益;此中,“每件可节俭能源耗费 2 元”的意思是收益增添 2 元;利用二次函数确立最大收益,再据此提出自己以为合理的建议.解:设该厂生产第 x 档的产品一天的总收益为y 元,则有 y =[10 +2( x -1)][76 -4( x - 1)] =- 8x 2+128x +640=- 8( x -8) 2+1152. 当 x =8 时,y 最大值 =1152. 因而可知,其实不是生产该产品的品位越高,获取的收益就越大.建议:若想获取最大收益,应生产第 8 品位的产品. ( 其余建议,只需合理即可 )【种类二】利用图象分析式确立最大收益某水果店销售某种水果,由历年市场行情可知,从第1 月至第 12 月,这类水果每千克售价 y 1( 元 ) 与销售时间第 x 月之间存在如图①所示 ( 一条线段 )2的变化趋向, 每千克成本 y 2( 元 ) 与销售时间第 x 月知足函数关系式y 2= mx - 8mx+ n ,其变化趋向如图②所示.(1) 求 y 2 的分析式;(2) 第几月销售这类水果,每千克所获取收益最大?最大收益是多少?解:(1) 由题意可得,函数 y 2的图象经过两点(3 ,6) ,(7 ,7) ,∴19m - 24m + n = 6,m =8,1 263m -m + 解得∴y 2 的分析式为 y 2= 8x - x + 8 (1 ≤x ≤12) .=,6349567n = 8 .(2) 设 y 1= kx +b ,∵函数 y 1 的图象过两点 (4 ,11) ,(8 ,10) ,∴4k +b =11,8 k +b =,1011k =- ,解得4 ∴y 1 的分析式为 y 1 =- 4x +12(1 ≤ x ≤12) .设这类水果每千克所b =12.1 1263 1 2 3 33获取的收益为 w 元.则 w = y 1- y 2 =( -4x + 12) -( 8x - x + 8 ) =- 8x +4x + 8 ,1221∴ w=- 8( x-3) + 4 (1 ≤ x≤12) ,∴当x=3 时, w 取最大值214 ,∴第 3 月销售这类水果,每千克所获的收益最大,最大收益是214 元/ 千克.三、板书设计教课过程中,重申学生自主研究和合作沟通,经历将实质问题转变为函数问题,并利用函数的性质进行决议 .基础导练1.如下图,在一个直角三角形的内部作一个长方形 ABCD ,此中 AB 和 BC 分别在两直角边上,设 AB=x m ,长方形的面积为 y m 2,要使长方形的面积最大,其边长 x 应为 ()D5m ABC12mA.24mB.6 mC.15 mD. 5m42二次函数y=x 2-4x+3 的图象交 x 轴于 A 、B 两点,交 y 轴于点 C ,△ABC 的面2.积为( )A.1B.3C.4D.63.某乡镇公司此刻年产值是 15 万元,假如每增添 100 元投资,一年增添 250 元产值,那么总产值 y( 万元 )与新增添的投资额 x(万元 )之间函数关系为 ()A.y=25x+15B.y=2.5x+1.5C.y=2.5x+15D.y=25x+1.5能力提高4.某商场以每件 20 元的价钱购进一种商品,试销中发现,这类商品每天的销售量 m(件)与每件的销售价 x(元)知足关系: m=140-2x.(1)写出商场卖这类商品每天的销售收益y 与每件的销售价 x 间的函数关系式 ;(2)假如商场要想每天获取最大的销售收益,每件商品的售价定为多少最合适?最大销售收益为多少?5.如图,要建一个长方形养鸡场,鸡场的一边靠墙,假如用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x m.(1)要使鸡场面积最大,鸡场的长度应为多少m?(2)假如中间有 n(n 是大于 1 的整数 )道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少 m?比较 (1)(2)的结果,你能获取什么结论?x参照答案1.D2.B3.C4.解: (1)y=-2x2+180x-2800.(2)y=-2x2+180x-2800=-2(x2-90x)-2800=-2(x-45)2+1250.当 x=45 时, y 最大 =1250.∴每件商品售价定为45 元最适合,此销售收益最大,为1250 元 .5.解: (1)依题意得鸡场面积 y=1 x 250 x.33∵y=- 1x 2+ 50x= 1(x 2-50x)3 3 3=- 1(x -25)2+625,33∴当 x=25 时, y最大=625,3即鸡场的长度为 25 m 时,其面积最大为625m 2.350 x (2)如中间有 n 道隔墙,则隔墙长为n2 m.50 x150 ∴y= n 2 ·x=- n 2 x 2+ n 2 x1625=- n 2 (x 2- 50x )=- n 12 (x -25)2+ n 2,当 x=25 时, y625最大 = n 2 ,625即鸡场的长度为 25 m 时,鸡场面积为 n 2 m 2.结论:不论鸡场中间有多少道篱笆隔墙, 要使鸡场面积最大, 其长都是 25 m.。
二次函数与实际问题利润问题二次函数与实际问题利润问题实用问题与二次函数——利润问题教案(1)一、利润公式一种商品的购买价是40元,现在是60元。
每周可以卖出50件。
本周销售商品的利润是多少?小结:总利润=二、问题探究问题1:某种商品的购买价格是30元/件。
如果你在一段时间内以每件x元的价格出售,你可以卖出(200-x)件。
你应该如何定价以实现利润最大化?问题2:已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。
市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。
该商品应定价为多少元时,商场能获得最大利润?分析问题:设每件涨价x元,则每星期售出商品的利润为y 元。
(1)将价格提高X元,每周销量减少;实际上卖了几件。
(2)商品的现行价格是元,购买价格是元。
跟据上面的两个问题列出函数表达式为:自变量x的取值范围解答过程:问题3:目前一种商品的售价是60元/件,每周可以卖出300件。
根据市场调查,每涨1元,每周就少卖10件;每降价1元,每周可多卖出18件。
已知商品的购买价格为40元/件。
如何定价以实现利润最大化?三、课堂练习1.据了解,一件商品的购买价格为40元/件,销售价格为60元/件,每周可销售300件。
市场调查显示,如果价格调整,每降低一元,每周就会多卖出18件。
当商品的价格应该是多少元时,商场能获得最大的利润吗?2、某商场销售某种品牌的纯牛奶,已知进价为每箱40元,市场调查发现:若每箱以50元销售,平均每天可销售100箱.价格每箱降低1元,平均每天多销售25箱;价格每箱升高1元,平均每天少销售4箱。
如何定价才能使得利润最大?3.旅行社组织30人组团出国旅游,单价为每人800元。
旅行社对30人以上的组团提供折扣,即每增加一人,每人的单价将减少10元。
你能帮我分析一下当旅行团数量减少时旅行社能获得的最大营业额吗?4、某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满。
二次函数与商品销售中利润问题例1 某商店经营一种成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能销售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请回答以下问题:(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;(2)设销售单价定为每千克x元,月销售利润为y元,求y与x之间的函数关系式(不必写出x的取值范围);(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?练习:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?例2某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.⑴求出日销售量y (件)与销售价x (元)的函数关系式; ⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?练习 :某工厂在生产过程中要消耗大量电能,消耗每千度电产生的利润与电价是一次函数关系,经过测算工厂每千度电产生的利润y (元/千度)与电价x (元/千度)的函数图象如图:(1)当电价为600元/千度时,工厂消耗每千度电产生的利润是多少?(2)为了实现节能减排目标,有关部门规定,该厂电价x (元/千度)与每天 用电量m (千度)的函数关系为x =10m +500,且该工厂每天用电量不超过60千度.为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生的利润最大是多少元?x (元) 15 20 30 … y (件) 25 20 10 …例3某蔬菜基地种植西红柿,由历年市场行情知,从2月1日起的200天内,西红柿市场售价P与上市时间t的关系用图甲的一条线段表示;西红柿的种植成本Q与上市时间t的关系用图乙中的抛物线表示.(其中,市场售价和种植成本的单位为:元/100千克,时间单位为:天) (1)写出图甲表示的市场售价P与时间t的函数关系式; (2)写出图乙表示的种植成本Q与时间t的函数关系式; (3)如果市场售价减去种植成本为纯收益,那么何时上市的西红柿纯收益最大(可借助配方或草图观察)?},巩固提升:(2010年重庆)今年我国多个省市遭受严重干旱.受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,进入5 2.8 元/千克下降至第2周的2.4 元/千克,且y 与周数x 的变化情况满足二次函数c bx x y ++-=2201. (1)请观察题中的表格,用所学过的一次函数或二次函数的有关知识直接写出4月份y 与x 所满足的函数关系式,并求出5月份y 与x 所满足的二次函数关系式; (2)若4月份此种蔬菜的进价m (元/千克)与周数x 所满足的函数关系为2.141+=x m ,5月份的进价m (元/千克)与周数x 所满足的函数关系为251+-=x m .试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?(3)若5月的第2周共销售100吨此种蔬菜.从5月的第3周起,由于受暴雨的影响,此种蔬菜的可销售量将在第2周销量的基础上每周减少%a ,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨%8.0a .若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a 的整数值.图甲 图乙。
二次函数与最大利润问题解题技巧
1. 先了解二次函数的一般式和标准式。
2. 确定题目中涉及的自变量和因变量,并建立解题模型。
3. 求出二次函数的极值点,即最大或最小值点,这可以通过求导或配方法等方式得到。
4. 判断极值点是否为最大值点,如果是,则说明达到最大利润;如果不是,则需根据实际情况进行分析。
5. 最后通过代入数值验证答案是否正确。
举例:
某企业生产一种产品,售价为x元,该企业总成本为:
C(x)=10000+200x+0.02x²元,求该企业的最大利润及最大利润
的售价。
1. 一般式:y=ax²+bx+c;标准式:y=a(x-h)²+k。
2. 总利润P(x)=R(x)-C(x),其中,R(x)为总收入,C(x)为总成本。
因此,P(x)=x(100-0.02x)-10000-200x-0.02x²=-(0.02x²-
80x+10000)。
3. 求P(x)的极值点:P'(x)=-0.04x+80=0,得到x=2000,表示产量在2000时利润最大。
4. 检查2000是否为最大值点,此处可以通过求P''(x)判断。
P''(x)=-0.04<0,说明x=2000时是P(x)的最大值点。
5. 最大利润为P(2000)=-(0.02×2000²-80×2000+10000)=96000元,最大利润的售价为200元。
22.3(3.1)---(利润最大值问题)-顶点在范围内一.【知识要点】1.解题步骤:(1).设:设出两变量;(2).列:列出函数解析式;(3).定:确定自变量的取值范围;(4).判:判断存在最大(小)值;(5).求:求出对称轴,并判断对称轴是否在取值范围;(6).算:计算最值。
二.【经典例题】1.某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?2.(绵阳2019年第21题本题满分11分)辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?3.善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好.某一天小迪有20分钟时间可用于学习.假设小迪用于解题的时间x (单位:分钟)与学习收益量y 的关系如图1所示,用于回顾反思的时间x (单位:分钟)与学习收益y 的关系如图2所示(其中OA 是抛物线的一部分,A 为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求小迪解题的学习收益量y 与用于解题的时间x 之间的函数关系式;(2)求小迪回顾反思的学习收益量y 与用于回顾反思的时间x 的函数关系式; (3)问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最大?4.(2019年绵阳期末第23题)某镇在国家“精准扶贫”的政策指引下,充分利用自身资源,大力种植蔬菜,增加收入.(1)该镇2016年蔬菜产量为50吨,2018年达到72吨。
初三数学中的二次函数,是中考的必考考点,而且是必出大题的,而对于二次函数的应用,也是常考的知识点,尤其是最近几年,销售利润问题也是非常的热门,其实对于销售利润问题,如果同学们能够掌握关于销售的公式,牢牢掌握随着售价的变化,销售数量也随之变化这个关键点,这类问题也是非常简单的。
解决这类问题一般是先运用“总利润=单件商品的利润*销售的总数量”或“总利润=总售价-总成本”,建立利润与价格之间的二次函数解析式,然后求出这个函数解析式的顶点坐标,即求得最大利润。
初三数学二次函数应用专题,销售问题,牢记公式、抓住变化关键点例题1:某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若以每箱50元价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数解析式;(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数解析式;(3)当每箱苹果的销售价为多少元时,可以获得最大利润?初三数学二次函数应用专题,销售问题,牢记公式、抓住变化关键点【解析】:此题是最常见的,也是最基本的利润问题,从题目中“价格每提高1元,平均每天少销售3箱”,可知价格提高a元时,每天少销售3a箱。
因此销售价x(元/箱)时,每天销售量y=90-3(x-50)=-3x+240。
然后根据利润公式,总利润=单件商品的利润*销售的总数量,得W=(x-40)(-3x+240)=-3x^2+360x-9600=-3(x-60)^2+1200。
所以当x<60时,w随x的增大而增大,又由题意可知x≤55,∴当x=55时,可获得利润最大,最大利润为w=1125元。
例题2:某商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为:初三数学二次函数应用专题,销售问题,牢记公式、抓住变化关键点(1)已知y与t之间的变化规律符合一次函数关系,试求一次函数关系是多少?(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg水果就捐赠n元利润(0﹤n<9)给“精准扶贫”对象。
二次函数的实际应用——利润最大(小)值问题知识要点:二次函数的一般式c bx ax y ++=2(0≠a )化成顶点式ab ac a b x a y 44)2(22-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).即当0>a 时,函数有最小值,并且当a bx 2-=,ab ac y 442-=最小值;当0<a 时,函数有最大值,并且当a bx 2-=,ab ac y 442-=最大值.如果自变量的取值范围是21x x x ≤≤,如果顶点在自变量的取值范围21x x x ≤≤内,则当a bx 2-=,ab ac y 442-=最值,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性;如果在此范围内y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=2.[例1]:求下列二次函数的最值:(1)求函数322-+=x x y 的最值.[例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?[练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?[例3]: 某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.⑴求出日销售量y (件)与销售价x (元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元? 3.(2006十堰市)市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元) (30≥x )存在如下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案).作业布置: 1.二次函数1212-+=x x y ,当x=_____时,y 有最____值,这个值是___. 2.某一抛物线开口向下,且与x 轴无交点,则具有这样性质的抛物线的表达式可能为______________),此类函数都有____值(填“最大”“最小”).3.不论自变量x 取什么实数,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值范围是29>m ,4.小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图所示,若命中篮圈中心,则他与篮底的距离L 是 米 .5.在距离地面2m 高的某处把一物体以初速度V 0(m/s )竖直向上抛出,•在不计空气阻力的情况下,其上升高度s (m )与抛出时间t (s )满足:S=V 0t-12gt 2(其中g 是常数,通常取10m/s 2),若V 0=10m/s ,则该物体在运动过程中最高点距离地面_____m .6.影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.有研究表明,晴天在某段公路上行驶上,速度为V (km/h )的汽车的刹车距离S (m )可由公式S=1100V 2确定;雨天行驶时,这一公式为S=150V 2.如果车行驶的速度是60km/h ,•那么在雨天行驶和晴天行驶相比,刹车距离相差_____米. 7.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价______元,最大利润为_____元.8.如图,一小孩将一只皮球从A 处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A 距地面的距离OA 为1 m ,球路的最高点B (8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m) .9.(2006年青岛市)在2006年青岛崂山北宅樱桃节前夕,•某果品批发公司为指导今年的樱桃销售,对(1判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式;(2)若樱桃进价为13元/千克,试求销售利润P (元)与销售价x (元/千克)之间的函数关系式,并求出当x 取何值时,P 的值最大?10.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x天后每千克活蟹的市场价为p元,写出p关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000 kg蟹的销售总额为Q元,写出Q关于x的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q-收购总额)?11.(2008湖北恩施)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?12.(2008河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式9051012++=x x y ,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,(万元)均与满足一次函数关系.(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润(万元)与之间的函数关系式;(2)成果表明,在乙地生产并销售吨时,(为常数),且在乙地当年的最大年利润为35万元.试确定的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?。